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I am honored to be addressing this audience. My charge is to

describe, based on scientific evidence, the mathematics early

grade teachers need to know.

No scientific evidence is needed for the assertion that all early

grade teachers must know whole numbers and fractions. These

are the cornerstones of the early grades mathematics curriculum.

I will add four more topics: negative numbers, and some ge-

ometry, algebra and probability. Early grade teachers must

know these too.



Of course, there are details to consider. How much whole num-

ber, fractions, negative numbers, geometry, algebra, and proba-

blitiy should early grade teachers know?

I will only touch lightly on such details at the end, because you

are not likely to find such a discussion to be very entertaining;

an additional reason is that they are given in a separate article

of mine (The mathematics K–12 teachers need to know).

I will make three general comments, however.

http://math.berkeley.edu/~wu/Schoolmathematics1.pdf


The first is that there is by now ample evidence of the efficacy of

the number line for organizing the mathematical developments

of whole numbers, fractions, and negative numbers.
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See the U.S. National Mathematics Advisory Panel report, Chap-

ters 3 and 4 on Conceptual Knowledge and Learning Processes:

http://www.ed.gov/about/bdscomm/list/mathpanel/report/conceptual-knowledge.pdf

http://www.ed.gov/about/bdscomm/list/mathpanel/report/learning-processes.pdf

All early grade teachers should learn to make effective use of the

number line at every opportunity.

http://www.ed.gov/about/bdscomm/list/mathpanel/report/conceptual-knowledge.pdf
http://www.ed.gov/about/bdscomm/list/mathpanel/report/learning-processes.pdf


The second one is that, where mathematical content is con-

cerned, the meaning of scientific evidence must be broadened.

In the context of education research, scientific evidence usually

means data, i.e., consensus confers validity. A valid statement

about “content” therefore has to be a summary of what is prac-

ticed by most nations, most teachers, most educators, etc.

Mathematics, however, is emphatically not a democratic prod-

uct. No amount of common consensus can overrule the internal

logical structure of mathematics.



One example: In the U.S., almost all state standards and almost

all textbooks want the algebra of linear equations to be taught

without any acknowledgement that similar triangles are involved.

This is mathematically scandalous.

So the scientific evidence for any statement about “content”

must also take mathematical considerations into account. I am

glad that in this seminar, I am among like-minded colleagues.



A third comment is that both data and mathematical consider-

ations agree that whole numbers, fractions, and geometry are

the foundational topics in the school mathematics of the early

grades.

The only controversy may be whether every early grade teacher

must know some negative numbers, algebra, and probability.

My answer is YES, because in mathematics, what lies beyond a

lesson shapes the lesson itself. (“Mathematics is purposeful”.)



For example, does a teacher tell second graders

you cannot subtract 5 from 3,

or does she say instead,

for now we can only subtract a smaller number from a

bigger number, but later on you will learn how to do

subtraction between ANY two numbers.

A teacher has to say the latter, but cannot say it with conviction

without having internalized the arithmetic of negative numbers.



Another example: why are the commutative, associative, and

distributive laws the popular objects of scorn among early grade

students?

Because if the teachers have never seen these laws used in sub-

stantive ways to explain the arithmetic of negative numbers and

solve equations, they would not appreciate these laws’ central

importance and their lessons would betray their own disdain for

these laws.

Every mathematics teacher needs to know the mathematics,

deeply, beyond the level they teach. (Recommendation of the

U.S. National Mathematics Advisory Panel.)

http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf

http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf


Instead of discussing further what mathematical topics teachers

should know, we have to first explain what it means to “know”

something.

In mathematics education, knowing something means literally

knowing a fact by heart. Mathematicians use the same word to

mean a lot more. This confusion over the use of the same word in

completely different ways has lead to colossal misunderstanding

in the current educational discussion.



In mathematics, to say you know a fact means you know

what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.

In short, knowing a fact means being able to tell the whole story

about this fact rather than just a few sound bites.



All early grade teachers should know, in this sense, the above six

topics (whole numbers, fractions, negative numbers, geometry,

algebra, and probability).

Of course you think I am exaggerating.

Let us consider the preparation of a lesson on place value, and

one on the multiplication algorithm. Two very elementary

topics in whole numbers.



