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1 Cells

1.1 Intervals

1.1.1 Connected subsets of R

Definition 1.1 A connected subset I of the topological space R is called an
interval.

Exercise 1 Show that any connected subset I ∈ R contains (a, b) where a =
inf S and b = sup S. (Hint: prove that, for any s, t ∈ S, if s < t , then
[s, t] ⊆ S.)

1.1.2

It follows from Exercise 1 that any interval is of the form

〈a, b〉 (−∞ ≤ a ≤ b ≤ ∞) (1)

where ‘〈 ’ stands for either ‘ [ ’ or ‘( ’ and ‘〉 ’ stands for either ‘ ] ’ or ‘) ’.

Definition 1.2 We shall say that an interval I is

(a) nondegenerate if a < b,

(b) open if I = (a, b) ,

(c) closed if I = [a, b] or (−∞, b] , or [a, ∞) , or i = R ,

(d) bounded if −∞ < a and b < ∞ .
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1.1.3

For any interval I = 〈a, b〉 we shall denote its closure by Ī and its interior
by I̊ .

1.1.4 Boundary

The set ∂I˜ I \ I̊ will be called the boundary of I . It consists of at most
two points, and ∂I = ∅ precisely when I is open.

1.1.5 Length

The length of I = 〈a, b〉 will be denoted |I|˜ b− a .

1.1.6

For an interval I = 〈a, b〉 and δ > 0, we shall denote by Iδ the δ-
neighborhood of I :

Iδ˜ (a− δ, b + δ) (2)

1.2 Cells

1.2.1

Definition 1.3 An n-cell is the Cartesian product of n intervals

I˜ I1 × · · · × In (3)

It is naturally a subset of metric space Rn . A 1-cell is the same as an interval.

Definition 1.4 We shall say that an n-cell is

(a) nondegenerate if each Ij is nondegenerate,

(b) open if each Ij is open,

(c) closed if each Ij is closed,

(d) bounded if each Ij is bounded.
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1.2.2

A nonempty degenerate n-cell is isometric, as a metric space, to an m-
cell for m = n − l where l is the number of factors in (3) which are
degenerate.

1.2.3

For any cell I we shall denote its closure by Ī and its interior by I̊ .

Exercise 2 Show that the intersection I∩ I′ of two n-cells is again an n-cell—
possibly degenerate or empty.

1.2.4 Boundary

The set ∂I˜ I \ I̊ will be called the boundary of I .

Exercise 3 Let I = [a1, b1]× · · · × [an, bn] with aj < bj , j = 1, . . . , n. Show
that ∂I is the union of 2n degenerate cells , each isometric to an (n− 1)-cell.
The latter are called the faces of I .

1.2.5 Volume

The n-dimensional volume of a bounded cell, (3), is defined as

‖I‖˜ |I1| · · · |In|. (4)

It is greater than zero precisely when I is nondegenerate.

1.2.6 δ-thickening

For a cell I and δ > 0, we shall denote by Iδ the open cell

Iδ˜ (I1)δ × · · · × (In)δ. (5)

It is the smallest cell containing the δ-neighborhood of I .
The volume of Iδ satisfies the following obvious estimate

‖Iδ‖ ≤ ‖I‖+ 2δ

(
l=n−1

∑
l=0

(
n
l

)
(2δ)l diam I)l−1

)
. (6)

In particular, by selecting δ sufficiently small, one can make ‖Iδ‖ as
close to ‖I‖ as desired.
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2 Riemann Integral

2.1 Outer contents and measure

2.1.1

For a family I of bounded n-cells we define ‖I ‖ as

‖I ‖˜ ∑
I∈I

‖I‖. (7)

The quantity defined in (7) makes sense for any, even uncountable,
family provided we define the sum in (7) as

sup{‖I ′‖ | I ′ ⊆ I is finite}
In particular, the values that ‖I ‖ can take belong to [0, ∞] .

Exercise 4 Let S be an arbitrary set. Suppose that, for a function f : S−→[0, ∞) ,

sup
{

∑
s∈S′

f (s) | S′ ⊆ S is finite
}
< ∞.

Prove that the set
supp f ˜ {s ∈ S | f (s) , 0} (8)

is countable1 (the set defined in (8) is called the support of f ).

2.1.2 Cell covers

Let A be a subset of Rn .

Definition 2.1 A cell cover of A is a family I of bounded nondegenerate cells
such that

⋃
I ⊇ A.

