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Abstract. We describe the mathematical content knowledge a teacher

needs in order to achieve a basic level of competence in mathematics

teaching. We also explain why content knowledge is essential for this

purpose, how Textbook School Mathematics (TSM) stands in the way

of providing teachers with this knowledge, and the relationship of this

concept of content knowledge with pedagogical content knowledge (PCK).

Keywords. Pedagogical content knowledge, fundamental principles of

mathematics, Textbook School Mathematics, definitions, and reasoning.
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4.1 Introduction

This is the first in a projected series of papers that examine the content knowledge

that mathematics teachers need in order to achieve a basic level of competence in

mathematics teaching.1 We share the belief with Ball, Thames, and Phelps (2008)

that "Teachers must know the subject they teach. Indeed, there may be nothing

more foundational to teacher competency." (Ibid., page 404.) In subsequent articles,

we will discuss specifically how to teach various topics from this perspective, such as

long division, percent, ratio, rate, proportional reasoning, congruence and similarity,

and slope.

What mathematics teachers need to know for teaching is a contentious issue in

mathematics education. It is indeed a tall order to prescribe the content knowledge—

beyond what is in the standard school mathematics2 curriculum—that would enable a

teacher to teach "effectively" in a school classroom. It becomes all the more forbidding

when the desired level of effectiveness is not specified.

Since 1998, I have been engaged in providing a detailed answer to a far simpler

question: "What is the mathematical knowledge that teachers need in order to achieve

teaching competence on the most basic level "? I will give a more precise description

of "basic teaching competence" in the next section, but it is much easier to begin by
1There should be no misunderstanding about what is being asserted: having this content knowl-

edge is necessary for competent teaching.
2By school mathematics, we mean the mathematics of K–12.
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describing several examples of teaching that I consider to be below this basic level.3

One example is to teach a concept through several grades without ever giving that

concept a precise definition, e.g., fraction, decimal, variable, slope, etc. This used to

be the universal practice before the advent of the Common Core State Standards for

Mathematics (CCSSM for short, see Common Core, 2010), but given the poor state

of school textbooks, it is possible that this is still happening in many classrooms.

Another is the failure to draw a sharp distinction between what is being defined and

what is being proved, e.g., the assertion that a fraction is a division (of the numerator

by the denominator), or the statement that 𝑏0 = 1 (for a positive number 𝑏), or

the statement that the graph of a quadratic function is a parabola (i.e., is this the

definition of a "parabola" or is this a theorem that proves that the graph is a well-

defined curve called a "parabola"?). Yet another is the careless blurring of the fine

line between what is true and what is merely plausible. One of many such examples

is the not uncommon attempt to show that, without a definition of the division of

fractions, one can nevertheless arrive at the invert-and-multiply rule. Thus,

2
3
4
5

=
2

3
× 5

4

because:
2
3
4
5

=
2
3
× (3× 5)

4
5
× (3× 5)

=
2× 5

4× 3
=

2

3
× 5

4
(1)

3These examples illustrate the almost universal bad practice forced on teachers by school text-
books from roughly 1970 to 2010; see Subsection 2.3 below.
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This chain of pseudo-reasoning is most seductive, but it suffers from a multitude of

errors, the most glaring being the justification for the first equality: it is supposed to

be based on equivalent fractions. Unfortunately, equivalent fractions only guarantees

that if 𝑚 and 𝑛 are whole numbers, then

𝑚

𝑛
=

𝑚× (3× 5)

𝑛× (3× 5)
(2)

What is needed to justify the first equality in (1), however, is for 𝑚 and 𝑛 in (2) to be

equal to 2
3

and 4
5
, respectively, and 2

3
and 4

5
are emphatically not whole numbers.

As a final example of the kind of teaching that is below the most basic level, perhaps

the failure to provide the reasoning for truly basic facts such as 𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
or

(−𝑎)(−𝑏) = 𝑎𝑏 requires no further comment.

It is unfortunately a fact that, because of our collective dereliction of duty, most of

our teachers have been forced to teach at a level below the basic level of competence

(see, e.g., Wu, 2011b).

My effort to find out what content knowledge teachers need in order to achieve

basic teaching competence took a practical turn when I began to provide professional

development to preservice and inservice mathematics teachers of all grade levels in

2000; it lasted until 2013. Current practices in mathematics professional development

have been to concentrate on instructional strategies (U.S. Department of Education,

2009, p. 89; Wu, 1999). Moreover, the teachers I taught have consistently told me

that, whatever content-based professional development they got, it would be given in
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short workshops (half-day or one day, rarely two days) on specific topics. There have

also been extended workshops lasting several weeks for teachers on "immersion in

mathematics" devoted to problem-solving or doing mathematical research on topics

sufficiently close to school mathematics (e.g., PCMI, 2016, or PROMYS, 2016). I

made the decision from the beginning that I could better serve teachers by break-

ing with tradition. I would teach them, systematically, the mathematics they have

to teach, but in a way that is both mathematically correct and adaptable to their

classrooms. Such an endeavor requires long-term effort, e.g., three-week institutes

strictly devoted to the mathematics of one or two major topics, with follow-up ses-

sions throughout the year, or course-sequences in the mathematics departments of

universities (see Wu, 1998 and Wu, 2011a for elementary teachers; Wu, 2010a and

2010b for middle school teachers; and the Appendix of Wu, 2011c for high school

teachers).

It did not take me long to realize that these efforts will ultimately go nowhere

unless we have on record at least one default model of a logical, coherent presentation

of school mathematics that is adaptable to the K–12 classroom. Without such a

presentation it is difficult to make the case that school mathematics, despite the need

to be cognitively sensitive to the learning trajectory of school students, is nevertheless

a discipline that respects mathematical integrity. In other words, the concepts and

skills of school mathematics can be developed logically from one level to the next,
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and the transparency that one expects of mathematics proper is also attainable there.

Without such a detailed presentation, our insistence that reasoning—and therewith

problem-solving—must be everywhere in the school curriculum would also sound a

bit hollow. Incidentally, an explanation of the need for such a presentation from the

perspective of professional development will also be given on page 85.

For these reasons, I have embarked on a project of writing a series of textbooks for

teachers that will cover all of school mathematics. Three have already appeared (Wu,

2011a, 2016a and 2016b), and three more to round out the series will probably be in

print by 2018 (Wu, to appear).4 This article will attempt to explain from the vantage

point of what may be called principle-based mathematics (to be explained in

detail on page 11) the content knowledge that teachers need in order to carry out

their basic duty of teaching mathematics. In the process, we will also make contact

with Shulman’s concept of pedagogical content knowledge (Shulman, 1986) and its

refinement in Ball, Thames, and Phelps, 2008.

If there is one thing I have learned through my many years of involvement with

teachers, it is the melancholic realization that—as of 2016—relatively few educators

and mathematicians seem to be aware of the urgency of the need to provide this

content knowledge to mathematics teachers (compare the last paragraph of Section
4Although these professional development materials were written well before the CCSSM, they

are compatible with the CCSSM because the first two served as a reference for the writing of the
CCSSM. The CCSSM came to the same conclusion on numerous topics as these materials (fractions,
rational numbers, use of symbols, middle school and high school geometry, etc.).
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). Our failure to do this has indirectly forced school students to memorize things

that are unreasonable and incoherent, and therefore ultimately unlearnable. Yet we

expect students to be proficient in "sense-making", "problem solving", and attaining

"conceptual understanding", and when such irrational expectations are not met, we

evaluate these same students and pass judgment on their inability to learn. It is time

to stop inflicting such cruel and unusual punishment on the young. There is another

victim of this strange education philosophy too: the teachers. In my experience, many

of them are unhappy with the limitations in their content knowledge and are eager to

expand their mathematical horizon, only to be frustrated by the overwhelming scarcity

of resources to help them. We have let our teachers down for far too long.

Let us take a modest first step to making amends by providing a better mathe-

matical education for teachers.

This article is organized as follows. Section describes, on the one hand, the

mathematical knowledge base of most teachers at present (which we call TSM; see

pp. 23) ff.) and, on the other, the minimum mathematical knowledge that teachers

need in order to achieve basic teaching competence. We also provide some threadbare

data that is available to show why this knowledge would be beneficial to student

learning. Section attempts to give a more detailed description of the chasm that

separates the two kinds of content knowledge. Section 4 explains what we mean by

"knowing" a concept or a skill, and Section 5 makes some comments on the state of
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professional development at present and the hard work that lies ahead if our goal of

providing teachers with this minimum knowledge is to be achieved. The last section,

Section 6, makes contact with pedagogical content knowledge.

4.2 The two basic requirements

What is the mathematical knowledge that teachers need in order to teach at a ba-

sic competence level, and how to assess whether teachers know it? We will postpone

the answer to the latter question to Section but will try to answer the former in this

section. Broadly speaking, this knowledge should enable teachers to teach procedural

knowledge as well as the reasoning that supports it. It therefore asks for a knowl-

edge of the most basic facts (e.g., the standard algorithms, operations on fractions,

standard algebraic identities, and foundational theorems such as the Pythagorean

Theorem or the angle sum of a triangle being 180∘) as well as correct, grade-level ap-

propriate mathematical explanations for them, and the ability to "distinguish right

from wrong", e.g., spot errors in "routine" situations related to these facts and be

able to correct them. In particular, we will explicitly leave out from our consider-

ations the more refined aspects of teaching (insofar as they are related to content

knowledge) such as the ability to find more than one explanation for an assertion,

give fruitful guidance to students’ extemporaneous mathematical discussions, make

up good examples or mathematical questions to pique students’ interest, or make up

good assessment items that probe students’ understanding.
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In the preceding section, it has already been mentioned in passing that the content

knowledge that meets such a modest demand of basic teaching competence must

satisfy, at least, both of the following requirements:

(1) It closely parallels what is taught in the school classroom.

(2) It respects the integrity of mathematics.

The first point should be self-evident: teachers should not be required to create

new mathematics for their lessons, any more than violinists should compose the music

they perform.5 They should have a ready reference for what they teach. An additional

reason for making this point explicit is that the mathematics community generally

holds the conviction that teaching teachers the kind of mathematics it deems impor-

tant will lead to educational improvement. The idea that, once teachers know the good

stuff, they will somehow know the elementary stuff (school mathematics) better and

therefore teach better6 has led to the disastrous consequence that preservice teachers

are typically not taught the mathematics of the K–12 curriculum in college. Another

consequence is that many mathematicians, in their attempt to improve K–12 educa-

tion, adopt the default position of teaching (preservice and inservice) teachers college

topics that are elementary at the college level but are nevertheless too advanced for

the K–12 curriculum, such as finite geometry, discrete mathematics, number theory,
5I am paraphrasing something said by Harold Stevenson at a TIMSS conference; see Math Fo-

rum@Drexel, 1998.
6This is the Intellectual Trickle Down Theory as described on page 41 of Wu, 2015.

11



etc. There is as yet no widespread recognition that the mathematics of the K–12 cur-

riculum is not a proper subset of the mathematics taught in college (see p. 404 of Ball,

Thames, and Phelps (2008); Wu, 2006; and pp. 42–47 of Wu, 2015), and therefore

preservice mathematics teachers need explicit instruction on school mathematics.

The second point about teachers’ need for content knowledge that respects the

integrity of mathematics is even more of a no-brainer. If the goal of mathematics

education is to teach students mathematics, then it is incumbent on us not to teach

them anything less than correct mathematics. Therefore teachers’ content knowledge

cannot afford to be polluted by any kind of mathematics that has no mathematical

integrity. Those not familiar with school mathematics or the state of school math-

ematics textbooks may be shocked that one would consider something this obvious

to be worthy of discussion. Unfortunately, the reality is that our teachers’ content

knowledge—due to reasons to be explained in Subsection 2.3—has been a very flawed

version of mathematics for a long time. There is some reason to believe that this kind

of flawed mathematical knowledge is also shared by many education researchers so

that these flaws cease to be noticeable in the education literature after a while. We

bring up the issue of mathematical integrity precisely because we wish to provide a

proper context for a fresh analysis of this body of flawed mathematical knowledge.

This analysis will also reveal why it is so difficult for teachers to acquire the content

knowledge they need.
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Because we are mainly concerned with the nature of the content knowledge math-

ematics teachers need for basic teaching competence, we will leave out any discussion

about the scope of the content knowledge that a teacher of a particular grade needs

for this purpose. Without getting into details, we can nevertheless agree with the

recommendation of the National Mathematics Advisory Panel that "teachers must

know in detail and from a more advanced perspective the mathematical content they

are responsible for teaching and the connections of that content to other important

mathematics, both prior to and beyond the level they are assigned to teach" (National

Mathematics Advisory Panel, 2008, page 38).

In the first subsection below, we will propose a workable definition of mathematical

integrity. Because the idea of emphasizing definitions is so new in K–12, we make a

few additional comments in Subsection 2.2 on this advocacy to preclude any misun-

derstanding. Then using this definition of mathematical integrity, we briefly describe

in Subsection 2.3 the current state of most teachers’ content knowledge. In the last

subsection (pp. 28 ff.), we give some indication of why teaching correct mathematics

is beneficial to mathematics learning.

4.2.1 Five fundamental principles

Any detailed discussion of teachers’ content knowledge requires first of all a def-

inition of "mathematical integrity". Like the concept of "beauty" in art and music,

it is not likely that there will ever be a comprehensive definition of "mathematical
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integrity" that is agreeable to everyone. Nevertheless, we can propose a usable and

reasonably short definition that most working mathematicians would consider un-

objectionable. With this in mind, here are five fundamental principles that we

believe characterize mathematical integrity (see Wu, 2011b):

(A) Every concept is precisely defined.

(B) Every assertion is supported by reasoning.

(C) Every assertion is precise.

(D) The presentation of mathematical topics is coherent.

(E) The presentation of mathematical topics is purposeful.

Before we amplify on these principles, let it be mentioned that, strictly speaking,

these are fundamental principles that undergird what is called pure mathematics. For

so-called applied mathematics, each of these principles will acquire a slightly different

flavor. Nevertheless, for reasons to be discussed in Appendix 1 (page 87), it suffices

to limit ourselves to (A)–(E) if our goal is to safeguard the mathematical integrity of

school mathematics.

The first three principles, (A)–(C), are closely interrelated and therefore have to

be discussed together. In mathematics, the starting point for any reasoning is a

collection of precise definitions of concepts7 and a collection of explicit assumptions

or facts already known to be true. It is the unambiguous nature of the definitions,
7Or undefined terms at the beginning of an axiomatic development.
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assumptions, or facts that enables them to serve as the foundation for correct log-

ical deductions. The process of making logical deductions from precise definitions,

assumptions, and facts in order to arrive at a desired conclusion is what we call rea-

soning, and reasoning is the vehicle that drives problem-solving.8 It is therefore in the

nature of mathematics that, without precise definitions, reasoning cannot get off the

ground and therefore there will be no problem-solving. Those who lament students’

inability to solve problems should look no further than the defective curricula around

us that offer no precise (and correct) definitions for the most basic bread-and-butter

concepts such as fractions, decimals, negative numbers, constant speed, slope, etc.

