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0. Introduction

For any ideals I and J in the algebra of bounded operators, #(H), on a separable
infinite dimensional Hilbert space H, we determine the commutator space [I,J] =
U2, [1,J], where

r=1

(1.J], =T =Y [4,B]|4iel BielJ;. (1)

i=1

Not much has been known about these spaces except for some special cases. It was
known since 1953 that every operator A € #(H) is the sum of two commutators of
bounded linear operators [16,35] while the commutator spaces of Schatten ideals
%,, p > 0, were the subject of several studies over the last 30 years, notably
[3.4,18,38,49,66—68]. Aside from these efforts, the little that was known about
the commutator spaces [I,J] did not even suffice for deciding whether equality
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[1,J] = [#(H),1J] held for general operator ideals. The study of this classical
subject acquired a renewed sense of urgency since the introduction of
cyclic cohomology by Alain Connes [20-22] in the early 1980s. The work
of the last author exhibited in 1991 a direct link between the cyclic homology
and algebraic K-theory of operator ideals and their commutator structure
([70,72] and Remark 5.14 below); in order to calculate the former one needs to
tackle first the latter. Thus, the determination of the commutator structure of
operator ideals became a prerequisite for the future theory of higher index
invariants; cf. [70,72].

In order to state main results we need to recall some basic facts. The lattice of
proper ideals in Z(H) is naturally isomorphic to the lattice of symmetric proper
ideals in the commutative algebra /., (cf. [19]) and both of these are isomorphic to the
lattice of characteristic subsets of céi the latter being the set of nonnegative
sequences 4 monotonically convergent to zero ([32] and Chapters 1 and 2). This
triple correspondence is realized as follows: to any ideal J ¢ #(H) correspond the
symmetric sequence space

%1
S(J) =< aec o2 eJ

and the characteristic set £(J) = S(J) n c. Definitions and constructions of ideals
are often carried through most easily in terms of the corresponding characteristic
sets. For example, the operation that associates with a solid subset X of c? the solid
set 2, which is generated by the arithmetic mean-sequences /, of sequences A from X,
allows us to associate with any ideal J in #(H), the arithmetic mean ideal J,.
Similarly, the naturally defined operation of tensor product of monotonic sequences
leads to the operation of internal tensor product ¢ on the operator ideal lattice; see
Section 4.3 below.

Characterization of the commutator space [I,J] for an arbitrary pair of ideals 7
and J is an immediate consequence of the following result which is a focal point of
the present article:

A normal operator T € IJ belongs to the commutator space [I,J)] if and only if

W(T) + - + 4n(T)
n

= O(,)

for some sequence u e X(1J).

Here I and J are arbitrary ideals in #(H), at least one of them assumed to be
proper, and A(T) = (A1(T), 22(T), ...) denotes the sequence of eigenvalues of T, the
nonzero ones counted according to their multiplicities, but taken in any order subject
only to the condition that |4,(T)| = O(v,) for some v € X(1J). See Theorem 5.6 for
the full statement.
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The above result has numerous other applications. We mention here just a few:

—_

. [I,J] = [#(H),1J] holds for any pair of ideals in Z(H).
2. 1< [#(H),J] if and only if I, = J.

Note that I = [#(H), J] precisely when every trace functional on J, i.e., a linear
functional 7:J — C which annihilates the commutator space [#(H),J],
identically vanishes on 1.

3. The usual trace functional Tr : %} — C extends to a trace on an ideal J p & if

and only if
= (1,

It is easy to see that no such extension can be positive or continuous. This result
proves to be an essential ingredient in establishing the following ‘‘vanishing
theorem” in Hochschild homology:

W | —

)

N —

) ¢ 2(J).

The Hochschild homology groups H.(%(H);J) vanish in all
dimensions if and only if Hy(%B(H);J) =0, ie., J = [%B(H),J], (2)

which, in turn, is essential for the calculation of the cyclic homology and algebraic
K-theory of operator ideals (cf. [70,72]).

4. If a positive operator T belongs to [I,J] then the whole principal ideal (7')
generated by T is contained in [/, J] (Theorem 5.11(1)).

Theorem 5.6 also allows us to obtain the following result:

A finitely generated ideal J admits a complete norm || || if and only

if it admits no nonzero trace t:J — C. In this case, J coincides

with the Marcinkiewicz ideal .4 (1/m,) for some sequence T € . (3)

(See Theorem 5.20.)

Comparison of (3) with (2) leads to a very interesting conclusion, namely that the
existence of a complete norm on a finitely generated ideal J in #(H) is equivalent to
the vanishing of the Hochschild homology groups of the algebra %(H) with
coefficients in the bimodule J. In other words, the nontriviality of these purely
algebraic homology groups is a faithful obstruction to the existence of a complete
norm on the ideal!

The result cited in (3) shows also some of the limitations of the class of
symmetrically normed ideals which, from the time of the publication of Schatten’s
book [54], has been occupying a privileged position in the study of operator ideals,
largely due to the influence of [33]. Another well-known limitation of this class
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concerns the fact that the powers of Banach ideals are, generally, not Banach, vide
the Schatten ideals %, = (£)/?, 0 < p < 1.

We overcome these limitations by introducing a new concept of an e-complete
ideal (e denotes a positive real number, cf. Section 4.6 below). Now, every principal
ideal (T) is e-complete as long as the sequence of reciprocals of singular numbers
s(T) satisfies the so-called A,-condition (cf. (22) below). Unlike Banach ideals, the
class of e-complete ideals is closed with respect to forming powers J*, s > 0. Thus,
any positive power of a Banach ideal, as well as numerous “classical” nonlocally
convex ideals (like arbitrary Lorentz ideals %,(¢); cf. Section 4.7), are e-complete.

The concept of a rearrangement invariant norm on the symmetric sequence space
associated with a given ideal is replaced in the theory of e-complete ideals by the
concept of a gauge, the latter being a homogeneous monotonic functional on the
corresponding characteristic set (see Section 2.9 for details). Any gauge ¢ on a given
characteristic set 2 induces the corresponding gauges ¢, for all powers = P p > 0.
We say that X is e-complete if 2¢ is complete with respect to ¢, for p = 1/e. When 2
is the characteristic set of an ideal J, we say in that case that ideal J is e-complete.

An exact relationship between the two classes of ideals is established by
Theorem 3.6 below:

A certain power of any e-complete ideal is a symmetrically

normed ideal with respect to an equivalent norm. (4)

It is worth emphasizing that this result does not detract from the usefulness of the
concept of e-completeness. There are several reasons for this. The characteristic sets
of not necessarily Banach powers of Banach ideals often admit natural and simple
gauges as illustrated by principal ideals (cf. Sections 2.22-24). Even in the case of
Banach ideals, a simple and natural gauge may be available on the corresponding
characteristic set while an equivalent rearrangement invariant norm may be much
harder to use: Lorentz ideals %, supply a classical example; cf. the last paragraph of
Section 4.11.

Each e-complete ideal J has naturally attached to it a metric invariant
a(J) € [0, o) which we call the Boyd a-index of the ideal in question (cf. Section
4.6) following an example of Boyd, who defined his o- and f-indices only for
rearrangement invariant Banach function spaces (note that for a Banach space both
of these indices can take only values in the interval [0,1]; cf. [14]). We prove the
following ““index theorem” (Theorem 5.13):

The Boyd index of an e-complete ideal J does not exceed
p > 0 if and only if ideal J''P admits a nonzero trace. (5)

A striking consequence of (5) is that:

J = [B(H),J| if J'*¢ admits a complete norm for some & > 0. (6)
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This follows from the equality a(J' %) = (1 + &)a(J) and the fact that the Boyd
o-index of a Banach ideal does not exceed 1.

Several important classes of ideals like Lorentz ideals %, (¢), Marcinkiewicz ideals
AMp(Y), Orlicz ideals % and Q%S)) (cf. Section 4.7 below) are defined in
terms of data consisting of a positive real parameter p > 0 and a certain auxiliary
sequence or function (in the case of Orlicz ideals). We give complete characteriza-
tions of the condition J = [#(H), J] purely in terms of the associated data for each of
the above-mentioned classes of ideals (see Theorems 5.21, 5.24 and 5.25). The proofs
of these characterizations combine Theorem 5.6 with the analysis performed in
Chapter 3.

In order to keep this introduction within a reasonable length, we shall only signal
two additional topics worthy of being mentioned here: the ®-operation (the internal
tensor product mentioned earlier) and an intriguing double inequality in which it
appears (cf. inequalities (70) and (75)). The ®-operation plays an essential role in
Section 7 where we devote our attention to the single commutator space [4(H), J],
(see especially the proofs of Theorem 7.1 and Corollary 7.10). It is also of central
importance for determining the cyclic homology and algebraic K-theory of operator
ideals.

The article is organized as follows. The first two sections are preliminary and
should be viewed as a helpful compendium of notations, definitions and
constructions. We strived for a clear and thorough exposition in the hope that
this material may become, in conjunction with Section 4, a “standard reference”
for the subject of operator ideals. Section 3 contains a number of results impor-
tant independently as well as in conjunction with the material of Section 5. The
latter is devoted entirely to the statement and proof of the main result, Theorem 5.6,
and many of its consequences and other results relying on it. Several of the
latter combine Theorem 5.6 with results of Section 3. In Section 6 we establish
upper bounds on the number of commutators required to represent an element
of [I,J] as a sum of commutators. In Section 7 we prove that at least some of
these bounds are optimal, and we also give a sufficient condition for an
operator to be represented as a single commutator. In these last two sections we
were influenced by some results and techniques developed by Anderson et al. (cf.
[3,5,18]).

The following remarks are designed to help the first-time reader in navigating to
Theorem 5.6 in the shortest amount of time.

Begin by reading the first three sections of Section 4. All the necessary terminology
and notation is explained in Sections 1-3, 6 and 8 of Chapter 1, and in Sections 1, 5 and
7 of Chapter 2. Then continue by reading the first five sections of Chapter 5 which lead
to Theorem 5.6 and its proof.

The present article represents the final stage of a long development. Several of its
main results have been obtained during the period 1994-1996, some as long ago as in
the late 1980s. This earlier phase of the development was reflected in the Odense
preprint [27]. The work reached its final form, except for some very minor details, in
the Fall 2000. An alternative approach to some results of Section 5 is presented in
[29,71].
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0.1 Preliminaries. We will treat interval [0, o] as an ordered monoid in which
0. = o -0 = 0. Note that [0, oo] coincides with ((R" )_)_, where S — S_. =
S 1 {z} denotes the functor that attaches a zero element to a semigroup S 4 By using
the set automorphism ¢ + ¢~ we define division in [0, o] as a/b = ab™".

The absolute value map | | extends to the map | |: C — [0, o] where C = R + Ri
and R = [~ o0, oo]. It is also convenient to extend the usual “p-norms”, p > 0, to

functions o: T — [0, 0]

1/p
ol = su o, P
[EAR FCPf(E o | )

yeF

where the supremum is taken over all finite subsets F of a given set I', and to put

o

o, =supla| = sup |o,].
vyel

1. Symmetric vector subspaces of C!

1.1. The monoid Emb(I"). For a given set I', the collection of all injective maps
Emb(I') = {f:I">>T|I' =T}
forms naturally a monoid under the composition law

Domg n g (Domf)—"%s I

N A

Dom f

Note that idp is the neutral element and the empty mapping J : & — I' is the
zero element.

The antipode map f +— f*, where f7:f(I') — I is given by f7(y) = f~'(y), is an
anti-involution of the monoid Emb(TI).

There are four important submonoids in Emb(I'):

& consists of all self-embeddings I' — I';

(5} which is the image of & under the antipode T consists of all bijections
f:I" ST where I ranges over arbitrary subsets I” = I' of the same cardinality
as I';

“Recall that an element z € S of a semigroup S is said to be a zero if zs = sz = z for all s S. The
category of semigroups with zero Semigr, is reflective in the category Semigr of all semigroups, S +— S.
being the left adjoint functor to the inclusion Semigr, < Semigr.
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Er =46r n 5} is the group of all bijections I' = I" which is precisely the group of

invertible elements of the monoid Emb(I);

the submonoid formed by all inclusion maps I’ < I' is canonically isomorphic to
the monoid (27, n); this allows us to view (27, n) as a submonoid of Emb(TI').

For an infinite set I, every element in Emb(I") admits a factorization f'g for
some f,g € &r, ie, Emb(I) = &18r={fTg|f,g€ &r}. On the other hand,
é’pe@; # Emb(I"). In fact, éam“r is not even a submonoid.

1.2. The action on C’. The monoid Emb(I') acts naturally on the product vector
space C:

as if yef(I") and f(5) = v,
0 otherwise.

(), = { 9

(We shall write the argument of a function o : I' — C as a subscript to emphasize that
we think of o as being a “I'-indexed sequence”.)

This action is continuous in the product topology. The subalgebra of the algebra
#(C") of continuous linear operators on C’, which is generated by the group éT
and the monoid 2/ = Emb(I'), automatically contains also & and &7, and therefore
contains the whole monoid Emb(I"). Even more: if I = I" is a subset such that
|I"| = [I'\["| = |I'|, then the aforementioned subalgebra is generated by &7 and
I'" € 2" alone.

We conclude that any vector subspace V = C' which is symmetric (i.e., 61
invariant; cf. [40, Section 14]), and divisible (i.e., invariant under the projection
I'.:o > o for at least one subset I" = I' such |I"| = [I'\I"| = |I'|) is auto-
matically invariant under the action of the whole monoid Emb(I').

An example of a divisible vector subspace V' < C! is provided by a solid subspace,
i.e., an 7, (I')-submodule of C'.

1.3. Rearrangements. For an infinite set I, the relation on C! defined by
membership in an &p-orbit:

o e (&r),o (8)

is not an equivalence relation, since & is not a group. The smallest equivalence
relation containing (8) is

we (6r),o and o € (&r),o" for some o’ € C"
or, equivalently,

(&r),o 0 (1), 0 #0.
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In this case, we shall say that o is a rearrangement of the function o. Thus, for an
infinite set I', the rearrangements of o are obtained, loosely speaking, by possibly
adding or removing some zero entries and reindexing the result with set I'. The set of
all rearrangements of «

[o] = U (6r).B 9)
pech
(6r).o 0 (6r).p#0
will be called the quasiorbit of o.

We shall say also that ¥V < C is a rearrangement invariant (r.i.) subspace of C' if
[a«] =V whenever o € V.
For divisible vector subspaces the properties of being symmetric, &p-invariant,

(&) -invariant, rearrangement invariant and Emb(I')-invariant are all equivalent.

1.4. Rearrangement invariant Banach-Kothe (BK) spaces. A Banach space V = C'
such that the coordinate functionals & +— «, (y € I') are bounded on its unit ball is

called a BK-space (cf. [73, p. 29]). Every continuous linear map A : C' — C’ which
preserves V' is automatically bounded in view of the Closed Graph Theorem. In
particular, if a BK-space V' is divisible and symmetric then the whole monoid
Emb(I") acts on V in a bounded way. This action is actually uniformly bounded. We
record this fact, which generalizes [42], without proof.

1.5. Proposition. If a BK-space V = Cl is Emb(I')-invariant then
sup{[|/]| [f € Emb(I)} < o0 (10)

where || fi|| denotes the norm of the operator f,: V — V.
Thus the assignment
[l == sup{|| fiod|| |/ € Emb(I)}
defines an equivalent norm on V enjoying the following properties:
for every f € &r, f. is an isometry, (11a)

for every f € &r, f*=(f"), has norm 1 and is an isometry on the image
of the projection f(I'), : & + oy (f™ is 0 on the kernel of f(I'),), (11b)

every projection I, where ¢ # I" = I', has norm 1. (Ilc)

Technically speaking, a Kéthe norm on an r.i.-subspace U = C' (ie., a norm

stronger than the product topology on C) is rearrangement invariant if it satisfies
just condition (11a). However, if the norm-completion U~ is divisible the additional
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conditions (11b)~(11c) follow. An r.i. vector space U = C?*, equipped with an r.i.
norm will be called an r.i. normed space, and an r.i. BK-space if complete.