The teaching of place value is usually done by rote. Consider

teaching children why

the 3 in 32 is 30, and the 2 is just 2.

The common emphasis is on pedagogy: How to impress students

on the importance of the place (or position) of a digit. But

ultimately, the message is simply:

This is place value. This is it.

Why is this bad for math education?



Mathematics is children’s first encounter with quantitative infor-

mation. If we cannot develop their curiosity from the beginning,

there will be little chance of success in math education.

If a teacher lays down too many seemingly unreasonable rules

with no explanation, students lose confidence in mathematics as

a learnable subject and their curiosity will be snuffed out. They

will stop learning.

“Place value” is unreasonable to children.



But place value can be explained. Every teacher must explain it.

A teacher should have the firm conviction that there is a way

to explain almost everything in mathematics (i.e., except the

axioms).

If a teacher consistently makes an effort to give explanations,

she will be always asking herself why. Her students will also be

asking why, and their curiosity will be kept alive.



Brief digression: In the US, school science education is beginning

to draw serious attention.

The first requirement of a meaningful science education is that

students want to know “why it works”. Only then would it make

sense to find an answer, and only then can science education

begin.

Rare is the case that children with no curiosity about mathe-

matics at the beginning will later redevelop a curiosity about

mathematics or science.

So we must teach mathematics better.



Back to place value.

Before worrying about pedagogy (how to teach it), let us make

sure we understand what it is. i.e., what is the reasoning under-

lying place value?

Know something first before worrying about how to explain it.

Content dictates pedagogy.



The fundamental feature of our numeral system is that

counting is done with only ten symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

The reason? Many numeral systems of the past used many more

symbols and made computation almost impossible, e.g., Egyp-

tian hieroglyphic numerals, Greek alphabetic numerals, Babylo-

nian cuneiform numerals, etc.



Even the Roman numerals, which have partial place value, are

too cumbersome to use for mathematics. Compare:

3 + 2 + 4 = 9 versus III + II + IV = IX

30 + 20 + 40 = 90 versus XXX + XX + XL = XC

300 + 200 + 400 = 900 versus CCC + CC + CD = CM

3× 2 = 6 versus III × II = VI

3× 20 = 60 versus III × XX = LX

3× 200 = 600 versus III × CC = DC

Observe the symbolic simplicity on the left and contrast it with

what is on the right. How to compute with Roman numerals?



Our numeral system, by using only ten symbols, achieves sym-

bolic simplicity, but at a price. It is cognitively complex:

Limited to ten symbols, how to count beyond 9?

One way is to repeat the ten symbols ad infinitum and count

one row after another:

-

-

-

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
... ... ... ...

(Go through each row from left to right. Then repeat in the row

below.)



The trouble is: there is no way to differentiate between

going five steps from upper left 0 and

going fifteen steps from upper left 0,

because both land on the symbol 5.

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
... ... ... ...



The major breakthrough:

if we allow ourselves two places instead of one,

then we can differentiate among ten of these rows by putting

these ten symbols 0, 1, 2, etc., in the place to the left of each

of the ten numbers.

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39
... ... ... ...
... ... ... ...

90 91 92 93 94 95 96 97 98 99



The numbers in the first row, 00, 01, 02, 03, 04, 05, 06, 07,

08, 09, are nothing but the original one-digit numbers with a 0

attached to the left. For this reason, it is traditional to rewrite

them without the zero to the left:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39
... ... ... ...
... ... ... ...

90 91 92 93 94 95 96 97 98 99



Now why does the 3 in 32 mean 30? Because the row beginning

with 3 follows 3 rows of tens, i.e., after three rows of ten have

been counted:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49
... ... ... ...
... ... ... ...

90 91 92 93 94 95 96 97 98 99



Once we have done it with two places, we can repeat the reason-

ing and use three places, four places, . . . , any number of places.

This way, we can count to any number, no matter how large.

So the fact that the 3 in 32 means 30 is not an arbitrary decree.

This is dictated by the need to count large numbers when there

are only ten symbols .

(what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.)



More importantly, the fact that the value of 3 depends on its

place in the numeral simplifies computations, as we have seen,

e.g., 300 + 200 + 400 = 900, and as we will see in even more

spectacular examples.

