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Abstract

In June of 2010, the Common Core State Standards in Mathematics (CCSSM) were

introduced in the U.S. Long before the advent of the CCSSM, American schools had

a de facto national mathematics curriculum, namely, the curriculum dictated by school

mathematics textbooks. While there are some formal differences among these books, the

underlying mathematics is quite similar throughout. The resulting curriculum distorts

mathematics in the sense that it often withholds precise definitions and logical reason-

ing, fails to point out interconnections between major topics such as whole numbers and

fractions, and employs ambiguous language that ultimately leads to widespread non-

learning. The CCSSM make a conscientious attempt to address many of these problems

and, in the process, raise the demand on teachers’ content knowledge for a successful

implementation of these standards. This article examines, strictly from an American

perspective, some of the mathematical issues (primarily in grades 4–12) that arise dur-

ing the transition from the de facto curriculum to the curriculum envisioned by the

CCSSM. Although the CCSSM would seem to be strictly an American concern, these

mathematical issues transcend national boundaries because there are very few deviations

in the K–12 curriculum across nations (for the K–8 curriculum, see p. 3-31 to p. 3-33 of

National Mathematics Advisory Panel, 2008).

Keywords: Common Core Standards, curriculum, content knowledge, defini-

tion, reasoning
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Introduction

In the unending search for improvement in mathematics education in the U.S. for

the last half century, one thing seems to have been consistently overlooked; namely,

the fact that there has been a de facto American mathematics school curriculum since

the demise of the “New Math” in the early 1970s. This is the curriculum encoded in

school textbooks. There are many textbooks, of course, and they are guided by quite

different philosophical outlooks ranging from “traditional” to “reform”. Nevertheless,

the underlying mathematics is, overall, quite similar. While such a claim may startle

some, the element of surprise will disappear the minute one considers for instance, the

uniform lack of emphasis in school textbooks on giving precise definitions to concepts1

and, even more significantly, the same lack of emphasis on basing logical reasoning on

precise definitions. If even this does not drive home the point, consider further the

ambiguity of the meaning of fraction, multiplication or division of fractions, “variable”,

congruence, similarity, etc. How many textbooks explain how to multiply two fractions

strictly on the basis of the definition of a fraction?2 How many textbooks explain why

any two circles are similar using a precise definition of similarity? And so on. This body

of mathematical knowledge, contained in an overwhelming majority of school textbooks,

will be henceforth referred to as Textbook School Mathematics (TSM). (See Wu,

20011a and 2011c, for a fuller discussion.) It will be seen from subsequent discussion that

1It should be understood that this article is primarily concerned with the mathematics in textbooks
of grades 4-12. The need for correct and grade-appropriate definitions is no less acute in K–3; for
example, one does not want young children to be taught that a decimal is a number with a decimal
point. Nevertheless, a short article such as this cannot adequately attend to all the instructional
subtleties in those early grades.

2As an illustration of how definitions can be effectively used in mathematical reasoning even in a
topic as elementary as fraction multiplication, one may consult Chapter 17 of Wu, 2011b.
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TSM, in the words of the Common Core State Standards for Mathematics (2010),3 page

3, “distorts mathematics and turns off students.” More pertinent is the fact that much

of the recent mathematics education crisis can be traced to the omnipresence of TSM in

the school curriculum. The purpose of this article is to critically examine, strictly from

an American perspective, several key areas of this de facto national curriculum from

the vantage point of the CCSSM, highlight the deleterious effect of TSM, and give an

indication of how the CCSSM—if they are faithfully implemented—might lead us out

of the TSM jungle.

This de facto national curriculum has not been part of national dialog thus far for at

least two reasons. The obvious one is the large grain size that is normally used in such

general discussions. The other reason is very germane to this article: until recently, the

issue of content in school mathematics education has not been on the frontline of this

dialog. The failure to recognize this existence of the de facto national curriculum does

carry serious consequences, however. In the writing of state or national mathematics

standards, for example, the focus has always been on the optimal placement of standard

mathematical topics in a certain grade band, e.g., addition of fractions in grades 4–6,

solving linear equations in middle school, triangle congruence criteria in high school, etc.

The general expectation is that if the statement of the desired outcome (e.g., learn the

addition of fractions and use it to solve problems) is phrased correctly, clearly, and in a

grade-appropriate manner, and if it is faithfully implemented, progress will ensue (see,

e.g., Carmichael et al., 2010, especially the Foreword). Such expectations ignore the

3Hereafter referred to simply as CCSSM.
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havoc that has been wrought by TSM in the school curriculum. Take, for example, the

2000 standards in grade 5 of California on the addition of fractions (p. 53 of Mathematics

Framework for California Public Schools, 2006):

2.0 Students perform calculations and solve problems involving addition,

subtraction, and simple multiplication and division of fractions and decimals:

2.3 Solve simple problems, including ones arising in concrete sit-

uations, involving the addition and subtraction of fractions and

mixed numbers (like and unlike denominators of 20 or less), and

express answers in the simplest form.

The statement of this standard is mathematically correct,4 and its placement in grade

5 is pedagogically unassailable, but now look what happens when it passes through the

TSM melting pot and re-emerges in school textbooks:

1. Students are told to add fractions without being told precisely what adding frac-

tions means, partly because there is no definition of a fraction as a number (this

is universal practice).

2. Students learn the skill of adding fractions, either by drawing pictures but not

given a formula (cf. Lappan et al., 1998a), or by being given a formula that uses

the Least Common Denominator (Bennett et al., 2001, and Andrews et al., 2002).

The reasoning is either not given or not given with focus and clarity.

4Although one may quibble with the restriction on the denominators used.
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3. When students are presented with a problem such as “How much water is in the

bucket if you first pour in 23
7

gallons and then another 32
9

gallons”, they dutifully

use the method in step 2 only because “addition” is supposed to be used on account

of the word “and”, not because they know why.

There is a discussion in Wu (2011b), p. 221 and p. 228, about the correct definition of

fraction addition and the reason why the Least Common Denominator should not be

used to define the addition of fractions.

In any case, this is a glaring illustration of how good mathematical intentions are

undermined by TSM-based implementations. There are countless examples of this, three

major ones will be discussed at some length in a later section. The moral is that, until

we eradicate TSM from the school curriculum, any mathematical standard that calls for

the teaching of a mathematical topic in a certain grade will do nothing but rearrange

the mathematically flawed presentations in TSM. Though not entirely appropriate, the

proverbial “rearranging the deck chairs on the Titanic” does come to mind: it captures

the zeitgeist of the situation.