1.6. Symmetric solid subspaces ' = C'. When a monoid N acts on a monoid M (an
action of a monoid N on an object ¢ of a category % is the same as a monoid
homomorphism p: N — Homg(c,c)), there is an associated semi-direct product
M > N which is itself a monoid: (m,n)(m’,n’) = (mp,(m’),nn’).

The semidirect product /. (I') >t Emb(I') of Emb(I") and the multiplicative
monoid of /, (I') acts naturally on C':

(B.S). 0 = ffon

and 7, (I') > Emb(I')-invariant vector subspaces ¥ < C' are precisely symmetric
solid subspaces.

1.7. Proposition. If a BK-space V < C" is symmetric and solid then

sup{[|(B.S).II | B € £ (I'), f € Emb(I')} < 0. (12)

Indeed, one shows that

sup{[[B.Il| B e /e (I)} < 0 (13)

quite similarly to how one proves Proposition 1.5, and (13) combined with (10) gives
(12). Since operators (f,f), form a monoid, the 7, (I") > Emb(I")-action on V is
contractive with respect to the equivalent norm:

|leell" == sup{[|(B.f).oll | B € £ (I'), f € Emb(I')}.

An /(') > Emb(I')-invariant BK-space will be called a contractive symmetric
solid (c.s.s.) BK-space if ||(f,f),]| < | for all fe/,(I') and f € Emb(I).

Returning to general symmetric solid subspaces ¥ = C', if I' is finite the only
symmetric solid subspaces of C are 0 and C. For I" countable, it is well known (cf.

e.g. [32]) and easy to see that ¥ = C! unless V < 7, (I') and, in the latter case,
V = {,(I) unless V < ¢y(I'). For an uncountable set I', the situation is not so
simple but is essentially governed by the structure of the cardinal number |I'|. This
will be of no interest to us in the present article. Subsequently, the focus will be on

the countable case, in which, with the single exception of C, symmetric solid
subspaces of C are precisely symmetric, i.e., &7-invariant ideals in the ring of 7, (I').

1.8. Two binary operations on C’. The disjoint union of sets induces the direct sum
operation

’ !
c'xcl - ™l (o) > 0@,
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where

o, ifyerl,

! — 7
(x@d), {a,y ifyer

while the cartesian product of sets induces the tensor product operation
' xcl" ™ (a,d) > a@d,

where (2 ®a)(, ) = a0y
We shall make use of these operations in Section 3.

2. Characteristic sets

2.1. We shall refer frequently to a number of operations on sequences. Thus, the
partial-sum sequence:

ot o(a), ou(a)=o + - + o, (14)
the difference sequence:

oy forn =1,
o — Ao, Ad,o:=
o, — oy form > 1

the reverse difference sequence:
o A7a, A o= 0, — 0y,

the arithmetic mean sequence:

o oy, (), =0u(a)/n
and the f-scansion, t € (0, o),

o = o, (1), = o
define,” linear operators on CZ+. The operator D,, of m-fold repetition of each term
coincides with (1/m)°.

In what follows, we shall encounter the sequence 1 = (1,0,0, ...) as well as the

sequences 1,, = D,,1 = (1,...1,0,0,...) and o = 1, = (1,4,1,...). Any sequence
——

m times

3[x] = —[—x] denotes the upper entier (“ceiling”) function.
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o€ co = co(Z4) is represented by the series
o0
=3 (4,00 (15)
m=1

which converges in c¢.
If o € /,(Z ) then we have also the operation of the “arithmetic mean at infinity’:

1 o0
o o, (0g,), == Z o (16)
n i=n+1
2.2. If X is a nonempty subset of R”", where R = [0, co], then sup X and inf X

. . . . =7, .
are the corresponding supremum and infimum in the partially ordered set R™ '; i.e.,
they are the sequences

(sup X),, = sup{o, |0 € X}
and
(inf X), = inf{o, |0 € X}.

It is customary to write sup{o, f} = av f§ and inf{a, f} = anp.

On the other hand, for a sequence o € R ', supo:=sup{o, |ne Z.} e R, and
inf o is defined similarly.

. =z .
2.3. Monotonic envelopes. For a sequence o € R™*, we shall occasionally refer to the
upper or lower nondecreasing, or nonincreasing, envelopes of «. They are defined as
follows:

und, (o) := sup o,
i<n

Ind, () = ir>1f o (17)

and

uni, (o) = sup o,
izn

Ini, (o) = 11<1f o (18)

2.4. The Matuszewska indices of monotonic sequences. For any ¢ € (0, oo)Z+ the
sequence

(19a)
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is submultiplicative while

L

=m

(19b)

is supermultiplicative. Note that 1/¢ = (1/¢) and 1/¢ = (1/8).
By analogy with the Matuszewska indices of functions we shall consider the
following invariants of a monotonic sequence &:

oo logé, . logéy, ,
#e) = fim logm nlgfz log m (20a)
and
1 1
ﬁ(é) — llm Og ém = su Og ém (20b)

m—co logm m;; logm

(cf. [44,47] and the two part article [45]-[46], and Sections 1.52—56 of [46], especially).
By definition, —oc0 < B(¢) < (&) < oo, (&) < (&) + «(¢) and also

a(1/¢) = =p(&). (1)

For a nondecreasing sequence the condition «(¢) < oo is equivalent to the so called
Ar-condition

\I{)\tl
A
8

(22)

2.5. Let cff denote the set of all nonincreasing real sequences 4 € ¢y(Z ).

For every o € ¢o(Z ), the quasiorbit [|o|] (cf. Section 1.3 above) contains a
unique element of cjf which will be denoted o*". This defines a nonadditive map
Yricg(Z4) — ¢y If ' is a countable set then a bijection of ¢: ' =7, induces an
isomorphism of algebras c¢y(I') =¢o(Z ) whose composition with 3¢ does not
depend on the choice of ¢, since ¥r is constant on quasiorbits. The canonical map
co(I') — ¢j thus obtained will be denoted o — o too.

Using the Yr-operation, one can define the internal direct sum:

P cg\(xcffﬁco*, (Ap) — 2ou:= (i@u)*,
and the internal tensor product
S xey > e, (hu) e Aou=(Au)"

Both are associative and commutative operations on c}f?. The sequence 1 =

(1,0,0, ...) serves as the neutral element for ©.
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The following two simple double inequalities are sometimes useful:

2.6. Lemma. (a) For any A, u € co*,
v < Aou < (Avp)® = Dy(Avp).

(b) For any A, u € [0, oo)z*,
Ivu < A+u=ivu+inp <2Avp).

A subset C = co* will be called:
(a) solidif 2 < pand pe Cimply A€ C,
(b) radial if [0,00)C = C,
(¢c) additive if A,u e C implies 1 + u e C.

A radial additive subset C = ¢;” will be also called a cone.

2.7. Let I' be countable. It is easy to see that the image under the Yr-operation
Y=S8"c cjf of any symmetric solid vector subspace S < co(I'), possesses the
following property:

(ChS) If lec), yveX and A= O(u®v) then LeX.

Any subset X of cg*’ with this property will be called a characteristic set. In view of
Lemma 2.6, a subset 2 = c?f is characteristic precisely when 2 is a D,-invariant solid
subcone of co*, 1e., D)X < X,

2.8. There is a number of operations involving characteristic sets. The following
two give rise to binary operations on the lattice of characteristic sets which
will be denoted A; they are associative, commutative and respect the partial order
of A:

(i) (Product): 22" :={i e ¢y |4 = O(w) for some pe X and v e 2'},
(i1) (Internal tensor product):

SoX ={lecy|i < puou for some pe and i € 3'}.

The set ¢ := {4 € ¢; | card(supp 4) < oo} is the neutral element for .
The following operations involve an arbitrary nonempty subset X < [0, oo]Z*.

(i) (Quotient): Z:X = {A e ¢} | 2¥"x e % (2) forallxe X and me Z, }.

If every element of X is dominated by one that satisfies the condition

Xon + Xon41 = O(-xn>
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then 2:X = {l e ¢ |ix e ¥ !(Z) forall x € X} (cf. Lemma 2.6). If, furthermore, X
consists of nonincreasing sequences then X:X = {1 e ¢;"| 21X < X}.

(iv) (Kothe dual): X* = /] X.

The next two operations require that X be a directed subset of [0, oo}Z+ in order for
the following to be characteristic sets:

(v) (Pre-arithmetic mean): ,X = {1 € ¢} | 2, = O(x) for some x € X},
(vi) (Arithmetic mean): X, = {4 € ¢ | 4 = O(x,) for some x € X}.

Finally we mention

(vii) (Real powers). X*:={A*| 1€ X}, s € (0, c0).

The fact that ,X and X, are characteristic sets follows from the inequalities
(Dy(x)), < 2x, and Dy(x,) < 2x,, which hold for any x e [0, 00]**, and from
Lemma 2.6. We shall call X, the arithmetic mean (characteristic) set of X (briefly,
am-set of X) and ,X the pre-arithmetic mean set of X (briefly, pre-am set of X). The
induced operations on A

2 2%:=(,2), and X > X7 :=,(2,)
are idempotent and are involved in the chain of inclusions:
rcrc .
The set 2° will be called the am-interior and X~ the am-closure of 2. It is logical to
call X~ am-open if ¥ = 2° and am-closed if ¥ = X~

a

2.9. Gauged radial sets. A monotonic and homogeneous function ¢: C — [0, co] on
a radial set C < cff will be called a gauge:

(a) (Monotonicity): 1 < u = ¢(1) < 9(p),
(b) (Homogeneity): ¢(z4) = t4(4) for all 2 C and ¢ € [0, o).

If C is a cone and ¢ satisfies also the following conditions:

(c) (Triangle inequality). ¢(4 + p) < ¢(4) +9(u) for all A, ue C,
(d) (Nondegeneracy). ¢(4) > 0 if 1 # 0,

then ¢ will be called a cone norm (or c-norm for short). Note that a finite gauge ¢ on a
cone C satisfies the triangle inequality if and only if the set

B(C,9)={leC|%() <1} (23)

is convex.
Returning to the general case, a gauge ¢ on a radial set C induces associated

gauges on C'/7:= {)1/7| ) e C} for all p > 0:

G () = (¢ (we CVP). (24)
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2.10. Lemma. [f a finite gauge ¢ on a solid cone C satisfies the triangle inequality so do
the gauges %, for all p = 1.

Proof. It follows from Hélder’s inequality that the powers B'/?, for p > 1, of a given
convex solid subset B = co* are convex. By applying this to the set (23) we infer that
the sets

(B(C:9))" = B(C'"9,) (p=1)

are convex.
Note that C'/? is a cone, for any p > 1, in view of the special case of Holder’s
inequality (4 + p)’ < 277'(# + w?) and the hypothesis that C is a solid cone. [

We shall say that a finite gauge 4:C — [0, c0) is complete if >~ Ay€ C
whenever 4, € C and >, ¢(4y) < co. Given e > 0, we shall say that ¢ is e-
complete if 4,: C'/? - [0, ) is complete for p = 1/e. Note that an e-complete
gauge is nondegenerate; i.e., it satisfies condition (d) above.

2.11. Lemma. Let L: C — C' be a homogeneous order preserving map between radial

sets equipped with gauges ¢ and &, respectively. If ¢ is finite and 4 is e-complete for at
least one e > 0 then L is bounded, i.c.,

"(L(4
IIL|]¢.q = §u12 % < 0.

L E

Proof. Consider the map L,: C'/? — (C"'/? given by
Ly(u) = L()"" (ue C').

Noting that

1
1Lollg, o, = (1L1lg.g)"" (25)
reduces the proof of the lemma to the special case ¢ = 1.
Suppose that ||L|| = co. Since the gauge ¢ is nondegenerate, there exist nonzero
Zm€ C,om > 1, such that 9'(L(Zn)) = m*3(2y) > 0. Set ft,, = 1ot Ay Then
¥ (L(Zm))
"(L = —— = m.
G ( (.um)) m2q,()”n> m

In view of the completeness of C, the sequence p:=3Y ~_, u, belongs to C but
9 (L(w) = ¢(L(p,y,) =mforallmeZ,.. O
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2.12. Corollary. If C admits an e-complete gauge 4, for some e > 0, then

9(2)
TR 30

<

for any finite gauge 4. In particular, if ¢ is ¢'-complete, for some ¢ > 0, then ¢ is
equivalent to 4.

2.13. In view of the above, we shall say that a radial set C = c? is e-complete if it
admits an e-complete gauge. Note that such a set is automatically a cone. In fact, a
complete solid cone C always admits an equivalent cone norm.

2.14. Proposition. If ¢ is an e-complete gauge on a solid cone C, then C¢ admits a
complete c-norm equivalent to 4, where p = 1/e.

Proof. Since the powers of a complete solid cone are solid, it suffices to consider only
the case e = 1. Define a function 4’ : C — [0, c0) by the formula

o0

¢(2) =inf{d 9(2)|iseCand 2 < Y A}
/=1 /=1
If A,pueC then clearly ¢(1) < ¢(4), ¥(A+p) < ¥(A) +¢ (u) and also
¢(2) < 9'(1) whenever 4 < p. Thus ¢/ is a ¢-norm on C and is dominated by <.
Note that ¢/(1) > a||4]|,,, where a =¢ (1); hence ¢ dominates the 7, norm. The
equivalence of ¢ and ¢ will follow from Corollary 2.12 as soon as we prove that 4’ is
complete.

To this end, suppose that 41,4,... € Cand )2, ¢(4;) < 0.

Let us choose sequences 4;, € C so that, foreach / € Z,, one has 1, < Z,le Atm
and > ¥(Asm) < 29/(s). The sequence u := me:] Jum belongs to C in view of
the completeness of ¢. Since Z:=3,", 24, < >/, _| Asm = p and C is solid, the
latter set contains A. [

The following result besides possessing an intrinsic interest will be used in the
proof of Theorem 3.5 below.

2.15. Proposition. Any e-complete solid cone C < ¢ is ¢'-complete for any ¢ € (0,e].
The proof will be based on the following.

2.16. Lemma. Let a gauge 4 : C — [0, o0) satisfying the triangle inequality be given on
a solid cone C < ¢}. Then, for any i, j € C''? andp > 1, the sequence (i + p)f — (n)’
belongs to C and

H(+ p)f — i) < pp(A) (2 + p) " (26)
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Proof. Since the sequence (4 + p)” — (p)’ is monotonic and C is solid, the former
belongs to C.

Inequality (26) needs a proof only for p > 1. To do that we begin by invoking the
numeric double inequality:

.
(b+c)f —c < pb(b+ )" < (ab) + (p—1)a2(b + ¢ (a,b,c = 0; p > 1).
(27)

The first estimate in (27) follows easily from the inequality 1 — (I — x)” < px, while
the other is a consequence of Young’s inequality xy < (1/p)x” + (1/¢q)y? where

q=p/(p—1).
By applying inequality (27) coordinatewise in combination with the triangle
inequality for ¢, we obtain the inequality

A+ 1Y — 1) < @2 + (o — Dal 79,((2 + ). (28)

If ¢(A) = 0 then inequality (28) becomes

H 4 1) — ) < (p— D (2 + 0’

and the arbitrariness of @ > 0 shows that ¢((4 + w)’ — p’) = 0. If (1) > 0 then
letting @ = (9,(2 + 1)/9,(A)?"/7 in (28) gives inequality (26). [J

Proof of Proposition 2.15. By replacing C with the corresponding power of C, the
assertion reduces to the case when C is complete with respect to some finite gauge <.
We shall prove that C is then also e-complete for e € (0, 1]. In view of Proposition
2.14, we can assume 4 to be a c-norm.

Suppose that 1j, 4y, ... € Cand M ==Y " _| 9,(Ay) < o0 where p = 1/e. In view
of Lemma 2.16, the sequences

Ty= (A e A )’ = (A A+ e A )P (m = 2),

belong to C and satisfy the inequality

o0

o0 o0
D 9(tm) < Z ) Fp (21 2V < pMPT N () = pMP < o0
m=2

(note that ¢,(4; + -+ + An) < 9(41) + -+ +9p(4n) in view of Lemma 2.10). Since
4 is complete, the sequence =2 + Zm 5T belongs to C. Accordingly, the
sequence »_ ., An = u° belongs to C¢ which shows that the c-norm ¢, is
complete. [

We shall now introduce certain numeric invariants of e-complete characteristic
sets.
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2.17. The Boyd c-index. If a characteristic set X~ c(if is e-complete, for some
e > 0, then the maps D, :2 — 2 are bounded in view of Lemma 2.11 and
the nondecreasing sequence m > [|Dy|| is submultiplicative. In particular, its
Matuszewska’s a-index (20a) equals

log || D] — inf IOgHDmH.

