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Abstract

Mathematical Analysis and Numerical Simulation of Electromigration

by

Jon Arthur Wilkening

Doctor of Philosophy in Mathematics

University of California at BERKELEY

Professor James A. Sethian, Chair

We develop a model for mass transport phenomena in microelectronic interconnect

lines, study its mathematical properties, and present a number of new numerical methods

which are useful for simulating the process.

The central focus of the work is an investigation of the well-posedness of the grain

boundary diffusion problem. The equation is stiff and non-local and depends on gradients

of the stress components σij , which contain singularities near corners and grain boundary

junctions. We show how to recast the problem as an ODE on a Hilbert space, and prove that

the non-selfadjoint compact operator involved has a real, non-negative spectrum and a set

of eigenfunctions which is dense in L2(Γ), where Γ is the grain boundary network. We show

that in the limit of an infinite interconnect line, the eigenfunctions are sines and cosines,

and through numerical studies show that for a finite line, in spite of non-orthogonality, the

eigenfunctions form a well conditioned basis for L2(Γ). We develop a numerical method

for simulating the evolution process, and obtain results which are self-consistent under

mesh-refinement and make physical sense.

The main tool we develop for solving the elasticity equations with high resolution

near corners and grain boundary junctions is a singularity capturing extension of the First

Order System Least Squares finite element method. We call the method XFOSLS. The

method is designed for polygonal domains with corners, cracks, and interface junctions,

and can handle complicated jump discontinuities along interfaces while maintaining smooth

displacement and stress fields (which may be unbounded near corners) within each region of

the domain. Several self-similar (not necessarily singular) solutions may be adjoined to each
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corner or junction, and the supports of the extra basis functions may overlap one another.

We also present a number of new techniques for computing bases of self-similar

solutions for corners and interface junctions. These include an algorithm for removing rank

deficiency from the basis matrix at isolated parameter values, a stabilization algorithm for

removing near linear dependency from the power solutions corresponding to characteristic

exponents which are clustered together, and a new theorem about Keldysh chains which

leads to an algorithm for computing associated functions. Several examples are given which

illustrate the techniques.

Professor James A. Sethian
Dissertation Committee Chair
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Chapter 1

Introduction

A microelectronic circuit consists of a silicon substrate with doped regions which

function as circuit elements (transistors, diodes, resistors, and capacitors), metal lines and

vias (interconnects) which connect the circuit elements together, intermetallic dielectric

material which keeps the interconnects in place and insulated from each other, various

oxide layers and diffusion barriers which are primarily needed in the manufacturing stage

to control the doping process and keep the aluminum from diffusing into the silicon, and

passivation to keep all the components in place and protected [73, 81]. See Figure 1.1.

A typical interconnect line might be an alloy of Al-0.5%Cu, have dimensions of

0.5 × 0.5 × 300 microns, and carry a current density of 20 mA/µm2. As electrons flow

through the line, they are scattered by imperfections in the crystal lattice of the metal

and impart momentum to the ion cores. This ”electron wind” force is stronger than the

opposing direct force of the electric field, so ions are transported in the same direction as

the flow of electrons. This process is known as electromigration, and is a dominant failure

mechanism in microelectronic devices.

Grain boundaries, void surfaces, and passivation interfaces are fast diffusion paths

along which the diffusion constant is typically 7-8 orders of magnitude higher than in the

grains; therefore, most of the mass transport occurs at these locations. The inhomogeneous

redistribution of atoms leads to the development of stresses in the line. Stress gradients

along grain boundaries and surface tension at void surfaces both contribute to the flux of

atoms, usually opposing the electromigration term and increasing the lifetime of the line.

Significant residual stresses left over from thermal contraction during the manufacturing

process also affect the formation of voids and the transport of atoms.
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Figure 1.1: Left: Scanning Electron Micrograph picture of a multilevel CMOS integrated
circuit with the intermatallic dielectric etched away. (From Solid State Electronic Devices,
Streetman/Banerjee [73]). Right: Schematic view of the components of a microchip. (From
Microchip Fabrication, Van Zant [81]).

1.1 Literature Survey: Modeling

A good reference on electromigration is the review article by Ho and Kwok [38]. The

concept of the “electron wind” force was formulated by Fiks (1959) and by Huntington and

Grone (1961) [40]. In his experimental work in the 70’s, Blech [7] studied the behavior of thin

films of aluminum and Titanium-Nickel when large currents were passed through them, and

demonstrated the phenomenon of the existence of a threshold current density below which

no damage occurs, which varies inversely with the stripe length. Shortly thereafter, Blech

and Herring [8] offered the explanation that stress gradients were developing along grain

boundaries in the sample to counter the electron wind force, but could only be sustained up

to a critical threshold. Once this threshold was reached, there was no physical mechanism

to stop the transport of material, and the stripe was eroded at one end and formed hillocks

at the other. Herring is best known for his work in the theory of of chemical potentials of

atoms at free surfaces due to surface tension, and along grain boundaries due to stresses [37].

The growth of grain boundary voids in copper wires under stress was studied experimentally

by Hull and Rimmer in 1959 [39].
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Recent theoretical models attempt to explain the role of various combinations of

electromigration, stress gradients, diffusion, temperature, anisotropy, surface tension, and

hillock formation on the mass transport of atoms in the bulk grains, along void surfaces,

along grain boundaries, and at passivation interfaces. Noteworthy theoretical papers that

we are familiar with are the paper of Mullins [56], Korhonen et. al. [47], Sarychev et. al. [68],

Kirchheim [42], and Bower/Craft [9]. The Mullins paper presents a nice overview of mass

transport along surfaces and grain boundaries, and discusses Cobble creep and grain bound-

ary grooving. The papers [68] and [42] are primarily interested in electromigration, stress

driven diffusion, and vacancy generation in the grains, and [47] focuses on electromigration

and grain boundary diffusion. The latter three papers use a statistical argument about the

orientation of the grain boundaries in order to model the stress as a scalar variable instead

of a tensor; one should keep in mind, however, that for any particular sample, the grain

boundaries have a specific geometry, and singularities can occur in the stress field which get

ignored with this simplifying assumption. In [64], the authors attempt to give a quantum

mechanical explanation of the electron wind force experienced by an adatom at the surface

of a current-carrying metal. There is no universal agreement in the electromigration com-

munity on exactly how all the phenomena fit together, especially at junctions where grain

boundaries meet voids or other grain boundaries, and the process of void nucleation is far

from being understood. It is fairly well established, however, that high current densities

together with gradients in chemical potential drive mass transport, which is enough to build

computational models of varying degrees of complexity.

1.2 Literature Survey: Numerics

There have been several numerical simulations of void evolution which take surface diffusion

and electromigration (but not stress) into account. In [69], a boundary element method

is used to follow the evolution of a void in an infinite domain with a constant current

boundary condition at infinity. They investigate the stability of the void shape and speed

of propogation as a function of void size. In [52] and [2], level set methods [70] are employed

to track void evolution for a finite geometry. The former uses the immersed interface method

[51] to compute the electrostatic potentials, and the latter uses black box multigrid [28].

Both suffer from serious timestep limitations due to a CFL condition from surface diffusion,

and neither uses an accurate enough electrostatic solver to compute two derivatives of
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the electrostatic potential along the void boundary. Both exhibit grid effects. In [6], the

self-similar pinchoff problem for axisymmetric surface diffusion is studied, in which they

introduce a very nice implicit finite difference method which deals effectively with the CFL

problems encountered in the previously mentioned papers. None of these papers includes

the effect of stress or the transport of atoms along grain boundaries or in the bulk.

The most comprehensive computational models with which we are familiar are de-

scribed in several papers by Bower, Craft, Fridline and collaborators; see, for example, [9]

and [33]. They use an advancing front algorithm to generate a sequence of adaptive, evolv-

ing finite element meshes, and have studied grain growth, void evolution, hillock formation,

and grain boundary sliding for possibly anisotropic materials responding to stress, sur-

face tension, thermal expansion, and electromigration. They use some clever semi-implicit

techniques to overcome timestep limitations due to the stiffness of the equations.

1.3 The Grain Growth Problem

In the present work, we focus attention on the grain growth problem with a network of grain

boundaries but no voids. We are particularly interested in the effect of singularities in the

stress field near corners and triple points on the solution, and on questions of well-posedness

of the equations and boundary conditions.

In the limiting case of an interconnect line of infinite length with a single grain

boundary running through its center, we show that it is possible to write down an explicit

formula for the solution by using methods of analytic function theory in planar elasticity.

This formula is useful in understanding the similarities and differences between the grain

growth problem and two well understood parabolic equations, namely ut = uxx (the heat

equation) and ut = −uxxxx (the linearized surface diffusion equation). It provides useful

insight into the nature of the diffusion process involved, and offers reassurance that the

high frequency eigenfunctions for a finite geometry will be almost orthogonal, which is the

one thing we are unable to prove rigorously in our study of the well-posedness of the grain

boundary diffusion problem.

There are several difficulties that make the grain growth problem on a finite domain

with corners and triple points interesting. First, there is the basic numerical challenge

that the equations are stiff, and depend on taking two derivatives of the stress tensor

σij , which itself is a sensitive function of the grain boundary separation g (the jump in
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normal component of displacement across a grain boundary). Second, for most functions g,

the corresponding σ will contain singularities near corners and grain boundary junctions,

which are amplified when derivatives are taken. Since some of the boundary conditions are

expressed in terms of derivatives of the stress components at these points, it is essential that

we understand the precise nature of the singularities there. We will see that the components

of the stress field that enter into the equations and boundary conditions remain finite and

well-behaved near these corners even though the stress tensor as a whole becomes singular.