The need to confront TSM in writing a set of standards was unimagined until the

CCSSM came along. Anticipating the usual thinking of TSM, the CCSSM succeed, on

the whole, in prescribing how each topic should be taught in a mathematically acceptable

way. For example, here is how the CCSSM treat the addition of fractions: they ask

that this skill be spread out through three grades. With drastic oversimplification, the

CCSSM prescription goes something like this:

In Grade 3, understand a fraction as a number on the number line and
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interpret m
n as m copies of 1

n ; represent fractions on a number line diagram

and explain equivalence of fractions in special cases, e.g., 1
3 is the same point

on the number line as 2×1
2×3 .

In Grade 4, explain why a fraction a
b is equivalent to a fraction n×a

n×b

by observing that they are the same point on the number line. Also define

addition of fractions as joining parts referring to the same whole. Then for

two fractions with the same denominator, m
n + k

n =m+k
n .

In Grade 5, add and subtract fractions with unlike denominators by replac-

ing given fractions with equivalent fractions, so that we have fractions with

the same denominator. For example, 2
3 + 5

4 = 8
12 + 15

12 = 23
12 , which is

joining copies of 1
12 together.

Altogether, these standards guide students through three grades in order to help them

understand the meaning of adding fractions. (For a more detailed presentation of how

these standards can be implemented in the school classroom, one may consult pp. 9–13,

19–28, and 24–28 in Wu, 2011d.)

The end result is that addition is putting things together, even for fractions, and this

mathematical development ends with the formula,

a

b
+
c

d
=

ad+ bc

bd
,

with no mention of Least Common Denominator. What is obvious is that this presenta-

tion on adding fractions does not distort mathematics, and cannot be accused of turning

students off because adding fractions is now seen to be no different from adding whole
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numbers: it’s just putting things together.

In order to overcome TSM, the CCSSM have to be prescriptive, but the unprece-

dented prescriptive nature of CCSSM has provoked, not surprisingly, concerns about

the possibility of stifling innovation and individualization (see, for example, page 6 of

Institute for Research on Mathematics and Science Education, 2010). My interpretation

of the situation is that, if all the innovations of the past decades could not produce a

curriculum that does justice to mathematics, then it is time to try to prescribe a way out

of this predicament. If we succeed in implementing the CCSSM and eliminating TSM

in the process, then the time will come for a hundred flowers to bloom.

In a short article such as this, it is not possible to discuss TSM in detail, much

less also discuss how the CCSSM try to counteract the ill effects of TSM. What I will

do is to describe—in the broadest terms—some of the most salient features of TSM

in the next section, and then discuss in greater detail three specific examples of how

the CCSSM have responded to the challenge of TSM in the following section. The

last section will contain a few comments about the potential impact of these proposed

changes on teachers.

Now a word about citations of literature. To the extent that I am putting the

whole system of school mathematics education under a microscope, any explicit citation

in support of a particular statement is bound to give the false impression that I am

targeting an author or a book. If I had a choice, I would rather not give any citations.

However, the minimum requirement of scholarship dictates that I must, and the only

way I can deal with this requirement is to enforce the policy of not citing any one source
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more than twice. Because this is a sensitive subject, I must add two more remarks in

order to round off the picture. My citations were guided largely by what happened to

be available to me at the time of writing, so that the presence or absence of a particular

textbook or textbook series in the list of references has no significance beyond this fact.

In addition, the quality of the cited textbooks varies, and it must not be assumed that

each of them has all, or even most, of the flaws that are discussed in this article. I hope

the reader will keep the last fact in mind.

Overview

The purpose of this section is to give a brief indication of some of the problems with

TSM in the K–12 curriculum.

The main topics of grades K-4 are place value and the whole number algorithms.

In the de facto national curriculum, too often the standard algorithms are presented

as faits accomplis that require neither motivation for their learning nor a clear expla-

nation of why they provide the correct answers. More recently, these algorithms are

downplayed in various ways: they are either buried in a host of other algorithms, or all

the ingredients that lead to them are presented but the ultimate conclusions (the algo-

rithms themselves) are not singled out, or they are de-emphasized in favor of invented

algorithms (e.g., Bell et al. (2008) and Kliman et al. (2006)). Consequently, the fluent

execution of the standard algorithms is also de-emphasized. What all these misguided

approaches have in common is their failure to recognize the main mathematical message

of these algorithms, which is to reduce all whole number computations to single-digit

computations. The standard algorithms reduce a complicated task (the computation
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with multi-digit numbers) to a series of simple tasks (the computation with single-digit

numbers) through the skillful use of place value. When the standard algorithms are

taught from this perspective, they become a conduit to learning about two fundamental

aspects of mathematics, namely, the need for logical reasoning and the fact that mathe-

matics thrives on the reduction of the complex to the simple. See, for example, Chapter

3 of Wu, 2011b.

The CCSSM provide a remedy for the existing situation to a large extent. Concern-

ing the multiplication algorithm, for example, they begin with a (too often neglected)

definition of multiplication as repeated addition, e.g., 5×7 as 7+7+7+7+7 (Standard

3.OA 1 in CCSSM, 2010), and then ask for the multiplication table to be committed

to memory (Standard 3.OA 7 in CCSSM, 2010) in grade 3. The three basic laws of

operation (commutative, associative, and distributive) are also introduced in grade 3.

In grade 4, the CCSSM ask for the multiplication of “a whole number of up to four

digits by a one-digit whole number,” and the multiplication of “two two-digit numbers,

using strategies based on place value and the properties of operations” (emphasis added;

see Standard 4.NBT 5 in CCSSM, 2010). Finally in grade 5, students learn to multiply

any two whole numbers. When the multiplication algorithm is taught in three grades

as described, so that each step of this sophisticated algorithm is given ample time to be

internalized by students, there is less of a chance that the teaching will be done by rote.

This is all that one can ask for in a set of standards.

As mentioned earlier, the underpinning of these algorithms is place value, the fact

that, for example, the 3 in 372 represents 300 and 7 is 70 while 2 is 2. From a mathe-
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matical perspective, it may be more effective to explain to students, in a pedagogically

appropriate way, the real reason that place value is needed: namely, to make it possible

to count to any number, no matter how large, by limiting ourselves to the use of only ten

symbols: 0, 1, 2, . . . , 8, 9 (see Chapter 1, Section 1.1 in Wu, 2011b). Thus place value

is a property of the Hindu-Arabic numeral system we use and not a property of whole

numbers. Exposing children to this fact at an early age would reinforce the importance

of reasoning in mathematics. This is an idea that is worth exploring in the future.