2.1.3 Outer contents

Definition 2.2 The infimum over all finite cell covers of A,

m̄(A)˜ inf{‖I ‖ | I is a finite cell cover of A}. (9)

will be called the outer contents of subset A ⊆ Rn . When A is not bounded, A
cannot be covered by finitely many bounded cells. In this case, we set m̄(A) =
∞ .

1By countable we mean in these notes any set that can be embedded into the set of
natural numbers. In particular, finite sets are ‘countable’ according to this definition.
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2.1.4 Outer measure

Definition 2.3 The infimum over all countable cell covers of A,

µ̄(A)˜ inf{‖I ‖ | I is a countable cell cover of A}. (10)

will be called the outer measure of subset A ⊆ Rn .

2.1.5

Note that, in view of Exercise 4, we could have defined µ̄(A) as the
infimum of ‖I ‖ over all cell covers since ‖I ‖ = ∞ for any uncountable
cover.

2.1.6

It follows directly from the definition that for any subsets of Rn :

µ̄(A) ≤ m̄(A) (11)

and
m̄(A) ≤ m̄(B) as well as µ̄(A) ≤ µ̄(B) (12)

whenever A ⊆ B .

Exercise 5 Let A = Q∩ [a, b] . Show that

µ̄(A) = 0 while m̄(A) = b− a.

Exercise 6 Prove that

m̄

( ⋃
A∈A

A

)
≤ ∑

A∈A

m̄(A), (13)

for any finite family A of subsets of Rn , and

µ̄

( ⋃
A∈A

A

)
≤ ∑

A∈A

µ̄(A), (14)

for any countable family A of subsets of Rn .
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2.1.7

It follows directly from inequalities (12) and (13) that

m̄(A ∩ A′) = m̄(A) = m̄(A′) = m̄(A ∪ A′) (15)

whenever
m̄(A \ A′) = m̄(A′ \ A) = 0.

Indeed, one has

m̄(A ∩ A′) ≤ m̄(A) ≤ m̄(A ∪ A′)

≤ m̄(A ∩ A′) + m̄(A \ A′) + m̄(A′ \ A) = m̄(A ∩ A′).

2.1.8

Similarly,
µ̄(A ∩ A′) = µ̄(A) = µ̄(A′) = µ̄(A ∪ A′) (16)

whenever
µ̄(A \ A′) = µ̄(A′ \ A) = 0.

Exercise 7 Prove that in the definition of m̄(A) one could consider exclusively
open (respectively, closed) cell covers:

m̄(A) = inf{‖I ‖ | I is a finite open cell cover of A} (17)
= inf{‖I ‖ | I is a finite closed cell cover of A} (18)

and, similarly, for µ̄(A) . (Hint: for a cell cover I consider the family of clo-
sures, {Ī | I ∈ I } , and the family of δ-thickenings, {Iδ | I ∈ I } , for
sufficientlly small δ > 0 .)

2.1.9 Removal of overlaps

For any finite family of closed cells I , one can decompose each I ∈ I
into a union of finitely many closed subcells so that the distinct subcells,
I and I′ , do not overlap, i.e., if I∩ I′ is either empty or a degenerate cell.

Denote a family obtained this way by J . Since every cell I ∈ I is
the union of cells from J , one has⋃

J =
⋃

I (19)

6



and
‖J ‖ ≤ ‖I ‖ (20)

since the volume of every cell J ∈ J contributes to ‖J ‖ only once
while to ‖I ‖ it contributes as many times as there are cells I ∈ I which
contain it.

In particular, in the definition of m̄(A) one could replace arbitrary
finite covers by finite families of closed nonoverlapping cells.

Exercise 8 Produce an example showing that one cannot do the same in the case
of µ̄(A) : the latter is generally smaller than the infimum of ‖J ‖ over all closed
nonoverlapping covers.

2.1.10 The case of closed bounded subsets

Compactness of bounded closed subsets of Rn implies that that the outer
measure and the outer contents of such sets coincide.

Proposition 2.4 For a bounded closed subset A ⊆ Rn , one has

µ̄(A) = m̄(A). (21)

Exercise 9 Prove Proposition 2.4.

2.2 Oscillation of a mapping

2.2.1 Oscillation on a subset

Let f : X−→M be a mapping from a topological space X to a metric space
M .