Third, both the equations and boundary conditions are non-local due to the fact that the

flux depends on g through σ. Flux type boundary conditions constrain the stress field σ at

grain boundary endpoints and junctions, which impose global constraints on the evolution

of g, and are not easy to enforce directly. Stated differently, the rate of growth at a point

on the grain boundary and the boundary conditions which arise as a consequence of mass

conservation and chemical potential continuity at an endpoint or triple point depend on the

current state of the entire system rather than on derivatives of g at that point. One has

to be careful that such constraints on g are compatible with the evolution equation. Using

well understood model problems as a guide, we know that for some problems (such as the

heat equation), it is not possible to specify both Dirichlet and flux boundary conditions

at a boundary. For other problems (such as ut = −uxxxx), obtaining a unique solution

requires that two boundary conditions such as these be specified. Therefore it is important

to investigate the possibility that we have included too many boundary conditions on our

“wish list” of physical properties we would like to hold true. In our analysis, it will turn

out that the grain boundary diffusion problem requires both Dirichlet and flux boundary

conditions, so the physical considerations of Chapter 2 lead to a mathematically well-posed

evolution problem.

The key idea that allows us to handle these difficulties is the reformulation of

the problem as an ordinary differential equation on a Hilbert space. The question of well-

posedness becomes a question of the nature of the spectrum and eigenspaces of a compact

(but non-self-adjoint) operator, and the problem of computing the grain growth evolution

with all the correct boundary conditions enforced becomes a matter of developing a ma-

chinery for computing this operator numerically. Through numerical computations, we

discovered a property of the operator that led us to a proof that the spectrum is real and

non-negative and that the eigenfunctions are dense in L2(Γ), where Γ is the grain boundary

network. Our numerical work also shows that although these eigenfunctions are not orthog-
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onal, they form a well conditioned basis for L2(Γ) because the high frequency eigenfunctions

are nearly orthogonal to one another. Together with the exact solution we derived for the

infinite interconnect line, this provides strong evidence that the grain boundary diffusion

problem is well-posed.

From a programming perspective, just being able to solve and visualize the solution

to the heat equation on a network of line segments poses a challenging book-keeping problem

due to the lack of a natural ordering of the nodes. But the grain boundary diffusion problem

is considerably more complicated than the heat equation. We must keep track of two levels

of finite element structures which can readily communicate with each other, namely a large

finite element space on which the two dimensional Poisson and Lamé equations are solved,

and a small finite element space of grain boundary separations and normal stresses defined

on an essentially one dimensional network of line segments. A considerable amount of

effort was required to design appropriate data structures and algorithms capable of coping

with the complications of jump discontinuities across grain boundaries, singular behavior

of the stress field near corners and junctions, and non-trivial compatibility constraints in

the boundary conditions.

1.4 Stable Asymptotics Near Corners

In Chapter 4, we develop a method of computing stable asymptotics for the solution of

the elastic equations (or any other Agmon-Douglis-Nirenberg elliptic system) near corners.

The problem of understanding the asymptotic behavior of solutions of elliptic systems near

corners in the domain is a well developed subject, and a good deal has been written about

it. Asymptotic solutions to the Laplace equation near a corner of the form rπ/ω sinω (ω is

the opening angle), and the characteristic r−1/2 behavior of the stress field near a crack

tip in the Lamé equations, have been understood since the 1930’s and 1950’s, respectively.

The work of Kondratiev, Mazya, Plamenevskij and others in the 1960’s made extensive use

of transform methods to prove isomorphism theorems which characterize the asymptotic

nature of solutions of general elliptic systems in Rn near angular points in the domain; see

the papers [45, 54], the review articles [46, 63], and the books [36, 24] for further details.

These results are appealing mathematically, but are difficult to work with in practice due

to the technical nature of the spaces and the non-constructive description of the results.

Many papers have been written analyzing special cases and equations; for the biharmonic
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equation, see [45, 36]; for the Lamé system, see [35, 67].

For problems in the plane, the asymptotics near a corner can typically be deter-

mined by solving a generalized eigenvalue problem for an ordinary differential equation.

This has led to a number of computational methods in which this eigenproblem is solved

numerically (with finite elements, for example) in order to determine the characteristic ex-

ponents and angular functions; see [50, 60]. The paper [21] by Costabel and Dauge offers a

nice improvement, in that it gives a constructive description of the singularities for a general

Agmon-Douglis-Nirenberg elliptic system in the plane without recourse to an extraneous

ODE. It becomes possible to solve for the characteristic exponents and angular functions

semi-analytically (only the exponents are inexact), and thus to much higher accuracy for

less computation. They use their method in [23] for non-isotropic linear elasticity. We have

taken their method as a point of departure, and have simplified and solved some of the

technicalities that prevent it from working in special cases. Specifically, we present a new

algorithm for removing rank deficiency from the analytic basis matrix and and show how

to handle multiple or tightly clustered roots of the characteristic determinant ∆(λ) when

finding the critical exponents.

Costabel and Dauge also wrote a paper [22] on stable representations of the asymp-

totics of the solutions, but these representations seem to be of little practical use due to

the fact that they are given in the form of Cauchy integrals with integrands obtained by

existence theorems from the theory of several complex variables; this hides many of the

difficulties of dealing with crossings and branchings of the roots and offers little help in

computations, but is still of theoretical interest. The problem of stability will be further

explained in Chapter 4, but for the present purposes, it means that the most natural choice

of basis functions becomes linearly dependent at certain critical angles of the corner, and

as a result, the coefficients with respect to this basis blow up near these angles.

We present a new algorithm for choosing a different basis for clusters of self-similar

solutions which does not become linearly dependent at the critical angle. We also present

a new theorem about Keldysh chains which leads to an algorithm for computing associated

functions and understanding the structure of the power solutions simply by knowing the

boundary condition matrix A(λ) and its first few derivatives at a critical value of λ. We

have found that our stabilization procedure has the nice feature that at a nearly critical

angle of the geometry, it will give nearly the same power solution basis as the Keldysh chain

procedure at exactly the critical angle. This stabilization process is essential for employing
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self-similar basis functions in the finite element computations of Chapter 3 due to the fact

that clustered characteristic exponents frequently arise in triple point geometries, and the

corresponding non-stabilized basis functions tend to be highly linearly dependent, leading

to ill-conditioned stiffness matrices if nothing is done for stability.

1.5 Some Pitfalls: How Did We Get Here?

In our initial attempts at solving the grain growth problem, we used variational finite ele-

ments to solve for the normal stresses along grain boundaries given the separation function

g, which is the jump in normal component of displacement. The components of stress σij

are obtained from the displacements ui via the relations

σij = λεkkδij + 2µεij , εij =
1
2
(∂iuj + ∂jui), (summation implied) (1.1)

where λ and µ are constants. Because the evolution equation (Eqn. (1.6) below) relates the

rate of change of g to components of σ along the grain boundary, we want the stress field

to be continuous throughout the domain (with a well defined value at each node). By (1.1),

this requires that the displacements be continuously differentiable within each grain and

satisfy special compatibility conditions along the grain boundary. For a horizontal grain

boundary, for example, the conditions

u+
1 = u−1 , u+

2 = u−2 + g (1.2)

along the grain boundary imply that

∂xu
+
1 = ∂xu

−
1 , ∂xu

+
2 = ∂xu

−
2 + g′. (1.3)

Using (1.1) and (1.3) to express stress continuity in terms of displacements, we find that

σ+
22 = σ−22 ⇒ ∂yu

+
2 = ∂yu

−
2 (⇒ σ+

11 = σ−11) (1.4)

σ+
12 = σ−12 ⇒ ∂yu

+
1 = ∂yu

−
1 − g

′. (1.5)

Our initial approach was to model the displacements with C1 Clough-Tocher finite elements

[10] subject to the above constraints on the ui and their derivatives across grain boundaries.

In the simplest case of a horizontal grain boundary with electromigration turned

off, the grain boundary diffusion problem takes the form

gt = −σ22[g]xx (in interior); g = 0, ∂xσ22 = 0 (at endpoints). (1.6)
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Here g 7→ σ22[g]xx is a linear functional which maps a given separation function g defined

on the grain boundary to the second derivative of the corresponding normal stress along

the grain boundary obtained by solving the elasticity equations. We immediately ran into

problems due to the fact that the stress components did not belong to the same spaces as

the displacements, being expressed in terms of derivatives of the displacements. Note that

the natural thing to do for Equation (1.6) in the finite element setting is to multiply by a

test function, integrate the right hand side by parts, and split the left hand side into a finite

difference, possibly using a backward Euler, Crank-Nicholson, or Runge-Kutta scheme. This

doesn’t work when g and σ belong to different spaces. We also ran into difficulties deciding

just what boundary conditions to enforce at the walls and triple junctions — after all,

how does one enforce a global constraint like ∂xσ22 = 0 on g? (We answer this question in

Chapter 3). It was not clear at the time that the desired boundary conditions from a physical

point of view were leading to a mathematically well-posed problem. We also were feeling

uncomfortable about what we should do near corners and triple points where the stress field

could develop singularities, and yet also where we wanted flux conditions enforced, which

are expressed in terms of gradients of the stress field. At this point we abandoned this

approach, having learned a good deal about the obstacles involved in solving the problem.