(See Subsections and on pp. 36 and 46, respectively.)

It is easy to explain in everyday language why any mathematical discussion must

rest on precise definitions. In a rational discourse, we must know exactly what we

are talking about, and precise definitions serve the purpose of reminding us what we

are talking about. Precision becomes even more critical when the discussion turns

to abstract concepts and skills, which is what happens in the mathematics of middle

school and high school. We need precision to minimize misunderstanding in the

teaching and learning of mathematics because the precision helps to delimit, exactly,

what each concept or assertion does or does not say. While human communication,

being human, cannot maintain such precision at all times in a school classroom, there
8In mathematics, there is no difference between proving and problem-solving.
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will come a time in any discussion of mathematics when such precision becomes

absolutely indispensable. This is a persuasive argument that teachers should learn to

judiciously nurture precision in the school classroom.

Beyond definitions, precision manifests itself in school mathematics in almost ev-

ery conceivable way, and there is no end of such examples. Thus the domain of

definition of the function log 𝑥 is not {𝑥 ≥ 0} but {𝑥 > 0}; indeed the difference

between the two is only one number, namely, 0, but that is the difference between

nonsense and being correct. Another example: it seems plausible that if we have an

inequality between numbers, let us say 𝑎 < 𝑏, and if 𝑐 is another number, then we

have 𝑐𝑎 < 𝑐𝑏. As is well-known, this is not correct because if 𝑐 is negative, then the

opposite is true, i.e., 𝑐𝑎 > 𝑐𝑏, and if 𝑐 = 0, then 𝑐𝑎 = 𝑐𝑏. Therefore this assertion

must be precisely announced as follows:

Suppose two numbers 𝑎 and 𝑏 satisfy 𝑎 < 𝑏. If 𝑐 > 0, then 𝑐𝑎 < 𝑐𝑏, but

if 𝑐 < 0, then 𝑐𝑎 > 𝑐𝑏.

As a final example, if the three sides of a triangle are (of length) 20, 67.1, and 70,

then it is not a right triangle. If you draw such a triangle using any unit of length

(e.g., 20 cm, 67.1 cm, 70 cm) and measure the angles, you are most likely going to

conclude, within the margin of error in measurements, that this is a right triangle.

Yet, because 202 + 67.12 ̸= 702 (the left side is 4902.41 while the right side is 4900),

we know by the Pythagorean Theorem that this cannot be a right triangle.
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As for the critical role of reasoning in mathematics education, suffice it to note that

rote-learning—the one quality in education that is universally decried—is nothing but

the attempt to memorize in the absence of reasoning. When every assertion is seen

to be supported by reasoning, students realize that mathematics is learnable after all

because it is not faith-based and submission to another person’s whimsical dictates

is not required. For example, every elementary student has probably wondered why

we cannot add fractions in the same simple way that we multiply fractions, i.e., why

𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
but 𝑎

𝑏
+ 𝑐

𝑑
̸= 𝑎+𝑐

𝑏+𝑑
. If people in education had ever given serious thought to

this question, they would have realized the urgency of defining precisely the meaning

of adding and multiplying fractions and then proving the addition and multiplication

formulas for fractions (see Wu, 1998). Such a realization might have changed the

landscape of teaching fractions several decades earlier. Needless to say, the same goes

for all the arithmetic operations for fractions and for rational numbers9 and indeed,

for every assertion in school mathematics.

Next, let us turn to the concept of coherence in (D). The term "coherence" is often

invoked in recent education discussions, but perhaps without realizing that it is quite

subtle and can only be explained in terms of technical details. Roughly, it means

that the body of knowledge we call mathematics, far from being a random collection

of facts, is a tapestry in which all the concepts and skills are logically interwoven to
9Rational numbers is the correct terminology for fractions and negative fractions; it should not

be conflated with fractions. Fractions are nonnegative rational numbers.
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form a single piece. For example, the concept of division, when presented correctly, is

essentially the same for whole numbers, fractions, rational numbers, and real numbers

(this fact is emphasized in Wu, 2011a). And even for complex numbers. Right

there, we see why coherence is vital for the teaching and learning of mathematics

because it means that, if the concept of division is taught correctly the first time for

whole numbers, it will spare learners the need to learn division anew on subsequent

occasions. This message bears repeating because the division of fractions is still a

much feared concept at the moment.10 For another example, although the standard

algorithms for whole numbers may seem to be four unrelated and unfathomable skills,

they are all unified by a single idea: how to reduce all multi-digit computations to

single-digit computations (cf. Wu, 2011a, Chapter 3). From this perspective, the

success and the beauty of the standard algorithms are nothing short of stunning.

They teach students the important lesson of reducing the complex to the simple,

which is after all a main driving force behind all scientific investigations. Had this

kind of coherence about the standard algorithms been widely understood among

teachers and routinely taught in textbooks, it is doubtful that the Math Wars of

the nineties would have erupted at all. We can push this line of reasoning one step

further: the four arithmetic operations on fractions may seem to be unrelated skills

until one realizes that they are conceptually the same as those on the whole numbers
10"Ours is not to reason why, just invert and multiply."
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(this fact is especially emphasized in Part 2 of Wu, 2011a). Insofar as the whole of

mathematics is coherent, there is no end of such examples, and some of them will

naturally emerge in the discussions of the next section (Section 3). However, it should

be obvious from this brief discussion that teachers must be aware of the coherence of

mathematics if they want to be effective in the classroom.

Finally, the concept of purposefulness may also be a characteristic of mathemat-

ics that is hidden from a casual observer’s view, but it is one of the main forces that

shape mathematics from the most elementary part to the most advanced. Mathemat-

ics is goal-oriented, and every concept or skill is there for a mathematical purpose.

This is especially true of school mathematics because the intense competition among

the various topics to stay in the school curriculum naturally weeds out all but those

that serve a compelling purpose. One of the most striking examples is the concept

of basic rigid motions in the plane—translation, rotation, and reflection—that are

standard topics in middle school. In TSM, these rigid motions are regarded as fun

activities that shed light on the beauty of tessellations and Escher’s prints (cf. page 33

of Conference Board of the Mathematical Sciences, 2001), and they lead to so-called

transformational geometry, a novelty whose charm quickly gets lost in the technical-

ities of high school mathematics. But when these basic rigid motions are properly

realized as the cornerstone for the concept of congruence in the plane, the mathemat-

ics of these rigid motions comes to the forefront and they become the thread that

19



unifies middle and high school geometry (cf. Wu, 2010a, Chapter 4; CCSSM, 8.G

and High School-Geometry; Wu, 2016a, Chapter 4). Another example is rational

numbers (fractions and negative fractions). They are not just "another collection of

numbers" that students must put up with, but are rather the agents that render the

computations that one normally performs in solving linear equations (for example)

entirely routine. (This may be likened to what the standard algorithms do for com-

putations with whole numbers.) A final example is the concept of place value. In the

way it is commonly taught in schools, this is a concept that primary students must

accept, by rote, at all costs. Would it not be more productive to explain to them, no

matter how informally, the fact that we need place value in order to count (and write)

to any number by using only 10 symbols {0, 1, 2, . . . 9} and to also make number

computations manageable at the same time? (See Sections 1.1 and 1.2 in Wu, 2011a,

and pp. 13–31 in Wu, 2013a.)

4.2.2 Two caveats

Before we proceed further, we should clear up a common misunderstanding con-

cerning the use of definitions in school mathematics. At present, there is great resis-

tance to the idea of making the formulation of precise definitions a main focus of K–12

mathematics. Some textbook writers go so far as to refuse to let any reasoning be

based on precise definitions because—as the saying goes—the definition of a concept

emerges only after many explorations. Therefore some amplification on this idea is
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necessary.

Our insistence on the use of precise definitions as the basis for reasoning is not

meant to be, literally, applicable to all of K–12 but only to roughly grade 5 and

up.11 These are the grades where reasoning begins to assume a critical role and the

non-learning of mathematics starts to become most pronounced. We hasten to add

that we do not by any means imply that definitions and reasoning do not matter in

grades K–4; emphatically they do. After all, the foundation of learning how to reason

from precise definitions must be laid in those grades. However, at least in K–3, the

pedagogical and psychological components of teaching may be even more important

than the content component. Therefore, a discussion of definitions and reasoning in

the early grades will have to be more nuanced than is possible in the limited space

we have here.

A second point we should make is that the use of definitions and the presentation

of proofs in grades 5–12 must respect the reality of the school classroom. It is time to

recall requirements (1) and (2) at the beginning of Section 2: we want mathematics

that is both correct and usable in the school classroom. We therefore expect defini-

tions to be introduced with motivation and background information, in ways that are

grade-level appropriate.
11In making this assertion, I am trying to be as conservative as possible. Larry Francis pointed

out to me, for example, that the definition of a fraction as a certain point on the number line is
essentially given in the third grade of the CCSSM: 3.NF.2.
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We can illustrate with the teaching of fractions. By no later than the fifth grade,

we expect a fraction to be defined as a point on the number line constructed in

a prescribed way (see Wu, 1998, and Wu, 2011a, Part 2, and CCSSM, 5.NF).12

But does this mean a fifth grade teacher should ram this definition down students’

throats on day one of a fifth grade class? Not at all. We would expect something

more persuasive to precede it. For example, when a textbook for teachers introduces

this definition, it devotes six and a half pages to explaining the genesis and the need

for such a definition (see Wu, 2011a, pp. 177–183). In fact, by the time this book

gets to fractions, it has already spent a chapter explaining the virtues of the number

line as a tool for codifying the mathematics of whole numbers (Wu, 2011a, Chapter

8). For another example, when the same book for teachers defines what fraction

division means, it spends four pages reviewing the relevant definitions of subtraction

and division for whole numbers and giving an intuitive meaning to the division of

"simple" fractions (Wu, 2011a, pp. 283–286).

A final example is about the definition of a genuinely abstract concept, that of

the probability of an event. This is without a doubt a difficult concept for middle

school students. Therefore in a book for teachers (Wu, 2016a, pp. 121–141), no

general definition of probability is given in the first twelve pages of the exposition

on this topic. Instead, these twelve pages are devoted entirely to examples of coin
12Also see the preceding footnote.
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tossing and dice throwing, and the probability of each example is defined specifically

for that example; these definitions are relatively easy to accept because experiments

can be performed to test the plausibility of each of these definitions. When the general

definition is finally given at the end of these twelve pages of examples, the abstract

pattern of the earlier definitions of the probability for each individual example is

already in clear evidence, and the general definition becomes nothing but a summary

of the earlier ones.

It remains to point out that the motivation for definitions in student textbooks will

have to be even more expansive and more considerate. While one would not expect

such elaborate preparation for the introduction of each and every definition, these

three examples do serve the purpose of clarifying the recommendation that precise

definitions be given in grades 5–12.

4.2.3 Textbook School Mathematics (TSM)

School textbooks are a powerful force in teachers’ lives because teachers’ lessons

usually follow the textbooks. It is unfortunately the case that the mathematics en-

coded in the school textbooks of roughly the four decades from 1970 to 2010 is a very

defective version of mathematics. Let us call it Textbook School Mathematics

(TSM) (Wu, 2014a, Introduction; Wu, 2015). Because colleges and universities—as

pointed out on page 11—make scant effort to help preservice teachers revisit and

revamp their knowledge of TSM, what teachers know about school mathematics gen-

23



erally consists of nothing more than TSM. Consequently, teachers have no choice but

to teach their students what they themselves were taught as school students so that

they too imprint TSM on their own students. It therefore comes to pass that this

body of defective mathematics knowledge gets recycled in schools from generation to

generation.

In order for teachers to acquire a content knowledge base that respects mathemat-

ical integrity, i.e., satisfies condition (2), we must begin by helping them to recognize

and replace their knowledge of TSM.

It is a legitimate question whether the concept of TSM has any validity. Does it

exist? This question becomes all the more pressing when one realizes that the math-

ematics education reform of the 1990s (National Council of Teachers of Mathematics,

1989 and 2000) took place within the last four decades and the reform was a revolt

against the school mathematics of the 1970s and 1980s. How can TSM possibly span

both eras, pre-reform and post-reform? We will leave a more detailed answer to these

questions to Appendix 2 (page 91) so as not to interrupt the present discussion of

teachers’ content knowledge. However, a little reflection will immediately reveal that

the following features are equally common in pre-reform or post-reform texts: lack

of precise definitions (e.g., fractions, negative numbers, the meaning of division of

fractions, decimals, constant rate, percent, slope, etc.), the absence of precise reason-

ing for major skills (e.g., how to add or multiply fractions, how to multiply or divide
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decimals, why negative times negative is positive, how to write down the equation of a

line passing two given points, how to locate the maximum or minimum of a quadratic

function, etc.), and the failure to explain the purpose of studying major topics such

as the standard algorithms, rounding off whole numbers or decimals, functions, expo-

nential notation of numbers (why write
√
𝑏 as 𝑏1/2 ?), trigonometric functions (are

right triangles that important?), etc. (Also see Wu, 2014a.)

The most egregious errors of TSM lie in rational numbers (especially in fractions),

linear equations of two variables and linear functions of one variable, and middle

school and high school geometry. Since these topics will be discussed at some length

in the next section, what we are going to do here is describe how TSM, in its treatment

of the laws of exponents in high school algebra, manages to violate all five fundamental

principles of mathematics.