(what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.)



Naturally, you don’t teach all this to kindergarteners!

Teaching mathematics in the early grades is mainly a cumulative

process. A teacher does what she can at a given moment, given

children’s cognitive development, but it should be possible to

gradually convey to them a robust conception of what “place

value” is by the end of the third grade.

More importantly, knowing that there is a reason for place value,

a teacher would not drill first graders by rote, make them mem-

orize that “the 3 in 32 is 30”, and proceed to forget about it

ever after.



For first graders, for example, she can hint at the reasoning by

playing a game. Ask them:

If they have to use only ten shapes (or ten colors)

—analogs of the ten symbols 0, 1, . . . , 8, 9—to count,

how would they count twenty objects?

It is not necessary that they come up with the correct (system-

atic) way using place value. What is important is that they begin

to sense that there is reasoning lurking behind place value.



With second graders, for example, a teacher can play a different

game: Using only five symbols 0, 1, 2, 3, 4 instead of ten, how

would they count up to twenty-five? (It is the number 100 in

base 5.) Try it also with three symbols, four symbols, . . .

The teacher may eventually have to show them how to do it. But

even if the students don’t completely understand her explanation,

they will get the idea that “there is a reason out there and I can

find out one day”.

This would be a vast improvement over “I am here only to take

orders, and I will never know why.”



A teacher can introduce to third and fourth graders some other

numeral systems, such as the Roman numerals or the Greek

alphabetic numerals, to show the complications when there is

no place value.

The latter has been in use since about 4th century B.C. and is

a decimal system.

1 = α, 2 = β, 3 = γ, 4 = δ, 5 = ε, 6 = ς, . . .

10 = ι, 20 = κ, 30 = λ, 40 = µ, 50 = ν, 60 = ξ, . . .

100 = ρ, 200 = σ, 300 = τ, 400 = υ, 500 = φ, 600 = χ, . . .

3× 2 = 6 versus γ × β = ς

3× 20 = 60 versus γ × κ = ξ

3× 200 = 600 versus γ × σ = χ



The last group of multiplicative statements provide a natural

segue to our next topic:

the multiplication algorithm.

Consider teaching the computation of 32× 47.

3 2
4 7

× 2 1

2 2 4
1 2 8
1 5 0 4

What do we tell third graders why they should learn this algo-

rithm, and why the algorithm gives the right answer?



Here is the reason. Because 32× 47 means

47 + 47 + · · ·+ 47︸ ︷︷ ︸
32 times

,

which do they prefer: do this addition, or find a shortcut?

(what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.)



BRIEFLY: From their knowledge of place value,

32× 47 = 32× (40 + 7)

= (32× 40) + (32× 7) (dist. law)

= (32× 4)× 10 + (32× 7)

So do they know how to multiply a number by a single-digit?

Now look at the first product, for example:

32× 4 = (30 + 2)× 4

= (30× 4) + (2× 4) (dist. law)

= (3× 4)× 10 + (2× 4)

Similarly,
32× 7 = (3× 7)× 10 + (2× 7)



The question then becomes: do they know how to multiply a

single digit by a single digit (multiplication table)?

If they do, then,

32× 4 = 128 and 32× 7 = 224,

so that

32× 47 = (128× 10) + 224 = 224 + 1280

which is exactly the multiplication algorithm.

3 2
× 4 7

2 2 4
1 2 8 0
1 5 0 4



This says that if they know the multiplication table, then they

can multiply any two numbers. This is the importance of the

multiplication table.

When a teacher knows why the algorithm is true, she can tell

her students why they must know the multiplication table.

(what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.)



This algorithm should be put in context: the fact that the mul-

tiplication algorithm reduces the multiplication of all numbers

to the multiplication of single-digit numbers is part of a general

pattern.

What all four standard algorithms have in common is this:

If you can +, −, ×, and ÷ single-digit numbers,

then you can +, −, ×, and ÷ all numbers,

no matter how big.

(A very slight exception has to be made for ÷ .)



Therefore, learning the standard algorithms is much more than

learning a set of rote skills. It is about learning

how to systematically break down a complex skill

into a sequence of simple skills.