The need for compatible spaces for the stresses and displacements leads to the

literature on mixed finite element methods, where instead of computing the stresses from

derivatives of the displacements, additional variables are added to the system, and the

stresses are expressed in terms of some combination of the new variables and the dis-

placements. (Sometimes the stress components are the new variables). This reformulation

changes the problem from a minimization problem to a saddle point problem; see the book

[10] by Braess for details. It turns out that the spaces used for stress and displacement

cannot be chosen arbitrarily in this framework, but must satisfy the so called inf-sup or

Babus̆ka-Brezzi condition. These methods were primarily designed for the case of nearly

incompressible elastic materials, and there have been quite a variety of strategies used

to construct optimal methods [10, 72, 41, 31, 32], the last containing a class of methods

known as CBB (Circumventing Babus̆ka-Brezzi condition) methods. Unfortunately, all of

them have some property which makes them unsuitable for solving equation 1.6, such as

discontinuous stresses or displacements.

One interesting way to get around the problem of the stress variables belonging to

the wrong spaces is by choosing standard displacement based C0 finite elements, but using



10 CHAPTER 1. INTRODUCTION

Lagrange multipliers to obtain the stresses along grain boundaries instead of differentiating

the displacements. This is analogous to the standard way of imposing a traction boundary

condition, with a few modifications to make it work for a jump condition along a grain

boundary. This is the approach used by Bower, Craft, Fridline, and their collaborators

(see, e.g. [9, 33]). Their approach seems to work quite well, and they have incorporated

an impressive number of interesting phenomena in their model. The method of Lagrange

multipliers does not give stresses at junctions where grain boundaries meet passivation or

other grain boundaries, and there can be large discrepancies near corners between the stress

obtained via Lagrange multipliers and the stress obtained by differentiating the displace-

ments. It is not clear that singularities near corners and triple points can safely be ignored

in this problem, so we take a different approach in order to focus on these issues.

1.6 Capturing Singularities: XFOSLS

In Chapter 5, we develop a singularity capturing, least squares finite element method for

plane elasticity. One can think of standard displacement based variational finite elements

as a problem of finding the state which minimizes the energy functional. In least squares

finite elements (LSFE), we look for the state which minimizes the residual obtained by

plugging the numerical solution into the PDE. The least squares finite element idea goes

back to 1970 with the papers of Bramble and Schatz [11], [12]. There is a nice paper of Aziz,

Kellogg and Stephens [3] written in 1985 which describes how to apply the least squares

finite element method to an arbitrary Agmon-Douglis-Nirenberg elliptic system; specifically

they show how to weight the residuals for the equations and boundary conditions based on

the ADN indices in order to achieve optimal error bounds on the solution. The primary

drawback of their approach is that it leads to unnecessarily bad condition numbers for

the resulting linear systems — a second order system will result in condition numbers of

order h−4 instead of h−2 for the standard Galerkin method. This drawback was removed

(e.g. [18, 62, 15]) with the realization that if the system is first reduced via the Agmon-

Douglis-Nirenberg reduction process [1] to a first order system, then the condition number

is O(h−2) even for problems like the biharmonic equation where the Galerkin method is

O(h−4). The most active work in this direction has led to the FOSLS (First Order System

Least Squares) methodology of Cai, Manteuffel, McCormick and others, where they have

applied it to general second order systems [15], the Stokes problem [16], the pure traction
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problem of planar elasticity [17], and many other problems.

One benefit of using least squares finite elements instead of the Galerkin method

is that there is no Babus̆ka-Brezzi condition to be satisfied [62]. We are free to choose

the spaces for stress and displacement independently. This means that instead of getting

stresses in a space of derivatives of another space, we can use standard quadratic elements

for both displacement and stresses. This is a huge advantage for the grain growth problem.

The other benefit is that we have an a-posteriori gauge of how accurate the solution is,

because we have minimized a residual instead of an energy. On each element of the mesh,

we have a number which tells how accurately the PDE is satisfied on that element. This

idea is made rigorous by Berndt, Manteuffel and McCormick in [4] and [5].

The primary drawback of the FOSLS method is that it requires H2 regularity in

the solution; if the solution is not in H2, the method may fail to converge. One of the key

features which has made variational finite elements so successful is that only H1 regularity

is necessary. When the domain has re-entrant corners, or a change in boudary condition

type from Dirichlet to traction boundary conditions, there is typically a singularity present

that destroys H2 regularity even when the data is smooth. In the grain growth problem,

there are many such singularities, so something must be done in order to get FOSLS to

work. The approach currently being persued by Manteuffel and McCormick to deal with

this problem is known as FOSLS* [14], but this requires giving up the two benefits that led

us to FOSLS in the first place: that the stresses belong to nice spaces and that there is an

a-posteriori error gauge.

Even in the Galerkin setting, singularities invalidate (or weaken the conclusions of)

convergence and regularity proofs, and can make iterative numerical schemes slow. The idea

of augmenting finite element spaces with appropriate singular functions in order to “capture”

the correct asymptotic behavior near corners is an area of active research in the fracture

mechanics community; see [75] and [25] for a sample of some of the recent work in this field.

In the FOSLS framework, Berndt has developed a method of augmenting the finite element

space near interface junctions for the steady state diffusion problem −∇ · (α∇u) = f ,

where the scalar function α may have large jumps across material interfaces. Once these

singularities have been included in the basis set, only the regular part of the solution (the

part that remains when the singularity is subtracted off) needs to be in H2, and the method

converges.

In fracture mechanics, one is primarily interested in crack growth problems, so
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the difficulty of finding the singularity exponents for each geometry is not confronted – the

geometry is usually a crack, and the characteristic r1/2 behavior for the displacements at a

crack tip has long been known. They do not attempt to include any further terms in the

asymptotic expansion to improve convergence. Berndt’s implementation is also limited to

a single singular function per interface junction, and because he is solving −∇· (α∇u) = f ,

he does not face the difficulties of branching and crossing roots or degenrate or nearly

degenerate singular basis functions that can occur in more general elliptic systems like

elasticity.

In Chapter 5, we develop an approach to augmenting each corner and interface

junction with an arbitrary number of singular functions. We have adopted the name

XFOSLS for our method, following the terminology used by the developers of the extended

finite element method (XFEM) for crack problems [25]. A single singular function is a

chain (usually of length one) of power solutions. They may include logarithm terms, or

simply be an appropriate linear combination of nearly linearly dependent power solutions

to deal with the stability problem discussed in Chapter 4. Each singular function has a

near region, where it is a solution to the PDE, a fringe region, where it transitions to zero,

and a far region where it is zero. Singular functions with smaller real parts are given larger

supports to give the singularity room to die out and become well approximated by the stan-

dard quadratic basis functions. The beauty of the least squares finite element framework

over the Galerkin framework for adjoining singular functions is that because the singular

functions satisfy the PDE in the near and far regions, only the fringe region is relevant for

computing the inner products in the LSFE setting. Therefore inner products only need to

be computed in regions where the functions are well-behaved, and numerical integration

schemes like Gaussian quadrature are fine. By contrast, to adjoin singular functions in

variational finite elements, special methods must be used to get the integration right, and

it is quite difficult to compute the inner products between two different singular functions.

We compare the solution obtained using XFOSLS to solve the Lamé equations near

a corner with Dirichlet boundary conditions on one wall and traction boundary conditions

on the other to the solution obtained using the Galerkin finite element method with a locally

refined mesh. When viewed on a large scale, the solutions appear to agree perfectly, but

when we zoom in on one of the corners, we find that the stress components obtained using

the Galerkin method have very large discontinuities near the corner, and exhibit a large

discrepancy between the stress obtained from the displacements using Eqn. (1.1) and the
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specified traction (Lagrange multiplier). In contrast, using a much coarser mesh, XFOSLS

easily resolves the singularity smoothly. We also use XFOSLS to solve the elastic equations

in the incompressible limit (the method works fine over the entire range of poisson ratio)

on a complicated geometry with re-entrant corners to show the effectiveness of the method

outside of the electromigration problem.
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Chapter 2

A Model of Mass Transport in

Interconnect Lines

In this chapter, we develop a continuum model of mass transport in the bulk grains,

at void surfaces, and along grain boundaries for an interconnect line in a microelectronic

circuit. A typical interconnect line might be made of an alloy of Al-0.5%Cu and have

a diameter of 0.5µm, which is only 1700 times larger than the nearest neighbor distance

for aluminum, which has an FCC lattice structure with a lattice constant of 4.05Å and

a nearest neighbor spacing of 2.86Å. These interconnects are beginning to approach the

limit in size where it becomes questionable whether there is an intermediate scaling regime

which is large enough that details of the discrete interactions of the atoms in the lattice

can be neglected, but small enough to be considered small in comparison to the geometry

of the macroscopic sample; nevertheless, we believe a continuum approach is useful for

understanding the process of electromigration.