The laws of exponents in question state that for all 𝑎, 𝑏 > 0 and for all real

numbers 𝑠 and 𝑡, we have:

(𝐸1) 𝑎𝑠 · 𝑎𝑡 = 𝑎𝑠+𝑡

(𝐸2) (𝑎𝑠)𝑡 = 𝑎𝑠𝑡

(𝐸3) (𝑎 · 𝑏)𝑠 = 𝑎𝑠 · 𝑏𝑠

The starting point is of course the easily verified simpler versions of (E1)–(E3) for all

𝑎, 𝑏 > 0 and for all positive integers 𝑚 and 𝑛,
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(𝐸1′) 𝑎𝑚 · 𝑎𝑛 = 𝑎𝑚+𝑛

(𝐸2′) (𝑎𝑚)𝑛 = 𝑎𝑚𝑛

(𝐸3′) (𝑎 · 𝑏)𝑛 = 𝑎𝑛 · 𝑏𝑛

The first order of business in generalizing (𝐸1′)–(𝐸3′) to (𝐸1)–(𝐸3) is to define 𝑎0 and

𝑎−𝑛 for any positive integer 𝑛. The way TSM tries to motivate the definition 𝑎0 = 1

is by either asking students to believe that the validity of patterns (. . . 𝑎3 = 𝑎4/𝑎,

𝑎2 = 𝑎3/𝑎, 𝑎 = 𝑎2/𝑎) also validates 𝑎0 = 𝑎1/𝑎 = 1, or by claiming that since (𝐸1′)

holds, we must have 𝑎2𝑎0 = 𝑎2+0 = 𝑎2 so that by dividing both sides of 𝑎2𝑎0 = 𝑎2

by 𝑎2, we get 𝑎0 = 1. This kind of speculative reasoning is of course an integral part

of doing mathematics provided it is clearly understood to be speculative. However,

precision not being a main concern of TSM, this motivation for the definition of

𝑎0 is presented—informally to be sure—as "reasoning", and the result is that this

motivation for a definition is commonly misconstrued as a proof of the theorem that

for any 𝑎 > 0, 𝑎0 = 1. The same comment applies to the definitions of 𝑎−𝑛 = 1/𝑎𝑛

and 𝑎1/𝑛 = 𝑛
√
𝑎. Such imprecision contributes to teachers’ confusion between what a

definition is and what a theorem is.13

Once the concept of 𝑎𝑟 has been defined for all rational numbers, the next step is to

explain, to the extent possible, why (𝐸1)–(𝐸3) are valid for all rational numbers 𝑠 and

𝑡. Unfortunately, TSM simply dumps these laws of exponents for rational exponents
13I have personally witnessed this confusion not just in the U.S. but also in Australia and China.
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on students with nary a word of explanation. Let us be clear: we do not want these

laws for rational exponents to be completely proved in a high school classroom either,

because these proofs are long and tedious (see, e.g., Wu, 2010b, pp. 183–191). Yet

some special cases are so important that they deserve to be proved in full, e.g., the

following special case of (𝐸3):

𝑛
√
𝑎

𝑛
√
𝑏 =

𝑛
√
𝑎𝑏 for all positive integers 𝑛 (3)

This equality, especially the case 𝑛 = 2, is almost ubiquitous in the middle and high

school mathematics curriculum, but it seems to be the case that either TSM assumes

(3) without comment or, if a proof is attempted, it is not correct.14

Now the laws of exponents are taken up in textbooks long after the concept of a

function has been taught. Therefore, there is no excuse for not pointing out, emphat-

ically, that these laws are in fact remarkable properties of the exponential functions.

Yet TSM introduces these laws almost always as "number facts", and even when it

gets around to discussing exponential functions, no special effort is made to finally

establish the relation of these so-called number facts with the exponential functions.

Thus the real purpose of studying these laws of exponents (i.e., they are characteristic

properties of exponential functions) goes by the wayside and students are likely to lose

sight of the fact that it is automatic in mathematics to isolate the properties common
14Part of the difficulty of obtaining a correct proof of (3) is that the uniqueness of the positive

𝑛-th root of 𝑎 is part of the definition of 𝑛
√
𝑎, but TSM seems unwilling to confront the concept of

uniqueness.
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to a given class of functions. In this light, the laws of exponents are to exponential

functions as the addition theorems (of sine and cosine) are to the trigonometric func-

tions.15 This is mathematical coherence in action. But, instead, TSM makes students

believe that the exponential notation is a just a game we play in order to rewrite 𝑛
√
𝑎

in the fancy notation 𝑎1/𝑛. Without any exposure to the reasoning behind the laws

of exponents, students end up seeing these laws as undecipherable statements about

a quaint notation that they must commit to memory.

There is an additional flaw in TSM in its failure to at least comment on the

meaning of 𝑎𝑠 when 𝑠 is an irrational number such as 𝜋 or
√
3. See the discussion in

Chapter 9 of Wu, 2016b, that presents a more reasonable way to address the laws of

exponents overall.

4.2.4 The data

Since the two requirements (1) and (2) on page 11 for the content knowledge that

teachers need pull in opposite directions, it is by no means obvious how to provide

teachers with this knowledge. Following Poon, 2014, let us call content knowledge

that satisfies both requirements principle-based mathematics. TSM certainly satis-

fies requirement (1) of principle-based mathematics, but it fails requirement (2) in

spectacular ways as we have just seen. Conversely, one can easily cobble together a

coherent exposition of all the standard topics in school mathematics by making a judi-
15Or, more generally, as the addition theorems are to complex exponential functions.
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cious selection of various pieces from the required courses of a university math major,

but the result will not come close to resembling school mathematics, i.e., it cannot

satisfy requirement (1). For example, to college math majors, a rational number—in

particular a fraction—is just an equivalence class of ordered pairs of integers, but

that is not something we would try to teach to fourth or fifth graders. Similarly, to

these majors, the maximum of a quadratic function can be simply obtained by differ-

entiating the function and setting the derivative equal to zero to obtain the point at

which the function achieves the maximum. However, tenth or eleventh graders have

to learn how to locate this maximum point without the benefit of calculus. And so

on. Incidentally, these examples also give an indication of why school mathematics

cannot be a proper subset of college mathematics (see page 12).

To the extent that the goal of school math education is to teach students mathe-

matics, teachers cannot afford to teach them TSM, period. TSM is incorrect math-

ematics. The need to replace teachers’ knowledge of TSM by principle-based mathe-

matics is therefore absolute. Beyond such theoretical considerations, it would also be

reassuring if we could get some indication from another source that principle-based

mathematics is beneficial to mathematics learning. There is an indirect reassurance

from the CCSSM. These standards have taken a major step in moving away from

TSM to principle-based mathematics. One look at the standards on fractions (grade

3 to grade 6), rational numbers (grade 6 to grade 7), and geometry in grade 8 and high
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school will be enough to convince a reader of this fact. The belief in principle-based

mathematics is therefore at least shared by some reasonable people. Beyond that,

one would like to have some large scale data for this purpose. Thus far, there is little

or no such data for the obvious reason that principle-based mathematics has not yet

been available on a reasonable scale either in professional development for teachers

or in the K-12 classroom. Perhaps more telling is the fact that, with rare exceptions

(e.g., Hill, Rowan, and Ball, 2005; Ball, Hill, and Bass, 2005), the education research

community has traditionally neglected content and its role in instruction (see the ref-

erence to the "missing paradigm" on page 6 of Shulman, 1986). What data we have

is so meager that it borders on the anecdotal.

In her Berkeley dissertation (Poon, 2014), Rebecca Poon explored the impact

of content knowledge training on student learning. She did a case study of four

teachers (three in 4th grade and one in 6th grade) who received (to varying degrees)

training in principle-based mathematics. Three were on the West coast (but not in

California) and one on the East Coast. Through personal interviews and teachers’

notes, she studied how these teachers taught one topic: the division interpretation of

a fraction. This allowed her to sample the teachers’ ability to faithfully implement the

basic message of principle-based mathematics, especially definitions, precision, and

reasoning. Then she looked at their students’ state test scores and compared them
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to the scores of other comparably matched16 students who were taught by teachers

without any training in principle-based mathematics. Her conclusion is that "the

average effect of PBM (principle-based mathematics) training on student achievement

was significant and substantial" (ibid., page 63), but there are uncertainties about

whether the positive effect on student achievement can be attributed exclusively to

the training in principle-based mathematics.

The article Alm and Jones, 2015, would seem to be the only relevant published

article we can cite. The authors reported a success story about students in remedial

courses in a small liberal arts college when principle-based mathematics (based on

Wu, 2011a) was taught. They attribute the success to the emphasis on the use of

precise definitions (particularly in fractions) and coherence (of fractions and algebra).

The authors added:

The a priori case that students are better off learning better mathematics

is clear enough. The a posteriori case that student learning in the class-

room is actually improved is more complicated (but anecdotal evidence

and our observations certainly support it). In particular, small sample

sizes are a major issue. We are currently working on constructing a mul-

tiyear study over several cohorts to measure the practical effectiveness of

the approach described here. (Ibid., footnote on page 1364.)
16This is a long story. Please see Sections 4.3, 6.1–6.3 of Poon, 2014.
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My own summer institutes from 2000 to 2013 were devoted to principle-based

mathematics. Over the years, teachers from those institutes have let me know how

the institutes had impacted their students’ learning, but none—with two exceptions—

provided me with usable data. I will now briefly mention the results from those two

exceptions. I will also mention the data from another teacher at the end.

Kyle Kirkman (kirkmanks1@gmail.com) was a first-year K–6 Math Intervention-

ist in 2015–2016 at the Pan-American Charter School of Phoenix, AZ. The school

uses the Galileo K-12 Online Assessment System from Assessment Technology Incor-

porated (ATI). His charge was to work with RTI (Response to Intervention) students

to bring them up to grade level. Students’ progress is monitored by the "growth"

of their test scores, measured in the following way. For each quarter (of the school

year), students take a Galileo K-12 test at the beginning and another one at the end,

and the score of the latter minus the score of the former is by definition their growth

in the quarter. (The Galileo K-12 test at the end of the first quarter doubles as the

test at the beginning of the second quarter, the test at the end of the second quarter

doubles as the test at the beginning of the third quarter, and so on.) The follow-

ing tables (numbers are rounded to the nearest one) summarize the comparison of

the average growth of Kirkman’s RTI students with that of the non-RTI students.

Some comments will also be found after the tables.
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Fall-QT 1, 2015:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av
Non-RTI students 126 −31 15 49 30 37 8 33
RTI students 236 50 55 74 59 139 68 97
RTI student growth minus
non-RTI student growth 110 80 40 25 29 102 59 64

Fall-QT 2, 2015:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av
Non-RTI students −13 63 48 41 98 15 63 45
RTI students 19 119 30 36 95 −10 64 50
RTI student growth minus
non-RTI student growth 32 56 −19 −5 −13 −25 2 6

Spring, 2016:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av
Non-RTI students 108 97 63 51 85 58 1 66
RTI students 188 177 78 96 142 100 52 119
RTI student growth minus
non-RTI student growth 80 80 15 45 57 42 51 53

The average growth of the RTI students obviously far exceeds that of the non-RTI

students except in the second table. Kirkman explained that in the second quarter,

he stopped working with his students of the first quarter and got a new group of

students. Moreover, in an effort to work with more students, he moved students

in and out of his class in shorter intervals than a quarter. The strategy backfired,

as the table shows. In the Spring, he worked with the same group of students all

through the semester, and the Galileo K-12 test at the end of the third quarter was

not administered.

He described how his knowledge of principle-based mathematics helped him:
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I have learned that precise mathematical definitions are critical. If preci-

sion is lacking, students will fill in any missing or vague elements of the

definition with whatever happens to be present in their paradigm that

seems to fit the idea. Not all of mathematics is intuitive in nature, so this

can definitely lead to erroneous conclusions.

Larry Francis (larrydotfrancis@gmail.com) taught Title 1 math intervention

groups, in 2014–2015, in grades 1 to 5 at Helman Elementary School of Ashland, OR.

Grouped by grades, students came to his classroom for 30 minutes four times each

week. Below is a comparison of the average grade-by-grade gains in percentile scores

on the 2014–15 fall-spring easyCBMTM CCSS benchmark tests of his Title 1 students

compared with those of their classmates in their home classrooms (classroom A and

classroom B). In 9 out of 10 classrooms, these previously under-performing Title 1

students out-performed their classmates, sometimes dramatically. Title 1 students’

scores have been removed from their respective classrooms’ scores for this compari-

son. Furthermore, the fall-spring numbers are the nationally normed percentile scores

according to easyCBMTM.

grade 1 grade 2 grade 3 grade 4 grade 5
title 1 math 19 10 11 2 16
classroom A 2 −12 7 −8 1
classroom B −3 −8 3 4 12

According to Francis, "Precise definitions were crucial. Helping first and second

graders with counting doesn’t mean you need to tell them a bunch of definitions,
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but you need to make it clear that fundamentally a number is a thing you count

with." What he learned from the summer institutes is "to reorganize my knowledge of

arithmetic into a much more mathematical form. I continued to ‘know’ almost all the

old things I used to know, but your [institutes] got me to reorganize that knowledge.

. . . I am sure that reorganizing my knowledge contributed to my students’ successes."

Finally, I have some data from a teacher who was not at any of my summer

institutes. Katie Bunsey (kate.bunsey@lakewoodcityschools.org) teaches fourth

and fifth grades at Hayes Elementary School of Lakewood, OH. I happen to have been

mentoring her, long distance, for the past three years on whole numbers and fraction

using Wu, 2011a. She has just reported to me her fifth grade students’ 2016 math

scores on the Ohio State Assessment (administered by AIR):

∙ 77% of her students scored proficient or above, whereas only 62% of Ohio’s fifth

graders scored proficient or above, and only 63% of her school district’s fifth

graders were proficient or above.

∙ Among those students who had her for two years (in their fourth and fifth

grades), 84% were proficient or above, but among those who had her for only

one year (in fifth grade), only 70% were proficient or above.

∙ Her students comprised only 16% of the district’s 5th grade population (65

out of 397), but 27% (respectively, 21%) of the district’s students who scored
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Proficient (resp., Accelerated) were her students.

For the record, let it be mentioned that, together with an evaluation specialist,

I did apply for grants (to NSF-EHR in 2010, and to IES in 2013) to evaluate the

effectiveness of principle-based mathematics in the classroom. They were not funded.

4.3 TSM confronts mathematical integrity

We will discuss in this section, in considerable detail, the chasm that separates

TSM from principle-based mathematics. It reveals the vast distance we will have to

travel if we want to provide mathematics teachers with the content knowledge they

need in order to competently discharge their basic obligation as teachers. What should

stand out in the following discussion is the damage TSM has inflicted on mathematics

learning. TSM is not learnable except by rote, as all irrational ideas are not learnable

except by rote. If nothing else, this recognition should be incentive enough for us to

join forces to undo this damage by eradicating TSM.

4.3.1 The importance of definitions: the case of fractions

Consider the teaching of fractions in grade 5 and up. In TSM, a fraction is not

given a precise definition that can be used as the starting point for logical reason-

ing. The resulting absence of reasoning in the teaching of fractions therefore opens

the floodgates to mathematics-with-no-reasoning, a.k.a. rote-learning, regardless of

all the hands-on activities, analogies, and metaphors that rush in to fill this vacuum
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(cf. Wu, 2010c). Although such a statement about the teaching of fractions is gener-

ally accepted by most as a given, it may nevertheless strike others as being too harsh.

Let us therefore back it up by giving a more detailed analysis.

In TSM, fractions are usually introduced with pictures galore and fascinating

stories about the different ways fractions are used in everyday life, together with the

statement that a fraction can be interpreted as at least one of three things: parts-of-

a-whole, quotient (division), and ratio. Here is one example:

A fraction has three distinct meanings.

Part-whole. The part-whole interpretation of a fraction such as 2
3

indicates

that a whole has been partitioned into three equal parts and two of those

parts are being considered.

Quotient. The fraction 2
3

may also be considered as a quotient, 2 ÷ 3.