29
m— oo logm m =2 logm ( )

The number «(X) € [0, 0) depends only on X and not on the choice of an
e-complete gauge on X as follows from Corollary 2.12. We shall call it the Boyd
a-index of the e-complete characteristic set 2.

Equality (25) when applied to L = D,, and p = 1/s, yields the useful equality

122 2 58| = |12 2 )P (30)

which implies that
a(2%) = sa(2).

By evaluating a gauge 4 on finitely supported sequences 1,, one obtains a
nondecreasing sequence

n— ¢,(4):=21,) (31)

which is called the fundamental sequence of 4. Let ¢,,(¢) denote the submultiplicative
sequence (19a) associated with ¢(¢). The inequality

$u(?) < IE253) < o (32)

shows that the fundamental sequence (31) of an e-complete gauge satisfies
the 4,-condition, (22). Vice versa, any nondecreasing sequence ¢ which satisfies
the 4;-condition occurs as the fundamental sequence of a number of complete

characteristic sets, e.g., the normed characteristic sets /> (¢) and /*(¢) discussed in

Sections 2.20-32. In either of these special cases ¢,,(¢) = ||Dl|-
The Matuszewska o-index a(¢) = a(¢p(¢)) of ¢(¢) will be called the fundamental
a-index of 4. The fundamental index satisfies the inequality

a(9) < a(2),

which follows from (32), and it depends only on the equivalence class of ¢ restricted
to ¢f" In particular,

oun(2) = (%) (33)

is independent of the choice of gauge ¢ on X, provided ¢ is e-complete for some
e > 0. We shall call (33) the fundamental a-index of a characteristic set 2.
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2.18. A symmetric (i.e., &-invariant) norm || || on a symmetric solid sequence space
S < ¢(I') induces, when I is countable, a c-norm on the characteristic set S* < cg”%.
However, for a c-norm ¢ : S — [0, o0), the symmetric extension of ¢ to S:

& lEllg =) (CeS) (34)

need not satisfy the triangle inequality on S. If it does, then the fundamental
sequence ¢ = ¢(4) is quasiconcave; i.e.,

¢ is nondecreasing and ¢w is nonincreasing. (35)

This well-known fact has a simple proof. Let E be a set of cardinality n + 1. By
removing single elements one obtains n + 1 subsets Ej,...,E, .| < E, each of
cardinality n. Since yg + -+ + yg, , = nyg, we obtain the inequality

ndy 1 (¥) = llntelle < lxgllq + - + llxg,, lle = (0 + 1)¢,(9).

Every quasiconcave sequence is equivalent to a concave sequence (the proof of
Proposition 5.10 in Chapter 2 of [9] can be easily adapted to the sequence case).

We shall also mention without proof another fact which is better known in the
case of functions on intervals [0, c0) or [0, b]:

If a(p) < 1 then ¢ = y for some concave sequence i € (0, 0)°*.  (36)

Conversely, every concave sequence must satisfy ,, < my,, for all /, meZ,,
which implies that a(y) < 1. If ¢ =  then a(p) = a(y) < 1. The sequence ¢,, =
1 + logm! is not equivalent to a concave sequence yet o(¢p) = 1.

2.19. Remark. David W. Boyd defined his «- and f-indices (also called the upper and
the lower Boyd indices, respectively) for Banach spaces of functions on measure
spaces [14,15]. In this article we are concerned with the o-index and in the sequence
case only. However, we define it, as well as the fundamental a-index, in the context of
e-complete characteristic sets and gauges which is significantly more general than the
traditional context of Banach sequence spaces and the corresponding Banach norms.
When the functional (34) satisfies the triangle inequality our definition agrees with
Boyd’s. His f-index can be likewise defined in the context of e-complete
characteristic sets.

The subadditivity of the operation ¢y — co*

& (87, (37)

(see [25], Example (4.1); cf. also [41]) implies that, for a ¢-norm ¢ on any cone
Cc cgﬁ the correspondence

& 9((¢9),) (38)
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defines a symmetric norm on the symmetric sequence space S = ¢y(I") defined by the
equality S = ,C; cf. Section 2.8(v). Probably a majority of Banach symmetric
sequence spaces present in the literature appear in this way.

The remainder of this section is devoted to a brief discussion of certain important
types of characteristic sets. Practically all standard examples are included among or
are easily derived from them.

2.20. For any subset
¥ < {ze0,0]" |supax = o}, (39)

let £, (¥) = {& e co | 1E]l0 = 1EWI|,, < oo for some y € P}
The c-norms || ||, do not change if we replace y by the upper nondecreasing

envelope ¢ := und(y); cf. Section 2.3 above. When ¥ consists of a single element
then we shall write /., () instead of 7, ({¥/}).

2.21. Lemma. For any nonempty and at most countable set ¥ (cf. (39)) the following
conditions are equivalent:

(@) /2 () is e-complete for every e > 0,
() 7% (P) is e-complete for some e > 0,
(©) there exists W, € ¥ such that /% (V) = /% (), ie.,

Yo = O(und(y)) (40)

forany Y e V.

Proof. For any unbounded sequence ¥ € [0, c0)** the cone W) =1 ()" is
obviously complete. Since (£ (1)) = /% (y°), the previous remark applied to /°
shows that /7 () is e-complete for every e > 0.

Suppose that ¢ is an e-complete gauge on /;‘é (), for some e > 0. Let us consider
the corresponding set of upper nondecreasing envelopes @ = {und(y) |y € ¥}. In
view of Lemma 2.11 applied to the inclusion /% (¢) < /% (¥), one has

4()
bor= S T
rel (o)

< (pe?d).

©0,¢

Choose a function a: @ — (0, 00) such that Y a,(b,)* < .
In view of the e-completeness of /7 (¥) = /2 (®) and the fact that

qu(am/‘l)e) S Zam(brﬂ)e”l/(/’enmw = Zatﬂ(b(ﬂ)e < o,
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where p = 1/e, the sequence

M= Z ap(1/¢°)

ped

belongs to (/2 (®))°. The membership in (/7 (®))° means that lul] ¢ < 00 for
some ¢, € . This, in turn, means that

[Py
/0l < (— <o (ped),

¢
which implies (40). O
2.22. Characteristic sets (y. For any subset X < ¢,

Ox ={lecy

L =0(m & &mny) for someny,...,n, € X}

is the smallest characteristic set which contains X. We shall call it the characteristic
set generated by X < cf. When X = {rn} we shall call O := 0, the principal
characteristic set associated with the sequence = € 03}. Finally, for o € ¢y, we set
0, = 0,. The set of monotonic sequences having finitely many nonzero terms, cf,
coincides with (.

Finitely generated characteristic set are principal. This follows from the equality

Any characteristic set Y is the filtered union J,_, /% (1/4), so for countably
generated ones we have the following corollary of Lemma 2.21.

2.23. Corollary. For any countably generated characteristic set ¥ < cg*’, the following
conditions are equivalent:

(a) 2 is e-complete for every e > 0,

(b) X is e-complete for some e > 0,

(©) X is the principal ideal O, for some sequence T € CE? whose reciprocal satisfies the
Ay-condition (22).

In this case the Boyd and the fundamental indices coincide. Note that 1/x satisfies
the A,-condition precisely when n = 7%2.

2.24. Lemma. If n = n®2 then the principal characteristic set O, coincides with the
gauged radial set /iﬁ(l /) and thus is e-complete for every e > 0, with 1 /n serving as its
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Sfundamental sequence and ||D,,|| given by
Y
||Dm|| = SHPE: I/Erm (41)

¢f. (19a). In particular, the Boyd and the fundamental indices coincide and are equal to
the negative of the Matuszewska [-index of sequence m:

%(Ox) = —p(n). (42)
Proof. For /e ¢, ||Dni/nll., = [|4®" /x|, = ||A/m*=x||,, and therefore
1Dl = sup {|2/m*xllo. /l12/7lloc < sup |[(2/m"m)/(A/m)ll s, = [lm/m"xl] . = 1/2m
Le Le

which equals ¢,,(0,). Equality (42) follows from (41); cf. (21). O

2.25. Lorentz sequence spaces. For a nondecreasing sequence ¢ € [0, oo)Z*, let
2(9) = {oe col llall ) = Il Aglly < 0}

The gauge |||, is a c-norm if ¢; > 0. This condition can be enforced by
modifying finitely many initial terms of ¢ if ¢ is not identically zero. The space /(o)
does not change in the process. This allows us to focus on the case of ¢ € (0, oo )Z+ .
Equipped with the c-norm || ||, the Lorentz cone /™ (¢) = /()™ is e-complete for
every e < 1. In fact, the cone /f(q)) = /ﬁ(go)l/” is equipped, for p > 1, with the

complete c-norm
1
1AL, = (12211 "”

as follows, for example, from Lemma 2.10. The characteristic sets /f , 0<p <1,

demonstrate that /*((p) is not, generally, e-complete for ¢ > 1. The fundamental
sequence ¢(|[[|,.,) coincides with ¢. Many properties of the Lorentz cone follow

from the following lemma.

2.26. Hardy’s Lemma. For any two nondecreasing sequences @,y € (0, oo )Z*, one has

p Villroy _ /W
SR )

(43)

0

Moreover, £ (W) < (@) if and only if ¢ = O().

Recall from the introduction (p. 6) that co/co = oo -0 = 0 and, similarly, 0/0 =
000 = 0. Consequently, only /4 € /*(w) contribute to the left-hand side of (43).



K. Dykema et al. | Advances in Mathematics 185 (2004) 1-79 23

Proof. Denote the left-hand side of (43) by K. Since ¢,, = ||1,|,., and, likewise,
Y = |[Tmlls(y). we have K > [|lp/]|,,. On the other hand, identity (15) combined

with the fact that 47/ is nonnegative for 1 € cé( yields the inequality
allsgy = (4™ Delly < (4™ D¢ e /bl = 14l y)lle/¥ll -
If /() = /() then the inclusion must be bounded by Lemma 2.11. Hence
le/Yll. = lfW)<L(o)ll < 0. O (44)

2.27. Corollary. The Lorentz cone /*((p) is Dy-invariant, i.e., is a characteristic set, if

and only if ¢ satisfies As-condition (22). In this case, /™ () is the Kothe dual {A@}” of
the singleton set {A¢} and

1Dnll = @, = [Im"0/0ll, (45)
In particular, the Boyd and the fundamental a-indices of /() coincide.
Proof. Formula (45) follows from the identity
1Dm () = 14 meg)
combined with (44). O
2.28. Corollary. /(@) = £(¥) if and only if ¢ = .
2.29. Lemma. || ||, is a norm on /(@) if and only if ¢ is concave.

Note that a concave sequence ¢ satisfies the 4,-condition (22).

Proof. If ¢ is concave then A(peco* and 47 (A@) is nonnegative. Since

a((+ B)7) < a(o™) + a(7), cf. (37), this yields
161 + Gl = 11E1 + &) A0l = llo((& + &)™) (Ap)l),
< [[(0(&)) + a(&)) A (Ap)l,
=& + &Nl = 1€l + 2l
Vice versa, suppose that || || /(p) Satisfies the triangle inequality on / (@). Let

¢ 1 fl<n<m—-lorn=m+1,
" 10 otherwise.
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Then
2 fl<n<m-—1,
Um+&,=41 fn=morm+ 1,
0 otherwise
and

Pm—1 + Pmtr1 = ||1]m + é“/((p) < ||1]Wl‘|/(<p) + Hé||/((p) = 2¢mv
i.e., @ is concave. [
It follows that /(¢) is a symmetric Banach sequence space with an equivalent
norm precisely when ¢ = iy for some concave . A necessary condition for this is

that a(p) < 1; while a(p) < 1 is sufficient, cf. (36) and the sentence following it.

2.30. Lemma. /" (¢)'/? is am-closed (cf. Section 2.8) if ¢ is equivalent to a concave
sequence and p = 1.

Proof. Function x — x?, x € [0, o0), is increasing and convex for p > 1. Hence,
the inequality o(/) < o(u) implies that a(A’) < o(u?) for p = 1 (cf. [25], (4.1), and

other references mentioned in the proof of Lemma 2.41 below). Since 47 (Ag) is
nonnegative, the inequality [[2"[|,,, < |l#”[l(,) follows. [

2.31. Proposition. For any characteristic set ~ ¢ ca*?, equipped with a complete gauge
4, one has the following double inclusion:

r($(9) € T < C(d(D) = Orypa-
More precisely,
gDl < 4(4) (2€2) (46)
and there exists a constant K > 0 such that

HA) < K|l spq) (A€ 7($(9)))- (47)

Proof. On one hand, the inequality

140 (D)lloe = sUP 2y (2) = sUp (AnTm) < 9(2)
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follows from the fact that 4,,1,, < Aforany A e cgk and m € Z, . On the other hand,
for any A e 0337

MH/ (d(F) Z Amj"q Z ((Ar;))ﬂ’">

m=1 m=1

The completeness of ¥ implies that A=Y "_, (4,4)1, belongs to X if

141l/(p(q)) < - Inequality (47) then follows from Lemma 2.11. Finally, if

sup qb( ) < o, then Ap(¢) € /1 and /*($(F)) = ¢;". This would force X to coincide
with ¢°, contrary to the hypothesis that X ¢ ¢’. Thus 1/¢(9) € ¢, and inequality
(46) implies that X = 72 (¢(9)) = O1p(q)- O

2.32. Corollary. Any e-complete characteristic set X properly contains the union
/;i = Us<, 45 where p = 1/ogn ().

Proof. If X is equipped with a complete gauge ¢ then X2/ (¢(¢)), by the previous
proposition. Since ¢p(¢) = O(w™") for any r > o(¢(4)), one has the inclusion

o) S C(@9) (> a(d(9).

By combining this with the inclusions
(g O g (0" (s < 1/r),

we deduce the inclusion /;f < X, where p = 1/og,(2). This inclusion is proper, since
/[fi is not complete for any p > 0 as is easy to see.

If ¢ is e-complete then £ ¢ X for r = 1/apn(2¢) = 1/(eann (X)) by the already
proven part of the corollary. [

2.33. Marcinkiewicz characteristic sets. For a nonzero y € [0, c0)”*, the Marcin-
kiewicz sequence space

m() = {& € o | 1Elluy) = (€)Wl < o0}

is the pre-arithmetic mean space of /Z, (), the latter was defined in Section 2.20.
Since || ||m(l/,) does not change if one replaces Y by its upper nondecreasing envelope

und (), cf. (17) above, we may assume that i is nondecreasing in which case the
cone m* () == m(y)”™ is the pre-am set of the singleton set {1/y/}:

m(y) = {1/y}. (48)
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One has m(y) = 0, /; or ¢y precisely when supyow = o0, 0 < limyw < o or
sup Yy < oo, respectively. The case when sup y = oo and lim yw = 0 is therefore the
most interesting one with /; ¢ m(y) ¢ co.

It follows from Proposition 2.15 or, more directly, from Minkowski’s Inequality
that m™ () is e-complete for any e < 1. The fundamental sequence ¢ = ¢ (|| m(y)) 1

given by
uni(Yw)
60 ) = una (*2); (#9)
cf. (17)(18) and [ [|,y) = [ [|n(p)- The sequence ¢ is quasiconcave; cf. (35). If  is

quasiconcave then q3(|| ||m ) = W¥; hence the fundamental sequence of || ||, is the

unique quasiconcave sequence for which the associated Marcinkiewicz norm
coincides with |[{|,,,- If both ¥ and ' are quasiconcave then m(y) = m(y') if

and only if y = /. Thls follows from Lemma 2.11.
Since 1/(¢w) is quasiconcave, we infer that 1/(¢w) = () for some 7 € ¢ It

follows that m™ () = m™(¢) = (O,)~, the am-closure of the principal characteristic
set O; cf. Section 2.8.