In Section 2.1, we describe the quasi-static aspects of the problem, namely solving

for the electrostatic potential, stress tensor, and displacement field with the void geometry

frozen in time. We define the separation function (jump in normal component of displace-

ment across a grain boundary), derive appropriate boundary conditions at junctions and

endpoints, and discuss the consequences of having jump discontinuities in the displacement

field along grain boundaries. Although these ideas are implicit in [33, 9], no one has pre-

viously singled out the separation function as a key tool for studying the grain growth

problem.
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In Sections 2.2–2.4, we describe the role of mass conservation, chemical potential

continuity and the various driving forces for diffusion on the evolution of vacancies, void

surfaces, and grain growth. Although we will ultimately focus on the grain growth problem

in Chapter 3, it is useful to develop our model of grain boundary diffusion in the context of

the more general problem with voids and vacancies taken into account — parallel treatment

helps develop physical insight (and the phenomena are closely related anyway). We treat

the problem as three dimensional in these sections when there is no essential difference

between the two and three dimensional theory.

2.1 The Setup

2.1.1 The Potential Problem

Consider the interconnect line shown in Figure 2.1. We assume the conductivity of the

metal to be homogeneous, and that grain boundaries do not significantly affect the flow of

electric current in the line. The cathode and anode ends of the line are respectively held

at potentials of ψ = 0 and ψ = ψ0, where ψ0 is chosen (depending on the resistivity of the

metal) to produce an average current density across the line of approximately 106 Amp/cm2.

We take ψ0 to be positive, so that electrons are flowing from left to right in the figure. The

other outer walls of the line are assumed to be insulated, so the electric field E = −∇ψ
has no component in the normal direction of these walls. Likewise, we take the voids to

be non-conducting, so the electric field is tangent to void surfaces and Neumann boundary

ψ = 0

grain boundary

e−

network ψ = ψ0

void

void

Figure 2.1: Geometry of an interconnect line.
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conditions hold there as well. In summary, at any given instant in time, we assume a steady

current flows through the line, which is modeled by an electrostatic potential ψ satisfying:

∇2ψ = 0 in interior (even at grain boundaries), (2.1)

ψ = 0, ψ = ψ0 at the ends, (2.2)

∂nψ = 0 at other walls and at void boundaries. (2.3)

We remark that although the geometry of the line changes in time, the timescale on which

a void changes shape is practically infinite in comparison to the time it takes for the current

to find its steady state distribution, which justifies this quasi-steady assumption.

2.1.2 The Elasticity Problem

Each grain is assumed to deform elastically, and to satisfy the Lamé equations of linear

elasticity. More general non-isotropic linear relationships between stress and strain can

easily be used instead, but we are satisfied with the Lamé and Hooke relations:

Lamé: σ = 2µε+ λ tr(ε)I, (2.4)

Hooke: ε =
1 + ν

E
σ − ν

E
tr(σ)I. (2.5)

Here σ is the stress tensor, εij = 1
2(∂iuj +∂jui) are the components of the strain tensor, u is

the displacement vector field, tr(·) is the trace operator, µ and λ are the Lamé coefficients,

and E and ν are Young’s modulus and the Poisson’s ratio; see [48, 19].

When dealing with problems in the plane, we adopt the convention that u has two

components, that σ and ε are 2 × 2 tensors, and that tr(σ) means σ11 + σ22. For plane

strain, we modify (2.5) to account for the neglected σ33 = ν(σ11 + σ22) term:

Hooke: ε =
1 + ν

E
σ − ν(1 + ν)

E
tr(σ)I. (plane strain) (2.6)

For plane stress, we modify (2.4) to account for the neglected ε33 = − λ
λ+2µ(ε11 + ε22) term

by using a different expression for λ in terms of E and ν. It is readily verified from (2.4),

(2.5) and (2.6) that the relationship between λ, µ, E and ν is given by

µ =
E

2(1 + ν)
, ν =

λ

(n− 1)λ+ 2µ
, (2.7)

λ =
Eν

(1 + ν)[1− (n− 1)ν]
, E =

µ(nλ+ 2µ)
1
2(n− 1)λ+ µ

, (2.8)
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where n = 2 in the plane stress case and n = 3 in the plane strain and 3D cases. It will

also prove useful later to make use of the dimensionless parameter κ, defined by

κ =
λ+ 3µ
λ+ µ

=

3− 4ν plane strain (or 3D),

3−ν
1+ν plane stress.

(2.9)

The two dimensional Lamé equations (c.f. Sec. 3.1) are to be satisfied in the interior of each

grain:

µ∆u + (λ+ µ)∇(∇ · u) = 0. (2.10)

2.1.3 The Separation Function

At any given instant in time, we are given a separation function g which is defined on

the grain boundary network to be the jump in normal component of displacement across

the grain boundary. For any segment on the grain boundary, we choose an orientation for

the segment arbitrarily, which defines a local arclength parameter s, a tangent vector t

pointing in the direction of increasing s, a right adjacent grain (facing in the t direction), a

left adjacent grain, and a normal vector n pointing from right to left (see Figure 2.2). At a

point x in the interior of such a grain boundary segment, we impose four interface boundary

conditions, two which relate the displacement on the right grain to the displacement on the

left grain, and two which express a local balance of forces:

t · (uleft − uright) = 0, (2.11)

n · (uleft − uright) = g, (2.12)

t · (σleftn− σrightn) = 0, (2.13)

n · (σleftn− σrightn) = 0. (2.14)

t

nleft (+)
grain

grain
right (−)

Figure 2.2: Arbitrary local orientation of grain boundary segment determines tangential
and normal directions, left and right grain labels, etc.
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Equations (2.11) and (2.14) imply that

t · (σleftt− σrightt) = 0, (2.15)

which may be seen by differentiating (2.11) along the grain boundary and writing (2.14)

and (2.15) in terms of derivatives of uleft and uright. Thus we conclude that all components

of the stress tensor are continuous across grain boundaries.

Choosing the opposite orientation for the grain boundary segment will change the

sign of n and swap the right and left labels, so the sign of g is well defined. Physically, a

positive value of g means that two points that were once adjacent to each other on either

side of the grain boundary in the unstressed reference configuration have separated relative

to each other; the gap (in the deformed configuration) between them is to be interpreted

as being filled in by new material that has been added to the grains at the grain boundary.

The orientation of the lattice structure of the new material aligns partly with one grain

and partily with the other; the details of this are not part of our model. Similarly, a

negative value of g means that adjacent points on the grain boundary in the reference

right grain

left grain

right grain

left grain

balance
tractionscorresponding points

n

are glued together

gap is filled in

overlap corresponds to
material which has been removed

by new material

g(x) = (uleft − uright) · n

x

deformed configurationreference configuration
(unstressed grains) (forces balance)

Figure 2.3: Meaning of the separation function g. The regions between dashed and solid
lines in the top two pictures represent material which has been added or removed from each
grain during the transport process. The actual displacements would be much smaller than
those shown here.
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configuration have passed through each other so that an overlap region has developed near

the grain boundary in the deformed state. The seems a little odd at first thought, but within

the linear elasticity model, it is the natural way to represent the physical phenomenon of

removing material from each grain near the grain boundary in the unstressed state and then

gluing the two resulting surfaces together. The overlapping region is the image of the empty

space left behind in the reference configuration rather than a superposition of material. In

Figure 2.3, the displacements are defined on the rectangles bounded by the solid lines in the

reference configuration; the curved dashed lines represent our mental picture of the grain

growth process we are modeling within the linear elasticity framework, but are not part of

the mathematical description; and the curved solid lines in the stressed state are the images

of the displacements along the dotted lines for each grain.

2.1.4 Further Boundary Conditions

At exterior walls, we assume the passivation to be infinitely rigid, and impose the Dirichlet

boundary conditions u = 0. Void surfaces are assumed to be traction free, so if t and n are

tangent and normal vectors to the void surface at x, then t · σ(x)n = 0 and n · σ(x)n = 0.

The separation g is assumed to go to zero at the walls, as it must since both uleft and uright

approach zero there. There is a basic compatibility condition on g where three (or more)

grain boundary segments meet at a point, namely that if we follow the jump in displacement

from grain to grain (counterclockwise, for example), the net jump must be zero when we

get back to the grain we started with. For example, in Figure 2.4, we would require

g(x1)n1 + g(x2)n2 + g(x3)n3 = 0. (2.16)

n1

n2

n3

x1

x2

(the xi are infinitesimally
close to the triple point.)

x3

Figure 2.4: Compatibility condition on the separation function g at a triple point.
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We assume g is continuous on each grain boundary segment and has a limiting value at the

endpoints, but the limit is generally different when approaching a triple point from different

segments, subject to the above condition.

Just as we did when computing the electric field, we treat the elasticity problem

as a quasi-steady phenomenon. Although the void geometry will change with time, the

timescale on which voids change shape is very large in comparison to the time it takes the

grains to find their elastic equilibrium, i.e. the speed of void evolution is slow in comparison

to the speed of sound. Thus we may consider the void geometry frozen when determining

the stresses from the separation function g.

In summary, at any instant in time the state of stress of the system is obtained from

the data g by solving the Lamé system (2.10) subject to the interface boundary conditions

(2.11)–(2.14) along grain boundaries, the Dirichlet boundary conditions u = 0 along walls,

and traction free boundary conditions at void surfaces.