This interpretation also arises from a partitioning situation. Suppose you

have some big cookies to give to three people. . . . [If] you only have two

cookies, one way to solve the problem is to divide each cookie into three

equal parts and give each person 1
3

of each cookie so that at the end, each

person gets 1
3
+ 1

3
or 2

3
cookies. So 2÷ 3 = 2

3
.

Ratio. The fraction 2
3

may also represent a ratio situation, such as there

are two boys for every three girls. (Reys, Lindquist, Lambdin, and Smith,
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2009, page 266.)

The same viewpoint persists in the research literature. The usual introduction of the

concept of a fraction is by way of the same multiple-representation approach:

Rational numbers17 can be interpreted in at least these six ways (referred

to as subconstructs): a part-to-whole comparison, a decimal, a ratio, an

indicated division (quotient), an operator, and a measure of continuous or

discrete quantities. Kieren (1976) contends that a complete understanding

of rational numbers requires not only an understanding of each of these

separate subconstructs but also of how they interrelate. (Behr, Lesh, Post,

and Silver, 1983, p. 92.)

The mathematical flaws of these "multiple interpretations" of fractions are ana-

lyzed in Wu, 2016a, pp. 5–6, and Wu, 2011a, page 178, respectively, but we are here

to focus on the impact of such teaching on student learning. The overriding fact is

that none of this information answers students’ burning question about what a frac-

tion is. To ask students to accept a fraction as part-whole, quotient, and ratio all at

once is pedagogically untenable. First of all, the part-whole interpretation involves

two whole numbers: the number of equal parts the whole has been divided and also

the number of parts that are taken, so are we trying to tell them that a fraction

is two numbers? The same is true for the ratio interpretation: the fraction 2
3

is the
17This term is being used erroneously for fractions.
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number 2 (the number of boys) and the number 3 (the number of girls). Two numbers

again.18 The pedagogical issue with the "quotient" interpretation is far more subtle

and therefore far more insidious in the long run. Students’ knowledge of "quotient"

(division) is based entirely on their experience with whole numbers, where it is always

about 24÷6, 72÷4, or 45÷15. In other words, the dividend is known ahead of time

to be a multiple of the divisor so that the "equal group" interpretation of division can

make sense. Now teaching is generally about building on students’ prior knowledge,

and this time the prior knowledge is about "quotient". Keeping this in mind, can

we as competent teachers ask students to divide 2 cookies into 3 equal groups? 6

cookies or 9 cookies, that is for sure. But 2 cookies? This is pedagogically unsound

to say the least, because students’ prior knowledge would not allow them to absorb

this information. But since TSM insists on ramming this unnatural demand down

their throats, right here TSM is pulling the rug from under their feet. Indeed, if they

had any illusion at all about mathematics being learnable in the sense of a careful

scaffolding of its steps with reasons given for the progression from one step to the

next, it has been wiped out in one fell swoop. The formidable task they face is to try

to understand a new gadget called a fraction by first submitting themselves to the

uncomfortable proposition that whatever they have strived to learn about "quotient"

is simply not good enough. Now they must ask themselves: what else must they
18Teachers that I have worked with told me consistently that students have difficulty conceptual-

izing a fraction as a single number.
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unlearn before they can climb the mathematical ladder? Such thoughts cannot be an

auspicious beginning for the arduous journey ahead.

It may be thought that the preceding analysis of "quotient" is not accurate because

students do know about dividing an arbitrary whole number by a nonzero whole

number before coming to fractions. For example, 5 ÷ 3 is so-called "1 𝑅2",19 i.e.,

quotient 1 and remainder 2. In this light, 2÷3 would be the two numbers 0 and 2, as

in 0 𝑅2. This then leads back to an earlier impasse about the meaning of the fraction

2
3
: this meaning of the fraction is two numbers 0 and 2. It is an insurmountable

task to relate "0 and 2" to the concept of part-whole (i.e., partition the whole into

3 equal parts and consider 2 of them) and, failing to do that, we are guaranteeing

non-learning again.

If we may use an analogy, asking students to believe at the outset that a fraction

is three dissimilar things all at once is akin to asking them to look at a picture of

a house obtained by superimposing three different views of the same house on each

other. Students get no clarity. Such multiple representations of a fraction also beg the

question: In a given situation, which representation should students use? Or should

they use all three to make sure? Teaching based on TSM cannot provide answers to

these natural questions.

Leaving students in this state of puzzlement, TSM nevertheless asks them to freely
19The multiple errors inherent in this notation 1 𝑅2 should be better known. See, e.g., Wu, 2014b,

p. 6
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compute with fractions and use them to solve word problems. Can competent teaching

afford to make students do things by rote for six or seven years (from grade 5 to grade

12) without informing them what they are doing? To make matters worse—or perhaps

because of the lack of definition of a fraction—definitions for all concepts related to

fractions seem to be completely missing as well. For example, students never get a

precise definition for the intuitive and basic concept of "one fraction being bigger than

another". Instead, they are taught that if they change both fractions to fractions

with the same denominator, then they can see which is bigger. Now the reason this

is worth pointing out is that it exemplifies a recurrent theme in TSM: Never mind

whether you know what you are doing or not, because we are going to tell you what

to do, and then you will get the right answer. As for the arithmetic operations on

fractions, the plaintive refrain of “Ours is not to reason why, just invert and multiply"

says it all: in TSM, one does not teach the definition for the division of fractions.

The case of fraction addition, however, deserves a closer look (Wu, 1998, p. 24; Wu,

2011a, p. 228), and we will do just that.

In place of a precise definition of the addition of two fractions, TSM usually

provides profuse verbal descriptions and pictorial illustrations of putting parts-of-a-

whole together. Competent teaching on the most basic level however demands that,

at this juncture of students’ mathematics learning trajectory, they be exposed to a

clear and logical argument that leads from the definition of the sum of two fractions to

41



an explicit formula for the sum. Unhappily, without a precise definition of a fraction

and a precise definition of the addition of fractions in TSM, such a demand cannot

be met. What students get in place of reasoning is a formula for the sum involving

LCD (least common denominator) that has to be memorized by rote. This is where

fraction phobia seems to begin. Being cognizant of this fact, some have gone so far

as to advocate de-emphasizing the addition of fractions, perhaps with a view towards

reducing students’ anxiety (e.g., National Council of Teachers of Mathematics, 1989,

p. 96). In a climate of no-definitions and therefore no reasoning, any attempt at

teaching fractions for understanding—no matter how well-intentioned—becomes an

oxymoron.

It remains to explain why we believe students in grade 5 and up deserve to learn

about the reasoning that leads from the definition of the sum of two fractions to

the explicit formula for the sum. In a nutshell, this is the basic survival skill in

navigating the mathematical waters of roughly grades 6 to 12. It therefore behooves

students to begin acquiring this skill through the study of fractions. We have to

recognize that the mathematics in grade 5 and beyond will be increasingly abstract

and will be increasingly dependent on having precise definitions and logical deductions

therefrom to make sense of the abstractions. The concept of fractions is the first

genuine abstraction students face in school mathematics because fractions do not

show up naturally in the real world (think of 7
13

or 21
11

); if we want students to
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learn what a fraction is, it is incumbent on us to tell them, precisely, what we want

them to know about fractions. This is what precise definitions can accomplish. If our

goal is to nurture students’ mastery of abstractions, then we can do no better than

employ precise definitions in the teaching of fractions. Indeed, once students enter

the world of fractions around the 4th or 5th grade, the march towards abstraction

in the school curriculum becomes inexorable. Fractions are followed by negative

numbers (particularly the multiplication and division of negative numbers), the use

of "variables"20 and the concept of generality, transformations of the plane and basic

isometries, congruence and especially similarity, functions and their graphs, principle

of mathematical induction, complex numbers, etc. The learning of each and every

one of these concepts will require extra effort on the part of students—in the same

way that the learning of fractions requires extra effort—because of the elevation in

the level of abstraction. Competent teaching must therefore take note of students’

battles ahead and prepare them accordingly.

Let it be known in no uncertain terms that we do not argue against appropriate

use of stories, hand-on activities, and multiple representations to round off the intu-

itive picture of a concept if a precise definition is part of the presentation and the

primacy of the definition is understood (see the protracted discussion of the definition

of a fraction in Wu, 2011a, pp. 173–182, or Wu, 2016a, pp. 2–10). However, TSM
20Please see the discussion of "variables" on page 51.
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promotes the idea that students can learn what an abstract concept such as fraction

is, without a definition, solely by being exposed to a multitude of stories and activities

to illustrate these multiple "meanings". This idea is predicated on the assumption

that mathematics can be learned by what we call inductive guessing. This is the

process of letting students work informally with a given concept to guess the prop-

erties this concept might possess and allowing their guesses to coalesce, over time,

to form a complete picture of the concept. But no precise definitions. The fact that

mathematics learning largely fails to materialize when fractions are taught exclusively

by inductive guessing is by now beyond dispute. For example, fraction phobia has

become almost a national pastime (there are numerous strips in the Peanuts and Fox-

Trot comic strips on fraction phobia). This failure has dramatically crystallized in a

TIMSS fraction item for eighth grade, as pointed out in Askey, 2013. To my knowl-

edge, there is no data to establish a causal relationship between inductive guessing

and students’ non-learning, but the ongoing school mathematics education crisis (cf.

National Academy of Sciences, National Academy of Engineering, and Institute of

Medicine, 2010; National Mathematics Advisory Panel, 2008) would seem to strongly

suggest that such a causal relationship does exist.

The case against the sole reliance on inductive guessing in mathematics learning is

rooted in the fact that correct reasoning requires a precise hypothesis as the starting

point and a precise conclusion as the endpoint. If an abstract concept is nothing

44



but the amalgamation of impressions accrued from inductive guessing, then it would

be, by its very nature, imprecise because impressions vary from person to person.

Consequently it cannot be reliably used in either the hypothesis or the conclusion of

any reasoning and, without reasoning, there would be no mathematics. The virtue of a

precise definition for an abstract concept is therefore that it "tames" the abstractness

by providing precise information about what the concept is, no more and no less.

Moreover, it is in the nature of mathematics that, once a definition is given, it will

not change with time. If a fraction is defined in grade 4 to be a point on the number

line constructed in a specific manner, then students can count on its being the same

in every grade thereafter. This property of permanence makes the concept learnable

because it allows students to stop wasting time trying to guess what a fraction might

be in another situation but concentrate instead on getting to know fractions by using

them in logical reasoning. In this way, students will get to derive all the known

properties of fractions, including, in particular, what it means to add fractions and

why the formula for adding fractions without using LCD is correct (cf. Wu, 2011a,

Part 2, especially Section 14.1). No guesses, and no deus ex machina. Such an

experience will give students the confidence that mathematics is learnable, and this

confidence will in turn empower them to conquer the many more abstractions to

come.

It remains to make a comment about the definition of a fraction as a point on
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the number line constructed in a prescribed manner (cf. Jensen, 2003; Wu, 1998; Wu,

2011a). In the event that such a definition is adopted, it is imperative to use the same

definition throughout the whole development of fractions, including multiplication,

division, ratio, and percent. If we abandon this definition at any point and choose, for

example, to represent a fraction as a rectangle to discuss multiplication (as some have

done), then we would be sending the erroneous signal that a definition is something

we use when it is convenient but, otherwise, it is not to be taken seriously. Worse,

we will be showing clearly that mathematics has no coherence, because it does not

always tell the same story about a concept (fraction) but changes its story line at

will. This will wreak havoc with student learning.

4.3.2 Other garbled definitions in TSM

There are more garbled definitions in TSM than we can count that have a profound

effect on teaching and learning, but we will limit ourselves to four of them: decimals,

constant rate, variable, and slope.

First, decimals. A finite decimal such as 0.2037 is defined in TSM as "2 tenths, 3

thousandths and 7 ten-thousandths". In terms of student learning, this causes damage

in at least two different ways. The first is that it leads to students’ misconception of

a decimal as a fragmented collection of little bits of 2 tenths, 3 thousandths, and 7

ten-thousandths when they should be learning that a decimal is a single number. This

is because thousandths, and ten-thousandths, etc., are almost invisible quantities to
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students in elementary school, and they don’t know how to integrate these new tidbits

into a single number. Could such a fragmented conception of a decimal be a factor in

students’ difficulty in comparing decimals and computing with decimals? This would

make for an interesting research project in cognition. Secondly, if the vague statement

"2 tenths, 3 thousandths and 7 ten-thousandths" is phrased in precise language, then

it will state clearly that 0.2037 is the sum of the following fractions:

0.2037 =
2

10
+

0

100
+

3

1000
+

7

10000
(4)

Unfortunately, TSM teaches decimals and fractions separately, making believe that

they are different kinds of numbers (this may be the reason TSM uses the imprecise

language "2 tenths, 3 thousandths and 7 ten-thousandths" to hide the fact that a

finite decimal is a fraction). Since there is no attempt in TSM to ensure that the

arithmetic of decimals is taught only after fraction addition has been introduced, the

teaching of finite decimals in TSM is mathematically unlearnable.

A correct definition of 0.2037—historically as well as mathematically—is that it

is the fraction

2037

10000

which is of course equal to the sum of four fractions on the right side of (4). Likewise,

all finite decimals are nothing but fractions whose denominators are powers of 10

(see Wu, 2011a, page 187; Wu, 2016a, p. 17; CCSSM, 4.NF.5 and 4.NF.6). We may

summarize the need of a correct definition for finite decimals as follows. On the
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one hand, it restores the coherence of mathematics by showing that, instead of three

kinds of numbers—whole numbers, decimals, and fractions—there is only one kind

of numbers, namely, fractions. On the other hand, the correct definition allows for

simple (and correct) explanations of the addition and multiplication algorithms for

finite decimals. For the multiplication algorithm, TSM has forced teachers to teach

by rote the correct placement of the decimal point in the product, whereas it is a

simple consequence of the product formula for fractions (see Wu, 2011a, p. 269 and

Wu, 2016a, pp. 68–69).

We will next look at the absence of any definition for constant speed or, more

generally, for constant rate in TSM. We will show that this absence has very serious

consequences because it spawns the bogus concept of proportional reasoning. We can

begin the discussion with a typical rate problem:

(P1). David drove 936 miles in 13 hours. At the same rate, how long will

it take him to drive 576 miles?

According to TSM, we teach students that the "rate" of 936 miles in 13 hours should

immediately suggest that we look for the "unit rate", which is 936/13 = 72 mph.

Therefore, proportional reasoning tells us that the answer is 576/72 = 8 hours. Very

simple. But is it?

If the problem had asked instead:

(P2). David drove 936 miles in 13 hours. At the same rate, how long will
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it take him to drive 2808 miles?

then this would be a reasonable problem for the following reason. No matter how one

interprets "at the same rate", one would agree that it carries the information that,

in every 13 hours, David covers 936 miles. So in 26 hours, he would cover 1872 miles

(1872 = 2 × 936), and every 39 hours he would cover 2808 miles (2808 = 3 × 936).