2.34. Proposition. The Boyd and the fundamental a-indices of m™(\) coincide:

a(m™ () = ([ [ly))-

Moreover,

S .
where T € ¢ is any sequence such that

1
T, < m (50)

and B(o(rn)) is the Matuszewska index (20b) of the sequence of partial sums of m.

Proof. For any A € co*, one has
6(;6%:) B

) ma (1)
||DmA|| m(1/mg) = sup U(TC)

m*s(n)

D2
L2 N WA N
||)“Hm (1/mq) TE TL 7[)

lnfm 0( )/O‘( ) ¢_7 (|||| l/n“)

Hence
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since (|| [[,1/x,)) = 1/ma- In general, m(y) = m(1/n,) for me ¢’ satisfying (50).
The Boyd and the fundamental o-indices coincide with those of m(l/n,) and
[ 111 /z,)» Tespectively. [

The following proposition is rather well-known though not, perhaps, the proof
given below. Compare this proposition with Proposition 2.31.

2.35. Proposition. Let ||||: S — [0, 00) be a symmetric norm on a symmetric solid
sequence space S = ¢o. Then,

[ gy < 1111 (51)

on S where ¢ = ¢(||||) is the fundamental sequence of || ||

Proof. Let &, denote the set of all bijections f': Z, — Z such that f(m) = m for
m > n. Then,

) = ),

feé,

for any A € co* and n € Z . It follows that

(Za)ul[Tall < ,lef (41,) ,ZII” | = [140[ < (]2l O

feé, feé,

We are now sufficiently equipped to establish the following important result.

2.36. Theorem. A countably generated symmetric solid sequence space S < cq is
complete with respect (o some symmetric norm if and only if S = m(1/n,) = {o(1/7)
for some © € ¢y such that 1 < m,.

Proof. If S admits a symmetric complete norm || || then, by Lemma 2.21 above,
S = £,(1/n) for some = € ¢. By Corollary 2.12, the norm || || is equivalent to the
c-norm || || 1, introduced in Section 2.20, i.e.,

/B Moo ije < < KMo 172 (52)

for suitable constants K, K’ > 0. By combining inequality (52) with inequality (51),
we obtain the inequality

|| ||m((/)) < K,” H oo,l/m)

where ¢ = ¢(||||) is the fundamental sequence of the norm ||||. Since

1/m=¢(le1z) < Ko,



28 K. Dykema et al. | Advances in Mathematics 185 (2004) 1-79
we deduce that

sup ™ < K sup(rp) = K|[nllyq) < KK'llzll 1 = KK < 0. O

o0,l/n

2.37. Orlicz characteristic sets. The Orlicz class

=zl (@ =S M) < o)

n=1

of a nondecreasing function M € [0, oo][o’oo) such that M(0) = 0, generates two
sequence spaces:

(Orlicz sequence space) ¢y = U ey

t>0

and

(small Orlicz sequence space) /5\3) = ﬂ oy

t>0

The Minkowski functional o« +— |[|a||, :=inf{c > 0|p,(o/c) < 1} is a norm if

M is convex. In particular, 4, and /11(40) become symmetric Banach sequence spaces
(up to equivalent norms) if M is equivalent to a convex function. In general, || ||, is

only a gauge on /;j.
The following concepts and the subsequent lemma play a significant role in the
theory of Orlicz sequence spaces:

(1) the Ay-condition at 0:

lim M2t)/M(t) < oo;

t—>0+t

(i) two relations on [0, o0](®*)

M < N if @+ M(t)/N(ct) < oo for some ¢ > 0
-

and

M ~yN if M < N and N <, M;

(iii) the Matuszewska indices at 0 of a monotonic function M e (0, o)™
log M(t log M y(t
so(M) = inf 28Mo(D) _ i log Mo(0)
<1 logt >0 log ¢
log M, log M.
g 108 Mo(D) -y Tog Mo(r) (53)

>1 logt - logt
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and
log Mo(¢) . log My(2)
M = — ——
Bo(M) S[1<1113 logt z—»r{)l+ log ¢
log M log M
— sup og Mo(?) — lim Og_o(f)’ (54)
~1 logt 1>o logt

where Mo(l) = lim, _ o+ M(ZH)/M(M) and Mo(l) = ﬁu S0+ M(tu)/M(u).
One has the inequality

0 < fo(M) < ap(M) <

and og(M) < oo precisely when M satisfies the 4,-condition at 0. If M ~y N
then their o- and f,-indices coincide. One has (M) > 1 for functions that are
convex in a neighborhood of 0. It follows that (M) = 1if M ~( N for some
function N convex in a neighborhood of 0. If §,(M) > 1 the reverse is true (see
[1, Lemma 1 and Corollary 1, p. 15]).

It is convenient to extend Matuszewska’s indices to monotonic functions
M € [0, oo}(o’oc). Formulae (53)—(54) are applicable if 0 < M(f) < oo on a
neighborhood of 0. If this is not so, then either M(¢) = oo for ¢ > 0 or M(¢) = 0
on a neighborhood of 0. In the former case /), = {0} and in the latter /3, = ¢¢. In
either of these cases we simply set

t0(M) = fo(M) = o

which agrees with definitions (53)—(54) provided one uses functions My and M, only
fort < 1.

The following useful lemma is inspired by certain results of Matuszewska ([46],
2.25 and 2.28).

2.38. Lemma. Let (M;);., and (N;);.; be two sequences of nondecreasing

Sfunctions [0, c0) — [0, 0| sending 0 to 0. Then,

o0

o, S U /o, (55)
=1 =1

j=

if and only if

— N/(l)
R RV YA B (56)

Sfor some k,{ € Z . Here (M| v --- v My)(t) == max(M(¢), ..., My(1)).
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In particular, (55) is equivalent to the existence of such positive integers k and ¢ that

k
ﬂ 7em; S /N,

i=1

Proof. Since My oM, = ﬂ;‘zl Jens We replace functions M;, i> 1, by
L;:= MV ---v M;. Suppose that lim, , o+ N/(f)/Li(f) = oo for all k,/ € Z . Then
there exists a double sequence o € [0, o0 )%+ %+ such that

Ny(ous) > (k) Li (o)

and

forallk,/eZ..
Let

[m—l if Lk(ozk/) > 0,

Myy = .
rm—l if Lk(OCk/) =0

and let 4 be the monotonic rearrangement of the “double sequence’ obtained from o
by skipping all the terms ay,, for k < £, and repeating my, times each term oy, for

k = /. In view of the inequalities L; < L, < ---, we have
pr(A) = > mLi(ws) + Y muLi(ou)
I</<k<i I</<k<w
i<k
< Y muLi(o) Z myy Ly (o) < o0, (57)
I</<k<i k/=1

since the first sum in (57) has ﬁnitely many terms and the second sum admits an
estimate 3.7, 2/k*/* = 2{(2)*. Therefore i e ), s,-
On the other hand, for any p > /,

p P

py, (4 Z myer Ny (otkr ) /lep—/—i—l,

k=¢ k=t

ie., py,(4) = oo and therefore 4 ¢ U_Iil o This proves that condition (55) implies
condition (56). The reverse is obvious. [
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2.39. Corollary. For any pair M,N € [0, oo][o’oc) of nondecreasing and vanishing
at 0 functions, the following conditions are equivalent:

() M < N,
(b) /n = lu,
© 0 < ¢ty

If M,N € [0, oo)mw) then any of the above is equivalent to the condition:

@ AV < /Y.

2.40. Corollary. For any pair M, N € |0, oo][o’oc) of nondecreasing and vanishing

at 0 functions, the following conditions are equivalent:

(a) M~0N7
(b) Iy = lur.

If M,N € |0, oo)[o'w) then either one is equivalent to the condition:
0 0
© V=179

We note here also

2.41. Lemma. If M is convex then Orlicz class ;,, has the following property:

L€ fry, whenever Jy < p, and pe py, (pecy).
Proof. The inequality p,,(4) < p,,(u) was proved by Tomic [61] and Weyl [69]

(note that M is nondecreasing). It can be also deduced from the Hardy—Littlewood—
Poélya Inequality [36] (see [51]). O

2.42. Corollary. If M is convex then the characteristic sets [y, and (/18))% are
am-closed.

3. Certain inequalities

The linear operators D,, : ¢y — ¢( are isometries. Therefore, the operators m — D,y,,
m > 1, are invertible in the Banach algebra %(cy), the inverses being given by the
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absolutely convergent series

(m=D,)"" = % i(i) (58)

i=0

The relation with the operator of arithmetic mean is established by the following
double inequality.

3.1. Proposition. For any /. € CO* and any integer m > 1, one has the double inequality

1

R _ 0
Ty < (= Dw) 12 < fa (59)

1

the constants
m—1

) and

1
m(m—1

being the best possible.

Proof. Since each 4 e céz is represented by the absolutely convergent (in ¢() series
=3, 1(4,7)1, with 4,4 = 0, cf. (15), the linearity and continuity of the
operators (m — Dm)f1 and o — o, reduces the proof of (59) to the case 4 = 1,,
/ € Z .. By using representation (58), we deduce that

1

[(m = D)~ (17)], = o = 1)

(60)

where k = 0if 1 < n < /;forn > ¢/ the value of k is determined from the inequality
(m*=1 < n < ¢/m*. By combining (60) with the formula

{ 1 forl <n</,
[( /)a]n_ % for / <n

we obtain, for a given / and m, that

(m_Dm)ilﬂ/ 1 / / 1

ST T S k=) tF  m =T
and the infimum

(m—D,,) "1,
(1),

inf

is the smaller one of the two numbers: ﬁ and

inf ! ‘ = ! inf {1+ : = 1 O
kez, mkm—1)/ (mk=' + 1 m(m—1) kez. (mk=1 ) m(m — 1)
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Note that either of the two inequalities in (59) is sharp for each of the
characteristic sequences 1,. By comparing (58) and (59) we obtain

3.2. Corollary. Suppose that

Dmi;». <
for some A, u € cgf, an integer m > 1, and some s € (1, 00). Then
ha < K(m = D(s)n,

where {(s) denotes the value of Riemann’s zeta function at s.

3.3. Example. One has D;ow < /w and w,~wlog where the sequence wlog’ is
defined by the formula (w log*), = (logn)*/n except that when s < 0 the first term is
either ignored or set, e.g., to be equal 1. In particular, w, ¢ O, 1y for any s < 1. This
shows that 4, need not be dominated by u if the hypothesis of Corollary 3.2 is
satisfied for some s < 1.

The following useful inequality is a cousin of a certain inequality due to Tetsuya
Shimogaki (cf. [58, proof of Theorem 1]).

3.4. Proposition. For any A € co* and m € 7  , one has the inequality

1
(Dm/l)u S (ia)a (61)
(wu)m
and the constant
1 m

(@) T3+ +3

m

which is the harmonic mean of numbers 1, ..., m, is the best possible.

Proof. It suffices to prove inequality (61) only for A = 1,/ € Z .. The reason is the
same as in the proof of Proposition 3.1.
For n < /m, the numerator of the nth term of the ratio-sequence

(D) o/ (17)2 (62)

equals 1 while the denominator does not increase. Accordingly, the ratio does not
decrease. For n > /m, the nth term of the ratio equals
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hence the ratio decreases in this region and

(Dmﬂ/)u _ m

sup =
e 14747+ + 4

: (63)

which is the /mth term of the ratio sequence (62).
For a fixed m, the right-hand side of (63), viewed as a function of /, decreases.
Consequently, it is majorized by its first term and

Dmﬂ 4 D}'n/[| ﬂm 1
sup sup( )a = sup( )a = sup( )a = . O

(el (ﬂ/)aZ 1]az Wq (wa)m

3.5. Theorem. Suppose that a characteristic set X is e-complete for some e > 0,
¢f. Definition 2.13. Then, for any s > 0, the following conditions are equivalent:

(@) (%), = 2%,
(b) the Boyd index o(X) is less than 1/s,
(¢) there exists ¢ > 0 such that ||D,,|| < m"*)=¢ for all m > 0,

(d) there exists mo € Z , such that ||Dyy,|| < my”.

Proof. The equivalence of (b)-(d) is a direct consequence of the definition of Boyd
a-index (29).
Proposition 3.4 produces the inequality

1

Dm/1 < 71/?
((@a) ),

(OH)' (recs s> 0)

which, for any gauge ¢ on X, implies the inequality

H(Dmt) < F((2))")- (64)

1
((@a)'"),
If (2¥), = 2 then X is invariant under the operator

Ay ho ()0

The latter, being homogeneous and order preserving, is bounded on X, by Lemma
2.11. Inequality (64) therefore implies that

Al o (m "
|[Dml| < (@) 0<(logm) )’

which in turn implies (d).
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In order to show that (c) implies (a) we first observe that, in view of
Proposition 2.15, we can assume that ¢ < 5. Then, we note that:

(1) 2¢ is a complete characteristic set with gauge given by formula (24) where
p=1/e.
(i) Condition (c) for X is equivalent to the similar condition for 2¢ with s replaced
by s/e. This follows from the norm equality (30).
(iii) 3° = (z°)°.

Thus, by replacing X by X¢ and s by s/e, we reduce the general case to the case when
2 is complete and 5 > 1.
Condition (c) yields, for m >0, the estimates

() < £ < (5.2 -

i= i=0

which, combined with the completeness of X, show that

0 i
Dm ,
> (5r)

i=0

belongs to X for all 1 € 2. On the other hand, inequality (59) implies that

()" < ((m -1 g(%’“)iﬁjﬁ 1s (g((mm)i )é)l/s

the last sequence does not exceed, for s > 1, the sequence

1/ 0 i
’ Z(ml/v) .

1

Theorem 3.5 combined with results of Chapter 2 allows us to establish the
following important result that was announced in the introduction; cf. (4).

3.6. Theorem. Let S < ¢y be a symmetric solid sequence space and ¥ = S* be the
corresponding characteristic set. Then, X is e-complete for some e > 0 if and only if a
certain power S', t > 0, admits a complete rearrangement invariant norm (which
makes it an r.i. BK-space). This is so, in fact, for any

€ (0,¢] N (0,1/a(X)). (65)

Proof. Let us assume X to be e-complete and ¢ to satisfy (65). In view of Proposition
2.15 combined with Proposition 2.14, the characteristic set X’ admits a complete
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c-norm 4. Then (2'), = X' by part (a) of Theorem 3.5, and the arithmetic mean
operator 4 — A, on X’ is bounded with respect to the c-norm 4 in view of Lemma
2.11. In particular, the rearrangement invariant norm (38) is equivalent to ¢. [

3.7. Corollary. Any e-complete gauge on a characteristic set X is equivalent to the

c-norm . ||A)|"V" for some t > 0 and some rearrangement invariant norm || || on
the sequence space S'.

The following corollaries of Theorem 3.5 refer to the Lorentz characteristic set
/"(p) and the Marcinkiewicz characteristic set m°(¢), both of which are complete.

3.8. Corollary. Let ¢ be a nondecreasing positive sequence satisfying the A,-condition
(22) and s > 0. Then (¢™(9)*), = ¢*()’ if and only if a(¢p) < 1/s.

3.9. Corollary. For any y € (0, oo)Z+ and s > 0, the following conditions are
equivalent:

@) (m(Y)"), = m(y)’,
(b) a(¢) < 1/s where ¢ = ¢(|| ||, is the quasiconcave sequence (49),

o
(¢) P(a(n)) > 1 —1/s where n € Co is defined by (50).

Rather unexpectedly, Theorem 3.5 and Corollary 3.9 combined allow us to obtain
a simple proof of the following result about monotonic sequences.

3.10. Theorem. For any nonzero sequence nech, the following conditions are
equivalent:

(a) 7©n=my,

@)y, Mg = my for natural numbers k < /,

(b)  p(n) > -1,

(b)  there exists ¢ > 0 and an integer my > 1 such that

Ty < ml_cnnm

forallm = myand allne 7,

©  plo(m)) >0,

(c)  there exists d > 0 and an integer my > 1 such that

() = mdon(n) (66)

forallm = my and allne 7 4.