2.2 Mass Conservation

So far we have only looked at the static aspects of the problem. The dynamics of mass

transport in interconnect lines is governed by mass conservation and various constitutive

laws governing the flux of atoms. In Sections 2.2 and 2.3 we will develop a 3D model of

mass transport in interconnect lines. At each point in the interior of each grain, there is a

flux vector J with units (cm2s)−1 such that for any area element dA the number of atoms

surface flux

dl

dA δ
J

J

J
represents

J

volume flux
J

J
s

s

s

Figure 2.5: Volume and surface fluxes J and Js give the number of atoms crossing area and
line elements dA and dl when dotted with them. In 2D simulations we are still modeling
3D objects, so the units are (cm2s)−1 and (cm s)−1, respectively.
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crossing dA per unit time is given by J · dA. At each point on a void or grain boundary

surface (speaking three dimensionally here), we have a surface flux Js (denoted Jb for grain

boundaries) with units (cm s)−1 such that for any line element dl the number of atoms

crossing dl per unit time is given by Js · dl. In order to conform as much as possible to

common practice in the electromigration literature, we represent our fluxes, concentrations,

etc. in the units appropriate for three dimensional objects even though our simulations are

done in two dimensions. We simply give the sample a thickness δ and assume all fields are

independent of the coordinate in the transverse direction.

2.2.1 Vacancy Evolution in the Grains

Mass conservation in the bulk grains is expressed via a continuity equation. At each point

in a grain, there is an atomic concentration c which is related to the vacancy concentration

cv and the lattice concentration clat by

c+ cv = clat. (2.17)

If we integrate the flux over a control volume V (see Figure 2.6) and use the divergence

theorem, we obtain the integral form of mass conservation

∂

∂t

∫∫∫
V
c dV = −

∫∫
∂V

J · n dA = −
∫∫∫

V
∇ · J dA, (2.18)

from which the continuity and vacancy evolution equations follows immediately:

∂c

∂t
+∇ · J = 0, −∂cv

∂t
+∇ · J = 0. (2.19)

J

void surface at time t

void surface at time t + ∆t

vn∆t

S

V

J

Js

Figure 2.6: The continuity equation and void growth equation are a consequence of mass
conservation.
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In the vacancy equation, one must keep in mind that J is the atomic flux rather than the

(equal and opposite) vacancy flux.

2.2.2 Void Evolution

At void surfaces (speaking three dimensionally), an accumulation of atoms in a region leads

to growth in the normal direction (see Figure 2.6):

1
Ω

∫∫
S
vndA =

∫∫
S
J · n dA−

∫
∂S

Js · ns dl =
∫∫

S
J · n−∇s · Js dA. (2.20)

Here vn is the normal velocity of the void surface, Ω is the volume of an atom in the lattice,

ns is the outward unit surface normal to ∂S (which is tangent to the surface but normal to

the curve ∂S), ∇s · Js is the surface divergence of Js, n is the unit normal pointing away

from the bulk (into the void), and J · n represents the flow of atoms from the bulk (or

grain boundaries) up to the surface. The differential version of this equation gives the void

growth equation

vn + Ω∇s · Js = ΩJ · n (2.21)

2.2.3 Grain Boundary Evolution

Similarly, if along a grain boundary interface there are more atoms flowing into a region

than out (see Fig. 2.7), then the accumulation of atoms will lead to grain growth (i.e. an

increase in grain separation g), which is expressed by the equation

∂g

∂t
+ Ω∇s · Jb = 0. (2.22)

The primary difference here is that we do not include the possibility of atoms flowing from

the bulk onto the grain boundary surface; all the physics we have in this model results in

the flow from the right grain to the grain boundary being equal to the flow from the grain

boundary to the left grain, so the net contribution from the bulk is zero.

2.3 Driving Forces for Diffusion

In the previous section we saw how the vacancy concentration (Eqn. 2.19), void surface

velocity (Eqn. 2.21), and grain separation rate (Eqn. 2.22) depend on the fluxes J, Js, and

Jb. In this section we discuss constitutive laws which express the fluxes in terms of the

geometry and state of the system.
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grain

boundary

t = 0

new material

t > 0

g

Jb

Jb

Figure 2.7: Left: high resolution TEM microscope image of a large tilt angle grain boundary
in a gold thin film. (From Electronic Thin Film Science for Electrical Engineers and Ma-
terials Scientists, Tu/Mayer/Feldman [77]). Right: grain growth occurs when more atoms
flow into a region of the grain boundary than out.

2.3.1 The Einstein-Nernst Relation

The central concept in deriving these constitutive laws is the concept of the chemical po-

tential µ of an atom, which in turn relies on the concept of free energy. Free energy is a

measure of the balance between lowering internal energy and raising entropy. In a gas at

constant volume, for example, a system in contact with a heat reservoir will be at thermal

equilibrium when its Helmholtz free energy F = U − TS is minimized; see [43, 82]. If two

systems of a single chemical species are placed in diffusive contact with each other and

in thermal contact with a heat reservoir, the free energy of the combined system will be

minimized at equilibrium with respect to particle exchange between them. Assuming the

free energy is additive, this means we must have equality of the rates of change of each

system with respect to the number of particles (holding temperature and volume fixed), or

else the free energy could be lowered by moving a particle from one system to the other.

This gives the physical importance of the chemical potential µ, defined as

µ(T, V,N) =
(
∂F

∂N

)
T,V

=
(
∂G

∂N

)
T,p

. (2.23)
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heat  reservoir

µ1 µ2

µ1 = µ2

Figure 2.8: Two systems in thermal and diffusive contact must have equal chemical
potentials.

Here G = U − TS + pV is the Gibbs free energy, which is frequently useful, and plays the

same role as the Helmholtz free energy in the constant pressure case; see Figure 2.8.

In solid mechanics, if an elastic medium occupies a volume V and we perturb the

boundary ∂V infinitesimally to create virtual displacements δu while keeping the system in

mechanical equilibrium, we obtain the following expression for the work done on the system

by the external forces acting on the boundary (n points outward):

∫
∂V
δu · (σn) dA =

∫
V
∂j (δuiσij) dV =

∫
V

0︷ ︸︸ ︷
(∂jσij) δui + σij (∂jδui) dV

=
∫

V
σij

(
∂jδui + ∂iδuj

2

)
dV =

∫
V
σijδεij dV.

(2.24)

The first law of thermodynamics dU = TdS − pdV for a gas is therefore replaced by

dU = TdS +
∫

V
σijdεij dV, (2.25)

and the definition of G becomes G = U − TS −
∫
V σijεij dV . At each point in the inter-

connect line, we consider a volume V centered at this point which is small compared to the

macroscopic dimensions of the sample but large with respect to the atomic spacing, and

compute a value for the chemical potential for the system contained in this volume using

the above formula for G at constant stress. We assume the value µ so obtained becomes

independent of the volume as the volume shrinks to zero (i.e. there is a limit), and in this

way we obtain a spacially varying intensive variable µ, the chemical potential. If the system

were in its final equilibrium stage, µ would be a constant throughout the system. It is

assumed that when the system is not in equilibrium, the chemical potential is continuous,

and the flux of atoms is proportional to the gradient in chemical potential. This is known
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as the Einstein-Nernst relation:

J = −cvD
kT
∇µ, (in bulk), Js = −νsDs

kT
∇sµ, (on void and gb surfaces). (2.26)

Here cv is the vacancy concentration (1/cm3), νs is the number of participating atoms per

unit area (1/cm2), D and Ds are the diffusion constants (cm2/s), and k is Boltzmann’s

constant (erg/K). See [56] for further discussion.

2.3.2 The Chemical Potential at a Surface

In [37], Herring argued that the chemical potential of an atom just beneath a curved surface

has the form

µs = µ0 − γΩ(κ1 + κ2), (2.27)

where µ0 is a constant independent of the curvature, γ is the surface tension (typically

∼ 0.1 erg/cm2), and κ1 and κ2 are the principal curvatures of the surface (positive for a

spherical void); see also [13]. Considering the flat case, we see that µ0 is negative and equal

to the cohesive energy per atom in the lattice, or stated differently, the energy required to

form separated neutral atoms divided by the number of atoms. His argument is based on

determining the change in G by looking at the increase in surface energy of a tiny smooth

hump of volume Ω added to the curved surface; the curvature terms come in due to the fact

that the mean curvature κ1 + κ2 is equal to the rate at which the surface area decreases

as the surface moves normally to itself at unit speed. His analysis was done in the more

general case when γ depends on the orientation of the surface, but it reduces to the above

in the isotropic case we are considering.

2.3.3 The Chemical Potential at a Grain Boundary

A similar argument leads to an expression for the chemical potential of an atom near a

grain boundary (see [8]):

µb = µ0 − Ωσnn. (2.28)

Here Ω is the volume of an atom in the lattice and σnn = n · σn is the normal-normal

component of the stress tensor. This can easily be understood by considering the work

done by the stress field when a layer of atoms is added to the grain boundary: only the top

and bottom walls of a small cylindrical control volume placed perpendicular to the grain

boundary move when the layer is added, and only the normal force acting on these walls
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does work. If the cross section of the control volume is A and the change in height of the

control volume when the layer is added is δ, then the work done by the normal forces is

σnnAδ. Dividing by the number of participating atoms (Aδ/Ω) gives the desired result.

The constant µ0 is again the cohesive energy per atom in the lattice.