The answer to (P2) is therefore 39 hours.

But to ask how long it would take David to drive 576 miles? This adds complexity

to the problem that makes (P1) unsolvable. Indeed, suppose David cruised for the

first 10 hours at 70 mph, so that at the end of 10 hours, he had driven 700 miles.

Knowing that he should get to his destination in 13 hours, he sped up and managed

to cover the remaining 236 miles in 3 hours.21 That was how he drove the 936 miles

in 13 hours. Now if you want to know, at the same rate, how long it would take

him to drive 576 miles, he will have to ask you whether it is the rate in the first 576

miles of his trip or the last 576 miles, or somewhere in between. If the first 576 miles,

for example, then at 70 mph, it will take him 576/70 = 8 8
35

hours. Not 8 hours as

claimed. Can anyone dispute that 8 8
35

is as good an answer as 8 to (P1)? Moreover,

if we consider his rate in the last 576 miles of his trip, then it will take him 76
7

hours

to cover 576 miles. Obviously there are other possibilities. Therefore, as is, (P1) is

a problem that admits many correct solutions and, as such, it is not an acceptable
21He drove the last stretch of 236 miles in New Mexico where the freeway speed limit is 75 mph

most of the time.
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mathematics problem.

What happens is that the given data that David drives 936 miles in 13 hours

is not precise enough to yield a definitive answer to (P1). The implicit assumption

in all such problems in TSM that would render a definitive answer possible is that

David drives at the same constant speed throughout. By bringing out this implicit

assumption, we reformulate (P1) to read:

(P3). David drives at a constant speed and he drove 936 miles in 13 hours.

At the same constant speed, how long will it take him to drive 576 miles?

In TSM, the assumption of constant speed in such problems is usually missing, and

even when it is mentioned, the concept of "constant speed" is understood intuitively

without a precise definition. The idea seems to be that if the words themselves sound

familiar, then definitions will be superfluous. Since an expression such as “driving

at 70 miles an hour" is part of everyday language and people already have a vague

understanding of it, a precise definition would be considered unnecessary in TSM.

The fact is that the definition of "constant speed" is quite subtle, but when it is

defined precisely and is put to use in the solution of (P3),22 the solution turns out to

be very simple. In particular, the correct solution does not make use of "proportional

reasoning" in any shape or form (Wu, 2016a, pp. 108–115, and especially Section 7.2

of Wu, 2016b) and, instead of the mysterious invocation of "unit rate", it shows how
22We cannot overemphasize the fact that we need definitions in mathematics because they furnish

the foundation for logical reasoning.
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the concept of "unit rate" follows naturally from the definition of constant speed.

Most importantly, the correct solution of such rate problems restores reasoning to

teaching and mathematics education.

The cavalier attitude that TSM takes toward definitions also materializes in an-

other form. Freed of the responsibility to provide definitions, TSM is at liberty to

create fictitious mathematical concepts, the most notorious among these being that of

a variable, “a quantity that varies". The inability to master this concept, according

to an informal survey of the teachers that I have come in contact with, has been a

real stumbling block for teachers and students alike in the learning of algebra. Yet,

they feel compelled to grapple with this concept because:

Understanding the concept of variable is crucial to the study of algebra;

a major problem in students’ efforts to understand and do algebra re-

sults from their narrow interpretation of the term. (National Council of

Teachers of Mathematics, 1989, p. 102.)

I believe it is time for mathematics education to face the reality that "variable" is

not a mathematical concept but is a cultural vestige of the way mathematicians in the

eighteenth and nineteenth centuries referred to elements in the domain of definition of

a function. If the function 𝑓(𝑡) describes the location of a moving particle in 3-space

at time 𝑡, then as 𝑡 changes its value, so does 𝑓(𝑡). So it is suggestive to think of 𝑡

as a "variable". However, it is wrong to believe that learning must always be built
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on students’ prior existing knowledge. Sometimes learning requires a revision, or at

least some form of modification, of this knowledge. For example, we routinely speak

about sunrise and sunset in everyday life, which suggests unmistakably that the sun

revolves around the earth. Few would object to these expressions. But it will not

do—purely for the sake of building on this prior misperception—to tell students in a

science class that indeed the sun rises and sets because it revolves around the earth.

At that point of students’ education, it is time for them to recognize the limitations of

the commonly used suggestive language and embrace the correct scientific information

that it is the rotation of the earth that causes the illusion that the sun revolves around

the earth. The truth is that the earth revolves around the sun.

If we feel scandalized by a science class that does not clear up "sunrise" as a human

misconception, then why do we complacently accept the teaching of "variable" in a

mathematics class as a valid mathematical concept, or worse, that it is a “concept

crucial to the study of algebra"? We do not advocate that we banish the word

"variable" from mathematics because,

. . . the word variable has been in use for more than three centuries and,

sooner or later, you will run across it in the mathematics literature. The

point is not to pretend that this word doesn’t exist but, rather, to un-

derstand enough about the use of symbols to put so-called "variables" in

the proper perspective. Think of the analogy with the concept of alchemy
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in chemistry; this word has been in use longer than variable. On the

one hand, we do not want alchemy to be a basic building block of school

chemistry, and, on the other hand, we want every school student to acquire

enough knowledge about the structure of molecules to know why alchemy

is an absurd idea. In a similar vein, while we do not make the concept of

"variable" a basic building block of algebra, we want students to be so at

ease with the use of symbols that they are not fazed by the abuse of the

word "variable" because they know how to interpret it correctly. (Wu,

2016b, page 3.)

This discussion points to the need for school mathematics to move away from

concepts without definitions—"variable" in this case—and engage students instead

in the far more important issue of the correct use of symbols. When symbols are used

correctly in school mathematics, "variable" as a mathematical concept will disappear

from the school curriculum (cf. Wu, 2010b, Section 1; Wu, 2016b, Chapter 1).

Our final example of the mishandling of definitions in TSM is the concept of

the slope of a line in the coordinate plane. Students’ difficulty with slope is well-

documented (cf. Postelnicu, 2011), but it does not seem that the education research

that looks into this difficulty has taken note of a serious mathematical flaw in the

usual definition given in TSM (the two papers of Newton and Poon, 2015a and 2015b,

are among the exceptions). The TSM definition states that the slope of a (nonvertical)
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line 𝐿 in the coordinate plane is the following "rise-over-run": let 𝑃 = (𝑝1, 𝑝2) and

𝑄 = (𝑞1, 𝑞2) be two distinct points on 𝐿, then the "rise-over-run" is 𝑅𝑄
𝑅𝑃

(the "rise"

𝑅𝑄 and the "run" 𝑅𝑃 ), where 𝑅 is the point of intersection of the vertical line

through 𝑄 and the horizontal line through 𝑃 , and it would be minus this quantity

if the line slants the other way. In a more compact form, the slope is the following

ratio:
𝑝2 − 𝑞2
𝑝1 − 𝑞1

.
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What is obviously missing this definition is the assurance that this ratio is the same

regardless of which two points on 𝐿 are chosen. In other words, suppose we take two

other points 𝐴 = (𝑎1, 𝑎2) and 𝐵 = (𝑏1, 𝑏2) on 𝐿 instead of 𝑃 and 𝑄, then the ratio

computed with 𝐴 and 𝐵 is the same as the one above computed with 𝑃 and 𝑄. More

precisely, we should have:

𝑝2 − 𝑞2
𝑝1 − 𝑞1

=
𝑎2 − 𝑏2
𝑎1 − 𝑏1

(5)

This equality is important because if the slope of 𝐿 is really a property of the

line 𝐿 itself, then it has to be the same number regardless of which two points on
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𝐿 are chosen. Fortunately, equation (5) is indeed correct (see Section 4.3 of Wu,

2016b), but its proof requires some knowledge of similar triangles. The latter fact is

not mentioned in TSM.

The reason a correct definition of slope, in the sense of making explicit equation

(5), is important for mathematics learning is twofold. The first is that the general

confusion about slope appears to include the misconception that it is a pair of num-

bers, "rise" and "run", but not a single number attached to the line itself.23 In this

light, one virtue of providing a proof of equation (5) is to reinforce the message that

these are numbers that we are trying to prove to be equal. Such a proof may help

to dislodge those students from this misconception.24 A second reason is that it is

difficult to solve problems related to slope without the explicit knowledge that slope

can be computed by choosing any two points on the line that suit one’s purpose.

(Compare Wu, 2016b, pp. 72–76 on the proof of the graph of 𝑎𝑥 + 𝑏𝑦 = 𝑐 being a

line.) The lack of this knowledge is the cause of students’ well-known difficulty with

learning all aspects of the graphs of linear equations. For example, they are forced

to memorize by brute force—often without success—the four forms of the equation

of a line (two-point, point-slope, slope-intercept, and standard) because they are not

taught any reasoning in connection with any part of the concept of slope. Accord-
23This echoes the phenomenon mentioned in Section 3.1 about students’ confusion over a fraction

also being a pair of numbers.
24It may be mentioned that the particular definition of slope in Section 4.3 of Wu, 2016b, brings

out the fact from the beginning that the slope is a single number.
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ing to a recent survey (Postelnicu and Greenes, 2012) of students’ understanding of

(straight) lines in introductory algebra, the most difficult problems for students are

those requiring the identification of the slope of a line from its graph. That these

research findings could actually be correct is almost unfathomable. Think about this

for a moment: to compute the slope of a line, all you have to do is grab any two

points 𝑃 = (𝑝1, 𝑝2) and 𝑄 = (𝑞1, 𝑞2) on the line and form the ratio 𝑝2−𝑞2
𝑝1−𝑞1

. This

is trivial, but only if you happen to know, emphatically, that you can take any two

points on the line for this purpose.

The correct use of definitions in school mathematics does matter after all.

4.3.3 Geometry in middle school and high school

The non-learning that has been taking place in the high school geometry course

of TSM is perhaps too well-known to require comments (see, e.g., Schoenfeld, 1988).

Incidentally, there may never be a better argument for the importance of teachers’

content knowledge than Schoenfeld’s account of what passes for "geometry teaching"

in a TSM classroom. This kind of non-learning actually has its roots in the middle

school curriculum and beyond. In this subsection, we will briefly summarize the three

main issues and leave the more extended discussion to Section 4.1 of Wu, 2016a.

(A) In TSM, the high school geometry course sticks out like a sore thumb

among other courses in school mathematics. In the latter, reasoning is

lacking and the opportunity to write a proof is nearly nonexistent, but in
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the former, literally everything demands a proof. This incongruity breeds

non-learning.

(B) The discord between what is taught in middle school geometry regard-

ing congruence, similarity, and scale drawing and what is taught about

the same topics in the high school geometry course is too great for an

average student to overcome.

(C) The high school geometry course is taught in isolation, as if it were

unrelated to the rest of the school curriculum. In reality, certain geometric

tools are critically needed for the teaching of slope of a line and the graphs

of quadratic functions. The failure of the typical course to meet this need

is an unfortunate missed opportunity to broaden its appeal and make it

relevant to school mathematics.

We will add a few comments to round off the picture. Regarding (A), it has been

a recurrent theme of this article to emphasize the overall lack of reasoning in TSM.

Therefore students’ transition into the high school geometry course may be likened

to a non-swimmer being thrown into a lake in icy January and told to sink or swim.

Trauma and bad results are pre-ordained. To make matters worse, the TSM high

school geometry course also insists on starting with axioms and proving a series of

boring and geometrically obvious theorems at the beginning.25 For illustration, we
25For the lack of space, we will not take up the opposite kind of TSM geometry course which is
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will make use of the well-known text of Moise and Downs, 1964. We hasten to add

that the text of Moise and Downs is on a higher plane than TSM, but it does following

the tradition of "trying to prove everything". It was written in response to the call of

the New Math of the 1960s (see Raimi, 2005 and Wikipedia, New Math). It purports

to use a modified version of Hilbert’s axioms of 1899 (cf. Hilbert, 1950) to prove every

theorem in plane geometry. With this in mind, we find on page 177 the following

theorem.

Theorem 6-5. If 𝑀 is a point between points 𝐴 and 𝐶 on a line 𝐿,

then 𝑀 and 𝐴 are on the same side of any other line that contains 𝐶.

q q q�����
�

��
��

𝐴 𝑀 𝐶
𝐿

One can imagine that not much of the discussion in the first 176 pages can be stim-

ulating to the average beginner.

To give a little context to this discussion, let me relate a personal experiment. I

taught the mathematics of the secondary curriculum (see Wu, 2011c, pp. 44–54) to

pre-service high school teachers many times in 2006–2010. In these courses, proofs are

provided for all the theorems, including all the major geometry theorems to be found

in a high school course and beyond (e.g., the nine-point circle). One day I suddenly

all hands-on activities without a single proof. See, for example, Serra, 1997.

58



popped the following question to a class of about twenty pre-service teachers: "You

know that proofs in the high school geometry course are considered very difficult.

Now that you have proved many geometric theorems much harder than those in

your high school course, can you tell me whether you still find the proofs of these

geometric theorems to be too hard?" It took them a few seconds to even understand

my question, because (they later told me) having been with me for almost a year up

to that point and having been conditioned to proving everything, they had ceased to

differentiate between a geometric theorem from a non-geometric one. That was the

reason they didn’t understand what I was referring to. Naturally, their answer was

no. The geometric proofs were not harder.

If principle-based mathematics is taught in K–12, the overall situation regarding

(A) will improve considerably because students would be already accustomed to rea-

soning and proofs before they take the high school geometry course. The course itself

can be improved too. One proposal of a new foundation for the course is to use the

basic isometries (rotations, reflections, and translations) to define congruence, and

use congruence and dilation to define similarity. Congruence and similarity now be-

come tactile concepts rather than abstract inscrutable ones, and the classical criteria

for triangle congruence (SAS, ASA, SSS) can now be proved as theorems. In addi-

tion, by assuming sufficiently many facts to get the geometric development started,

we also avoid having to prove many uninteresting and possibly subtle theorems at
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the beginning, such as Theorem 6-5 in Moise and Downs, 1964. (For more details,

see Wu, 2016a, Chapters 4 and 5; Wu, 2013b.) It is easy to believe that such a

new foundation will provide an easier access to geometry for students, but obtaining

data to verify this fact may be less easy. It will have to be large scale, long-term,

and therefore expensive. However, the fact that the CCSSM also came to the same

conclusion regarding such a new foundation gives us hope that there will be ample

data on this issue in the years ahead.

Congruence and similarity provide a natural segue to (B) above on the disconti-

nuity between middle school geometry and high school geometry in TSM.