The dominant topics of grades 4-6 (roughly) are fractions, decimals, and elementary

geometry. There is no better illustration of the failure of the de facto national curriculum

than the teaching of fractions. Fractions are students’ first serious entry into abstrac-

tions. In their learning progressions, this is the first time that they can no longer rely

on counting with their fingers (as they used to do with whole numbers) to relate what

they are learning to their tactile experiences. They need detailed and careful guidance—

including precise definitions of all the concepts as well as persuasive reasoning—in order

to compensate for the loss of reliance on their fingers. Unfortunately, the response of

the de facto national curriculum is to offer information that is at once confusing (e.g.,

a fraction is a part of a whole, a ratio, and a division) and misleading (the arithmetic

operations on fractions bear no relation to those on whole numbers). In place of the

precise definition of a fraction, it offers analogies, i.e., a fraction is like a piece of pizza

or a shape in pattern blocks. In place of precise definitions for the arithmetic opera-

tions of fractions, it offers only algorithms and (of course) little explanation because it

is impossible to explain anything that has not been precisely defined. The situation as
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described is so universal that no citation need be given: just open any school textbooks

and this is all there is to see.

The same story is pretty much true of the teaching of decimals. Teaching decimals

as an extension of whole numbers by the use of tenths, hundredths, etc.—but separate

from fractions—is just another form of teaching-by-analogy. (Once again, this practice

is so universal that no citation is necessary.) Indeed, this kind of teaching is only good

for decimals with at most two decimal digits (pennies and dollars), so students do not

get a precise conception of what a decimal is. In addition, such teaching is intellectually

dishonest because, even for decimals with only three decimal digits such as 0.127, the

nomenclature of “one tenth and 2 hundredths and 7 thousandths” hides the fact that

0.127 is by definition a sum of fractions:

0.127 =
1

10
+

2

100
+

7

1000

Unfortunately, TSM has never been careful to teach decimals only after the addition of

fractions has been defined. Historically, as well as conceptually, a decimal is a fraction

whose denominator is a power of 10. Once decimals have been integrated in this way into

the domain of fractions, everything becomes simpler, be it the comparison of decimals

or the computational algorithms with decimals, especially multiplication and division.

(One can consult Sections 12.3, 13.4, 14.2, 15.3, 17.2, and 18.4 of Wu, 2011b.)

If I fault the de facto national curriculum for the flawed instruction on fractions, it is

because the instruction is incommensurate with our expectations that students acquire

a robust knowledge of fractions. If all we ask of students is that they achieve a passing

acquaintance with the terminology of fractions, know roughly what they are, and be
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able to use them in simple everyday situations, then what TSM has to offer may just

be good enough. Unfortunately, sophisticated word problems involving percent, ratio

and rate await students in the sixth and seventh grades, and students need a thorough

understanding of the division of fractions for their solutions, which in turn requires a

solid foundation in the multiplication of fractions. The de facto national curriculum

simply does not support this kind of learning. What we have is therefore a situation in

which TSM teaches students only a little, but expects them to learn a lot. This sets

students up to fail perfectly.

This fraction-decimal situation calls for change, and again the CCSSM have met this

challenge to a large extent. Although fractions are introduced informally in grades 3 (as

it should be), the recognition that a fraction is a point on the number line is encouraged

from the beginning and the various basic theorems such as equivalent fractions are

explained on this basis. Likewise, the arithmetic operations on fractions are defined and

their algorithms explained in terms of the number line. The amount of details about the

teaching of fractions that one finds in the CCSSM is unprecedented, and it raises the

hope that a more sensible school curriculum on fractions will follow. As for decimals,

the CCSSM state explicitly in grade 4, “Understand decimal notation for fractions, and

compare decimal fractions.” In other words, students are asked to learn that 0.127 is

just a notation for the fraction 127
1000

. Thanks to the CCSSM, the teaching of decimals is

now firmly integrated into the teaching of fractions. (For the details for both fractions

and decimals, consult Wu, 2011b, Part 2.)

The other major topic of grades 4-6 is geometry, which is devoted mainly to the
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introduction of the basic vocabulary and the derivations of basic formulas pertaining

to area and volume. The de facto national curriculum turns geometric instruction in

these grades into a vocabulary-memorizing ritual, and not a very accurate one at that

(see, for example, Andrews et al., 2002, or Bennett et al., 2001). For example, the

statement in the CCSSM about “classifying two-dimensional figures in a hierarchy based

on properties ” (italics added; Standard 5.G 4) is a pointed reminder that the controversy

about whether a square is a rectangle or whether a parallelogram is a trapezoid should

be laid to rest. On the other hand, one of the most glaring omissions in the TSM

presentation of area and volume formulas is the explanation of why the area of a rectangle

with fractional side lengths is the product of the side lengths. This theorem, which is

critical to the understanding of the concept of area as well as the concept of fraction

multiplication in school mathematics (see pp. 62–64 of Wu, 2010a), seems to be missing

in all existing textbooks and standards (e.g., Bell et al. (2008), National Council of

Teachers of Mathematics5 (2000), and NCTM (2006)). It is to the credit of the CCSSM

that they explicitly call for this explanation (standard 5.NF 4). Along this line, let it be

mentioned that there is a common error in the proof of the area formula for a triangle:

area = 1
2

(base × height)

The argument given in textbooks, in an overwhelming majority of the cases, is only valid

when the altitude meets the base, but not when the altitude falls outside the base, i.e.,

meets the line containing the base at a point outside the base (cf. Fuson (2006), and

Kliman et al. (2006)). Unfortunately, if the area formula for a triangle is not known

5Hereafter referred to as NCTM.
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to hold in the latter case, i.e., when the altitude falls outside the base, it would be

impossible to derive the area formula for a general trapezoid (see, for example, Wu,

2012, pp. 33-36 for the details). Corrections on this level are beyond the capability of a

set of standards, even the CCSSM, but such curricular issues point to the overall logical

oversight in TSM. An additional contribution of the CCSSM is their attempt to give

at least an informal definition of area and volume. See Standard 5.NF 4 and Standard

5.MD 3 of CCSSM. Length and area are usually presented only as intuitive concepts

in TSM in the elementary and middle grades, and this fact may be the cause of the

well-known confusion concerning perimeter and area among students.

The emphases in grades 6-7 are on word problems involving percent, ratio, rate, and

rational numbers. Before discussing these word problems, one must point out a grievous

omission in the de facto national curriculum: the failure to make explicit the so-called

Fundamental Assumption of School Mathematics (FASM), see Chapter 21 of Wu, 2011b.

In essence, this is the statement that, although we only know how to compute with

fractions (and later on, rational numbers) at this point, we can extrapolate formally the

computational algorithms to all positive real numbers (respectively, all real numbers).

FASM is conceptually important in the context of real-world problems about ratio and

rate, and especially in algebra. The former often explicitly brings up numbers that are

not necessarily fractions (e.g., the ratio of the circumference to the diameter of a circle).

As to the latter, even the simplest identity such as

1

x− 1
− 1

x+ 1
=

2

x2 − 1

begs the question: what does this mean when (for example) x = π if students are only
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taught the division of one rational number by another? (In this instance, one has to

point out that FASM is not made explicit in CCSSM either.)