Proof. (a)<>(b) The condition © = =, is essentially a restatement of the fact that
(Or), = O, since n, = O(n¥™) implies that m*n, = O(rn), and m*n, =< m,. In this
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case (U, = /% (1/n) is a complete characteristic set and the condition (0,), = €y is
equivalent to condition (b) by virtue of Theorem 3.5 combined with Lemma 2.24.
Equivalences (b) <> (b)’ and (c) < (c)’ follow directly from Definition (20b) of the
Matuszewska f-index, and implications (a) = (a),, are clear.
(¢)' = (a) Choose one m > 1 such that inequality (66) holds. Then

(m—Dnnyiy = 0pn(n) — op(n) = (md — Day(n).

In particular,

i.e., T = m,.
(a);, <= (c) Condition 7, = m, is equivalent to n, € ,{n,} or, using equality
(48), to

(m™(1/ma))y = m™(1/ma).

This last equality is equivalent to condition (¢) in view of Corollary 3.9.

By combining the last two proven implications we obtain implication (a),, = (a)
forany e cgz. By applying this to . we obtain implications (a), , ; > = (a)x x4
for all k e N. Since implication (a),, = (a); ; , is obvious, implication (@), = (a)
follows. 0[O

3.11. Remark. The equivalence of (a) and (a),, is implicit among the results of Varga
(cf. [62], Theorem IRR; his ideal .#(A4) coincides with the Marcinkiewicz ideal
M (1/s(A4),)). All the elementary proofs of this fact which are known to us are quite
delicate.

Equivalence (a)<>(b) in the function case seems to have been first
established by Aljanc¢ic and Arandelovic in their important article [1]
(cf. their Theorem 3). The sequence case can be deduced, of course, from the
function case.

The following theorem characterizes the condition X* = (2¥), in terms not
requiring X to be e-complete, and thus applies to all characteristic sets. Note that
conditions (d) and (¢) below are “local” which contrasts with the ““global’’ character
of conditions (c¢) and (d) in the statement of Theorem 3.5.

3.12. Theorem. For any characteristic set X~ < c'{;‘ and s e (0,00), the following
conditions are equivalent:

(@) 2° = (2'),;

(b) there exists an integer my > 1 such that (my — Dmo)fll‘v c 2’

(c) for every integer m > 1, (m — Dm)712‘9 =
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(d) there exists to > 0 such that, for any . € X, there exist an integer £ > 1 and a
sequence € X with the property:

D,il A
Ssup ; = 0(1’0) (ZEZ+);

(e) for every A€ X, every real number t > 0 and every integer m > 1, there exists
u € X such that

D7 i/s
sup ZA = O(ml_t ) (ieZ,); (67)

(f) there exists ty > 0 such that, for any A € X, there is u € X with the property that

SupDL;L — O(L/S
p (log m)®

) (m > 1);

(g) for every 1 € X and every real number t > 0, there exists u € X such that

Dm;\, 1/s
sup = 0< n

. ) (m > 1). (68)

(logm)’
Proof. The equivalence of (a)—(c) is a direct consequence of Proposition 3.1.

(a) = (f) Inequality (61) combined with the identity D,,/* = (D,,A)* produce the
double inequality

ml/s

\ 1 1/s sy /s
< ' —((4") )

D4 (wa)’ln/s((i )az) < (logm)l/s(() )a) (m > 1)
and p:= (()f)az)l/‘Y € 2 in view of the hypothesis.

(f) = (d) Trivial.

(d) = (g) Letie Xandt > 0. By a repeated use of hypothesis (d), we construct
three sequences: of integers /),7/>,... greater than 1, of positive real numbers
K, K, ..., and of elements u, := 4, uy, ... of 2, such that

Ki(4)"

it

D(/j)’ﬂj—l S W (ieZy). (69)

Put r=[t/ty], / =71/, and K = K;---K,. Since each operator D,

preserves the partial ordering of co*, inequalities (69) combined together produce
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the inequality

K/ Koo
D/iigiﬂr <litnur (ZEZ+)7

l'l‘t()

where we have used the identity Dy o--- oD, = D,. For an integer m > 1, let

K = H"()gT”/’]. Then

K/K/S K 1/s
Dyl < Dpid < ==y < m

(logm)’ur
for K' = K/'*(log?)’".

(g) = (e) is trivial and (e) = (a) follows from inequalities (59) combined with
identity (58):

K —1 s - Dm’is
), < - —Dy) 2= (m— E »
(A, m(m — 1)(m — D,,)” 2 (m—1) 2
< (m=-1AF+ EOC L
N ~ i=1 e
for some u € 2. It suffices to choose t = 2/s in (67). O

3.13. Example. Consider the sequence wlog’, s > 0, mentioned in Example 3.3
above. This sequence is monotonic except for finitely many initial terms and, for any
t > s, there is a constant K = K(s, ¢) such that

*

)

Supo(wlog“' < K sup (log/)s/(log(/m))r - Km
(wlog")™ r>1 L ‘m (log m)

t—s

for all m > 1. Therefore, the characteristic sets X, := |
property:

Ow10g's p > 0, have the

s < p

for every i € X,, there exist 5o > 0 and p € 2, such that

D,,,/lz 0 m i
(logm)”

sup ) (m > 1)

yet 2, is not equal to

(Qw if P < - 17
=)=y Oy i p > —1
s < p+1 ((u log")“ p .

Now we come to the following central inequality.



40 K. Dykema et al. | Advances in Mathematics 185 (2004) 1-79
3.14. Proposition. For any 1 € cgf,
AW < Ay < 200 0. (70)

More precisely, for a givenne 7

A 1
2—— 1
o (75a) =2 ™)
and
sup (ﬂ@w) = 1. (72)

0

3.15. Remark. The double inequality (70) was originally discovered by one of us in
1994 in the form:

A®w < Jy <2000,

where o' = (1, 1,5,%, & ---). More than a year later, Christian Valqui pointed out
how to strengthen it to (71).

Proof. For a given 1 € coﬁ, choose an injectivemap ¢ : Zy > Z X Zy,n +> (iy,Ju),
such that (A w), = 4;, /jn-
Fixne Z, . Thesubset S, :== @({1, ...,n}) =« Z, x Z, has the following property:

if i/ <iandj < j then (i,j) € S, implies (¢,j') € S,

(i.e., S, is a Young diagram). Let r := max{i| (i, 1) € S, } denote the number of rows
in S, and j(i) == max{j| (i,j) € S,} the number of elements of .S, in the ith row. Note
that r < n =Y _,j(i) and

(1o w) \J?—l) (1<i<r) (73)
as well as
Ai )
i+ 1 < (Aow), (ieZ.). (74)

We obtain from inequalities (73) that



K. Dykema et al. | Advances in Mathematics 185 (2004) 1-79 41

while inequalities (74) yield

- (Zn:j(i) +n— 1>(i®w)n = (@n-1(A¢w),

Jj=1

if one notes that (A ® w), = 4;,/j(in).

This gives the < inequalities in (72) and (71), respectively. That these inequalities
are, in fact, equalities follows from considering 1 = 1,1 + 1, in (71) and 2 = 1,
in (72). O

3.16. Corollary. For any J € ¢ and p € (0, o0), one has
Lo < (1)) < 2o ol (75)
Particularly important is the following.

3.17. Corollary. For any characteristic set X < co*, one has

S, =280, (76)
Note that identity (76) is equivalent to the identity
2,63 =303, (77)

valid for any 2, 2’. Indeed, aided by the associativity and the commutativity of the
&-product on the lattice of characteristic sets, identity (76) implies that

2,2 =260, =X,
Conversely, identity (77) gives
S.=2,0c =2&(cf), = 260,

The next proposition collects some useful information about sequences ?,
s € (0, c0).
3.18. Proposition. One has the following asymptotic relations:
= if0o<s<l,
(@), ~{ wlog if 5= 1, (78)
(o if s> 1
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and

((1)s)w* if 0<s <1,
o’ ®w~{ wlog if s=1, (79)
{(s)w if s> 1.

Proof. For a given s > 0, consider the number N(s,x) of pairs (i,j) of positive
integers such that /*j < x. The identity

von =S - 5 [- X Seown

i=1 I <icxlis | <ixlls
implies that
N(s,x)~((s)x as x - o0
if s > 1 and
N(1,x) = xlogx + O(x),

from which the set of asymptotics, (79), follows. The other set, (78), is even more
elementary. [

3.19. Corollary. For any s > 0, one has

GO
llmm— C(S)7
where
1
o(s) = —(1 — e )s] for 0 <s < 1,
1 for s = 1.

The function ¢(s) is real analytic except at s = 1 where it is only continuous. Its
one-sided derivatives at 1 equal —oo and 0, respectively. The maximum value

max c¢(s) = 1.59137 07384 08698...

0<s<oo

is attained at syax = 0.60917 92260 28796...
The following construction produces an example of a sequence / € cgK such that

lim 4 = 1 (80)
R0
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and

=2 (81)

3.20. Proposition. There is a sequence ). € ch such that any x € [1,2] is a limit point of
the ratio sequence 1,/A® o.

Proof. Let

with my € Z, to be chosen. Then letting ¢, = my + --- + my we have

ST 027my + 27K (n — )

(Za), = =2 P (ghe1 <n < qi, k= 1)
and
iow=(1,...,1,270 27k kL),
——
2 2 7"

where 7 = my + --- + m, with r being the number of times that 2 divides k. Thus
the first term of A © w that is equal to 2% is the nth, where

ne =1+ 25 my + 2572 (mg + my) + - 4+ 2(mo + - 4+ myy)
=1
=1+> (27 = m.

j=0

Therefore choosing my large enough, namely
k—1 ]
m 2 14 (25 = 2)m;, (82)
j=0

ensures ¢x_; < nx < qx and hence

k=T nk—j k=1 1 —j
(/’ia)nk — 2k(j.1) _ Z/:()Zk v/mj‘ + 1 + Zi:O(zk J — 2)mj _ 2 _i
(1ow), " L+ 30028 — Dmy "k
Thus any choice of myg,m;, ... growing fast enough so that (82) holds yields 4

satisfying (81).
But if my satisfies (82) then (1 ® w)qk = 27K If my, ..., my_1 have been chosen then
taking my, large enough will force ()La)qk to be as close to 2% as desired, which will
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force the ratio

(/1”)%
(A w)qk

to be as close to 1 as desired.
Since the ratio sequence p = 4,/(A® w) is bounded and p,,,/p, - 1 as n - o,
any x € [1,2] is a limit point of p. O

Orlicz sequence spaces are the subject of the following.

3.21. Theorem. For any nondecreasing function M € [0, oo)[o’w) which vanishes at 0
and for any real number s € (0, o0), the following conditions are equivalent:

Bo(M) > s,

(e) there exist constants 0,¢, K > 0 such that

M(t) < KM@ (0 < t,u < ). (83)

The proof is based on the following.

3.22. Proposition. Let u € cé3 and M € |0, oo](o’oc) be a nondecreasing and vanishing
at 0 function. If

(We0, <ty (84)
and p # O(w) then po(M) > 1.
Proof. Inclusion (84) is equivalent to the inclusion

=Y (85)

where M#u € [0, 0™ is defined as follows:

Mu(t) = pug(an) = S M) (0 <1< ).

n=1
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By Corollary 2.39, inclusion (85) is equivalent to the condition
M#p <, M;
i.e., there exist constants K, c¢,é > 0 such that
M#u(t) < KM(ct) (0 <t < 9). (86)
The obvious inequality in ¢y(Z x Z):

w,(A®1,) < AQu, (meZ ., i€ c;’f)

translates into the following inequality in cff:

i Dmd < A& . (87)

Note that p,, is the best possible constant. By combining inequalities (86) and (87)
for 4 = (u/c)1, we obtain inequality

mM(#Lgu) < M#u(u/c) < KM(u) (meZ,,0 <u < ¢d).
It follows that

MO(’%") < % (meZs,).

Suppose that u # O(w). Then there exists my € Z . such that

K
my c

and, hence,

log Mo (s, /) _ log(K /mo)

M) = > > 1. a
P = g fe) 7 Toslhn, /0
Proof of Theorem 3.21. Let M) (x) = M(x*). Since
fao = GNP, tyo = () (88)
and
Bo(MY)) = spo(M), (89)

it suffices to prove the equivalence of conditions (a)—(e) for s = 1. (a) = (d).

Inclusion (/1(‘,([)))“ < /)y is seen to be equivalent, with help of Corollary 3.17, to the

inclusion /9 S /m40- The latter is equivalent, in view of Corollary 2.39, to inclusion
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‘m Sl Which is itself equivalent to £ © O, < ¢y It follows that
(W0 4 =t0 60,00, tyo0,<t
U0 00 =0,C0,80,=lu&0y Sl

and, since ®? # O(w), Proposition 3.22 can be applied.
(d) = (e). Let 0 < ¢ < (M) — 1. Then there exists 0 < t < 1 such that

My(t) < o' 2
In particular,
M(tu) < M)t (0 < u <v)
for some v > 0. It follows that
M(tu) < M(?"u) < M(u)?""*9 (0 < u < v) (90)

ift < 1. Forn = [llgg 1], inequality (90) combined with the inequality " < /7 yields

the following inequality:

M(tu) < KMu)!'™* (0 <t <10 <u<v),

where K =117
If condition (e) holds then

S ()< > T 0<i<o
n=1/6 n n=1/0 n

and
M#o(t) < K'M(t) (0 <1t<9) (91)

for some constant K < 1/6 + K{(1 + ¢). Thus M#w <, M.
The obvious inequality

which holds for any ¢+ > 0 and m € Z,, when combined with inequality (91) for
m:=[1/3] proves that M#w(t) < co for any ¢ > 0. Therefore Corollary 2.39
implies also the inclusions /,f;) = /1540;#@ and 4y < /40 Which are equivalent to (b)
and (c) of Theorem 3.21, respectively.

Implications (b) = (a) and (c) = (a) are clear. [
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Note that the proof of implication (d) = (e) demonstrates the existence, for any
choice of ¢ € (0,f,(M) —s), of constants 0,K > 0 for which inequality (83) is
satisfied.

Theorem 3.21 combined with Theorem 3.5 yields the following interesting result.

[0,

3.23. Corollary. For any nondecreasing function M € [0, ) ) Wwhich vanishes at 0

the following conditions are equivalent:

(a) (/](‘3)){? is e-complete for some e > 0,
(b) /}; is e-complete for some e > 0,
(¢) Bo(M) > 0.

If so, then a((/ﬁ))*) = a(/y;) = 1/By(M). In fact, for any t € (0,,(M)], one has
(/1(‘3) ) = /1(\?) and (4 ) = ly for a suitable convex Orlicz function N.

Proof of Corollary 3.23. Equalities (88) and (89) show that, for any ¢ € (0, ,(M)]
the powers (/A%’ and (Z)r)" are the corresponding Orlicz sequence spaces whose
Matuszewska’s f;-index is greater than 1. In this case, there exists an equivalent
convex Orlicz function; cf. the remark on p. 33.

If /}ﬁ,} is e-complete for some e > 0, then the comparison of the equivalence
(a)<>(b) of Theorem 3.5 with the equivalence (c)<>(d) of Theorem 3.21
demonstrates that f,(M) = 1/a(/;;) > 0. A similar argument applies also when

(/Y is e-complete. [

4. Spectral description of ideals in Z(H)

4.1. Singular numbers. From now on H denotes a separable infinite dimensional
Hilbert space which is tacitly identified with /,(Z ;) each time we mention the matrix
representation of a bounded linear operator 4 € Z(H).

Let Gr,(H) denote the set of vector subspaces V' < H of finite dimension n, and
Gr'"(H) denote the set of closed vector subspaces W < H of codimension n. The
correspondence V «» '+ provides an obvious bijection Gr,(H) < Gr"(H).

For any 4 € #(H), the two types of s-numbers

inf  |[HAHS H/V|, (92)
Ve Gr,\(H)

where ny : H—>» H/V is the quotient map, and

inf ||w < HAH|, (93)
W e Gr-'(H)
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where iy : W< H is the inclusion map, are equal to the distance from A to the set
.1 of operators whose rank does not exceed n — 1. This is well-known and very
easy to see: if Py denotes the orthogonal projection onto W < H and P+ =1 — P,
then

iw A i
W < H A HI = |[4Py | = (14— AP} | > dist(4, Foosim w)
and, for every K € Z,_1,

y
|4 - K|| > ||(A_K)}Ker1<” = | = ||[Ker K< H = H|.