Definition 2.5 For A ⊆ X, we set

oscA( f )˜ diam f (A) = sup
p,q∈X

ρ( f (p), f (q)) (22)

2.2.2 Oscillation at a point

2.2.3

If A ⊆ B , then
oscA( f ) ≤ oscB( f ).
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2.2.4

In particular, the net

N 7−→ oscN( f ) (N ∈ Np)

indexed by the neighborhood filter Np of a point p ∈ X is nonincreasing
and thus the limit

lim
N∈Np

oscN( f )

exists and equals

oscp( f )˜ inf{oscN( f ) | N ∈ Np}. (23)

Exercise 10 Prove that a function f : X−→M from a topological space X into
a metric space M is continuous at a point p ∈ X if and only if oscp( f ) = 0 .

2.2.5 The set of discontinuity of a function

It follows that the set

Disc f ˜ {p ∈ X | f is discontinuous at p} (24)

coincides with the set

{p ∈ X | oscp( f ) > 0} =
⋃
δ>0

Dδ( f ) =
∞⋃

n=1

D 1
n
( f ) (25)

where
Dδ( f )˜ {p ∈ X | oscp( f ) ≥ δ} (26)

Proposition 2.6 For any δ > 0 , the set

{p ∈ X | oscp( f ) < δ} (27)

is open. Equivalently, for any d ≥ 0 , set Dδ( f ) is closed.

Proof. Let p ∈ X be a point where oscp( f ) < δ . Choose ε > 0 so that
ε < δ− oscp( f ) . By definition, cf. (23), there exists an open neighborhood
of p such that

oscU( f ) ≤ oscp( f ) + ε.

But then
oscq( f ) ≤ oscU( f ) ≤ oscp( f ) + ε < δ

for any q ∈ U . This shows that p is an interior point of set (27). �
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Corollary 2.7 The set of discontinuity of any function f : X−→M is the union
of countably many closed sets D 1

n
( f ) .

2.2.6 Fσ -sets

Even though countable unions of closed subsets of a topological space
need not be closed they constitute an important class of subsets on their
own: they are called Fσ -sets.

The complement of an Fσ -set is a countable intersection of open sub-
sets. The latter are called Gδ -sets. Here, subscripts δ and σ are just Greek
letters—they do not refer to any quantity.

2.2.7

Corollary 2.7 says that the set of discontinuity of any function with values
in a metric space is an Fσ -set. And dually, the set of points where f is
continuous is a Gδ -set.

2.2.8 Semicontinuous functions

We encounter in Proposition 2.6 an interesting property that a real valued
function may possess.

If a function h : X−→[α, β] is continuous then

h−1((c, β)) and h−1((c, β]) are open for any c ∈ (α, β) , (28)

and similarly

h−1((α, c)) and h−1([α, c)) are open for any c ∈ (α, β) . (29)

This explains the terminology employed in the following double defi-
nition.

Definition 2.8 We say that a function h : X−→[α, β] is lower semicontinu-
ous if it satisfies (28), and upper semicontinuous), if it satisfies (29).

Exercise 11 Show that a function h : X−→[α, β] is continuous iff and only if it
is both lower and upper semicontinuous.
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2.2.9

Proposition 2.6 thus can be also stated as saying that the oscillation of any
function f : X−→M , viewed as a function

osc( f ) : X−→[0, ∞], p 7−→ oscp( f ),

is upper semicontinuous.

Exercise 12 Show that the characteristic function χA : X−→R] of a subset
A ⊆ X,

χA(p)˜

{
1 if p ∈ A
0 otherwise

is lower semicontinuous if and only if A is open. Similarly, χA is upper semi-
continuous if and only if A is closed.

Exercise 13 By analogy with continuous functions, formulate an appropriate
definition of a function lower semicontinuous at a point p ∈ X and then
prove that a function is lower semicontinuous if and only if it is lower semicon-
tinuous at any point p ∈ X.

2.2.10

We close this brief discussion of semicontinuous functions by noting their
fundamental property:

On compact subsets lower semicontinuous functions
attain their lower bounds while upper semicontinuous
functions attain their upper bounds.

(30)

Theorem 2.9 If K ⊆ X is compact subset of a topological space, then any lower
semicontinuous function h : X−→[−∞, ∞] attains its minimum on K, and any
upper semicontinuous function attains its maximum on K.

Proof. Suppose that h is lower semicontinuous and let

a = inf h(K).