2.3.4 The Chemical Potential in the Bulk

To determine the chemical potential of an atom in the bulk, we assume [42, 68] the ex-

istence of a vacancy relaxation factor f between 0 and 1 (typically between 0.2 and 0.4

for a metal [42]) which has the physical interpretation that fΩ is the change in volume of

any macroscopic volume V of the lattice when a vacancy inside V is filled with an atom.

Assuming the inelastic strain field which is responsible for this volume change is localized

at the filled vacancy location and is spherically symmetric, and assuming the stress field

does not change much when a mere vacancy is filled, we find from Eqn. (2.24) that the work

done by the traction forces acting on the boundary of any such V in the process of filling

the vacancy at x is fΩ tr(σ(x)):∫
V
σijδεij dV ≈ σij(x)

∫
V
δεij dV = σij(x)

(
fΩ

δij
3

)
= f tr(σ)Ω. (2.29)

Also including the standard entropy term to account for the increased number of config-

urations with a given energy which arise when the number of vacancies increases [77], we

obtain the expression

µ = µ1 − fΩ tr(σ)− kT log
cv
ce

(2.30)

for the chemical potential of an atom in the bulk. Here cv is the vacancy concentration, ce

is the equilibrium vacancy concentration, and µ1 is negative in sign and equal to the energy

of formation of a vacancy in the unstressed state, i.e. the energy required to pluck an atom

out of the middle of the lattice and move it to infinity. If the surrounding atoms did not

adjust their relative positions when a vacancy is formed (which would be the f = 0 case),

we would have µ1 = 2µ0 by a standard “when we sum over the atoms we count each bond

twice” argument. But since there is a considerable amount of relaxation energy involved in

forming a vacancy, µ1 is somewhat smaller in magnitude than 2µ0.

The papers [42] and [68] also include a model for vacancy generation or annihilation

at dislocations (uniformly distributed) in the bulk grains in which the generation rate of
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vacancies is proportional to the difference in chemical potential from the equilibrium value:

vacancy generation rate = Lv(µ− µ1), (2.31)

with Lv > 0 and µ, µ1 as in Eqn. (2.30).

2.3.5 Elastic Energy

One could also include an elastic energy term in each of the above chemical potentials to

account for the increase in volume of stressed material; see [9]. This is a second order

effect (in comparison to the inelastic effects above) under the small strain assumption, as∫
Ω σ : ε dV is much smaller than ||σ||Ω. One should be careful near singularities where the

small strain assumption no longer holds, but we have not pursued this line of thought; (it

is not pursued in [9] either).

2.3.6 Electromigration and Summary

Recalling the Einstein-Nernst relations (2.26) on page 26 and including the electron wind

force (so ∇µ→ ∇µ+Z∗e∇ψ), we get constitutive expressions for the fluxes in terms of the

field variables:

bulk : J =
cvD

kT

(
fΩ∇ tr(σ) + kT

∇cv
cv
− Z∗e∇ψ

)
, (2.32)

grain boundary : Jb =
νbDb

kT
(Ω∇sσnn − Z∗e∇sψ) , (2.33)

void surface : Js =
νsDs

kT
(γΩ∇s(κ1 + κ2)− Z∗e∇sψ) . (2.34)

Here e is the elementary electronic charge (e = 1.6×10−19C) and Z∗ is a phenomenological

effective charge for an atom. Since the electron wind force is stronger than the opposing

direct force of the electric field, (i.e. atoms move in the direction of the electrons) we find

that Z∗ < 0. For a good conductor [56, 77], Z∗ is typically on the order of −5; for aluminum

at 533K [68], Z∗ is approximately −1.3. Combined with appropriate boundary conditions,

the potential and elastic problems, and the continuity equations

−∂cv
∂t

+∇ · J = 0, (note ∇cv 6= 0 in ∇ · J) (2.35)

∂g

∂t
+ Ω∇s · Jb = 0, (2.36)

vn + Ω∇s · Js = ΩJ · n, (2.37)
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we get a closed set of equations for the evolution of the vacancy concentration cv, the grain

separation g, the electrostatic potential ψ, the stress field σ, and the void geometry Γ.

2.4 Interface Junctions

The first assumption we make is that mass transport in the bulk is negligible in comparison

to mass transport along grain boundaries, void surfaces, and passivation interfaces. This

assumption is justified by the experimental fact that in the operating temperature range

of a microchip, the diffusion constants D, Db and Ds are [56] respectively on the order

of 10−15, 10−8 and 10−7 cm2/s. This is essentially due to the fact that the atoms are

bound less tightly at grain boundaries and void surfaces, and the activation energy required

to move them is significantly lower; see Fig. 2.9. Taking cv = 1.4 × 1019cm−3 [68], and

νb = νs = 1.5 × 1015cm−2 [56], we find the ratio of cvD
kT to νbDb

kT and νsDs
kT in Equations

(2.32)–(2.34) to be 0.9 × 10−7µm−1 and 0.9 × 10−8µm−1. This means we can expect a

typical flux from the bulk through a square micron to be 7 or 8 orders of magnitude smaller

than a typical flux across a linear micron of grain boundary or void surface.

We also neglect mass transport along passivation interfaces (the outer walls), even

though in practice they can transport as much material as grain boundaries. This is not

an essential assumption for the implementation of our numerical method, but seemed like

a convenient idealization to work with when we started working on the problem. Including

this phenomenon would change the zero flux boundary condition (2.38) below at passivation

to the flux balance type boundary condition (2.40) used at triple points. This would not

∆Uv Ea

δ/2 δ/2−δ/2 −δ/2

∼ 5 eV

∼ 4 eV

∼ 2 eV

∼ 1 eV

Figure 2.9: The energy of formation of a vacancy and the activation energy for exchanging
a vacancy with an adjacent atom both decrease in the vicinity (δ = a few lattice constants)
of a grain boundary [44, 77].
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add any new complexity to the problem, and in fact would simplify things somewhat in

Chapter 3 due to the fact that there would be only one connected component to the grain

boundary structure on which mass must be conserved. Transport along passivation inter-

faces is included in the simulations described in [9, 33]. The same effect can be achieved in

our model by adding a grain boundary immediately adjacent to the passivation.

2.4.1 Grain Boundary Network

Suppose we are dealing with a grain boundary network with no voids. We have already

discussed in Section 2.1.4 that the Dirichlet boundary conditions for displacement at passi-

vation require that the separation g should be 0 there. We also wish to impose the condition

that the passivation act as a flux barrier so that no atoms may flow in or out of the grain

boundary network at passivation junctions (points where grain boundary segments meet

the outer walls). From Equation (2.33), we see that this is a condition on the derivative of

σnn, namely

∂sσnn =
Z∗e

Ω
∂sψ, (2.38)

where ∂s is the derivative with respect to arclength along the grain boundary segment at the

passivation junction. At triple points, we have seen (Eqn. 2.16) that there is a compatibility

condition on the limiting values of g along the incident segments. We also wish to impose

continuity of chemical potential and mass conservation through a balance of flux entering

and leaving the triple point. From Equation (2.28), we see that chemical potential continuity

requires that

σn1n1 = σn2n2 = σn3n3 , (2.39)

where σnini = ni · σni, the ni are as in Figure 2.4, and the stress tensor is evaluated at the

triple point. Here we have used the fact that unlike the displacement field, the stress tensor

is continuous across grain boundaries. Even when we include singularities in the stress field

in Chapter 4, the values of σnini will remain finite along each grain boundary and will be

equal to each other at the triple point. From Equation (2.33), we obtain the condition for

flux balance at the triple point

∂s1σn1n1 + ∂s2σn2n2 + ∂s3σn3n3 =
Z∗e

Ω
(∂s1ψ + ∂s2ψ + ∂s3ψ), (2.40)

where ∂si is differentiation with respect to arclength along the ith incident grain boundary

segment away from the triple point. Note that the right hand side need not be zero, as
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J2

J3

E = −∇ψ

J1

Figure 2.10: The electric field can lead to a flux imbalance at a triple point which must be
compensated by stress gradients to satisfy mass conservation.

shown in Fig. 2.10. See also [56].

The boundary conditions (2.38), (2.39) and (2.40) introduce a number of math-

ematical difficulties. First of all, the state of stress is already completely determined by

g and the geometry of the grain boundary network. We are not free to go in and impose

additional boundary conditions on the stress tensor. This means we have to interpret the

additional conditions as constraints on the evolution of g so that the resulting σ will always

have these properties. Secondly, it is not obvious that such constraints on g are compatible

with the evolution equation obtained from (2.33) and (2.36), namely

∂g

∂t
=
νbDbΩ
kT

(
−Ω

∂2σnn

∂s2
+ Z∗e

∂2ψ

∂s2

)
. (2.41)

For some problems (such as ut = uxx), it is not possible to specify both Dirichlet and

flux boundary conditions at a boundary because the evolution is already completely deter-

mined by the Dirichlet conditions. For other problems (such as ut = −uxxxx), obtaining

a unique solution requires that two boundary conditions such as these be specified. The

added complication of obtaining the flux by applying an unbounded, non-local, non-self-

adjoint operator (g 7→ C∂sσnn[g]) further complicates the story. Providing answers to these

questions is the topic of Chapter 3.
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Chapter 3

The Grain Growth Problem

In this chapter, we focus attention on the grain boundary diffusion problem with

a network of grain boundaries but no voids. We are particularly interested in the effect

of singularities in the stress field near corners and triple points, and on questions of well-

posedness of the equations and boundary conditions, which are summarized in Figure 3.1.