Problems involving percent, ratio, and rate are notorious for the amount of misunder-

standing they elicit from students. The research on the probable cause of non-learning

in ratio and rate has led to the emphasis on so-called proportional reasoning. As this will

be discussed at some length in the example on Rate and Proportional Reasoning in the

next section, we will merely mention the fact that, because these concepts have never

been clearly explained (defined) in the de facto national curriculum, students cannot be

in any position to provide solutions based on mathematical reasoning. Indeed, if there

is no definition, there can be no valid reasoning. As the computer dictum goes: Garbage

in, garbage out.

It must be pointed out that, although the CCSSM try valiantly to make some sense

of this whole circle of ideas, they have not made any positive contributions in this

direction. See the standards in 6.RP of grade 6 and 7.RP of grade 7. On the other

hand, the CCSSM have made great strides in elucidating another murky concept in the

de facto national curriculum: the concept of an “expression”. It would, however, be

more appropriate to discuss this during the discussion of algebra below.

The teaching of rational numbers6 hinges on how negative numbers are integrated

into students’ knowledge of fractions. The de facto national curriculum relies mainly on

manipulatives (e.g., the use of counters of different colors to represent positive and neg-

6In the education literature, the term rational numbers is generally taken to mean fractions. In
mathematics, the term means positive and negative fractions. Because rational number is one of the
most basic concepts in mathematics, it is best that people in education do not arbitrarily change
accepted mathematical terminology.
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ative integers), analogies, and patterns (Usiskin et al., 1998, or Collins et al., 1998). The

CCSSM acquit themselves particularly well in this regard by their insistence on the use

of the number line and reasoning based on the general laws of operations (commutative,

associative, and distributive laws) rather than patterns or manipulatives. See Standards

6.NS 5 and 6, and 7.NS 1 and 2. This is particularly true of the careful guided tour

through the treacherous terrain of multiplication and division of rational numbers in

Standard 7.NS 2. If so desired, one can consult Wu (2011c) for a leisurely discussion of

teaching (−a)(−b) = ab that is consistent with the CCSSM.

Grade 8 is a pivotal grade in the school mathematics curriculum, because it is in this

grade that a decision is usually made as to whether the whole grade should be devoted

to so-called Algebra I or simply make a beginning towards algebra. Now it must be said

that there is no natural law that says students’ learning of mathematics would suffer

irrevocably if all the standard topics of Algebra I were not covered in grade 8. Moreover,

what has been glossed over in any such discussion is the fact that the teaching of Algebra

I in grade 8 according to TSM is accomplished at an unconscionable cost: it omits any

mention of similar triangles, thereby cutting out the mathematical underpinning that

connects the geometry of lines to the algebra of linear equations. Consequently, students

are forced to learn by rote that one can get the slope of a line by choosing any two points

on the line, and they are also forced to memorize by brute force the four forms of the

equation of a line (often without success). We will examine further this issue in the

example on Slope of A Line in the next section.

In addition to the omission of any serious discussion of similar triangles, the middle
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school geometry curriculum according to TSM is a mélange of informal and disconnected

discussions of diverse topics. Thus the concepts of translations, reflections, and rota-

tions are taught as fun activities that heighten our sensibilities in art appreciation, e.g.,

Escher’s prints. But are they relevant to mathematics? That is not so clear (see, e.g.,

Chapter 9 of Davison (2001) or Eicholz et al. (1995)). Congruence is just “same size

and same shape”, and its relationship with translations, reflections, and rotations may

or may not be mentioned in passing (cf. Larson et al., 1999). Likewise, similarity means

“same shape but not necessarily the same size”, and no effort is made to show how this

definition is related to the definition of similar triangles in terms of equal angles and

proportional sides. In the rare event that such an attempt is made, it is not done in a

mathematically disciplined way (cf. Lappan et al. (1998b)).

The above discussion points to two serious gaps in the de facto national curriculum:

an explanation of why the graph of a linear equation of two variables is a line, and

a smooth transition from middle school geometry to the high school geometry. Given

the traditional curricular structure of the Algebra I-Geometry-Algebra II sequence in

high school, the CCSSM had to solve the knotty problem—in the standards of grade

8—of how to restructure the middle school geometry curriculum so that it provides a

geometric foundation to fill both of these gaps. We now give a brief description of the

restructuring (it is entirely consistent with the one given in Wu 2010a).

The CCSSM accomplish this goal by asking for an intuitive exploration and discussion

of translations, reflections, and rotations and for a definition of congruence as a finite

composition of these rigid motions in the eighth grade (Standards 8.G 1–3). The CCSSM
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also call for an intuitive exploration and discussion of dilations, and the definition of a

similarity transformation as the composition of a dilation and a congruence; then they

call for an informal proof, in grade 8, that two triangles are similar if two pairs of angles

are equal (Standards 8.G 4–5). The latter is the critical fact needed for the proof that

the definition of the slope of a line is well-defined, and that the graph of a linear equation

in two variables is a line (see, for example, Wu (2010b), Section 4). Then in high school,

the definitions of translations, reflections, rotations, and dilations are formalized and

congruence and similarity transformations are defined as in the eighth grade. These

precise definitions can now serve to prove the usual criteria for triangle congruence

(Standards G-CO 5 in high school geometry) and triangle similarity (Standards G-

SRT 2–3 in high school geometry). At this point, the usual development of Euclidean

geometry may be pursued if so desired. In particular, translations, reflections, rotations,

and dilations—basic concepts in advanced mathematics—are now fully integrated into

school geometry as foundational concepts rather than as afterthoughts, and the proofs

of theorems in plane geometry are now grounded in the tactile concepts of these basic

transformations rather than in a set of abstract axioms. See Wu, 2010a and 2012.

In the context of teaching algebra, grade 8 is, of course, more than just the teaching of

linear equations. This is also where other foundational algebraic concepts are developed

and, among these, none is more basic than the proper use of symbols. It can be said that

the de facto national curriculum really goes astray at this juncture: instead of making

a smooth transition from arithmetic to algebra by carefully introducing the concept

of generality and showing why the use of symbols is inevitable, this curriculum places
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the spurious mathematical concept of a “variable” front and center. On this shaky

foundation, it introduces the concepts of algebraic expression, equation, and solving

equations. This curricular development in TSM leads to misconceptions that make the

learning of algebra unnecessarily difficult. To a very large extent, these misconceptions

have been removed in the CCSSM. Specifically, the preamble to the high school algebra

standards on p. 62 of CCSSM (2010) states:

An expression is a record of a computation with numbers, symbols that repre-

sent numbers, arithmetic operations, exponentiation, and, at more advanced

levels, the operation of evaluating a function.