M
This demonstrates the equality of dist(4, #,_1) and quantity (93). By considering 4*
one obtains the equality of dist(4, #,_1) = dist(4*, #,-1) and quantity (92). Their
common value is denoted s,(A4) and called the nth singular number of a bounded
linear operator 4 (for an exhaustive treatment of various scales of s-numbers
the reader is referred to Chapter 2 of Pietsch’s book [50]; cf. also Chapter II,
Sections 1-2 of [33]). The infimum in (92) and (93) may be replaced by minimum.

For a compact operator T € #(H), one has also s,(T) = 2,(|T]), the nth
eigenvalue of |T| = (T*T)"? listed with multiplicity and in nonincreasing order
(essentially, due to Ernst Fischer [31]; cf., e.g., [54, Section L.5]).

Since every proper ideal J ¢ #(H) is contained in the ideal /" = % (H) of
compact operators, the set of sequences of singular numbers s(7):=
(s1(T),52(T), ...) forms the subset

2(J)=A{s(T) | T e J} (94)

of ¢. It is easy to verify that X(J) is a characteristic set and that
J(2)={T e B(H)|s(T)e X} is an ideal for a given characteristic set. This leads
to the following spectral description of the lattice of proper ideals in the ring Z(H)
which is equivalent to Theorem 12 in Section 1.7 of [54]. Schatten’s theorem is closely
related to Theorem 1.6 on p. 844 of [19].

4.2. Proposition. The correspondence J +— X(J) and its inverse X +— J(X) establish
an isomorphism between the lattice of proper ideals in the ring B(H) and the lattice A
of characteristic subsets of co*.

4.3. Recall that the lattice of characteristic sets is isomorphic also to the lattice of
symmetric solid subspaces S < ¢o(I'), where I is any countably infinite set, via the
correspondence S > S of Section 2.7. In particular, S(J) < ¢y will denote the
symmetric sequence space corresponding to an ideal J ¢ #4(H).

It seems convenient to treat these three canonically isomorphic lattices as three
equivalent realizations of a single lattice which from now on will be denoted by A.
Any operation or relation on A which is introduced using one of the three
descriptions will then produce the corresponding operation or relation in terms of
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the remaining two. For example, the operations on characteristic sets which were
introduced in Section 2.8 give rise to the corresponding operations on ideals: 1J,
1J,J%, 4 J, Jqs, J* (s > 0), J° (the am-interior of J) and J~ (the am-closure of J).
Note that only sporadically do we have I ®J = I ® g J for some ring R = %(H).
This explains why we decided to use a distinct notation for the internal tensor
product.

In particular, we will say that an ideal J is am-closed if J— = J, cf. Section 2.8
above. This property plays a special role in the last chapter devoted to single
commutator space [4(H), J],.

4.4. In order to keep notation simple we shall denote by (7, 7z, ...) the ideal whose
characteristic set is generated by sequences 7y, 72, .... In particular, (7) will denote
the principal ideal (Diag(n)).

4.5. We shall say that J is a Banach ideal if it is equipped with a complete norm || ||
such that the trilinear structural map #(H) x J x #(H) - #(H), (A, T, B) — ATB,
is bounded. Any such norm is equivalent to the symmetric norm given by

7| sup  [[ATB]|. (95)
ABe B(H

sym =

[14]l:| Bl <1

Namely, || || < < K| || where

[ lsym
K:=||3(H)®.J®2(H) > J||.

In particular, any Banach ideal becomes a complete uniform-cross-norm ideal in
the terminology of Section V.1 of [54], or a symmetrically normed ideal in the later
terminology of Gokhberg and Krein [33].

4.6. e-complete ideals. In Section 2.13 we introduced the concept of an e-complete
radial set. We will call the ideal associated with an e-complete characteristic set an e-
complete ideal. Thus, all finitely generated ideals (71, ..., T,,) = (|T1| + -+ + |Twl)
with the property that the sequence 1/>""" |s(7;) satisfies the A,-condition (22) are,
in our terminology, e-complete for every e > 0; cf. Corollary 2.23 above. The Boyd
index o(J) of an e-complete ideal J is defined as the Boyd index of its characteristic
set 2(J); cf. Section 2.17 above. We record here also the following corollary of
Theorem 3.6:

e-complete ideals coincide with the powers J*, s > 0, of symmetrically normed ideals.

4.7. Lorentz, Marcinkiewicz and Orlicz characteristic sets, which were discussed in
Sections 2.25-42, define the corresponding operator ideals:

e Lorentz ideals: Z(¢) = J(/*(p)) and Z,(¢) = Z(9)"”,
® Marcinkiewicz ideals: .4 () == J(m™(y)) and 4,y = 4 (W)"?,
® Orlicz ideals: 353) = J((/ﬁ}))*) and Zy = J(£7)).
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Here p is a positive real number. These ideals are Banach (and, simultaneously,
am-closed) if:

(@) p = 1 and ¢ is concave (Z,(¢)),

(b) p = 1 (My(¥)),
(c) M is convex (ff[(\,[;) and Zy).

Lorentz ideals %, (¢) and Marcinkiewicz ideals .#,(y) are e-complete for any e < p.

4.8. A few words are due in order to describe certain special types of ideals
J ¢ #(H) already present in the literature.
The ideal of compact operators #~ corresponds to ¢; while the ideal of finite

rank operators & to c?f. Omnipresent Schatten ideals ¥, = (31)1/", pe(0,00),
correspond to the symmetric sequence spaces 4,. They appeared in print for the first
time apparently in [55]; cf. Remark 4.1 on p. 580. They are also denoted S, in [33]
and %, in [17]. (This last notation seems to have resulted from confusing Gothic
letters.)

4.9. Two types of ideals studied by Gokhberg and Krein in their book [33] are
special instances of Lorentz and Marcinkiewicz ideals:

Sy = Z(o(n)) and Sy = H(1/m,).

Section I11.4 of their book is a classic exposition of the more general theory of
ideals Sy introduced by Schatten ([54, Sections V.5-9]; Schatten uses a different
notation). Each Sy is associated with a symmetric norming function @. This class of
Banach ideals contains Lorentz ideals Z,(¢), for p > 1 and ¢ concave,
Marcinkiewicz ideals .#,(y), for p > 1, and Orlicz ideals &), for convex M.
Every ideal Sy is am-closed. This readily follows from a theorem of Ky Fan [30] (cf.
also [33, Section III.3, Lemma 3.1]).

4.10. The Macaev ideal &,,, cf. [43], which coincides with the Lorentz ideal #(log),

and its square-root (6(,))1/ 2 appear in the work of Alain Connes on 6-summable
Fredholm modules; see [23]. The celebrated Kéthe dual S = (S,,)™ which owes its
current vogue® to Connes’ work and the fact that it supports Dixmier traces (see [24]

and the references therein) coincides with the Marcinkiewicz ideal /(- llog) =

A (1/w,). Connes’ own preference is to denote S, by 29D and S, by £, o§€\lmk
or #:%): see [24, Section IV.2.s]. His logarithmic integral ideal %/, cf. [23] and
Section IV.8.00 of [24], coincides with the Marcinkiewicz ideal .#(log) which is,

incidentally, equal to the principal ideal (1/log).

SCf., e.g., [56].
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4.11. Lorentz ideals .%,,. The classical Lorentz sequence spaces 7,4, 0 < p < o0, are
defined, to use our notation, as

/ — /((of}/p)l/q lf 0 < q < o0,
" @wl/p = ((Dm)l/p if q = 0;

cf., e.g., [10, Section 1.3, p. 8] or [9, Definition 4.4.1 on p. 216].

The corresponding Lorentz ideals .%,, coincide, for 1 < p < coand1 < ¢ < 0,
with the interpolation ideals %4 discussed by Connes [24], Section IV.2.0. Earlier,
ideals #?" played an important role in the work of D. V. Voiculescu on quasi-
central approximate units [63—65].

Connes does not define #"9 except for %) = Sy = #(1/w,); cf. Section
IV.2.f of his book. Let us finally mention that %,, = %,, 0 < p < o0, and that
L = (1) w).

Note that the standard gauge on /}f; does not induce a rearrangement invariant
norm on ¢, if g > p. Nevertheless, there exists an equivalent rearrangement
invariant norm on 4,, for p > 1, This is well known (cf., e.g., [9, p. 218]) and agrees
with the fact that the Boyd index a(4,,) = 1/p isless than 1 (cf. Theorem 3.6 above).

4.12. Ideals S(f) and D(f) studied in [17,53,57] and to some extent also in [2,48]
coincide with Orlicz ideals ¥inf > M and LPA;O ), respectively, where M = f.

5. Sums of commutators
5.1. We describe in this chapter the commutator space [/, J], introduced in (1) on
p. 1, when at least one ideal is proper. Key to this is the action of the monoid
Emb(I'), introduced in Section 1.1, on the Banach space %(/>(I)):

A — UrAUp = UpAU; (A € #((2(I)), f € Emb(I)). (96)
The partial isometries Uy which are defined on basis vectors e, € />(I") by

ery 1if ye Domf,
e ={ 0 e ©7)

0 otherwise.
constitute a x-representation of Emb(I") on the Hilbert space />(I'):
(Ur) = Up.

Here f + f7 is the antipode operation on Emb(I"), introduced in Section 1.1. The
embedding

(I B(LH(TN), o +— Diag(a), (98)
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is a morphism of representations of Emb(I') if we recall that Z,, (I') is equipped with
a natural action of Emb(I"), cf. (7).

The action (96) is not via (nonunital) algebra endomorphisms unless we restrict it
to the submonoid & of self-injections I' > I'; see Section 1.1. The reason is that &
coincides with the submonoid of left-invertible elements of Emb(I'), and f7f = idr
precisely for f € &r.

5.2. An action of a monoid M on a k-module V is equivalent to making ¥ a module
over the monoid k-algebra of M

kM = { Z amm | ay, € k, all but finitely many zero}.
meM

The module of coinvariants V},, the largest trivial quotient representation of M,
equals V/#y,V where .9), is the augmentation ideal of kM, i.e., the kernel of the
k-algebra homomorphism

kM - k, 1= Z aym +— degt:= Z ay,.

meM meM
The submodule .#), V' is the union of the sets
(fM V), = {Z(m, — m/)vi | mi,m,-’ € M; v; € V},
i=1

since any y /_a; f; € Sy equals > o7_ ai( fi — fo).
We begin the description of the commutator structure of operator ideals from the
following identity.

5.3. Lemma. For any f',p" € C' and f,g € &r, one has
Diag((f — ¢).B) = [Uy Diag(p') U, U, Diag(B") Uy, (99)
where = p'p".

From now on we assume that I' = Z,, H = /»(Z;) and § = &7,.
Since every ideal in #(H) is the filtered union of principal ideals, Lemma 5.3
implies

5.4. Corollary. For any pair of ideals in B(H), at least one proper, one has

(s, &7, (100)

where S(IJ) S ¢y is the symmetric sequence space associated with the ideal I1J
(cf. Section 4.3).
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Another identity involves the unilateral shift s: 7, - Z,, n+— n + 1, and the
sequence of partial sums:

a = (id —s),0(a) (xeCh). (101)

5.5. Consider the adjoint action of the unitary group % = %(H) on the set of
compact normal operators ;. Each orbit #T = {UTU* | U € %} is contained in
the set #Diag(Q) = |, . Q%Diag(i) for a unique quasiorbit Q = ¢, cf. (9). This
unique quasiorbit will be denoted [ 7] and it consists of all rearrangements of the
sequence of eigenvalues of 7', each nonzero eigenvalue occurring as many times as its
multiplicity, and taken in any order.

For any subset 2~ < cf;?, we form the set

[T]y={xe[T][uni(l«]) e 2} (102)

(the upper nonincreasing envelope was defined in (18)).

If X is the characteristic set of an ideal J ¢ #(H) then [T ], # & if and only if
T € J. Indeed, [ T]y contains in this case the set {o € [ T'] ||| € ¢;} of sequences
of eigenvalues of T listed in the nondecreasing order of their absolute values (this
leaves only nonzero eigenvalues unless 7" has finite rank).

The main result of this chapter and one of the main results of the whole article is
the following.

5.6. Theorem. Let I and J be ideals in #(H), at least one of them proper. For any
normal operator T € 1J, the following conditions are equivalent:

(@) Tell,J],

(b) TelLJ];,

© [T] N JsSU) # &,

@ [T] =4S,

© [T] <= (SSU))s,

® [[Tﬂz(u) n{rec|u. e SUN} # &,

(@ [Ty sf{rec|aaeSU}L,

(h) there exists o € [ T] such that o, € S(IJ) and |a| is monotonic.

The following diagram shows the organization of the proof

(d) <= (o)

7\

@ (b) (€

\ /

@ = () =(f)
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The principal implications are (a) = (g) and (f) = (e). Implication (c) = (d)
follows from the fact that .#¢S(1J) is a vector space and any two elements in [ 7' ] are
of the form f.a and g.«, for some f, g € & and a particular element o of [ 7' ]; hence
their difference belongs to #S(1J). Implications (e) = (b) and (d) = (a) are special
cases of Corollary 5.4. The remaining ones are obvious.

The proof of implication (a) = (g) is based on

5.7. Proposition. Suppose that T = >._|[A;, Bi| for some T, A;, B;i € #(H). Then,
for any projection P € B(H) of rank p < oo, one has the inequality

Tr PTP
[Tr PTP] p | (8r +2) ZSPH sy 1(Bi) + 4r||PETPY|. (103)

Proof. According to the definition of singular numbers, cf. (92)—(93), there exist
projections E;, 1 < i < r, 1 <j < 4, of rank at most p such that

1Ex Aill = sp1(4D), [[AES || = sp1(4]) = sp41(A)) (104)
and

|E3 Bill = sp1(B),  |IBiE; || = 5p+1(B;) = 5p41(By). (105)
Denote by E the projection onto

r

4
ImP+Y ) ImE
i=1 j=1

Its rank does not exceed p + 4rp and

[Tr ETE| =Y Tr([EA;, EB}]) + Y (Tr EA;E* B; — Tr EB,E* 4;)

i=1 i=1

< D (IGE | |E*Bil| + |BE* || |E* 44]|) rank E

i=1

8r+2)p ZSP“ i)Sp+1(Bi)

in view of equalities (104)—(105) and the definition of E. On the other hand, since
E > Pand P! > E — P, one has

Tr PTP = Tr ETE — Tr(E — P)T(E — P)

= Tr ETE — Tr(E — P)(P* TP+ )(E — P)
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which implies that
|Tr PTP| < |Tr ETE| + ||P* TP* || rank(E — P)

,
< Br+2p Y spi1(A)sp1(B) + 4pl|PETPY||. O
i=1

For a compact normal operator 7 and 1 € [ T'], let u = (u,) be the correspond-
ing orthogonal sequence of eigenvectors: Tu, = A,u,, n€ Z,. Set P, to be the
projection onto the linear span of uy, ...,u,. Then

Tr P,TP,  Jy + - + Iy
n N n

If T =>"_,[4: Bi] for some 4; € I, B; € J, then

r

Za] < (8r+2) > s(4;)s(B;) + 4r uni(|2])
i=1

in view of Proposition 5.7. Property (g) follows by choosing A € [[T]]Z(m.

Now we prove implication (f) = (e). Consider the functione:Z, —» Z,, e(n) =
2lee2nl+1 Forallne Z,,te(n) <n < e(n).

For a given 4 € ¢, set 5, = Tln)o’e(,,)_l(i). The estimate
1 )
B < o\ | 20 A+ | D
e(n) I<i<n n<i<e(n)
1|& 1 .
< - il + zmax{|4||n < i < e(n)}
n\= 2

(when n = e(n) — 1 the term involving maximum disappears) yields the inequality
, L.
Bl < 12| + 5 uni(2).