As a brief reminder, the grain growth problem involves solving the Laplace equation for

the electric potential, the Lamé equations for the stress and displacement fields, and the

evolution equation for the separation function g, given by

∂g

∂t
=
νbDbΩ
kT

(
−Ω

∂2σnn

∂s2
+ Z∗e

∂2ψ

∂s2

)
, (3.1)

subject to the boundary conditions described in Chapter 2 and summarized in Fig. 3.1. If

we choose an arbitrary length scale L (∼ 1µm) and define the timescale t0 = kTL3

νbDbΩ2µ
, then

in dimensionless variables (t̃ = t
t0

, g̃ = g
L , σ̃ = σ

µ , ψ̃ = −Z∗e
Ωµ ψ = |Z∗|e

Ωµ ψ, etc.) we obtain

∂g̃

∂t̃
=

(
−∂

2σ̃nn

∂s̃2
− ∂2ψ̃

∂s̃2

)
. (3.2)

We will drop the tildes and use the dimensionless equations when convenient.

We begin by presenting the basic framework of Agmon-Douglis-Nirenberg elliptic

systems and recast the Lamé equations as a first order ADN system. By incorporating

the rotation variable into the equations (on equal footing with the stress variables), the

equations exhibit a transparent Cauchy-Riemann structure with coefficients which are uni-

formly bounded in the incompressible limit (where they become the Stokes equations). To

our knowledge, no one has previously used the rotation variable in this way for elasticity.
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5
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3

1

5. g(x1)n1 + g(x2)n2 + g(x3)n3 = 0

σn1n1
= σn2n2

= σn3n3

∂s1
σn1n1

+ ∂s2
σn2n2

+ ∂s3
σn3n3

= Z
∗

e

Ω
(∂s1

ψ + ∂s2
ψ + ∂s3

ψ)

4. g = 0

∂sσnn = Z
∗

e

Ω
∂sψ

2. u = 0

3. uleft − uright = gn,

1. µ∆u + (λ+ µ)∇(∇ · u) = 0

σleft = σright

Elasticity and Grain Growth

∂tg = νbDbΩ
kT

(

−Ω∂2
s
σnn + Z∗e∂2

s
ψ

)

5. Grain boundaries are invisible to ψ.

2. ∂nψ = 0

3. ψ = 0

4. ψ = ψ0

1. ∇2ψ = 0

Electric Potential

Figure 3.1: Top: Summary of equations and boundary conditions for the grain growth
problem. Bottom: Flowchart illustrating the relationship between the major topics of
Chapter 3.
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This material will also be needed in Chapters 4 and 5. Writing the equations as a first

order ADN system, it is straightforward to relate the stress functions of Airy, Kolosov and

Muskhelishvili to the new variables. These complex variable methods prove useful in Chap-

ter 4 for constructing a power solution basis for self-similar behavior near corners and grain

boundary junctions, and are the essential tool we use to solve the grain growth problem for

an infinite geometry.

Next we study the limiting case of an interconnect line of infinite length with a

single grain boundary running through its center. We show that it is possible to write

down an explicit formula for the solution by using methods of analytic function theory in

planar elasticity. This formula is useful in understanding the similarities and differences

between the grain growth problem and two well understood parabolic equations, namely

ut = uxx (the heat equation) and ut = −uxxxx (the linearized surface diffusion equation).

It also provides useful insight into the nature of the diffusion process involved, and offers

reassurance that the high frequency eigenfunctions for a finite geometry will be almost

orthogonal, which is the one thing we are unable to prove rigorously in our study of the

well-posedness of the grain boundary diffusion problem.

In order to develop a strategy for the finite geometry, we review the solution to the

heat equation and the linearized surface diffusion equation on a finite geometry, and discuss

the expected similarities and differences for the grain boundary diffusion problem in light

of its lack of self-adjointness. We then include a short section on operator adjoints, which

play an important role in understanding eigenfunction expansions for diagonalizable but

non-selfadjoint operators. This section also helps us interpret finite element results when a

non-orthogonal finite element basis is being used.

Next we show how to reformulate the grain boundary diffusion problem as an

ordinary differential equation on a Hilbert space

∂

∂t
Kη(t) = −η(t), η(0) = η0. (3.3)

Here K is a compact operator and η ∈ L2(Γ) is the value of normal component n · σn of

the stress tensor along the grain boundary network Γ. This reformulation absorbs all the

boundary conditions into the operator K, and the well-posedness of the original problem

is transformed into a question of the properties of the spectrum and eigenfunctions of the

operator K. We present sufficient conditions for this equation to have a solution, and

propose a numerical strategy to investigate whether these conditions hold.
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Our numerical approach uses the XFOSLS method we develop in Chapter 5 for

the two dimensional elastic equations to construct an approximation of the operators K and

K∗, find their eigenvalues and eigenfunctions, and use them to solve the ODE (3.3). This is

done first in the context of a simple finite geometry with a single horizontal grain boundary,

from which we learn (by studying the numerical results) that the operator K is a product of

two self-adjoint, negative operators. In Section 3.4.9 we prove this rigorously, and also prove

that the spectrum of K is real and non-negative, and that its eigenfunctions are dense in

L2(Γ). This is almost enough to satisfy the sufficient conditions derived in Section 3.4.4, the

remaining requirement being that the eigenfunctions should form a well-conditioned basis

for L2(Γ). Although we cannot prove this rigorously, the exact solution we derived for the

infinite interconnect line and the condition numbers obtained in our numerical simulations

provide strong evidence that the grain boundary diffusion problem is well-posed.

Next we refine the theory and numerical method to be able to handle more com-

plicated grain boundary network geometries. The technical challenges include resolving

singularities in the stress field in a stable way, dealing with the lack of a natural ordering

of the nodes on the grain boundary network, handling very complicated jump discontinuity

constraints along grain boundaries and at junctions, maintaining data structures that allow

communication between the finite element space used for elasticity and the space used for g

and η on Γ, incorporating extra basis functions near corners and junctions which may over-

lap each other, dealing with the possibility that Γ consists of several disjoint components,

handling mass matrices which link separations g to normal stresses η on the grain boundary

network even though g and η belong to slightly different finite element spaces, setting up

the problem cleanly, and visualizing the results. We have obtained results which are self-

consistent under mesh refinement, make physical sense, and exhibit interesting behavior

such as the reversal of flux sign into a segment during the course of the evolution.

3.1 Plane Elasticity as a First Order ADN System

It will be very useful in what follows to reformulate the Lamé equations as a first order

elliptic system of Agmon-Douglis-Nirenberg [1] type. Doing this leads to an easy derivation

of complex variable techniques for plane elasticity [53, 57, 58], which are used in Section 3.3

to solve the grain growth problem on an infinite interconnect line. It will also prove useful

in computing asymptotics near corners in Chapter 4, and in defining the error functional
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for the least squares finite element method in Chapter 5. By including the rotation variable

(q below) in the equations, we obtain an operator with a transparent Cauchy-Riemann

structure with coefficients which are uniformly bounded over the entire range of Poisson

ratio, and which is equivalent to the Stokes equations in the incompressible limit. To our

knowledge, no one has made extensive use of the rotation variable in elasticity before.

3.1.1 New Variables

The Lamé equations µ∆u + (λ + µ)∇(∇ · u) + F = 0 are obtained from the equations of

mechanical equilibrium for an elastic solid acted upon by a body force F, namely

div σ + F = 0, (3.4)

by applying the Lamé relation

σ = λ tr(ε)I + 2µε (3.5)

for linear isotropic materials, along with the small strain relation

εij =
1
2
(∂iuj + ∂jui). (3.6)

The relationship between the Lamé coefficients µ and λ, Young’s modulus E and the Poisson

ratio ν was stated in Section 2.1.2. We restrict attention to the planar case, and define the

dimensionless parameter κ (1 ≤ κ ≤ 3) by

κ =
λ+ 3µ
λ+ µ

=

3− 4ν plane strain,

3−ν
1+ν plane stress.

(3.7)

The variables u, v, p, q, γ, τ are defined by

u =

u1

u2

 =

u
v

 , σ = µ

p− γ τ

τ p+ γ

 , q =
2

κ+ 1
(vx − uy). (3.8)

Note that p,q,γ,τ are dimensionless (like components of strain), and correspond physically

to the hydrostatic pressure (−µp), the rotation (κ+1
4 q), and the deviatoric stress components

S = µ

−γ τ

τ γ

 . (3.9)
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Using (3.5) and (3.6) to express σ in terms of u [σ11 = (λ+ 2µ)ux + λvy, . . . ], we get

ux − vy = −γ,

uy + vx = τ,
(3.10)

vx − uy =
κ+ 1

2
q,

vy + ux =
κ− 1

2
p.

(3.11)

Expressing (3.4) in terms of the new variables, we find that

γx − τy = px + µ−1F1,

γy + τx = −py − µ−1F2.
(3.12)

From (3.10) and (3.11) we have

−γx + τy = ∆u =
κ− 1

2
px −

κ+ 1
2

qy,

γy + τx = ∆v =
κ− 1

2
py +

κ+ 1
2

qx,

(3.13)

from which it follows that (3.12) is equivalent to

px − qy = − 2µ−1

κ+ 1
F1,

py + qx = − 2µ−1

κ+ 1
F2.