Back in grade 6, standards 6.EE 2c and 6.EE 6 already begin to clarify what a variable

really is (i.e., a descriptive piece of terminology for a symbol) and what an expression

is. Furthermore, standard 6.EE 5 clarifies what an equation is and standard A-REI (in

high school algebra) explains what it means to solve an equation. These will be further

discussed in the example on Solving Equations in the next section (for the details, see

Wu, 2010b, Sections 1–3). Because of the ubiquity of equations and expressions in

introductory algebra, these are genuine contributions to improving student learning.

We only have space to briefly mention the high school curriculum. It goes without

saying that the de facto national curriculum has its usual share of flaws, e.g., lack of

clarity and purpose in presenting the laws of exponents (e.g., Chapters 7 and 9 of Hoffer,

Koss, et al. (1998), and Chapter 8 of Larson et al. (2007)), failure to define a parabola

correctly (e.g., Chapter 8 of CME Project: Algebra 1 (2009), and Chapter 5 of Hoffer,

Koss, et al. (1998)), failure to underscore the importance of completing the square in
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the study of quadratic functions (e.g., Chapter 5 of Holliday et al. (2008), or pp. 215–

220 and 491–504 in Murdock, Kamischke, and Kamischke (1998)), lack of clarity in

presenting inverse functions and logarithms (e.g., Sections 7-2, 9-1, and 9-2 in Holliday

et al. (2008), or Section 7.4 in Murdock, Kamischke, and Kamischke (1998)), etc. But

let us address the global problems. In most schools, the traditional curriculum of Al-

gebra I-Geometry-Algebra II is used, while some others follow the American integrated

curriculum.7 While the artificial separation of the former into a full year of algebra or

geometry is undesirable in principle, the latter has also been criticized for its imprecision,

mathematical incoherence, and lack of mathematical closure, at least judging by what

has been produced thus far (see e.g., Gray (undated) and Wu (2000)). The CCSSM

chose to stay neutral on this issue by listing only what they call “conceptual categories”

and leave the precise articulation of the high school curriculum to each state. This then

leaves room for a third kind of curriculum that could possibly avoid both kinds of pit-

falls, namely, one that is aligned with what is done in Japan (see, e.g., Kodaira (1992),

(1996), (1997)) and other Asian countries in the Far East. To achieve this goal, one

has to be aware of the need to structure mathematical topics in the CCSSM coherently.

Moreover, one must be aware of the omissions of some standard topics in the conceptual

categories of the CCSSM, e.g., the concept of the discriminant of quadratic polynomials,

the explicit definitions of certain key concepts such as similarity and inverse functions,

the fundamental algebraic properties of the exponential and logarithmic functions, etc.

7It is sometimes claimed that, because other nations adopt an integrated curriculum, so should we.
This claim is misleading because the integrated curriculum of other nations is very different from the
American integrated curriculum. The former is organized according to the internal development of
mathematics whereas the latter seems to revolve around applications or “real world” problems.
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A full discussion of these issues would require a separate article.

Some Examples

The purpose of this section is to give a more detailed discussion of three key topics in

school mathematics to illustrate the main difference between TSM and the curriculum

envisioned by the CCSSM. In the first two of these (Solving Equations and Slope of

A Line), the CCSSM excel, but in the third (Proportional Reasoning and Rate), the

CCSSM do less well. I hope the choices I have made reflect my desire to give a balanced

view of the CCSSM.

Solving Equations

What does it mean to solve an equation? To simplify the discussion, let us take a

simple linear equation 4x− 3 = 2x. According to TSM, solving an equation requires a

confrontation with a “variable”. From a typical textbook, we have the following:

A variable is a letter used to represent one or more numbers. An algebraic

expression consists of numbers, at least one variable, and operations. An

equation is a mathematical sentence formed by placing the symbol “=”

between two algebraic expressions. A solution of the equation is a number

so that when it is substituted for the variable in the equation, the equality

is true. (Collins et al. (1998), pp. 800-808.)

In this view of algebra, a variable is something distinct from numbers. Since all that

students know up to this point are numbers (and geometry), a variable is a mysterious

object. That said, here are the usual steps for solving 4x− 3 = 2x:
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Step 1: −2x+ (4x− 3) = −2x+ 2x.

Step 2: 2x− 3 = 0

Step 3: (2x− 3) + 3 = 0 + 3

Step 4: 2x = 3

Step 5: x = 3
2

How do we justify Step 1 (adding −2x to both sides), for example, if we don’t know

what a variable is? Since a variable is a mystery, the equality 2x− 3 = 4x is even more

of a mystery. Adding the “variable” −2x to both sides deepens the mystery.

There seem to be three strategies in TSM to deal with this mysterious step of remov-

ing 2x from both sides. First: Invoke the principle (first enunciated by Euclid) that

equals added to equals remain equal (Larson et al. (2007), p. 154). This is comforting un-

til one asks what is “equal”? If we don’t know what either side means, how do we know

they are “equal”? Second: Use algebra tiles to “model” this solution of 4x − 3 = 2x.

Thus let a green rectangle model a variable and a red square model −1. Then it seems

“natural ” that, if we remove two green tiles on the left (i.e., adding −2x), we should

also remove two green tiles on the right (Bellman et al. (2007), p. 133).

Third: Use a balance scale to “model” the equation 4x− 3 = 2x. It seems “obvious”

that if we remove 2x (whatever it is) from both weighing pans, the pans will stay in
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balance (Larson et al. (1999), p. 66).

x

4 − 3 2 − 34xx x x2

−2 −2x

The other steps are justified in exactly the same way, making analogies using the intuitive

meaning of “equality”, algebra tiles, or balance scales.

These analogies are useful psychological ploys to win students’ trust, but mathematics

has to explain why something is true by logical reasoning, not by making sly suggestions

about why it might be true because of analogies. By replacing reasoning with analogies,

TSM guarantees that the fear of variables will live on.

The correct way to solve equations is well-known and very simple (cf. Wu (2010b),

Section 3), but it took the CCSSM to finally incorporate it into a set of standards:

• (Grade 6, EE 5) Understand solving an equation or inequality as a process of

answering a question: which values from a specified set, if any, make the equation

or inequality true? Use substitution to determine whether a given number in a

specified set makes an equation or inequality true.

• (High school Algebra, A-REI 1.) Explain each step in solving a simple equation

as following from the equality of numbers asserted at the previous step, starting

from the assumption that the original equation has a solution. Construct a viable

argument to justify a solution method.

Let us see what it means to solve an equation from this perspective. The key idea is
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what may be called the Basic Protocol in the use of symbols: What a symbol stands

for must be clearly stated when a symbol is introduced (Wu (2010b), p. 9). Armed with

this idea, we can start anew. Let x be a real number. An equation with x, such as

4x− 3 = 2x, is a question asking whether the two numbers 4x− 3 and 2x are equal as

numbers. It could be true, or it could be false. To solve the equation 4x− 3 = 2x

is to determine all the numbers x for which the equality is true.