For any c > a , the sets Uc = h−1((c, ∞]) are open. If there is no p ∈ K
such that h(p) = a , then {Uc}c>a forms an open cover of K . In view of
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compactness of K , there must then exist c0 > a such that K ⊆ Uc0 since
Uc ⊆ Uc′ if c ≤ c′ . But then

inf h(K) = a < co ≤ inf h(K).

Contradiction.
The case of an upper semicontinuous function follows by applying the

already proven part of the theorem to −h . �

3 Riemann Integral

3.1 Darboux sums

3.1.1 Partitions

Definition 3.1 A finite closed cell cover P of a subset A ⊆ Rn is said to be a
partition of A if:

(a)
⋃

P = A,

(b) I∩ I′ is either empty or a degenerate cell if I , I′ .

3.1.2 Rectangular subsets

In order that A admits any partition A must be closed and representable
as the union of finitely many cells. We shall refer to such subsets of Rn

as rectangular.

3.1.3

If P and P ′ are two partitions we write P 4 P ′ and say that P is
inscribed in P ′ or, equivalently, that P is finer than P ′ , and that P ′ is
coarser than P , if

for any I ∈P there exists I′ ∈P ′ such that I ⊆ I′ . (31)

Note that due to how we defined partitions, for any I ∈ P , such a cell
I′ ∈P ′ is unique.
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3.1.4

Being finer is a partial ordering relation on the set of all partitions, Part A ,
making Part A into a directed set. More precisely, for any two partitions
P and P ′ , their common refinement, P ∨P ′ , formed by all nonempty
and nondegenerate intersections,

I∩ I′ (I ∈P , I′ ∈P ′),

is the supremum of the two-element set {P , P ′} in Part A .

3.1.5 The nets of Darboux sums

With any function f : A−→R we associate two nets indexed by directed
set Part A , the net of lower Darboux sums,

S( f , P)˜ ∑
I∈P

inf
x∈I

f (x)‖I‖, (32)

and the net of upper Darboux sums,

S( f , P)˜ ∑
I∈P

sup
x∈I

f (x)‖I‖. (33)

Lower Darboux sums take values in [−∞, ∞) while upper Darboux sums
take values in (−∞, ∞] .

3.1.6 Monotonicity of Darboux sums

It follows directly from the respective definitions that

S( f , P ′) ≤ S( f , P) ≤ S( f , P) ≤ S( f , P ′) (34)

whenever P 4P ′ . Thus, the net of lower Darboux sums is nondecreas-
ing, while the net of upper Darboux sums is nonincreasing, and each is
bounded by any term of the other net.

In particular, both nets converge and their limits are respectively called:
the lower Darboux integral of f ,∫

A
f (x) dx1 · · · dxn˜ lim

P∈Part A
S( f , P) = sup

P∈Part A
S( f , P), (35)

and the upper Darboux integral of f ,∫
A

f (x) dx1 · · · dxn˜ lim
P∈Part A

S( f , P) = inf
P∈Part A

S( f , P). (36)
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3.2 Riemann sums

3.2.1 Tagged partitions

Definition 3.2 If P is a partition of a subset A ⊆ Rn , then a function
x∗ : P−→Rn is called a tagging of P if, for each I ∈ P , its value, xI ,
belongs to I . We shall refer to pairs (P , x) as tagged partitions.

3.2.2

We shall write (P , x∗) 4 (P ′, x∗′) if either P is strictly finer than P ′ ,
or (P , x∗) = (P ′, x∗′) . In other words, we ignore the tagging when
comparing tagged partitions, and different taggings of the same partition
we consider non-comparable.

3.2.3

The set of tagged partitions, Part∗A is directed: given two tagged parti-
tions (P , x∗) and (P ′, x∗′) , take any partition strictly finer than either
P or P ′ and equip it with any tagging.

3.2.4 The net of Riemann sums

With any function f : A−→R we associate the net of Riemann sums
which is indexed by directed set Part∗A ,

S( f , P , x∗)˜ ∑
I∈P

f (x∗)‖I‖, (37)

By definition, the Riemann sum is sandwiched between the correspond-
ing Darboux sums:

S( f , P) ≤ S( f , P , x∗) ≤ S( f , P) (38)

Exercise 14 Show that

lim inf
(P ,x∗)∈Part∗A

S( f , P , x∗) =
∫

A
f (x) dx1 · · · dxn (39)

and
lim sup

(P ,x∗)∈Part∗A
S( f , P , x∗) =

∫
A

f (x) dx1 · · · dxn. (40)
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3.3 Riemann integrability

3.3.1

Definition 3.3 We say that a function f : A−→R is Riemann integrable if
the net of Riemann sums converges. in view of (39) and (40), this is equivalent
to the condition that∫

A
f (x) dx1 · · · dxn =

∫
A

f (x) dx1 · · · dxn. (41)

The common value of the limits of Riemann and Darboux sums is then denoted∫
A

f (x) dx1 · · · dxn (42)

and called the Riemann integral of function f over set A.