In particular, f§ € S(1J) provided A, € S(IJ) and uni(|A|) e Z(IJ). Let f": 2, - Z,
nt—2nand [": 7, >Z,,n— 2n+ 1,and

pe=(2-id =" = f").p = (id = f").B + (id = /").B. (106)
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By noting that e(2n) = e¢(2n + 1) = 2e(n) for all n € Z, , we have

Hon = 2B — By = 8(1—}1)(0—29(’7)1()“) o O'e(n)—l(/l))

2e(n)—1

Z 4i = 2Byt — By = Mopi

i=e(n)

and p; = 2f, = 4. In particular,

2k+1_1q
Mok = =+ = Uopk+1_1 = 2_k Z )%‘-
i=2k
Thus, for any natural number &, we have
2k+1_1
>, (- =0 (107)

=2k
For every i € {2F,...,2k*1 — 1}, one has the estimate
= Al < Ll + 12 < 2 unige(|2]). (108)
At this point we need the following well-known result, for the case £ = C.

5.8. Steinitz’ Lemma. For every finite dimensional real normed vector space E, there
exists C > 0 with the property that for every finite collection of vectors vy, ...,v,, € E
of norm not exceeding 1 and /" ,v; = 0, there exists a permutation g € S,, such that

5.9. Remark. The smallest value of C is denoted S(E) and called the Steinitz’
constant of the normed space E. Ernst Steinitz himself proved that S(E) < 2 dim E;
cf. [60]. This has been improved to S(E) < dim E (cf. [34]) and S(£) < /34220

(cf. [7, p. 199], without proof). One has S(R) = 1 (trivial) and S(C) = v/5/2 =
1.1180... (cf. [6,8]).

In view of equality (107) and inequality (108) combined with Steinitz’ Lemma,
there exist permutations g; of sets {25, ..., 2¥*1 — 1} such that the estimates

n

> By = Aa)

i=2k

< 28(C)unix (|2]) (109)
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hold for n = 2%, ...,2k*1 — 1 and any ke Z,. Assemble all g;’s into a single
permutation g of Z . Note that g(1) = 1.
By noticing that, for n e {2~ ... 2k+1 — 1}

unix (|2) = (uni(|2)*%) 0 < (uni(]2))*?),
we deduce from (109) the inequality
|o(g. ! (= 2)| < 28(Chuni(|2])*.
In particular, o(g;'(u— 1)) e S(IJ) if 4 e [ T ] 5 Recall that
g (w=2) = alg, (e —2)) = s.0(g; " (1 — 2));
cf. identity (101). Hence
A—p = (95— 9).7 (110)

where 7 := a(g;'(u — 2)). By combining identities (110) with (106), we arrive at the
representation

A= (id=f").p+ (id=s").B+ (95— 9).7
with S,y e S(IJ) if 2, € S(IJ) and uni(|A|) € Z(1J). This ends the proof of impli-

cation (f) = (e) and hence of Theorem 5.6.

Theorem 5.6 leads to a simple characterization of the commutator space [, J].
This is so, because an operator 7' = X + iY, where X = X* and Y = Y*, belongs
to [1,J] precisely when X and Y do.

What follows is the applications of Theorem 5.6. Some are merely straightforward
corollaries, and some depend additionally on deeper results established in Sections 2
and 3.

5.10. Theorem. For any ideals I,J = #(H), one has [%(H),1J] = [I,J] and
[, J] = 1[1,J]; (111)

Proof. Let T = X +iY €[I,J] as above, and let U,V be the corresponding
unitaries that diagonalize X and Y, respectively:

UXU* = Diag(4) and VYV* = Diag(u)
for some A, i € S(1J). Then
T = U Diag(A + in)U + i(V* Diag(u)V — U* Diag(u)U).

The normal operator U* Diag(4 + iu)U is, according to parts (e) and (b) of
Theorem 5.6, the sum of three commutators in [Z(H), IJ] and, alternatively, also of
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three in [/, J]. On the other hand,
V" Diag(u)V — U Diag(u)U = [V"U, U" Diag(u) V] (e [#(H),1]])
— [V Diag(u,) U, U Diag() V] (€ [1,)
for any representation p = pyu, with u; € S(I) and u, € S(J). O

In Sections 6 and 7, we address the question of the minimum number of
commutators needed in commutator representations of various types.

5.11. Theorem. (i) For any operator T € B(H), the following conditions are
equivalent:

@ (T) < [1,J],
(b) |T| €1, J].

(ii) For any ideals I,J and L in B(H), at least one of them being proper, the
following conditions are equivalent:

(@ I/, L,
(b) I, < JL,
(c) I¢®(w)<=JL.

(iii) 1 € &) then the following conditions are equivalent:

@ {TelI|TrT =0} < [J,L],
) {A, |22} = Z(JL), cf (16).

Proof. (i) For any positive S e (T), its eigenvalue sequence A(S) is O(s(T)®™) for
some m = 1. In view of parts (a) and (h) of Theorem 5.6, the condition |T| € [, J] is
equivalent to s(T), € Z(1J). However, (s(T)*™), < ms(T),. Thus A(S), € Z(IJ)
and S € [I,J] by Theorem 5.6 again. A general operator S € (|7]) is a C-linear
combination of positive ones.

(i1) Implication (b) = (a) follows from Theorem 5.6 combined with part (i), the
reverse implication (a) = (b)—from Theorem 5.6 alone. Equality I, = I ¢ (w)
follows from Corollary 3.17.

(iii) Elements of {T € I | Tr T = 0} are linear combinations of operators

Doy
U U,

where A € 2(I) and U is an isometry. Hence the equivalence of conditions (a) and (b)
follows from the equivalence of conditions (a) and (g) of Theorem 5.6. [
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In Section 6 we prove that any of conditions (a)—(c) of Part (ii) is equivalent to the
condition

1<[J, L.

Let us return now to the &-equivariant embedding (98) which produces
&-equivariant embeddings S(J) < J for all ideals J ¢ #(H) and the induced maps
of modules of coinvariants

S, = Js (112)
(cf. Section 5.2 above). Since YxJ < [#(H),J], we have also the quotient map

Js>J/[B(H),J). (113)

5.12. Theorem. For every ideal J = %(H), the composition of maps (112) and (113)
produces an isomorphism

S, —=J/[%#(H),J]. (114)

Proof. Map (114) is surjective, since every T = X + iY € J equals Diag(1 + in)
modulo [#4(H),J] where A€ [X] and pe [Y]. If Diag(a)e [#4(H),J] then
o € I S(J) by implication (a) = (d) of Theorem 5.6. [

We close this chapter by characterizing the condition J = [#(H),J], i.e., the
absence of nonzero traces on J, for e-complete, principal, Lorentz and, respectively,
Orlicz ideals. Sections 5.15-20 are devoted to principal ideals alone.

By combining Theorems 5.11(i1)) and 3.5, we obtain the following “index
theorem™.

5.13. Theorem. If an ideal J is e-complete for some e > 0 (cf. Section 4.6), then for
any s > 0, the following conditions are equivalent:

(a) J* = [#(H), ],
(b) the Boyd index a(X(J)) is less than 1/s.

Since the Boyd a-index of a Banach sequence space is less or equal than 1, we infer
that a Banach ideal J admits a nonzero trace if and only if its Boyd a-index equals 1.
It follows that no power J°, s > 1, of such a Banach ideal J is Banach, cf. (6).

5.14. Remark. The importance of knowing for which s > 0 one has J* = [#(H), J*
is due to the following fact proved in [72] (cf. also [70, Theorem 7 and Corollary of
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Theorem 8]):

If J? = [B(H),J?] then the relative cyclic homology groups
HC,(#(H),J) vanish for all n < 2p and HC»,(#(H),J) is
canonically isomorphic toJ?*1/[J,JP] = J* 1 /[#B(H),JP ).

By combining Theorems 5.11(ii) and 3.10, we obtain

5.15. Theorem. For any nonzero sequence T € ca*( and every real number s > 0, the
following conditions are equivalent:

@ (n) = [#(H), ()],
(b) the Matuszewska f-index (20b) of m is greater than —1/s:

p(m) > —1/s,

(b)' there exists ¢ > 0 and an integer my > 1 such that
Ty < ml/s_cnnm

forallm = my and allne 7 .,
(c) = = (n%),.

5.16. Corollary. For any nonzero sequence T € 00*7 the following conditions are

equivalent:

(@) (x) = [B(H), (x)] for all 5 > 0,
(b B(m) =0,

(b) for any ¢ > 0 there is an integer my > 1 such that
Ty < M Ty
forallm = myand allne 7 , .

The Matuszewska f-index vanishes, for example, for any slowly varying
sequence.’ Hence

5.17. Corollary. For any slowly varying sequence © € co* and s > 0, one has (n)’ =

[#(H), (n)’].

"Several equivalent definitions of slowly varying sequences are reviewed in Section 1.9 of book [11]; see
the references given there, particularly, [12].
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5.18. Remark. This corollary has far reaching consequences. With the help of
Remark 5.14 we infer that the relative cyclic homology groups HC,(%#(H), (7))
vanish in all dimensions if 7 is slowly varying. This, in turn, implies that the relative
algebraic K-groups K,((#(H),(n)) are in all dimensions isomorphic to the
topological K-groups K;OP(C); cf. [70]. Recall that the latter are isomorphic to Z
when ¢ is even, and vanish when ¢ is odd.

All of the above applies, in particular, to any power of the logarithmic integral
ideal /. Recall that the ideal %7 plays an important role in Connes’ theory of
0-summable Fredholm modules; cf. [23] and Section IV.8.x of [24].

The following corollary of Theorem 5.11 describes the commutator space
[8(H), (n)] for = summable.

5.19. Corollary. For a summable sequence m € 033 , the following conditions are
equivalent:

@) [#(H),(n)] ={Te(n)|TrT = 0},
(b) m,, = O(=®m) for some me Z . .

By combining Theorems 2.36 and 5.15 we obtain

5.20. Theorem. For any sequence © € cgk, the following conditions are equivalent:

(a) the ideal (n) admits a complete symmetric norm,
(b) m = mg,

(c) the Marcinkiewicz ideal 4 (1/n,) is principal,
(d) A (1/ma) = (m),

(@ (m) = [#(H),(n)],

() AV /na) = [B(H), 4 (1/74)].

Proof. Theorem 2.36 provides implication (a) = (b), while Theorem 5.15 supplies
the equivalence of (b) and (e). If .#(1/n,) = (v) for some sequence v € ¢, then
v = v, by Theorem 2.36 and condition (f) follows in view of the equivalence of (b)
and (e). Finally, in view of Theorem 5.11(ii), condition (f) implies that (7,), = O(mn,)
which is equivalent to condition (b) by Theorem 3.10. [

By combining Theorem 5.11(ii) with Corollary 3.8, we obtain the following result
for Lorentz ideals Z,(¢); cf. Section 4.7.

5.21. Theorem. Let ¢ be a nondecreasing sequence satisfying the A,-condition (22) and
letp >0, s> 0. Then £,(¢)' = [B(H), ZL,(¢)"] if and only if a(¢) < p/s.

5.22. Corollary. (S,)’ = [4(H),(S,)’] for all s > 0.
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Indeed, S, = Z(log), cf. 4.10, and «(log) = 0, since the log sequence is slowly
varying.

For classical Lorentz ideals %,, (0 < p < o, 0 < g < o), cf. Section 4.11,
Theorems 5.21 and 5.15 combined together yield

5.23. Corollary. %,, = [#B(H), %] if and only if p > 1.

The analogue of Theorem 5.21 for Marcinkiewicz ideals .#, (), cf. Section 4.7,
uses instead Corollary 3.9. In view of the discussion in Section 2.33, one can assume
without loss of generality that the sequence / is quasiconcave.

5.24. Theorem. Let Y be a quasiconcave positive sequence and p > 0. Then M ,(Y) =
(B, A, if and only if a() < p.

Finally, we come to Orlicz ideals; cf. Section 4.7. By combining Theorems 5.11(i1)
and 3.21, we obtain

5.25. Theorem. For any nondecreasing function M € |0, oo)[o’oc) which vanishes at 0

and for any real number s € (0, c0), the following conditions are equivalent:

@) (2,)) < [BUH), (L)),
by (2 = [#(), (),
© (Zu) = [#(H),(Lu)’],
(d) the Matuszewska f-index at zero of M, cf. (54), is greater than s:
ﬁO(M) > 8,
(e) there exist constants 6,¢, K > 0 such that
M(tu) < KM )™ (0 < t,u < 9). (115)
Theorem 5.11(ii) and Corollary 3.23 combined yield

5.26. Theorem. For any nondecreasing function M € |0, oo)[o‘w) which vanishes at 0,
the following conditions are equivalent:

(@) 31‘9 is e-complete for some e > 0,

(@) (£)) = [B(H), (L)) for some s > 0,
(b) L is e-complete for some e > 0,

(b)Y (Zu)’ = [B(H),(%u)’] for some s > 0,
© po(M) >0

5.27. Remarks. (1) By constructing a family of positive and continuous (with respect
to the Marcinkiewicz norm 7"+ ||s(T')|l,(1x,)) traces, Dixmier [26] proved that the
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closure of [#(H), .#(n,)] has an infinite codimension in .#(n,) whenever 1 = o(n,).
All the same, this provided the first examples of ideals J & %) with J # [%(H), J].

(2) A complete characterization of sequences © for which the principal ideal (7)
and the Marcinkiewicz ideal .#(1/n,) admit a nonzero positive trace was given by
Varga ([62, Theorem IRR]) and by one of the authors [71]. It is notable that
characterization coincides with our characterization of the condition J # [#(H), J]
for these ideals, which is of course the same as the existence of some (not necessarily
positive, or continuous) nonzero trace on J. Thus we conclude that the existence of a
nonzero trace on any ideal of these two types implies also the existence of a trace
which is positive (and, simultaneously, continuous with respect to the Marcinkiewicz
norm T > [15(7) 1)

We emphasize, however, that no such implication holds in general. For example,
while there may be many traces on an ideal of the form J#, where 4" denotes the
ideal of compact operators, no positive trace exists on J#~ if J & %. An example: the
ideal {T e 4 |s(T) = o(w)} = (w)A.

In the same article [62], Varga also proved that the ideal () supports no positive
trace precisely when (7) is a complete normed ideal. This result is contained in our
Theorem 5.20.

(3) Equality %, = [%,2, %,2] (p > 1) was proved by Pearcy and Topping [49];
equality {T e %, |TrT =0} = [#(H),%,] (p < 1)—by Anderson [4]. The fact
that [#(H), %] does not coincide with the space {T € &, | Tr T = 0} was originally
established in [66-68] (more precisely, it was proven that the largest ideal I = ¥
such that all of its trace-zero operators belong to [#(H), %] coincides with the
Lorentz ideal #(¢) where ¢, = 1 + nlogn).

(4) Kalton proved [37] (cf. his Corollary 7), a result which is essentially equivalent
to our Corollary 5.19.

(5) In another article [38], Kalton gave the first ever description of the commutator
space [4(H), #]. He characterized membership in [B(H), 4] in purely spectral
terms:

[%(H),.,%] = {T € 31 |)L(T)a € /1}

(Here A(T) denotes the sequence of eigenvalues of 7', which may be finite or empty,
each value counted according to the dimension of the generalized eigenspace
U,~, Ker(T — AI)" and listed in order of decreasing absolute value).

The natural question is, of course: for which ideals J does membership in [B(H), J)
depend solely on the spectrum of an operator? This question achieved a partial
resolution in two articles [28,39] which depend on some of the main results of the
present article.

6. The minimum number of commutators

The following result can be obtained independently of Theorem 5.6 and with
considerably less effort.
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6.1. Theorem. For any ideals I and J in B(H):
In particular,

[#(H),J] = [#(H),]];- (117)

The proof is based on three observations.
6.2. Lemma. For any unital ring R, one has the following identity holding in the matrix

ring M,(R):

r

where ¢ :==r| + --- + 1, provided ¢, = 0.

6.3. Lemma. For any ideals I and J in B(H), every element T € 1J is a single product
T = RS for some Re I and S € J.

Proof. Suppose T = 1" |R;S; for R;e I and S;eJ. Choose an isomorphism
&:H = H®" Then the composite map

( S )
Sm

—1
HA e 2 gon g

is the desired S while R is the composite map

< ' )
R

[ a4
H—H®" — H®" S H,
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6.4. Lemma. Suppose T € [I,J] has an infinite dimensional reducing null subspace H,
ie, H = Hy®H with T\, = 0 and T(H) = H,. Then

T = [R,S] + [N, X] (118)

forsome Rel, SeJ, X elJand N € B(H) where N> = X*> = 0if I = #(H) and
N? = X? = 0 in general. In particular,

Tell,J), + [#(H),1]),.