We now show how to correctly solve 4x− 3 = 2x, but the principle holds in general

(e.g., for polynomial equations). We first assume that there is a solution, i.e., there is

a number xo so that 4xo − 3 = 2xo. Because we are now dealing with numbers, the

previous five steps make perfect sense. Thus, starting with 4xo − 3 = 2xo, we get:

Step i: −2xo + (4xo − 3) = −2xo + 2xo.

Step ii: 2xo − 3 = 0 (by use of the assoc. law for numbers)

Step iii: (2xo − 3) + 3 = 0 + 3

Step iv: 2xo = 3 (by use of the assoc. law for numbers)

Step v: xo = 3
2

Are we done? No. We have not proved that 3
2

is a solution of 4x − 3 = 2x, only

that if there is a solution, it must be equal to 3
2
. Having narrowed down the possible

candidates to 3
2
, we can now complete the solution process by proving that 3

2
is a solution

with a simple computation:

4

(
3

2

)
− 3 = 2

(
3

2

)
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because both sides are equal to 3. This shows that the previous Steps 1–5 are a proce-

durally correct way to solve the equation. More importantly, this shows that Steps 1-5

actually make sense provided they are taught, not as computations with a mysterious

quantity called a variable, but as computations with numbers.8

According to TSM:

Understanding the concept of variable is crucial to the study of algebra, and

that a major problem in students’ efforts to understand and do algebra results

from their narrow interpretation of the term. (NCTM (1989), p. 102.)

On the contrary, a variable is not a mathematical concept. Imposing it on students as

a mathematical concept can only obstruct their learning of algebra.

Slope of A Line

The concept of the slope of a line is a staple of grade 8 mathematics. In TSM, the

definition of slope is the following: Let L be a nonvertical line in the coordinate plane

and let P = (p1, p2) and Q = (q1, q2) be distinct points on L. Then the slope of L is

defined to be
p2 − q2
p1 − q1

.

8Although our purpose is to expose the mathematical flaws of TSM, a side remark about the related
pedagogical issue of how to implement the correct mathematics in the school classroom may not be out
of place. In the context of solving equations, one may ask whether school students must solve equations
in this formal and turgid fashion each time an equation is solved. The simple answer is no, because
pedagogical common sense must be exercised. One suggestion is to explain in great detail—the first
time an equation is solved—what the process described in Steps i–v is all about. When the teacher feels
comfortable that the students have understood the process, then they should be allowed to abbreviate
their work more or less as in Steps 1–5 on page 23 above.
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Is this well-defined, i.e., does it make sense?

Not yet, because if A = (a1, a2) and B = (b1, b2)

are also on L, is the slope of L equal to

a2 − b2
a1 − b1

? X

Y
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In other words, is it true that
p2 − q2
p1 − q1

=
a2 − b2
a1 − b1

?

This question must be answered because slope is supposed to be a property of the

line L and not of the two points P and Q on L that happen to be chosen. Students

need the assurance that, if they happen to choose A and B on L, they still get the same

number. Unfortunately, this question is not even raised in TSM, much less answered.

The proof of the equality
p2 − q2
p1 − q1

=
a2 − b2
a1 − b1

requires the concept of similar triangles:

4ABC ∼ 4PQR. Assuming this similarity, then the proportionality of corresponding

sides says

PR

AC
=

QR

BC
.

Since the length of PR is p2 − q2, the length of AC is a2 − p2, etc., the equality is

seen to be equivalent to the previous equality at least when the line L is slanted to the

right, as shown. If L is slanted to the left, then the proportionality of the corresponding

sides translates into the equality of the negative of the slopes, and the same conclusion

prevails.

The TSM definition of slope confuses the slope of two chosen points on L with

the slope of L.

This kind of teaching-by-rote of slope has serious consequences in mathematics learn-
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ing. According to a recent survey of students’ understanding of straight lines in algebra

by Postelnicu and Greenes (2012), the most difficult problems for students are those

requiring the identification of slope of a line from its graph. One can well imagine that

if students do not realize they can use any two points on the line to compute its slope,

they would be confused about ”how to measure rise and run” (Postelnicu and Greenes,

ibid.). The need for better teaching of the concept of slope is therefore real. Moreover,

without a correct definition of slope, one cannot show that the graph of a linear equation

ax+ by = c is a (straight) line and the connection between the geometry of the line and

the algebra of the equation will remain undeveloped. Students are therefore reduced to

memorizing, by brute force, how to write down the equation of a line. Many are not

successful.

The CCSSM prescribe a way out of this impasse. The standards in grade 8 ask

that the following be done to make sense of “slope” as well as lay a foundation for high

school geometry.

• Introduce rotation, reflection, translation (in the plane) and their compositions

intuitively through hands-on activities, and define congruence as a composition

of (a finite number of) rotations, reflections, and translations.

• Introduce dilation intuitively through hands-on activities, and define similarity

as the composition of a dilation followed by a congruence.

• Give informal proofs of the basic criteria of triangle congruence.

• Give an informal proof of the AA criterion of similar triangles: if two triangles
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have two pairs of equal angles, then they are similar.

• Use the AA criterion to show that the slope of a line is well-defined.

• Use the AA criterion to prove the Pythagorean Theorem.

See Chapters 4–6 in Wu 2010a, and the discussion of grade 8 in Wu 2012, for details.

The purpose of the emphasis on intuitive geometry is for students to gain the nec-

essary geometric intuition as a preparation for the more rigorous course of high school

geometry.

Rate and Proportional Reasoning

Proportional reasoning is supposed to be the “capstone of elementary school math-

ematics and the gateway to higher mathematics” (National Research Council (2001),

p. 242). This term has come to mean “understanding the underlying relationships in

a proportional situation” (p. 241 of National Research Council (2001)). Mathematics

is about making explicit assumptions and then drawing logical conclusions from those

assumptions. Unfortunately, what happens in TSM is that the “relationship in a propor-

tional situation” is often hidden from students, thereby making it impossible for learning

to take place. For example, consider the following prototypical problem in proportional

reasoning:

A group of 8 people are going camping for three days and need to carry their

own water. They read in a guide book that 12.5 liters are needed for a party

of 5 persons for 1 day. How much water should they carry? (NCTM (1989),

p. 83)
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Students cannot reason proportionally if they are not told that each person is assumed

to drink roughly the same amount of water every day. Indeed they know from personal

observations that different people drink different amount of water each day (at least be-

fore they get brainwashed by TSM), and therefore, without such an explicit assumption,

they cannot possibly “think proportionally”. Once this assumption is made explicit,

however, students can experiment with, or can be shown, the numerical pattern in order

to achieve some conceptual understanding of the situation. For example:

Let ` be the number of liters each person drinks each day, then two persons

drink `+` = 2` liters a day, three persons drink `+`+` = 3` liters a day, . . . ,

persons drink `+ `+ `+ `+ ` = 5` liters a day. Since we are given 5` = 12.5,

we have ` = 2.5 liters. Thus 8 people would need roughly 8×2.5 = 20 liters

per day, so that they should carry 3× 20 = 60 liters for three days.