Theorem 3.4 (Henri Lebesgue, 1907) A function f : A−→Rn is Riemann
integrable if and only if it is bounded and

µ̄(Disc f ) = 0. (43)

3.3.2

Above we have given the definition of Riemann integral only over closed
subsets of Rn which can be decomposed into the union of finitely many
cells.

This definition can be easily extended to arbitrary bounded subsets of
Rn : embed A into a closed cell C , extend f : A−→R by zero to a function
f̄ : C−→R ,

f̄ (x)˜

{
f (x) if x ∈ A
0 otherwise

, (44)

and set: ∫
A

f (x) dx1 · · · dxn˜

∫
C

f (x) dx1 · · · dxn. (45)

It is clear that the expression on the righ-hand-side of (45) depends only
on f and A , and not on the choice of cell C containing A .
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3.3.3

The following is the immediate corollary of the criterion of integrability
3.4.

Corollary 3.5 A function f : A−→R is Riemann integrable if and only if it is
bounded and

µ̄(Disc f̄ ) = 0. (46)

3.3.4

If f : A−→R is continuous, then the set of discontinuity of f̄ is contained
in the union of two sets: Disc f and the ‘boundary’ Bd A˜ A ∩Rn \ A ,

Disc f̄ ⊆ Disc f ∪ Bd A.

Thus we obtain the following sufficient condition for Riemann inte-
grability of f over an arbitrary bounded subset A ⊆ Rn .

Corollary 3.6 If
µ̄(Disc f ) = µ̄(Bd A) = 0, (47)

then f : A−→R is Riemann integrable.

3.3.5

Theorem of Lebesgue is an immediate corollary of the following double
inequality.

Theorem 3.7 For any function f : A−→R defined on a rectangular subset
A ⊆ Rn , and any δ > 0 , one has the following double inequality

δm̄(Dδ) ≤
∫

A
f (x) dx1 · · · dxn−

∫
A

f (x) dx1 · · · dxn ≤ diam f (A)m̄(Dδ)+ δm̄(A).

(48)

Proof. For any partition P of A , let

P ′
˜ {I ∈P | I̊∩ Dδ , ∅}.
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For any cell I and any point p ∈ I̊ , one has

oscI( f ) ≥ oscp( f ).

It follows that

S( f , P)− S( f , P) ≥ ∑
I∈P ′

oscI( f )‖I‖ ≥ δ‖P ′‖ ≥ δm̄(Dδ)

where
D′δ = Dδ \

⋃
I∈P ′

∂I

since P ′ is a cell cover of D′δ . Note that

Dd \ D′δ ⊆
⋃

I∈P ′
∂I

and each ∂I consista of finitely many degenerate cells, hence

0 ≤ m̄(Dd \ D′δ) ≤ m̄

( ⋃
I∈P ′

∂I

)
= 0

and thus
m̄(D′δ) = m̄(Dδ)

This yields
S( f , P)− S( f , P) ≥ δm̄(Dδ). (49)

Since the right-hand side does not depend on P , we have∫
A

f (x) dx1 · · · dxn −
∫

A
f (x) dx1 · · · dxn

= inf
P∈Part A

(
S( f , P)− S( f , P)

)
≥ δm̄(Dδ).

The lower estimate in inequality (48) has been proven.

In order to prove the upper estimate we choose, for a given ε > 0, a
nonoverlapping finite closed cell family P ′ such that

A′˜
⋃

P ′ ⊆ A and Dδ ⊆ Å′, (50)
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and
m̄(A′)− m̄(Dδ) = ‖P ′‖ − m̄(Dδ) ≤ ε

Such a family can be obtained by, first, selecting a thickening of any finite
closed cover I of Dδ satisfying

‖I ‖ − m̄(Dδ) < ε (51)

such that the thickening still satisfies estimate (51). Secondly, by removing
overlaps as mentioned in 2.1.9.