Because many in mathematics education do not know this aspect

of the standard algorithms, there has been a silly debate for

twenty years about whether the standard algorithms should be

taught.



Reducing the complex to the simple is an overriding theme in

mathematics and science. This theme provides the right context

for learning the standard algorithms.

Such content knowledge gives a teacher the confidence to teach

the standard algorithms. Confidence is important.

(what it says precisely,

what it says intuitively,

why it is true,

why it is worth knowing,

in what way it can be put to use,

the natural context in which it appears.)



To summarize: Why should early grade teachers know mathe-

matics in the sense described?

1. A teacher who knows mathematics does not impose rules

without reason. She encourages her students to always ask why.

When questions are routinely asked and routinely answered in

the classroom, students take for granted that questioning the

world around them is a way of life. Their curiosity stays intact.

2. The more a teacher knows about what she teaches, the

more options she has on how to teach it, and the more she can

convince students that mathematics is worth learning.

Content dictates pedagogy.



What we have just done is to look at the content knowledge

needed for teaching the early grades from the perspective of

mathematics itself. Every concept or skill in mathematics has

always been developed as a response to questions such as these:

what does it say precisely?

what does it say intuitively?

why is it true?

why is it worth knowing?

in what way can it be put to use?

what is the natural context in which it appears?



“Learning” and “discovering” are two sides of the same coin.

With their curiosity intact, learners would ask the same ques-

tions about a new concept or new skill the same way a working

mathematician would.

Knowing what basic questions must be answered in the process

of developing new concepts or skills then gives us an excellent

idea of what content knowledge a teacher must possess.

This too is scientific evidence.



Finally, let me touch on the issues of how to acquire this content

knowledge and how much content knowledge is enough.

I will address the second one first: ideally, all early grade teachers

should know the mathematics of the school curriculum up to

introductory algebra.

This statement assumes that such a teacher may be called upon

to teach any of the early grades and must therefore be ready for

such a contingency.



If, in the unlikely event that a teacher gets to spend her whole

life teaching the first grade, does she need to know that much

mathematics?

Ideally, yes, but in practical terms, one may have to modify the

content knowledge requirement to be three grades beyond the

grade she teaches.



This discussion assumes that there is an common curriculum for

the early grades. This is a big assumption!

Until last year∗, the U.S. also did not have such a common cur-

riculum. However, a set of Common Core State Standards for

Mathematics (CCSSM) was released in 2010 and they will be

implemented in 2014. At least 43 of the 50 states have agreed

to implement the CCSSM.† (http://www.corestandards.org/)

CCSSM can serve as a useful reference for this discussion.

∗2010.
†As of August, 2011.

http://www.corestandards.org/


The question of how elementary teachers can acquire this con-

tent knowledge is a sore subject in the U.S.

Most college textbooks written for elementary teachers empha-

size pedagogy at the expense of mathematics. So a body of

knowledge that is mathematically defective has been recycled

for decades in the American schools.

Only recently is this critical problem of teaching teachers the

knowledge they need beginning to receive proper attention. Maybe

one or two of the latest books can be consulted.



For Brazil, a suggested stopgap measure is to translate the Sin-

gapore grades 1-6 textbooks, Primary Mathematics,

http://www.singaporemath.com/Primary Mathematics US Ed s/39.htm

or the Japanese grades 1-6 textbooks, Mathematics for Ele-

mentary School,

http://www.globaledresources.com/products/books/math elementary notfound/

In general, they give a usable introduction to what elementary

teachers need to know.

http://www.singaporemath.com/Primary_Mathematics_US_Ed_s/39.htm
http://www.globaledresources.com/products/books/math_elementary_notfound/


I should also call your attention to some videos of Japanese

lesson study and a Teaching Guide for grades K–6:

http://hrd.apec.org/index.php/Classroom Videos from Lesson Study

http://www.globaledresources.com/products/books/guide arithmetic 1-6.html

These should answer some questions about pedagogy. Note,

however, that the starting point of a lesson study is a basic

mastery of the content. There is no escaping the fact that

sound content knowledge is the foundation of teaching.

http://hrd.apec.org/index.php/Classroom_Videos_from_Lesson_Study
http://www.globaledresources.com/products/books/guide_arithmetic_1-6.html