This solution may not appear to be related to “relationships in a proportional situ-

ation”, but, because it can be reformulated as follows, it is: For every positive integer

n,

what n persons drink in 1 day

n
=

n`

n
= `

Since the ratio ` is independent of n, we see that

what 5 persons drink in 1 day

5
=

what 8 persons drink in 1 day

8
,

as both are equal to `. We now see explicitly the equality of two ratios. In particular,

making use of the given fact that 5 persons drink 12.5 liters, we get

12.5

5
=

what 8 persons drink in 1 day

8
.
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Therefore, what 8 persons drink in one day = (8× 12.5)/5 = 20 liters. In three days, 8

persons drink 3× 20 = 60 liters, as before.

In retrospect, we see that the correctness of the following proportion,

what m persons drink in 1 day

m
=

what n persons drinks in 1 day

n
,

for any positive integers m and n is a matter of logical reasoning once the needed assump-

tion is revealed to students, but it is not any kind of a priori conceptual understanding

that students can develop outside the mathematical framework. If we want students

to learn to reason proportionally, then we should cleanse the curriculum of TSM and

accord reasoning its rightful place.

A second kind of defect in the teaching of proportional reasoning is the inattention

to precise definition. For example, here is another prototypical problem:

Which is the better buy: 12 tickets for $15.00 or 20 tickets for $23.00?

(NCTM (2000), p. 221.)

Students need to be told, either in the problem itself or in general, the following two

pieces of information: (i) all tickets in each price group cost the same amount, and (ii)

“better buy” means “the lower price per ticket.” While neither is worth mentioning to an

adult, an adolescent may well be learning his or her way in life at this point and therefore

may not be aware of this information (or at least not the latter). In mathematics, one

must strive for total clarity. Again, once these two facts are made explicit, students will

see that,

if one ticket costs d dollars, 2 tickets cost d + d = 2d dollars, . . . , and 12
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tickets cost 12d dollars. Thus if 12d = 15, then d = 1.25 dollars. Similarly

if another ticket costs s dollars, 2 tickets cost s+ s = 2s dollars, . . . , and 20

such tickets cost 20s dollars. Thus if 20s = 23, then s = 1.15 dollars.

It follows that 20 tickets for $23.00 is the better buy.

In both cases, TSM is guilty of withholding information and forcing students to

make guesses. Mathematics is not about making the right kind of guesses, only about

logical reasoning on the basis of an explicitly given hypothesis. It is also manifest

that, once the proper information is supplied and students can see the reasoning behind

such proportional reasoning problems, the solutions become entirely straightforward and

therefore learnable. Let us therefore focus on removing these artificial obstacles imposed

by TSM on learning.

The preceding problems are examples of a whole class of discrete problems on pro-

portionality, in the sense that there is a “natural unit” to use in each problem (namely,

one person or one ticket) and, furthermore, it is not necessary to go beyond this “natural

unit” (there is no such thing as “0.3” person or 3
4

ticket). For such discrete problems, the

CCSSM do passably well by isolating the natural unit and the unit rate; see Standards

6.RP 1, 2, and 3a. However, there is another class of problems on proportionality, the

so-called continuous problems where there is no natural unit; they are exemplified by

constant speed, constant rate of water flow, constant rate of lawn mowing, etc. We can

easily appreciate why there is no “natural unit” to measure time, for example: hour,

minute, second, milli-second, micro-second, pico-second, etc., are all legitimate units

to use for this purpose. These problems are special cases of what are known as “rate
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problems”. For convenience, we will use rate to mean continuous rate in the rest of this

article.9 We now turn our attention to these rate problems.

There are serious mathematical issues with the way rate problems are treated by

TSM. The fact is that TSM conflates rate with constant rate. To understand this state-

ment, we begin with a description of the underlying mathematics of the situation, one

that requires calculus and is therefore not one that we can use with middle school stu-

dents. For the sake of clarity, we will use speed exclusively in this discussion, but the

idea is of course the same for other kinds of rate. Let f(t) be the function that describes

the distance of an object at time t, traveling along a (straight) line, from a fixed point

O. Then the speed of the object at time t is the derivative f ′(t); the object is said to

have constant speed s if s is a fixed number and f ′(t) = s for all values of t. What

is worth observing is that if the speed is not constant, the speed f ′(t) varies with t and

there is no hope of expressing the speed (“rate’) as the ratio of two numbers. On the

other hand, if the speed is a constant s, then one can describe the “constant speed s”

for middle school students without resorting to calculus, as follows. Define the average

speed over a time interval [u, v] to be

difference in distance at time u and at time v from O

length of the time duration from u to v
=

f(v)− f(u)

v − u

Then an equivalent definition for the object to have constant speed s is that its average

speed over any time interval is equal to s. If we know that the speed is constant and is

9Note that we treat “rate” as a generic term that refers to a class of phenomena; each of the
phenomena will have to be defined individually but there is a good reason not to try to define what
“rate” means. Indeed, the general definition of “rate” as the derivative of the “work function” (a
function of time) requires calculus; see the discussion of speed in the next paragraph. TSM makes
believe that a term that requires calculus for its definition can nevertheless be bandied about in K–12
as a precise concept. This is the reason why “rate” problem inspires such fear and loathing in schools.
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equal to s, then we can simply refer to s as the speed of the object. In case of constant

speed, then (and only then) is the rate (speed) the ratio of two quantities, as in the

preceding equation.

With this understood, we can now gain a better understanding of how “rate” is

mishandled by TSM. The following is a sample of some attempts to define “rate” by

various textbooks; please take note that constant rate is implicitly assumed in each case.

A rate is a ratio that involves two different units. A rate is usually given

as a quantity per unit such as miles per hour. This is called a unit rate.

(Eicholz et al. (1995), p. 232.)

A quantity is a rate when its unit contains the word “per” or “for each” or

some synonym. (Usiskin et al. (1998), p. 493.)

A rate can be thought of as an extended ratio, a ratio which enables us to

think beyond the situation at hand, to imagine a whole range of situations

in which two quantities are related in the same way. (Lamon (1999), p. 204.)

A rate is a comparison of the measures of two different things or quantities.

The measuring unit is different for each value. (Van de Walle (1998), p. 293.)