If Dδ is empty, then set A′ = ∅ and, accordingly, P ′ = ∅ .

Let A′′ be the closure of A \ A′ . It is a closed bounded subset of Rn ,
hence compact.

At any point of A′′ the oscillation of f is less than δ . Let us choose,
for each p ∈ A′′ , a closed bounded cell Ip such that p ∈ I̊p and

oscIp( f ) < δ.

The collection {I̊p}p∈A′′ forms an open cover of A′′ . In view of compact-
ness of the latter, there exist finitely many closed cells covering A′′ such
that the oscillation of f on each is less than δ . Denote the resulting finite
closed cover by I ′′ .

Subset A′′ is rectangular, cf. 3.1.2, so I ∩ A′′ is rectangular for every
I ∈ I ′′ . By subdividing each I ∩ A′′ into subcells, we can produce a
partition P ′′ of A′′ such that

oscI( f ) < δ for any I ∈P ′′ . (52)

Set P = P ′ ∪P ′′ (if A′ = A , then set P = P ′ ). We split the sum
defing S( f , P)− S( f , P) into two parts:

S( f , P)− S( f , P) = ∑
I∈P ′

oscI( f )‖I‖+ ∑
I∈P ′′

oscI( f )‖I‖.

Now,

∑
I∈P ′

oscI( f )‖I‖ ≤ ∑
I∈P ′

oscA( f )‖I‖ = diam f (A)‖P ′‖ (53)

≤ diam f (A)(m̄(Dδ) + ε) (54)
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and

∑
I∈P ′′

oscI( f )‖I‖ ≤ ∑
I∈P ′′

δ‖I‖ = δ‖P ′′‖ (55)

= δm̄(A′′) ≤ δm̄(A). (56)

It follows that∫
A

f (x) dx1 · · · dxn −
∫

A
f (x) dx1 · · · dxn ≤ S( f , P)− S( f , P)

≤ diam f (A)(m̄(Dδ) + ε) + δm̄(A).
(57)

Since the inequality in (57) holds for any ε > 0, we derive the upper
estimate in Inequality (48).

This completes the proof of Theorem 3.7 and therefore also of the
characterization of Riemann integrable functions due to Henri Lebesgue,
cf. Theorem 3.4.

Corollary 3.8 If, for a function f : A−→[0, ∞) , one has∫
A

f (x) dx1 · · · dxn = 0, (58)

then its support, cf. (8), has measure zero,

µ̄(supp f ) = 0.

Proof. Since, obviously,

0 ≤
∫

A
f (x) dx1 · · · dxn,

we infer from (58) that f is Riemann integrable on A and its integral
equals zero. If f (p) > 0 at some point p where f is continuous, then
there would exist a cell-neighborhood I of p and δ > 0 such that f (x) ≥
δ for any x ∈ I . In particular,∫

A
f (x) dx1 · · · dxn ≥ δ‖I‖ > 0.

It follows that the support of f is contained in the set of discontinuity,
Disc f , which has measure zero in view of Theorem 3.4. �
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3.3.6 Fubini’s Theorem

3.3.7

Let A′ be a bounded subset of Rm and A′′ be a bounded subset of Rn .
We can consider a function f : A′ × A′′−→R also as a function of two
variables: x′ ∈ A′ and x′′ ∈ A′′ . In particular, in addition to the integral∫

A′×A′′
f (x) dx1 · · · dxm+n

we can also consider the iterated integrals∫
A′

(∫
A′′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

and ∫
A′′

(∫
A′

f (x′, x′′) dx′′1 · · · dx′′n

)
dx′1 · · · dx′m.

Proposition 3.9 For any function f : A′× A′′−→R one has the following mul-
tiple inequality∫

A′×A′′
f (x) dx1 · · · dxm+n ≤

∫
A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

≤


∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n


≤
∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

≤
∫

A′×A′′
f (x) dx1 · · · dxm+n

(59)

Proof. For any partition P of A′ × A′′ , there exist partitions P ′ of
A′ and P ′′ of A′′ such that

P ′ ×P ′′
˜ {I′ × I′′ | I′ ∈P ′ and I′′ ∈P ′′}

is finer than P . Thus,

19



Exercise 15 Show that

inf
x′,x′′)∈A′×A′′

f (x′, x′′) = inf
x′′∈I′′

(
inf

x′∈I′
f (x′, x′′)

)
. (60)

In view of (60), one has

S( f , P ′ ×P ′′) = ∑
I′′∈P ′′

inf
x′′∈I′′

(
S( f ( . , x′′), P ′′)

)
‖I′′‖

≤ ∑
I′′∈P ′′

inf
x′′∈I′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
‖I′′‖

≤
∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

(61)

where f ( . , x′′) is, for every x′′ ∈ A′′ , the function A′−→R which sends
x′ to f (x′, x′′) .