Proof. Suppose 7 = 1" |[R;,S;]. In view of the hypothesis, there exists an
isomorphism @ : H — H®™ such that

2[R, S
0
PTP =
0
in M,,(#(H)). By Lemma 6.2,
[R1,S1]
OTH ' —
[Rma Sm]
0 0 X
1 0 0 Xz
0 0 Xy
0 0
where X; = —Zf:Hl[R,», Si]. At the same time,
[Ry, S1] R, Si
[Rma Sm} Rm Sm

This shows 7 = [R,S] + [N, X] with Re I, SeJ, X e IJ, N € Z(H) and N" =
X™ = 0. However, if A € #(H), T' eI, T" € J, then

[A, TIT//] — [ATI, T//] _ []'VI7 T//AL
SO

[B(H),1J], < [I,J],. (119)
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Thus T e [I,J], + [#(H),1J];, which equals [#(H),J], if I = #(H) and is
contained in [/,J]; in the general case. By repeating the first part of the proof
withm = 2 (case I = #(H)) and m = 3 (the general case) we obtain a representation
of the form (118). [

Choose any isometry V' of H onto a subspace VH of infinite dimension and
codimension. Suppose T = T'T”. Then

T — [T’V*, VTN] +VT'TV

and VT"T'V* has (VH)™" as a reducing subspace on which it is zero. Lemmas 6.3
and 6.4 combined then give Theorem 6.1.
Now, combining Theorem 6.1 with inclusion (119) yields

6.5. Corollary. For any ideals I and J in %(H),

Another proof of equality (120) has been given in Section 5; cf. Theorem 5.10.

Equalities (116) and (120) provide our best estimates of the necessary number of
commutators which hold in general. 1f, however, |T| € [I,J], then operator T is the
sum of fewer commutators, as the following theorem and its corollaries show.

6.6. Theorem. For any ideals I and J in B(H), if |T| € [1,J], then

Te(l,J), + [B(H),1]),. (121)

6.7. Corollary. For any ideal I = [#(H),J], one has
1< [#(H),J,. (122)

By combining Corollary 6.7 with Theorem 5.11, we obtain

6.8. Corollary. For any ideals I and J in (H), the following conditions are equivalent:
(@) I¢(w)<=J,
(b) I < [#(H),J],.
In particular, %, = [4(H), %,),, for p > 1, and yet
F N [BH),S), =F ={TeF|TrT = 0},

for 1 < p < 2, as we shall see in the next chapter. This example shows that I may
not be contained in [#(H),J],, and therefore the double commutator set in (122)
cannot be replaced by the single commutator set, in general.
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In view of inclusion (119), we also have the following corollary involving three
ideals in #(H).

6.9. Corollary. For any ideals I, J and L in B(H), if I < [J, L] then
1</, L] (123)

Unlike (122), it seems plausible that inclusion (123) can be improved to I < [J, L],
which then must be the best possible.
The proof of Theorem 6.6 is based on two lemmas.

6.10. Lemma. Let n be a nilpotent in a unital ring R which commutes with an invertible
element u € R. Then for every ideal I = R the map ¢,,:1 — I given by

Gpu(t) =ut 4+ [n1] (tel)
is bijective.

Proof. Let m e Z, be such that »” = 0. Denote by p, L, and R the endomor-
phisms of the additive group of [ defined by left multiplication by u, left
multiplication by n and right multiplication by n, respectively. They commute
with each other and ¢,,, = p + L — R. Since L” = R" = 0 we have (R — L =0

and hence
2m—1

> p (R

i=0

is the required inverse map ¢, 114 O

6.11. Lemma. Let I and J be ideals in #(H) and let T € IJ. Suppose there is an
identification of H with H®* for some k e Z . such that the diagonal entries
Ty, | i<k, of T =(Ty)<; < viewed as an element of Mi(#(H)), belong to
[I,J] and have infinite dimensional reducing null subspaces. Then T € [I,J], +
[#(H), 17},

Proof. From Lemma 64, T; = [R;,Si] + [N, X;] for Riel, S;eJ, X;elJ and
N € #(H;), where we can take the same N for each i and N3 =0.
Let X; = X;. Of course, Tj € IJ for each i,j. By Lemma 6.10 applied to the
matrix ring R = M (#(H)), for every pair i # j, there is Xj; € IJ such that T; =
(j — )Xy + [N, X;]. Letting X = (Xj),; j<x, We obtain the following commutator
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representation of 7
R S
R, S»

Ry Sk

1+N
24+ N

k+ N

Proof of Theorem 6.6. According to Anderson and Stampfli (cf. [5, Theorem 2, and
the proof of Theorem 3]), T is similar, after we choose an identification H ~ H ®*, to
an operator T' € M4(%#(H)), whose diagonal entries T}/, 1 < i < 4, have infinite
dimensional reducing null subspaces. Each entry 7} belongs to the principal ideal
(T), which is contained in [/, J] in view of the hypothesis |T'| € [I,J] and Theorem
5.11(1). Thus, Lemma 6.11 applies and inclusion (121) follows. [

7. Single commutators
We open this section by stating the main results first.

7.1. Theorem. For any compact operator T € B(H), one has

This provides a sufficient condition for an operator 7' to be representable as a
commutator [4, S] for some bounded operator 4 and an operator S from a given

ideal J, namely: s(T) Swe 2(J). Thus, we have the following corollary.
7.2. Corollary. For any ideals I,J = B(H), if I & (w?) = J then I = [48(H),J],.

In particular:

the single commutator space [B(H),J], contains

all finite rank operators provided w* e 2(J). (124)

Note that the space of finite rank operators of trace zero coincides with
[#(H),7],. This follows readily from Shoda’s Theorem which says that any
matrix of trace zero is similar to a matrix having zeros on the diagonal [59].
Condition (124) is also nearly necessary as is demonstrated by our next result.
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(It is precisely necessary when ideal J is am-closed; cf. Section 4.3. See Corollaries
7.10 and 7.11.)

7.3. Theorem. For any operators A € B(H) and Q € X', if their commutator (A4, Q|

has finite rank and nonzero trace then w* = O(s(Q) ® ).
Equivalently, if [I,J], contains a finite rank operator whose trace is nonzero

then w2 belongs to the am-closure X(I)~, defined in Section 2.8, of the characteristic
set of I

w e x(I),
and the same holds for J.

This last statement, of course, follows from the fact that (aﬁ)a~2w5; cf.
Proposition 3.18 above.

Proof of Theorem 7.1. The standard rank one projection

admits the commutator representation P = [4, Q] in terms of block tri-diagonal
matrices

0 4 0 o
A 0 AF T 0 A
A= 1 2 ) and Q: Ql Q2 ,
A4, 0 - 0, O
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while 4, and Q, are the (n + 1) x n matrices

n 0
0 n—1

0 and Q”:n+1

7.4. Lemma. One has (A) = #(H) and (Q) = (w?).

Proof of Lemma 7.4. Operator Q is the sum of two operators @+ and Q~ of the
form U<*Diag(q*)V* for suitable sequences ¢+ € ¢y and partial isometries
U*,V*. Thus

1
gt = —(1,1,1 11 1 )~ _%wz

and, similarly, g~ ~\/i§w%. This shows that s(Q) = O(w?).

Let I', be the set of the basis vectors of H on which O, does not vanish, and let E
be the projection onto the Hilbert subspace of H generated by the set

J &

n =12 (mod 4)

The sequence of singular numbers of EQFE majorizes the sequence

Sl—

(1,4,4,1(5 times), (6 times),§(9 times), ...) ~% w?

Therefore w® = O(s(Q)).
Operator A4 is the sum of two operators A+ and 4~, each having norm 1. It is clear
that 4 is not compact. [

Lemma 7.4 combined with the identity T®P = [idy ® A4, T ® Q] proves the
assertion of Theorem 7.1 for operators having an infinite dimensional reducing
subspace on which they vanish.

In the general case, we recall from the proof of Theorem 6.6 that any compact
operator T is similar to an operator 7" € M4((T)), whose diagonal entries T} have
infinite dimensional reducing null subspaces.

Note that

Prop.3.14 Prop3.18
o ((T) &) ®w R $(T) ® wr.

Dl—

(s(T) ® ),
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1

Hence (T) & (w?) = (s(T) & »?) coincides with the Marcinkiewicz ideal

M= M (—),
(S(T)®w)

ol—|

which, we recall, is a Banach ideal; cf. Section 4.7.
Let us split 77 into its diagonal and off-diagonal parts: T" = T/ + T,. In view of
the already proven assertion,

[41,S1]
T, = . (125)
(A4, Saa]
for suitable 4, € #(H) and S; e #, 1 <i < 4. We can assume that A;’s have
nonoverlapping spectra; otherwise, we replace 4; by A;1 + A; for appropriately
chosen 4; € C.

To complete the proof of Theorem 7.1 we need the following lemma generalizing
Theorem 3.1 of [52].

7.5. Lemma. Let M be a Banach bimodule over a unmital Banach algebra B. If
Spga N Spghb = 0 then the operator L, — R, € #(M), m +— am — mb, is invertible.

Lemma 7.5 applied to B = #(H), a = A;, b = A4;, i #j,and M = ./ produces
the unique S; € .# such that T}/ = A4;S; — S;A;. By combining this with equality

(125), we obtain the single commutator representation:

A
T/: 7S 5
Ay

where S € My(.M4).

Proof of Lemma 7.5. Let o < #(M) be the saturated commutative Banach
subalgebra containing operators L, and R;. Then

Sp./(La) = Spyuy(La) < Spp(a)
and
Sp./(Rp) = Spya)(Rs) S Sppon(b) = Spp(h).

The joint spectrum Sp.,(L,, Rp) < C? is contained in Sps(La) X Sps(Rp). Therefore,
by applying the Spectral Mapping Theorem (cf. [13, Chapter 1.4.7, Theorem 2])
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to the function f(z,z2) = z; — z, we obtain

SPam)(La — Rp) =f(Sp.y(Las Rp)) = Sp.y(La) — SP.y (Rs)

< Spg(a) — Spp(b) = {4 —n|4 € Spg(a), ne Spg(b)}  (126)
and the largest set in (126) does not contain 0. [

Note that I ¢ (w2) = ((Iz)a)% by Corollary 3.17. Therefore Corollary 7.2 can be
rephrased, in view of Theorem 5.11, as asserting the implication

I’c[#(H),JY = I1<[#(H),J,. (127)

We do not know how to prove this implication directly. Combined with Theorem
5.13, implication (127) results in the following

7.6. Corollary. If the Boyd index o(J) of an e-complete ideal J, cf. Section 4.6, is less
than 1)2 then J = [#(H),J],.

Similar results for principal, Lorentz, Marcinkiewicz, as well as for Orlicz ideals (if
one replaces the Boyd a-index by the Matuszewska f-index at zero), are direct
consequences of implication (127) and of Theorems 5.15, 5.21, 5.24 and 5.25,
respectively. It would be tedious to formulate all of these results here, so we leave this
to the reader.

7.7. Remark. Matrices 4 and —Q coincide with the limits at 1 = 0 of certain

matrices Z; and C;, 0 < t < 1, considered by Anderson in [3]. A small modification
of the argument from the proof of Lemma 7.4 shows that

(C) = (0?) and (Z,) = (0177/?).

Combined with the argument from the proof of his Theorem 1 in [3], this leads to the
following result.

7.8. Proposition. Let I and J be proper ideals in #(H) and suppose T € IJ has an
infinite dimensional reducing null subspace. Then for every 0 < t < 1,

T € [Liy, Lyl
where Ly = (I + J) & o.

Proof of Theorem 7.3. If F = [4, Q] is an operator of finite rank, then a lemma due
to Brown [18] provides a sequence of nonzero mutually orthogonal projections
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Py, Py, Ps, ..., satisfying the following conditions:

(a) F = P]FP],
(b) P,AP,, =0 = P,QP, forn > m+ 1,
(c) rank P, = O(n).

In particular, operators E,, := P, + --- + P,, are projections whose rank r,, grows
no faster than /m? for some integer /.
As in [18], the identity

F = P[4, Q|P) = (P1AP,)(P,QP) — (P1QP))(P1AP)
+ (P1AP2)(P2QP) — (P1OP,)(P2AP))
combined with further identities
0 = P[4, Q)P = (PxAPyx_1)(Px-10Pr) — (PrQPi_1)(Pr_1APy)
+ (PrAP)(PrQPy) — (P OP;)(PrAPy)
+ (PkAPyi1)(Prs1QPr) — (PkQPrs1)(Prey 1 AP,

for k > 1, leads to the following trace identities:

TrF =Y Tr(PilA, QPy) = Tr(PyAP, 1 10P,) — Tr(P,QPy 1 AP,) (neZ.)
k=1

which, in turn, yield the sequence of inequalities
Tr F| < [|A[[([[Pus1QPully + [[PaQPusally)  (n€Zy), (128)
where || X||, denotes the nuclear norm Tr(]X]). At this point, we need the following.

7.9. Lemma. Let Q be a compact operator and Py, P, ... be a sequence of mutually
orthogonal projections of finite rank. Then, for any k € 7 , | there is a partial isometry,
Ve B(H), such that

PnVQPI = |Pn+kQPn| (}’IGZ+).

Proof of Lemma 7.9. The polar decomposition yields P, QP, = V,| P, OP,],
where V, is a partial isometry on H such that V;,, = P, V,P,. Let V € #(H) be a
partial isometry such that

Ve if m=n+k,

P, VP, = .
e {0 otherwise
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for all n,m e Z . Then
P,VOP, = VP, OPy = Vi Vi|PuykOP,| = [Py QP O
Lemma 7.9 supplies partial isometries V', W € %(H) such that
P,VOP, = |P, 1QP,| and P,WQ'P, = |P,,1Q"P,| (129)

for all n € Z . Consider the operator

_ 4]l .

Its sequence of singular numbers is dominated by s(Q)Q}Z:

s(T), = 0(s(Q),), (130)
since (5(0)%%), < 25(Q),.
It follows from (129) that
1Py = M (b 0P + [Py 1O Pa) = 0
|Tr F|

and, from (128), that Tr(P,TP,) > 1. This, combined with Hermann Weyl’s
Inequality (cf. [69]), gives the estimates

"'m

Im? m
> si(T) = > s(EnTEy) = [Te(EnTEy)| = > Tre(P,TP,) = m,
i=1

i=1 n=1
where E,, are the projections defined above, whence we deduce the inequality

n

> si(T) = [Vn/l] (neZ). (131)

i=1

By comparing inequality (131) with (130), we conclude that

w = 0(s(Q),),

or, equivalently (cf. Proposition 3.14), that w? = O(s(Q) © w). This completes the
proof of Theorem 7.3.
The following corollary combines Theorem 7.3 with Corollary 7.2 (note that

L& (07) = (w?)).
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7.10. Corollary. For any am-closed ideal J, cf. Section 4.3, the following conditions are
equivalent:

(@) # n [B(H),J|, contains an operator whose trace is not zero,
(b) 7 < [B(H),]),,

© % < [#(H),J],,

(d) (o)) = J.

The class of am-closed ideals includes Lorentz ideals %,(¢) (p > 1, ¢ concave),

Marcinkiewicz ideals .#, () (p > 1), and Orlicz ideals %), and 31540) (M convex); cf.
Section 4.7. Recall from Section 4.9 that all the symmetrically normed ideals S¢ are
am-closed.

Thus we have

7.11. Corollary. For the ideal J = Sg, where @ is any symmetric norming function,
each of the conditions (a)—(d) above is equivalent to the following condition:

© &(1,1/v2,1/V/3,...) < .

In particular, for Schatten ideals £, and for Lorentz ideals £,,, these are equivalent to
the inequality p > 2.

7.12. Remarks. (1) The last assertion complements a theorem of Brown [18],
who proved that # n [%),, %,], contains no operator whose trace is not zero if
% + 5 > 2. The converse was earlier proved by Anderson [3].

(2) We do not know whether any of the implications (a) = (b) = (¢) = (d) holds
without the hypothesis of am-closedness. Neither do we know whether the reverse of
implication (127) holds, in general.
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