There are two major disruptions in the transition from middle school geometry to

high school geometry. First, TSM defines congruence as same size and same shape,

and similarity as same shape but not necessarily the same size. These statements are

intuitive and attractive, but they are comically inadequate as mathematical definitions

because they lack precision. For example, if we draw the acute triangle with three

sides of lengths 20, 67.1, and 70 with respect to any unit of measurement (see page

16), then it will appear to have the same size and same shape as the right triangle

of sides 20, 30
√
5, and 70.26 But these two triangles are not congruent. Of course,

such a "definition" of congruence or similarity has the virtue that it is applicable

to any shape, curved or otherwise. But in high school congruence and similarity
26Note that 30

√
5 = 67.082. . . .
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are suddenly defined precisely for polygons in terms of corresponding angles and

corresponding sides, and for nothing else. Does this mean that one can only reason

about polygons when it comes to the concepts of congruence and similarity but that

there is no way to express whether two parabolas, for example, are congruent or

similar? This jarring discrepancy does no service to the coherence of mathematics or

to mathematics learning.

It goes without saying that, with such inadequate definitions, the middle school

geometry of TSM cannot sustain any reasoning about congruence or similarity. And

there is none.

A second major disruption in the teaching of congruence and similarity lies in

the way TSM treats the basic isometries in middle school and high school. In mid-

dle school, basic isometries are taught only for the purpose of fun activities and art

appreciation, e.g., the sometimes subtle symmetries exhibited in Escher’s prints and

how the beauty of tessellations in church windows and Islamic mosaic art is enhanced

by the different kinds of symmetries. Nothing about the purposefulness of the ba-

sic isometries in school mathematics. Consequently, teachers who are immersed in

TSM get the mistaken idea that the basic isometries are valuable only for so-called

transformational geometry, which is roughly about doing the fun activities of mov-

ing geometric figures around the plane—using a coordinate system if necessary—and

identifying symmetries in art works. To these teachers, the basic isometries are not
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about mathematics at all because the isometries appear to have nothing to do with

the proofs of theorems in the high school course. While there are references to basic

isometries near the end of some high school textbooks, they are mostly ornamen-

tal. In TSM, the basic isometries are long forgotten by the time of the high school

geometry course. In this climate, it is therefore not surprising that, when in 2012

the Department of Education of a state on the East Coast produced a document

on CCSSM geometry for its high school teachers, all 80 pages of it were devoted to

transformational geometry but not a word about the serious business of using the

basic isometries to understand congruence and proofs in high school geometry.

It should be quite clear that teachers’ knowledge of TSM geometry will not enable

them to teach the geometry of middle school or high school in any sensible way. We

must help them to revamp their knowledge base. This is another reminder that

teachers’ content knowledge does matter.

Finally we briefly discuss the critical role of geometry in making sense of the

algebra of linear and quadratic functions. The need of similar triangles for an un-

derstanding of the slope of a line has already been brought out in Section 3.2. The

CCSSM have already asked for a reshuffling of our middle school curriculum so that

8th graders are at ease with the AA criterion for triangle similarity when they take

up the graph of linear equations in two variables (CCSSM, 8.G.5). As for quadratic

functions, the long and short of it is that, the graph of 𝑓(𝑥) = 𝑎𝑥2+ 𝑏𝑥+ 𝑐 is a trans-
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lation (in the sense of basic isometries) of 𝐹𝑎(𝑥) = 𝑎𝑥2, and furthermore, the graphs

of 𝐹𝑎(𝑥) = 𝑎𝑥2 (where 𝑎 > 0) are similar to each other under a dilation with center at

the origin 𝑂 (Sections 10.2 and 10.3 in Wu, 2016b). These two facts together clarify

the structure of quadratic functions: at least conceptually, every quadratic function

is qualitatively the same as the function 𝐹1(𝑥) = 𝑥2.

At the moment, the above approach to quadratic functions is inaccessible to stu-

dents because translations are not precisely defined in the usual high school geometry

course, and similarity between graphs of quadratic function does not make mathe-

matical sense because similarity applies only to polygons. The chasm between TSM

and principle-based mathematics is real indeed.

4.3.4 How coherence and purposefulness impact learning

It is easy to explain, in theory, the reason that mathematics developed coherently

and purposefully will improve student learning. Obviously, when some events are told

as a coherent story and the narrative is propelled forward with a purpose, they will

be more memorable to readers than if the same events are presented as a laundry list.

This is why even a rushed reading of Don Quixote—all one thousand pages of it—will

leave readers with vivid memories of the Don’s amazing exploits, whereas reading

pages of a phone book, no matter how conscientiously done, will leave the readers

with no memorable highlights whatsoever. We will present two examples that are

consistent with such a narrative. The first one shows how incoherent mathematics can
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impede mathematics learning, and the other suggests that, by infusing the teaching

of a seemingly boring topic with purposefulness, one can make it more learnable.

The first example is the way TSM teaches equivalent fractions, the basic tool

students need to put any two fractions on a common footing (Wu, 2011a, Section

13.4). To see, for example why 7
3
= 14

6
, TSM provides the following explanation:

7

3
= 1× 7

3
=

2

2
× 7

3
=

2× 7

2× 3
=

14

6
(6)

The problem with such an "explanation" lies in the step enclosed in the box: It

assumes, inexplicably, that before students know what it means to add two fractions

with unequal denominators, they already know how to multiply them ( 2
2

and 7
3
) by

the so-called product formula, 𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
. In greater detail, a coherent mathematical

progression through fractions could reach the product formula by at least one of two

ways: either

definition of fraction −→ equivalent fractions −→ definition of fraction

multiplication using "fraction of a fraction" −→ the product formula

(Jensen, 2003, Section 7.1; Wu, 2016a, pp. 60 ff.; CCSSM, 5.NF.4), or

definition of fraction −→ definition of fraction multiplication using area

of a rectangle −→ the product formula

(Wu, 1998, page 25; Wu, 2011a, pp. 263 ff.). In either case, the proof of the product

formula is a difficult one for fifth graders and should by no means be used to explain
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something as basic as equivalent fractions. What TSM has done in (6) is to shred

the basic structure of mathematics for the expediency of making equivalent fractions

look easy. However, there is a price to pay: Students get the idea that, although they

don’t know what " 𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
" means, they are supposed to believe it because it

looks right. This naturally suggests to them that, in mathematics, if it looks right, it

must be true. So why not 𝑎
𝑏
+ 𝑐

𝑑
= 𝑎+𝑐

𝑏+𝑑
? It is a popular sport to lament that even

some freshmen in prestigious universities make such a ghastly mistake, but this is not

students’ fall from grace. This is our collective handiwork!

Before giving the second example, we first make a few observations about pur-

posefulness in the context of mathematics learning. The first is that mathematical

research is overwhelmingly about investigations with a purpose. The purpose of an

investigation is always front-and-center because it provides a focal point for the re-

searcher’s thinking. Serious mathematical work is rarely the result of a random walk

through the mathematical jungle to pick up low-hanging fruits. The school curricu-

lum, being the distillation of serious mathematical work through the ages, should

reflect as much as possible the purposefulness of such investigations. There is an ad-

ditional connection between research and learning: they are fundamentally two sides

of the same coin. They are both driven by curiosity, and researchers and learners alike

try to peer into the (to them) unknown.27 For this reason, learners will benefit from
27Of course there is also a big difference: whereas a helping hand is usually available if the learner

fails to learn, there is no such helping hand when a researcher gets stuck!
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knowing the purpose of learning a new concept or a new skill because the purpose

helps them to focus their own thinking too. Teachers should be aware of this aspect

of mathematics learning, and for this reason, should get to know the purpose behind

every concept and every theorem.28

Now consider the teaching of the skill of rounding (to the nearest hundred, nearest

thousand, etc.) in TSM. Personally I have never come across a teacher who is not

bored by this skill as presented in TSM; it seems to be totally pointless and mechan-

ical, but it doesn’t have to be that way. Imagine a teacher engaging students in a

discussion of what they hear from TV or radio about the temperature of the day. Ask

students why they often hear things like "today is a mild day in the 70s". Why not

say "today’s temperature will be 74"? Make them realize that such precision is both

unattainable and unnecessary. Ask them if they would change the way they dress

if the temperature were 72 instead of 74, but also point out that they would likely

change if the temperature were "in the 60s" rather than "in the 70s". Next, ask them

in case the temperature is 68 degrees whether they would describe it as "about 60 de-

grees" or "about 70 degrees"? Pursuing this line of give-and-take, a teacher can lead

students to naturally round to the nearest ten without using any jargon or imposing

any rigid rules. Then tell them after the fact that what they did is what is known as

"rounding to the nearest ten", and that they did so because they were in fact trying
28In this day and age when inquiry-based learning is encouraged, we hope that such learning can

be conducted by emphasizing the purpose of any inquiry.
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to strike a happy medium between being informative and being sensible. In any case,

by the time the teacher gets around to summarizing their findings of "rounding to

the nearest ten" into some simple rules ("34 will be rounded down to 30, but 78 will

be rounded up to 80"), the rules will sound neither boring nor pointless. They have

a purpose.

The teacher can likewise talk about the population of a city like Berkeley. In

Wikipedia, the estimated 2014 population is 118,853. Ask the students how much

faith they have in this estimate. Consider the daily births and deaths, the expected

influx and outflow of people, and other issues such as the homeless population and

undocumented immigrants. Ask them whether they think it is appropriate to list the

estimate as 118,853. Do they think the last three digits, 853, mean anything? If not,

how do they want to list it? 118,000 or 119,000? In fact, for the purpose of general

information, wouldn’t an estimate of 120,000 make more sense? Now let them know

they are learning to make a decision about whether to round to the nearest thousand

or nearest ten thousand. In this case, the skill of rounding serves the purpose of

making sense of the world around us. It doesn’t have to be a fossilized skill from

TSM at all.

For more details on rounding and estimation from this perspective, see Wu, 2011a,

Chapter 10.
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4.4 What does it mean to know a fact in mathematics

We started off this article by asking what mathematics teachers need to know

in order to achieve basic teaching competence. Having described in some detail the

nature of this content knowledge, we now bring closure by addressing what it means

to know a fact mathematically (this discussion should be compared with Ball, Hill,

and Bass, 2005). In mathematics education, knowing a fact commonly means knowing

it by heart (having memorized it). In mathematics, however, the same word means

much more. To say you know a fact in mathematics means you know:

(a) what it says precisely,

(b) what it says intuitively,

(c) why it is true,

(d) why it is worth knowing,

(e) in what ways it can be put to use,

(f) how to put it in the proper perspective.

See Wu, 2013a, page 11. As in the case of "mathematical integrity", there is no

pretense that such a characterization of "know" will be accepted by all mathemati-

cians, but undoubtedly most would find it acceptable. The idea is that knowing a fact

means being able to tell the whole story about this fact rather than just a few sound

bites. It should also be said that there may not always be a good answer to each
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and every one of (d)–(f) in every situation. Moreover, since we are asking for content

knowledge to ensure teaching competence at the most basic level, we will ignore (f) in

subsequent discussions as its answer tends to be more sophisticated (see, e.g., pp. 25

and 38 of Wu, 2013a). That said, I believe a teacher should certainly make an effort

to raise these questions all the time and try to get as many of them answered as

possible. (Incidentally, the ability to answer most of these questions most of the time

is intimately related to the coherence of mathematics.)

Again, it should come as no surprise that these are questions all mathematics

researchers ask themselves again and again throughout the course of their work. Re-

calling once more the kinship between research and learning, we recognize that many

students will be pondering the same questions (regardless of whether or not they

can explicitly articulate them) when they are confronted by a new concept or a new

theorem. A teacher must come prepared for these questions.

We give an example: what should a teacher know about the theorem on equivalent

fractions? We will answer the preceding questions (a)–(e) in the same order:

(a) Given a fraction 𝑚
𝑛
, then for any nonzero whole number 𝑐, 𝑚

𝑛
=

𝑐𝑚
𝑐𝑛

. (In a fifth grade classroom, one will have to begin by using concrete

numbers rather than symbols.)

(b) Don’t get hung-up on the fraction symbol, e.g., 2
3
; it is the correspond-

ing point on the number line that counts. A fraction is a certain point on

69



the number line, and the symbol is nothing more than a representation

of the point. Also get used to recognizing 2
3

as 24
36

or 18
27

. The moral is:

nether the numerator nor the denominator in a fraction symbol means all

that much by itself; it is the relative size of the numerator and the denom-

inator that matters. For example, if we ask for half of 2
3

of an apple pie,

it is obvious: 1
3

of the pie. Now if we ask for a fifth of the same amount

of apple pie, is it any harder? Not much, because 2
3
= 10

15
, so a fifth of 10

15

of the apple pie is 2
15

of the pie.

(c) To prove 2
3
= 5×2

5×3
, for example, we ask whether the 2nd point in the

sequence of thirds on the number line is the same point as the 10th point in

the sequence of fifteenths. If we divide each segment between consecutive

points in the sequence of thirds into 5 segments of equal length, the unit

[0, 1] is immediately divided into 15 equal parts and we get the sequence of

fifteenths. Now count carefully, and the truth of the assertion is obvious.

The general proof is no different.

(d) If you work with fractions at all, you will be seeing equivalent fractions

all day long. This theorem figures prominently in every discussion of

fractions, including the hows and whys of the arithmetic operations on

fractions: +, −, ×, ÷.
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(e) Each time you get stuck on a problem involving fractions, your condi-

tioned reflex ought to be: can I use equivalent fractions to get me out of

this jam? More often than you can imagine, this strategy will work. For

example, see (b) above.

4.5 Professional development

It may be self-evident at this point, but we will nevertheless demonstrate presently,

that any professional development (PD) that manages to pry open the grip of TSM

on teachers and introduce them to principle-based mathematics will not be easy to

come by. Let us consider two examples.

First, suppose some high school teachers want you to help them learn about

quadratic functions. TSM being what it is, you know they are likely to have been

misinformed about the need to understand the graphs of quadratic functions for the

purpose of understanding the functions themselves. Equally likely, they may not

realize that the study of quadratic equations is a very small part of the study of

quadratic functions. They may also have been misinformed about the technique of

completing the square, the fact that it is just as important for the study of functions

as for the derivation of the quadratic formula. There will be a lot to talk about, but

you feel comfortable telling the teachers that two days of PD should be enough.

Next, suppose some elementary teachers come to you and ask for PD that ex-

plains why definitions are important. You probably do a double-take before replying
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because that is a big job! In your thinking, you may likely begin with the defini-

tion of fractions. Considering how much misinformation about fractions has been

handed out in TSM, you figure that one day may not be enough to explain why the

various TSM "definitions" of a fraction are not mathematically acceptable, and why

the definition in terms of the number line will promote better learning. Because the

teachers are likely not to have come across any definitions for the addition, subtrac-

tion, multiplication, and division of fractions either, you want to take this opportunity

to explain how this absence has led to “Ours is not to reason why, just invert and

multiply", among other things. You want to convince them that having definitions

for these operations is as important as getting the computational formulas because

the definitions will make it possible to explain these formulas. This will take more

time, because you cannot just tell them what the definitions of the operations are and

move on; you must also explain the associated reasoning in detail because they have

never seen it before. There is another reason you cannot rush them: they have been

living with mathematics-without-definitions all through K–16 as well as all through

their professional lives. You cannot change someone’s habits of twenty-some years

overnight. You will need even more time.