In TSM, rate problems have to be done by assuming the constancy of rate, but because

constant rate is never defined in TSM, no reasoning is possible in the solution of these

problems. Instead, students are asked to memorize the following trinity of formulas,

speed = distance/time

time = distance/speed

distance = time × speed.
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What is not commonly realized is that there is in fact no need to memorize anything

in this situation, because the first is the definition of speed (when it is known to be

constant ), and the other two are consequences of the definition of division. Moreover,

the resulting solution-by-rote is completely unnecessary because once “constant speed”

is precisely defined, the solution can be obtained by mathematical reasoning. As illus-

tration, consider the following problem:

John’s grandpa enjoys knitting. He can knit a scarf 30 inches in 10 hours.

He always knits for 2 hours each day.

1. How many inches can he knit in 1 hour?

2. How many days will it take Grandpa to knit a scarf 30 inches long?

3. How many inches long will the scarf be at the end of 2 days?

Explain how you figured it out.

4. How many hours will it take Grandpa to knit a scarf 27 inches long?

Explain your reasoning.

It is clear that, as is, the problem cannot be solved (except for part 2). Indeed, without

knowing how much he knits in each of the ten 1-hour intervals, there is no way to answer

part 1. Now, suppose we use the above definition of constant rate of knitting, and add

the assumption that grandpa knits at a constant rate. Let us say he knits ` inches in a

particular 1-hour interval, then the average rate of his knitting over this 1-hour interval

would be `
1

= ` inches per hour. But his average rate of knitting over a 10-hour interval,

according to the given data, is 30
10

= 3 inches per hour. By the assumption of constant
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rate, the two average rates are equal and therefore ` = 3 inches in that 1-hour interval

and, by assumption, in any 1-hour interval. The other parts can be solved similarly. We

have therefore solved the problem by use of reasoning when the assumption of constant

rate is added (perhaps this is what proportional reasoning means in TSM?).

Observe the commonality between the problem of knitting and the previous problem

of 8 people camping: both become solvable only after the assumption of constant rate

has been added.

To summarize, I hope I have explained clearly the flaws of “proportional reasoning” as

it is understood in TSM. I wish I could say that the CCSSM are forceful and emphatic

in exposing the need for a precise definition of constant rate as well as prescribing a

remedy, but it must be said that while the CCSSM try to make sense of this circle of

ideas, they have not made any serious headway. See Standards 6.RP 3b and 3c, and

Standards 7.RP 1 and 2. I should also add that there is no need for the CCSSM to be

perfect in order to be worthy of support.

The previous remark concerning the need to add an assumption that all rates are

constant rates might give the impression that the de facto national curriculum tries to

make believe that every rate is constant in the real world. This is in fact not the case,

because it does try to make students aware that even “speed” need not be constant.

One cannot give a better illustration of this fact than to quote a 2011 test item for grade

8 in NAEP (National Assessment of Educational Progress (undated)):

3. For 2 minutes, Casey runs at a constant speed. Then she gradually

increases her speed. Which of the following graphs could show how her speed
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changed over time?
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Here, the “speed” in the phrase “she gradually increases her speed” is clearly not one that

is constant (regardless of the fact that the concept of variable speed cannot be defined in

K–12). Thus TSM treats speed as automatically constant on the one hand, and wants

students to be aware of non-constant speed on the other. Such blatant inconsistency is

among the many reasons that TSM has to go.

Concluding remarks

To recap, we may describe the state of the American school mathematics curriculum

as follows. For several decades, there has been a de facto national mathematics cur-

riculum: the curriculum articulated in the school textbooks. The mathematics in these
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books is quite uniform in terms of its violation of the basic principles of mathematics

(cf. the prefatory article To the Reader in Wu, 2011b), and we call it Textbook School

Mathematics (TSM) to distinguish it from mathematics. For a long time, the school

mathematics curriculum in each state has been drawn from TSM, so any significant

curricular improvement will be difficult as long as TSM is recycled from generation to

generation the way it is at present. Because commercial interests control textbook pub-

lishing, a direct attempt to change textbooks may be impossible without some outside

stimulus. The CCSSM could be that needed stimulus. If they can spearhead a vigor-

ous professional development program—nationwide—that allows our teachers to solidify

their content knowledge, teachers will ultimately reject textbooks based on TSM. Then

we can look forward to TSM’s demise.

Such guarded optimism, however, is predicated on the assumption that the CC-

SSM are here to stay. The collapse of the “New Math” movement in the 1970’s is a

warning that unless the CCSSM can be implemented effectively in schools by knowl-

edgeable teachers, the collapse of the CCSSM will also be inevitable. The survival of the

CCSSM is therefore contingent upon our ability to produce a sufficiently large corps of

mathematically knowledgeable teachers. To all who are dedicated to making good school

mathematics education a reality, the inter-dependence of the survival of the CCSSM and

the availability of knowledgeable teachers should spur us to fight for serious, content-

based professional development across the nation. We may add that the professional

development must be one that can help teachers overcome their prolonged immersion in

TSM.
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Thus far, there seems to be little awareness of the seriousness of the problem in both

the education and mathematics communities, much less the will to bring about this kind of

professional development. The difficulty of such an undertaking cannot be overstated.

Given that our teachers are brought up on TSM in schools, and given that colleges

and universities have done little to help preservice teachers realize that TSM is not

mathematics, there is not likely to be significant change in the teacher pipeline anytime

soon. As to teachers in the field, they are doubly betrayed: first by the sudden shift in

our demand on their content knowledge, and then by our refusal to offer assistance. They

are asked by the CCSSM to offer definitions to concepts that have never been properly

defined for them: fractions, decimal, percent, expression, congruence, similarity. . . They

are asked to offer explanations for skills that they were forced to learn by rote, such as

invert and multiply, (−a)(−b) = ab, −a
b

= a
−b = − a

b
, writing the equation of a line,

locating the minimum of a quadratic function. . . They are asked to teach certain facts as

definitions and others as theorems, and they are uncertain which is which because TSM

has never drawn a clear line between the two e.g., which of the following is a theorem

and which is a definition?

a

b
= a÷ b,

k

`
× m

n
=
km

`n
,

a0 = 1,

0! = 1,

two lines are perpendicular if the product of their slopes is −1,
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the graph of a quadratic function is a parabola.

They are also asked to look for structure in mathematics (p. 8 of CCSSM (2010)), but

they have always been taught to consider whole numbers, fractions, and rational numbers

as “different numbers” rather than as an orderly progression; length, area, and volume

as distinctly different concepts rather than as special cases of geometric measurements;

algebra as a separate subject from arithmetic rather than as a natural extension. . . They

stand helpless, and our inaction keeps them helpless.

We can either wait for the inevitable collapse of the CCSSM, or we can firm up our

resolve and confront the beast that is professional development. Which will it be?

Acknowledgement. I am grateful to Larry Francis for his corrections and useful

suggestions.
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