In view of the remark opening the proof,

sup
(P ′,P ′′)∈Part A′×Part A′′

S( f , P ′ ×P ′′) =
∫

A′×A′′
f (x) dx1 · · · dxm+n. (62)

By combining inequality (60) with equality (62), we obtain the first in-
equality in (59). The last inequality in (59) is obtained similarly, by re-
placing lower sums and integrals with upper sums and integrals, and by
exchanging infima with suprema. The middle two inequalities in (59) are
obvious. �

As a corollary of inequality (59), we obtain so called Fubini’s Theorem
(for continuous functions proven by du Bois-Reymond already in 1872,
30 years before Fubini’s published work).

Theorem 3.10 (Fubini’s Theorem) For any Riemann integrable function f : A′×
A′′−→Rn , the functions

A′′ 3 x′′ 7−→
∫

A′
f (x′, x′′) dx′1 · · · dx′m

and
A′′ 3 x′′ 7−→

∫
A′

f (x′, x′′) dx′1 · · · dx′m
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are Riemann integrable. Similarly,

A′ 3 x′ 7−→
∫

A′′
f (x′, x′′) dx′′1 · · · dx′′n

and
A′ 3 x′ 7−→

∫
A′′

f (x′, x′′) dx′′1 · · · dx′′n

are Riemann integrable, and∫
A′×A′′

f (x) dx1 · · · dxm+n =
∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

=
∫

A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n

=
∫

A′

(∫
A′′

f (x′, x′′) dx′′1 · · · dx′′n

)
dx′1 · · · dx′m

=
∫

A′

(∫
A′′

f (x′, x′′) dx′′1 · · · dx′′n

)
dx′1 · · · dx′m

(63)

�

3.3.8

From (63) it follows that∫
A′′

(∫
A′

f (x′, x′′) dx′1 · · · dx′m −
∫

A′
f (x′, x′′) dx′1 · · · dx′m

)
dx′′1 · · · dx′′n = 0

and, similarly,∫
A′

(∫
A′′

f (x′, x′′) dx′′1 · · · dx′′n −
∫

A′′
f (x′, x′′) dx′′1 · · · dx′′n

)
dx′1 · · · dx′m = 0

Thus, in view of Corollary 3.8, we deduce from Fubini’s Theorem the
following corollary.

Corollary 3.11 For any Riemann integrable function f : A′ × A′′−→Rn , the
set of points x′′ ∈ A′′ where the function

A′ 3 x′ 7−→ f (x′, x′′)
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is not integrable has measure zero.
Similarly, the set of points x′ ∈ A′ where the function

A′′ 3 x′′ 7−→ f (x′, x′′)

is not integrable has measure zero. �

3.3.9 Example 1

Let

f (x, y) =

{
1√
x+y if x, y > 0

0 if x = 0 or y = 0
(64)

be a function on the unit square A = [0, 1]× [0, 1] in R2 . This function
is not bounded, hence it is not integrable. However, f is integrable on
every horizontal interval [0, 1]×{y0} , as well as on every vertical interval
{x0} × [0, 1] , and both iterated integrals exist and coincide∫ 1

0

∫ 1

0
f (x, y) dx dy =

8
√

2
3

=
∫ 1

0

∫ 1

0
f (x, y) dy dx.

3.3.10 Example 2

Let

g(x, y) =


1
y2 if 0 < x < y < 1

− 1
x2 if 0 < y < x < 1

0 otherwise

(65)

be another function on the unit square. It is not bounded, hence not
integrable. Both iterated integrals exist yet in this case their values differ
since ∫ 1

0
g(x, y) dx =

∫ y

0

dx
y2 −

∫ 1

y

dx
x2 = 1 (0 < y < 1)

while ∫ 1

0
g(x, y) dy = −

∫ x

0

dy
x2 +

∫ 1

x

dy
y2 = −1. (0 < x < 1),

hence ∫ 1

0

∫ 1

0
g(x, y) dx dy = 1 = −

∫ 1

0

∫ 1

0
g(x, y) dy dx.
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