But it is not just fractions that need definitions; whole numbers do too. In TSM,

even concepts in the whole numbers do not have definitions. Few teachers will re-

member the definition of adding or multiplying two whole numbers (see, e.g., Case 12
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of Schifter, Bastable, and Russell, 1999), much less why these definitions are relevant.

After all, can the algorithms not be taught simply by rote? Therefore few will be

able to explain the virtues of the standard algorithms for addition and multiplication,

among other things. In fact, even fewer will be able to give a precise definition of

the long division algorithm. Recall: to define an algorithm one must state the precise

procedure as well as the desired outcome in a general context. To the extent that nei-

ther appears to have been done in the education literature, you begin to realize that

explaining the significance of definitions is much more than changing the teachers’

perception about “definitions" per se. You are in fact called upon to revamp their

mathematical knowledge base—which is steeped in TSM—into principle-based math-

ematics. You have to change their belief system and rebuild their content knowledge

from the ground up. Clearly two weeks will not be enough.

These examples hint at the difference between the run-of-the-mill kind of PD and

the kind that aims at providing teachers with principle-based mathematics. The fun-

damental difficulty with the latter is the stranglehold that TSM has had on teachers

for such a long time; if we want to enable teachers to teach correct mathematics, we

will have to retrofit their knowledge base. This is hard, unpleasant work.29 Let us

start with preservice teachers. They have had thirteen years of TSM by the time they

get to college. Even if their undergraduate program offers courses on K–12 mathe-
29For an example of why there can be no short-cuts in this kind of professional development, see

the analysis of Garet et al., 2011, in Wu, 2011c, pp. 20–31.
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matics, these courses will have the burden of convincing them, point-counter-point,

that the TSM they are familiar with is not correct and therefore not learnable by stu-

dents, so that they had better replace it with something that is logical and coherent.

This is a hard sell because, in all the years preservice teachers were in school, they

saw with their own eyes that "mathematics" (i.e., TSM) was nothing more than a

bag of tricks to memorize in order to score well on standardized tests and move on

to the next class. They had no conception of the logical and coherent progression of

ideas in principle-based mathematics. For example, they have all been taught that it

is legitimate to "prove" equivalent fractions, i.e., 𝑚
𝑛
= 𝑚𝑐

𝑛𝑐
, by the following string of

equalities (see equation (6) on page 64),

𝑚

𝑛
=

𝑚

𝑛
× 1 =

𝑚

𝑛
× 𝑐

𝑐
=

𝑚𝑐

𝑛𝑐
.

Now imagine the hard work that is necessary to retroactively explain to them the

fatal mathematical incoherence in this one line.

If we try to teach fractions without directly confronting pre-service teachers with

such fatal errors but only tell them what the correct reasoning is, will they realize on

their own that what they think they know is wrong? If not, how then can we expect

them to turn around and be advocates for principle-based mathematics? Chang-

ing teachers’ minds about the precision, reasoning, and coherence of mathematics is

clearly more than making a few tweaks here and there in the TSM they know. We

will have to retrace essentially all the mathematics they have ever learned in school
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and revamp it systematically before any new ideas of principle-based mathematics can

hope to sink in. At this point, perhaps what was said in Section 1 about the need for

long-term PD will begin to make sense.

The last I heard, the pervasive dominance of TSM in school mathematics is largely

unknown and unmentioned in the education literature and in Schools of Education,

and the need for content-based professional development is widely ignored. Certainly

the urgent need of professional development to explicitly undo the ills of TSM is un-

heard of. In addition, there is as yet no awareness in most mathematics departments

that the standard math majors do not necessarily make good high school teachers.

If there are still any doubts about this fact, the recent study of Newton and Poon,

2015a, should lay them to rest. Beyond this awareness, there is the obstacle of finding

the right personnel to do this kind of PD. We have a long way to go.

The issues facing the PD of inservice teachers are even more dire. Districts do

not invest (or do not have the funds to invest) in long-term professional development,

and the teachers in the trenches do not have the time and energy to make the inten-

sive effort to relearn the content during the regular school year. Unless something

extraordinary happens soon, TSM will continue to be the default content in teaching

and learning in schools for the foreseeable future.

Finally, we should address the naive question of why not just expunge TSM by

the most direct method possible, namely, by rewriting school textbooks? To properly
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answer this question will take a separate article, but the short answer is that textbook

publishers worry about their bottom line but not necessarily about good education.

For slightly more details, see Keeghan, 2012, and pp. 84ff. of Wu, 2015.

In summary, we have isolated the singularly destructive presence of TSM in school

mathematics—especially its wanton disregard of definitions and reasoning—as a tar-

get for the mathematical reconstruction of the average teacher’s knowledge base.

Some may question whether this critique of TSM and the advocacy of its obliteration

are necessary or appropriate. Our answer is affirmative, very much so. The school

curriculum is a vast terrain, and teachers’ misconceptions from TSM in this terrain

are not confined to a few spots or a few chosen pathways; they are minefields that

lay waste to the entire territory. Any attempt at professional development without

confronting and removing TSM, such as the above "proof" of equivalent fractions or

the pseudo-definition of the slope of a line mentioned in Section , runs the danger of

“floating down a smooth-flowing river, so broad that you can seldom see either bank;

but, when from time to time a promontory comes into view, you are surprised that it

is a new one, as you have been unconscious of movement."30 It would be irresponsible

of us to usher complacent teachers through a tour of the K–12 landscape that they

think they recognize through the lens of their TSM-infused misconceptions without

explicitly making them realize that they must now leave these misconceptions be-
30Bertrand Russell’s critique of George Santayana’s literary style; see Russell, 1956, p. 96.
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hind. We want teachers and teacher-educators to become aware of the pressing need

to eradicate TSM.

Having said that, I am compelled to point out in the spirit of full disclosure that

the emphasis on the need to replace TSM—especially the malpractice of pretending

to do mathematics without definitions and reasoning—and the urgency of the need to

implement (content-based) PD to help teachers dislodge TSM are strictly my personal

conviction thus far. These issues are not to be found in other recent discussions of

teachers’ content knowledge, e.g., Common Core, 2012, Conference Board of Mathe-

matical Sciences, 2001 and 2010, National Council of Teachers of Mathematics, 2014,

and Zimba, 2016. Caveat emptor.

4.6 Pedagogical content knowledge (PCK)

So far, we have focused our attention on the reality of teaching and learning in

the classroom. However, the question about what mathematical content knowledge

teachers need has theoretical implications as well. In his well-known address (Shul-

man 1986), Shulman initiated an inquiry into the kind of content knowledge that

all teachers need for teaching. He introduced the concept of pedagogical content

knowledge (PCK), which is roughly the bridge that leads from content expertise to

the process of teaching. The starting point is thus subject matter content knowledge.

According to Shulman:

We assume that most teachers begin with some expertise in the content

77



they teach. . . . Our central question concerns the transition from expert

student to novice teacher. . . . How does the novice teacher (or even the

seasoned veteran) draw on expertise in the subject matter in the process

of teaching? (ibid., p. 8).

The precise nature of this “expertise in the content" is therefore foundational to his

work on teacher education. This naturally leads us to ask what “some expertise in

the content they teach" might mean and what it entails.

To the extent that Shulman was looking into all content disciplines all at once, a

precise definition of this content expertise in general is out of the question because

such a definition would have to be specific to each discipline. However, since we are

now only considering the teaching of mathematics, it is incumbent on us to be as

precise as possible about what constitutes mathematical content expertise. At this

point, the picture can get murky. Since the content knowledge that an overwhelming

majority of teachers possess is TSM, can mathematics teacher education be built on

a foundation of TSM? Obviously not. So how then should the discussion of PCK

in mathematics proceed? Can we assume that this requisite content knowledge is

principle-based mathematics? An affirmative answer will bring clarification to the

concept of PCK in mathematics and clear the way for us to get to work on providing

the minimum content knowledge for PCK. Unfortunately, this remains very much an

open question at the moment.
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We can perhaps more deeply appreciate the preceding concerns if we take up the

refinement of PCK in mathematics teaching proposed in Ball, Thames, and Phelps,

2008. These authors isolated what they called subject matter knowledge for

teaching (ibid., page 402) as the content foundation of PCK. In their work, this

knowledge is further subdivided into three categories. In our effort to understand

what this subject matter knowledge for teaching consists of in mathematical terms,

however, we find it more revealing to turn to a series of questions posed on page 402

of their article.

Where, for example, do teachers develop explicit and fluent use of math-

ematical notation? Where do they learn to inspect definitions and to

establish the equivalence of alternative definitions for a given concept?

Where do they learn definitions for fractions and compare their utility?

Where do they learn what constitutes a good mathematical explanation?

Do they learn why 1 is not considered prime or how and why the long

division algorithm works? (Ball, Thames, and Phelps, 2008, page 402)

In the view of Ball et al., the subject matter knowledge for teaching that they have

in mind is the home for answers to questions such as these. Let us therefore try to

answer them one by one.

∙ "Where, for example, do teachers develop explicit and fluent use of mathematical

notation?"
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The authors have put their fingers on a key issue in the school curriculum: how

to properly use mathematical symbols. Since TSM is cavalier with the symbolic

notation—lack of precision—it ends up with the bogus concept of a “variable" (see

page 51).31 Clearly TSM is very far from being the requisite subject matter knowledge

for teaching, at least in this instance. The need to address the use of mathemat-

ical notation naturally comes with the requirement of precision in principle-based

mathematics. In fact, precision suggests that symbols be used, albeit gently, in the

elementary classroom in the statements of the commutative laws and associative laws

for whole numbers and fractions (cf. Wu, 2011a, page 42; also see Section 1.3). When

in the middle grades the use of symbols becomes both necessary and intensive, teach-

ers must come to terms with a fundamental fact regarding the use of symbols:

Each time one uses a symbol, one must specify precisely what the symbol

stands for.

This is given the name the basic protocol in the use of symbols in Wu, 2016b, page

4 (also see Wu, 2010b, Section 1). When such precision is duly observed, the usual

symbolic computations in school mathematics are demystified as nothing more than

computations with numbers. The whole of Chapters 1 and 3 and Section 2.1 of

Wu, 2016b are devoted to an explanation of this fact from different angles. To the
31Some go even further and define a "variable" as a symbol without qualification, and sentences

involving symbols-without-qualification are then called open sentences (e.g., UCSMP, 1990, page
4). But the concept of "open sentence" is not needed for doing mathematics.
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extent that this aspect of principle-based mathematics seems to be neglected in the

mathematics literature—not to mention the education literature—the concerns of

Ball et al. are entirely justified. We must teach teachers more than TSM.

∙ "Where do they learn to inspect definitions and to establish the equivalence of

alternative definitions for a given concept?"

This question does not even make sense in TSM because TSM has shown no

appetite for definitions. So once again, teachers who know only TSM will not possess

the subject matter knowledge for teaching.

In professional development materials, establishing the equivalence of definitions

is a very rare occurrence even in principle-based mathematics because such an oc-

casion is not commonly called for. For example, because there is as yet no usable

definition of a fraction in school mathematics other than that using the number line

(see the discussion of the following question), we are not in a position to compare

the pedagogical pros and cons of different definitions or prove their equivalence, no

matter how desirable such a discussion may be. A slight exception is the equivalence

of the two definitions of fraction multiplication that is implicit in the discussion on

page 64 of the product formula, i.e., the definition using "fraction of a fraction" (Wu,

2016a, p. 58; CCSSM, 5.NF.4), and the definition using the area of a rectangle (Wu,

2011a, p. 263). This equivalence is mentioned on page 262 of Wu, 2011a, but no

proof was offered. The equivalence is implicitly proved by combining Section 17.3 of
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Wu, 2011a, and Theorem 1.6 on page 65 of Wu, 2016a. Indeed, the former proves

that the area definition implies the "fraction of a fraction" definition, while the latter

proves the converse. In any case, this kind of knowledge is beyond principle-based

mathematics even if it is compatible with it.

∙ "Where do they learn definitions for fractions and compare their utility?"

Again, not in TSM, because there is no definition for a fraction in TSM. See

the discussion in Subsection 3.1 The first part of this question implicitly assumes

that there are usable definitions of a fraction in school mathematics. As of 2016,

the assumption is correct, but unfortunately there is only one such definition at the

moment, which was the one was put forth in Wu, 1998, and subsequently put to use

in Jensen 2003, Wu, 2011a, and Wu 2016a, and put to partial use in Siegler et al.,

2010. It would also appear to be the one in CCSSM, 3.NF.2. So as far as mathematics

is concerned, a comparison of different definitions of a fraction is not yet a reality in

2016.

The second part of this question suggests that, perhaps, the authors meant to

ask whether any of the existing TSM "interpretations" of a fraction (see Subsection

3.1) can be used as a definition of a fraction and, if so, how do they compare? Let

us first consider this question in the context of advanced mathematics. Then one

of them—the quotient interpretation—can indeed serve as a definition, but perhaps

not others. It is known (in advanced mathematics) that a fraction 𝑚
𝑛

can be defined
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as a division, 𝑚 ÷ 𝑛, but this has to be done with great care. For example, 𝑚 ÷ 𝑛

cannot be recklessly tossed around as in TSM (see page 39), but has to be defined

abstractly as the solution of 𝑛𝑥 = 𝑚. Then this solution can be proved to be equal

to the fraction 𝑚
𝑛
, which is understood to be the equivalence class of the ordered pair

(𝑚,𝑛). However, even this brief description is enough to reveal that such a discussion

is way beyond the level of school mathematics and is therefore inappropriate for the

consumption by teachers. In summary then, the answer as of 2016 is that there is

only one usable definition of a fraction in school mathematics.

∙ "Where do they learn what constitutes a good mathematical explanation?"

A "mathematical explanation" is of course just a "proof". Given the paucity of

reasoning in TSM, one does not look for proofs in TSM. So emphatically TSM does

not provide the subject matter knowledge for teaching that Ball et al. are looking for.

If I understand the question, Ball and her co-authors are asking how teachers can

learn to decide whether a proof is correct or not and, if correct, how to present it in

an accessible way to students. Let us start with the former.

The ability to reason is not an instinctive one, and has to be carefully nurtured.

My own observation is that among teachers, especially elementary teachers, their

prolonged immersion in TSM has often rendered them incapable of routinely asking

why, much less looking for the answer. In the mathematical education of teachers, I

believe we have to help teachers regain their reasoning faculty in at least two ways.
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First, they have to get used to the mechanics of proofs by a process of total immersion:

learn the proof of every assertion in the mathematics they teach. Second, they have to

get a feel for the overall architecture of mathematics by working through a systematic

logical development of school mathematics.

To illustrate the first point, consider the assertion that, even without a definition

of fraction division, one can derive the invert-and-multiply rule (see page 5):

2
3
4
5

=
2
3
× (3× 5)

4
5
× (3× 5)

=
2× 5

4× 3
=

2

3
× 5

4

If teachers’ sensibilities in reasoning have been heightened by a prolonged exposure

to proofs, their conditioned reflex would be immediately alarmed by the fact that, in

the first equality above, the left side of the equality, 2
3
/4
5

is as yet undefined. They

know that to say 𝐴 = 𝐵 is to say they already know what each of 𝐴 and 𝐵 is before

asserting that they are equal. Therefore they would see right away that there is no

way the equality can make sense. Next, let us see why they need to have an overview

of the hierarchical structure of school mathematics. Look at the TSM proof of a

special case of equivalent fractions, 7
3
= 14

6
, quoted on page 64:

7

3
= 1× 7

3
=

2

2
× 7

3
=

2× 7

2× 3
=

14

6

Now equivalent fractions comes near the beginning of every discussion of fractions,

but this proof makes use of the product formula for the multiplication of fractions.

That should be enough to raise a red flag to teachers reading this proof, because they
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should have an overall understanding of the logical structure of fractions: no matter

how fractions are developed, multiplication is never easy and the product formula

require hard work. They should suspect right away that it is probably wrong to

make use of a result that only appears down the road to prove something that is

foundational.

In 2016, most teachers only know TSM but not principle-based mathematics. If

we expect them to know the subject matter knowledge for teaching, we must begin

by helping them go through an immersion in proofs and a point-by-point systematic

development of the mathematics they teach. It was exactly the lack of any systematic

exposition of principle-based mathematics that provided the initial impetus for the

writing of the six-volume work: Wu, 2011a; Wu, 2016a and 2016b; Wu, (to appear).

∙ "Do they learn why 1 is not considered prime or how and why the long division

algorithm works?"

As usual, this question has no answer in TSM. The fact that 1 is not defined to

be a prime has to do with the uniqueness of prime factorization (see Section 3.1 of

Wu, 2016a), but TSM skirts any explicit mention of either existence or uniqueness

(e.g., what
√
2 means is never seriously discussed in TSM). Next, if we reformulate

the second part of this question about the long division algorithm in mathematical

terms, then what it asks for is a formal statement of the algorithm as a theorem (i.e.,

with a hypothesis and a conclusion) as well as a proof of this theorem. This by itself is
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a most remarkable question because it seems not to have been previously raised in the

education literature (and therefore never answered either). At its best, TSM provides

heuristic arguments for the "division house" by using analogies or metaphors, but

nothing remotely resembling a proof, i.e., a sequence of precise steps that progresses

logically from hypothesis to conclusion. One of the difficulties is that, in TSM, the

hypothesis of such a theorem has never been clearly stated. Moreover, the conclusion

in TSM of the division-with-remainder of 125 by 4 is "31 𝑅1", but there is no known

mathematical reasoning that has the nonsensical statement "31 𝑅1" as a conclusion

(see p. 6 of Wu (2014b)). Now, it is possible in principle-based mathematics to

explicitly describe the algorithm and—following the description—to systematically

present a sequence of simpler divisions-with-remainders that ends with the equality

125 = (31×4)+1. This may be the proof that Ball et al. are looking for. See Section

7.3 of Wu, 2011a for a formulation of such a theorem, and ibid., Section 7.5 for its

proof. The recognition of the long division algorithm as a theorem and a knowledge

of its proof should without a doubt be part of every elementary teacher’s minimal

content knowledge.

In summary: If we are interested in the kind of content knowledge that can pro-

vide answers to the preceding five questions from Ball, Thames, and Phelps, 2008,

then we must abandon TSM and look for something even more comprehensive than

principle-based mathematics. Our conclusion is therefore that the subject matter
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knowledge for teaching that Ball et al. assumed to be foundational for PCK is a bit

beyond principle-based mathematics.

In Section 5, we expressed the pessimism that we may not have a system in

place, nor the requisite personnel, to provide mathematics teachers with the content

knowledge for achieving basic teaching competence. If the preceding analysis of Ball,

Thames, and Phelps, 2008, is correct, then fundamental to both Shulman’s theory

of PCK in mathematics and its refinement in Ball, Thames, and Phelps, 2008, is a

content expertise for teaching that exceeds principle-based mathematics. We must

therefore pool our resources together to try to provide this basic content knowledge for

teachers before we can seriously contemplate tackling PCK. Let us begin by teaching

them principle-based mathematics.

In a 2005 article (Shulman, 2005), Shulman said tongue-in-cheek that "Teacher

education does not exist" because educators had failed to converge on a set of "signa-

ture pedagogies" that characterize all of teacher education. In the same vein, we can

say that teacher education in mathematics does not exist because we haven’t found

(yet) a way to give teachers the content knowledge they need to achieve a basic level

of competence in mathematics teaching.

Appendix 1. Applied mathematics
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The five principles (A)–(E) of Section 2.1 may be said to be foundational to the

integrity of pure mathematics, which is the discipline that is driven principally by its

internal logic and its internal imperatives (the sense of beauty, the sense of structure,

etc.). However, its allied discipline of applied mathematics, which mediates between

pure mathematics on the one hand and science and technology on the other, is never

far from school mathematics. Consider, for example, the following problem:

Two shuttle trains traveling at constant speed go between cities A and B

which are 15 miles apart. It takes the first train 10 hours to make the

trip, but it takes the second train 12 hours. Suppose now the first train is

at city A and the second train is at city B and they take off at the same

time on parallel tracks. How long will it be before they meet?

Notice that, as stated, this problem cannot be solved because we don’t know precisely

what "distance between cities" means, and we are also not given the lengths of the

trains. Does the "distance between cities" mean the distance between city centers or

the shortest distance between the outskirts of the cities, or is it the distance between

the train stations? Let us assume that it is the latter. Now suppose the first train

is 528 feet long (= 1/10 miles). Then the train doesn’t travel 15 miles in going from

city A to city B; it only travels (15 − 1
10
) miles and the given data actually means

this train travels (15− 1
10
) miles in 10 hours. Similarly, suppose the second train has
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length 264 feet (= 1/20 miles). Then this train travels (15 − 1
20
) miles in 12 hours.

Now a little reflection will reveal that, if "meeting" of the trains means the meeting

of the fronts of the trains, then they will meet after they have traveled a combined

distance of (15 − 1
10

− 1
20
) miles. Without proceeding further with this analysis, it

is quite clear that a 7th grade school mathematics problem cannot afford to be this

unwieldy.

In order to make the problem manageable to a middle school classroom, the stan-

dard simplification is to imagine that both trains are points without length. By

further assuming the precise distance between the train stations of the two cities to

be 15 miles, we are now given that these train will travel 15 miles in 10 and 12 hours,

respectively. With these simplifications understood, then this problem can be solved

in the usual way as a typical mathematics problem.

This process of translating a word problem into a "doable" mathematics problem

by making "reasonable simplification" is what is formally called "modeling". Applied

mathematics may be said to be the study of mathematical problems whose solutions

require modeling. The train problem is a rather trivial example of problems in applied

mathematics. Most such problems arise from science or technology, and the modeling

that is required for their solutions usually require a heavy dose of scientific knowledge.

To solve these problems, we will have to deal with concepts whose primary definitions

lie "in the real world", so to speak, outside mathematics. For example, in dealing with

89



the electric field in Newtonian physics, mathematicians may believe that the electric

field is precisely defined by the gradient of the solution of Poisson’s equation. But in

physics, what truly matters is the force exerted on a test charge by the field. Therefore

if the same problem is taken up in 19th century electrodynamics, the modeling of the

field changes. The mathematical definition of the field will now involve Maxwell’s

equation and the combined electric plus magnetic force on a test charge. There will

be other variations if the context changes to non-quantum special relativity or special

relativistic quantum field theory. All the while, the electric field "out there" remains

the same. Moreover, the reasoning used will involve a substantial amount of science

in addition to mathematics, and the purpose behind the problem would likely lie

more in science rather than in pure mathematics. The fundamental principles that

characterize the integrity of applied mathematics will therefore be a slightly modified

version of each of (A)–(E), as we have just indicated.

However, given the lack of coordination between the teaching of school science and

school mathematics as of 2016, the chances of being able to do substantive applied

school mathematics are essentially nonexistent, because such problems inevitably in-

volve serious science. Problems like the train problem above typically constitute the

only kind of applied mathematics that can be taught in K–12, and the modeling that

is required for their solution is no more than certain formal conventions that—like
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the modeling of a train by a point—once set up, can be learned quickly.32 As the

preceding solution of the train problem shows, once these conventions are under-

stood, the usual applied problems in school mathematics quickly become part of pure

mathematics again.

It is for this reason that we believe that the fundamental principles (A)–(E) are

sufficient to characterize the integrity of the mathematics of K–12 in year 2016.

Appendix 2. The existence of TSM

To people not directly involved with the professional development for mathematics

teachers or the evaluation of school mathematics textbooks, TSM is an unbelievable

concept: could a nation’s textbooks be so bad for so long? Could it be that someone

is taking poetic license to create this concept for purposes that are not entirely intel-

lectual? This appendix addresses these doubts and suggest projects for research to

confirm or refute the validity of this concept.

The most reliable way to identify TSM is to read, in succession, several textbooks

for the same grade from major publishers. Using this article as a guide, the reader will

not fail to notice the many similarities—and the anti-mathematical qualities—among

these books. In order to generate data for research, however, we will have to suggest

a far cruder methodology. We are going to write down a small list of observable
32This may explain why it is almost impossible to find sensible assessment items on modeling.
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characteristics to be used for detecting the presence of TSM. Note that it is easy

to expand this list. For middle school mathematics, simply look up "TSM" in the

indices33 of Wu, 2016a and 2016b. For high school mathematics, the volumes of Wu,

(to appear), will serve the same purpose when they are finally published. Because the

volume Wu (2011a) was published before the term TSM was coined, it is slightly more

difficult to come up with a list for elementary school mathematics. Nevertheless, it

is not difficult to single out the many implicit references to TSM in Wu, 2011a (e.g.,

pp. 106, 177–178, 206, 228, 332, 335, etc.).

What we suggest is to use the items on the following list to check the school

mathematics textbooks from the major publishers. If over 75% of these books (in a

fixed grade band) contain the error described by each item on this list (that is relevant

to the grade band), then the validity of TSM would be beyond doubt. Moreover, one

can get further confirmation by a survey of teachers using these items. Again if over

75% of the teachers confirm that these errors were exactly what they were taught

when they were students, that would be a double confirmation of the validity of the

concept of TSM. For this kind of research, the participation of a very competent

mathematician will be crucial.

It should also be pointed out that many of the errors in the following list are
33These indices are not in those volumes but are obtainable from http://www.ams.

org/publications/authors/books/postpub/mbk-98 and http://www.ams.org/publications/
authors/books/postpub/mbk-99.
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recorded in the lessons of the teachers in the casebooks of Barnett, Goldstein, and

Jackson, 1994; Merseth, 2003; Schifter, Bastable, and Russell, 1999; and Stein, Smith,

Henningsen, and Silver, 2000.

Here is the list:

(I) Missing or garbled basic definitions. (By "definition", we mean as in Subsec-

tion 2.1 a precise and mathematically correct statement about a concept that is put

to use in the textbook for reasoning.)

Number; division-with-remainder; fraction; decimal; one fraction bigger

than another; addition, subtraction, multiplication, and division of frac-

tions; ratio; percent; constant speed; negative fraction; addition, subtrac-

tion, multiplication, and division of rational numbers; variable; expression;

equation; polynomial; length of curve, area of region in a plane, and vol-

ume of solid in 3-space; scale drawing; slope of a line; half-plane of a line

in the plane; the graph of an inequality, equation, or function.

(II) Wrong instructions.

(𝑎) Writing a division-with-remainder, e.g., 17 by 5, as 17÷ 5 = 3 𝑅2.

(𝑏) Add two fractions by the use of the least common denominator of the

fractions.

(𝑐) Introduce mixed numbers before fraction addition.
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(𝑑) Expanding the product of two linear polynomials by the mnemonic

device of FOIL.

(𝑒) Teach order of operations as a major skill by the mnemonic device of

PEMDAS.

(𝑓) Define slope of a line as rise-over-run without emphasizing that it is

a single number attached to the line.

(𝑔) Define in a high school algebra text that two lines in the plane are

perpendicular if and only if the product of their slopes is −1.

(III) Lack of reasoning (proof) for any of the following basic facts:

(𝑎) The long division algorithm for whole numbers.

(𝑏) The product formula of fractions: 𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
.

(𝑐) The invert-and-multiply rule for the division of fractions.

(𝑑) The multiplication algorithm for the product of two finite decimals.

(𝑒) The theorem (−𝑥)(−𝑦) = 𝑥𝑦 for rational numbers 𝑥 and 𝑦.

(𝑓) The theorem 𝑎
−𝑏

= −𝑎
𝑏
= −𝑎

𝑏
for all rational numbers 𝑎 and 𝑏 (𝑏 ̸= 0).

(𝑔) The theorem that the graph of 𝑎𝑥+ 𝑏𝑦 = 𝑐 is a line.

(ℎ) The theorem that the graph of a linear inequality is a half-plane.
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(𝑖) The theorem that the solution of a system of two linear equations in

two variables is the point of intersection of the two lines defined by the

linear system.

(𝑗) The theorem that a linear function attains its maximum or minimum

at a vertex of the feasibility region in linear programming.

(𝑘) The formula for the vertex of the graph of a quadratic function.

(ℓ) For any positive 𝑎 and 𝑏 and any positive integer 𝑛, 𝑛
√
𝑎 · 𝑛

√
𝑏 = 𝑛

√
𝑎𝑏.

(𝑚) The Factor Theorem for polynomials of one variable.

(𝑛) The addition formulas for sine and cosine for all angles (i.e., not just

acute angles).

(IV) Lack of purpose for basic skills or concepts.

(𝑎) Why round off whole numbers or decimals?

(𝑏) Why do we need negative numbers?

(𝑐) Why do we need absolute values?

(𝑑) Why teach rotations, translations, and reflections in middle school if

they seem to be useful only for art appreciation?

(𝑒) Why do we need to know the slope of a line?

(𝑓) Why change the notation of 𝑛
√
𝑎 to 𝑎1/𝑛 and 1

𝑎
to 𝑎−1?
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(V) Incoherence in the teaching of geometry.

Congruence is defined to be same size and same shape in middle school, but in

the high school geometry course, it is redefined as equal sides and equal angles for

polygons but nothing else. There is no explanation as to why once students are in

high school, they will no longer be concerned about the congruence of curved figures.

Similarly, similarity is defined to be same shape but not necessarily the same size in

middle school, but in the high school geometry course, it is redefined as proportional

sides and equal angles for polygons but nothing else. (See Subsection 3.3 for a more

nuanced discussion.)
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