(3.14)

Note the Cauchy-Riemann structure of the left hand side of each pair of equations, and that

in this form, the coefficients do not diverge in the incompressible limit κ→ 1.

3.1.2 The Operators L and B

Defining the vector w = (u, v, p, q, γ, τ)T , the system of equations (3.10), (3.11), (3.14) may

be written in the form L(∂x, ∂y)w = f , where

L(a, b) =



a −b 0 0 1 0

b a 0 0 0 −1

−b a 0 −κ+1
2 0 0

a b −κ−1
2 0 0 0

0 0 a −b 0 0

0 0 b a 0 0


, f = − 2µ−1

κ+ 1



0

0

0

0

F1

F2


. (3.15)
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Figure 3.2: The force per unit area exerted by the positive side on the negative side of a
surface with normal n is given by σn

The common boundary conditions for elasticity are particularly easy to express in terms

of the new variables due to the fact that it is not necessary to express conditions on stress

in terms of derivatives of displacement. Along an arc with tangent vector t = (cos θ, sin θ)

and normal vector n = (− sin θ, cos θ), we have

u‖ = u · t = ( cos θ, sin θ, 0, 0, 0, 0 ) · w,
u⊥ = u · n = ( − sin θ, cos θ, 0, 0, 0, 0 ) · w,
σs = t · σn = µ( 0, 0, 0, 0, sin 2θ, cos 2θ ) · w,
σ⊥ = n · σn = µ( 0, 0, 1, 0, cos 2θ, − sin 2θ ) · w,
σ‖ = t · σt = µ( 0, 0, 1, 0, − cos 2θ, sin 2θ ) · w.

(3.16)

With this sign convention, n is the unit inward normal at a wall when the boundary is

traversed counterclockwise, which is convenient for setting up local coordinates but incon-

venient in that the external traction vector is σ(−n). Along grain boundaries this convention

is quite natural as n points from the negative side (the right grain) to the positive side (the

left grain). We are using the standard meaning of σ, which is that σn is the force per

unit area exerted by the positive side on the negative side of a surface with normal n; see

Figure 3.2.

From (3.16), we see, for example, that Dirichlet boundary conditions can be ex-

pressed as Bw = 0, where

B =

 cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

 . (3.17)

At a grain boundary interface, we may express Eqns. (2.11)–(2.14) on page 18 as Bw± = φ,
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where B = (B1,−B1) and

w± =

w+

w−

 , B1 =


cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 0 0 sin 2θ cos 2θ

0 0 1 0 cos 2θ − sin 2θ

 , φ =


0

g

0

0

 . (3.18)

3.1.3 ADN Indices

The system Lw = f together with two of the boundary conditions (3.16) fits into the

framework of Agmon-Douglis-Nirenberg elliptic systems [1, 55, 80, 79], which generalizes

the method of reducing an ordinary differential equation to a first order system of equations.

The essential idea is to assign each variable, equation, and boundary condition an index (or

weight) which describes its “order”; in our system, the stress variables are obtained from

the displacements through differentiation, so we may take the variable indices to be

(tj) = (0, 0,−1,−1,−1,−1). (3.19)

The equation weights si are chosen so that si+tj is an upper bound on the degree of Lij(a, b)

as a polynomial in a and b. If si + tj < 0, Lij must be identically zero. The principal part

L′ of L is obtained by taking those terms with degree exactly equal to si + tj (or zero if

degLij(a, b) < si + tj), and L is said to be homogeneous of multi-degree if L = L′. In our

case, L is homogeneous of multi-degree with

(si) = (1, 1, 1, 1, 2, 2). (3.20)

Normally the normalization is taken so that max si = 0, but it will be more useful for us

when constructing corner singularities to normalize with max tj = 0. Even with such nor-

malization, it can happen that the indices are not uniquely determined, as can be seen from

the example of two copies of the Cauchy-Riemann equations, where (tj) = (0, 0,−k,−k),
(si) = (1, 1, 1 + k, 1 + k) will work for any k ≥ 0. The theory of ADN-elliptic systems

applies for any choice of these indices, but it is usually clear in practical cases which choice

of indices is the “most natural” to use. We note that the definition of L′ together with the

fact that the determinant is a sum of products, each with precisely one factor from each row

and column, ensures that [detL′(a, b)] is a homogeneous polynomial in a and b of degree∑N
1 (si + ti). The system is said to be elliptic provided that

detL′(a, b) 6= 0 (a, b) ∈ R2 \ (0, 0), (3.21)
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and is said to be properly elliptic under the further condition that 2m :=
∑N

1 (si+ti) is even

and the equation [detL′(ξ+ zξ′) = 0] has exactly m roots with positive imaginary part and

m with negative imaginary part for any linearly independent ξ, ξ′ ∈ R2. Ellipticity implies

proper ellipticity in dimension greater than two [55]. In our case, detL′(a, b) = (a2 + b2)2,

so proper ellipticity holds with m = 2.

The parameter m determines the number of appropriate boundary conditions to

impose. They are given in the form

B(∂x, ∂y)w = φ, (3.22)

where B(a, b) is an m × N matrix and we have boundary condition indices qi such that

degBij ≤ qi + tj . The principal part B′ of B consists of the entries of B of degree exactly

equal to qi + tj , and B′ and L′ must complement each other by satisfying the Lopatinskij

condition; see [1, 55] and Section 3.1.4 below. Any two of our boundary conditions (3.16)

satisfy this condition, taking qi = 0 for displacement boundary conditions and qi = 1 for

stress boundary conditions. A convenient feature of the resulting B is that even for stress

boundary conditions, B(a, b) is a constant matrix (of degree zero in a and b); we don’t have

derivatives in the boundary conditions.

3.1.4 A Few Remarks

Through the ADN reduction process, we transformed a second order 2× 2 system to a first

order 6× 6 system, leaving the parameter m invariant. This reduction will be particularly

useful in the least squares finite element method, and in constructing corner singularities

in Chapter 4. In [1, 55], the theory of ADN systems is presented in the more general

case of n dimensions with the coefficients of the polynomials L(x1, . . . , xn; ∂x1 , . . . , ∂xn) and

B(x1, . . . , xn; ∂x1 , . . . , ∂xn) depending on position.

There are many theorems on the regularity and normal solvability of ADN elliptic

systems. For smooth domains, the original paper [1] uses Schauder estimates and boundary

integral methods for a half space to get useful coercive inequalities for Hölder and Lp

spaces. The paper [54] generalizes the results in [45] on the solvability of elliptic equations

on domains with corners and angular points to the case of ADN elliptic systems. Existence,

uniqueness and regularity results may also be obtained for the Lamé equations using Sobolev

spaces; see [29, 19].
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I am not familiar with any papers describing interface boundary conditions such

as Eqn. (3.18) in the ADN framework. One way of characterizing the Lopatinskij covering

condition is as follows. Change variables locally to flatten the boundary and freeze the

coefficients of L at (x0, y0). On the half-space y > 0, use separation of variables w = v(y)eixξ

to convert the system of PDE’s to a system of ODE’s:

L(x0, y0; ∂x, ∂y)v(y)eixξ = 0 ⇒ L(x0, y0; iξ, ∂y)v(y) = 0. (3.23)

Note that this system is degenerate in the sense that A does not necessarily have full rank

if it is expressed in the form Av′+Bv = 0. The Complementing Condition requires that for

every ξ 6= 0, v ≡ 0 is the only bounded solution for y > 0 which satisfies the homogeneous

boundary conditions at y = 0. Presumably the correct generalization of this to the interface

case will lead to two ordinary differential equations on −∞ < y < 0 and 0 < y < ∞ with

boundary conditions at y = 0 which may link v−(0) to v+(0). The requirement should be

the same, namely that v− ≡ v+ ≡ 0 is the only solution to the homogeneous problem with

v− and v+ bounded at −∞ and ∞, respectively. Considering the case when v− and v+

are decoupled, we expect that 2m boundary conditions are needed at interfaces, which is

compatible with what we are enforcing in Eqn. (3.18).

3.2 Complex Variable Methods in Plane Elasticity

In this section we show how complex variable methods for plane elasticity fit in with our

ADN variables. We use these methods in the next section to solve the grain growth problem

on an infinite interconnect line, and to generate a basis for the singular functions near corners

and interface junctions in Chapter 4.

In the case that F = 0, we see from Eqn. (3.14) that p and q satisfy the Cauchy-

Riemann equations:
px − qy = 0,

py + qx = 0.
(3.24)

Therefore there is a harmonic function Φ such that

p+ iq = 2Φ. (3.25)

Using the standard notation
∂

∂z̄
=

1
2
(
∂

∂x
+ i

∂

∂y
),

∂

∂z
=

1
2
(
∂

∂x
− i ∂

∂y
), (3.26)
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we have that
∂

∂z̄
(z̄Φ′) = Φ′ =

1
2
(px + iqx) =

1
2
(px − ipy). (3.27)

From Eqn. (3.12) with F = 0, we have

γx − τy = px,

γy + τx = −py.
(3.28)

Therefore
∂

∂z̄
(γ + iτ − z̄Φ′) = 0 (3.29)

and there exists a harmonic function Ψ such that

γ + iτ = z̄Φ′ + Ψ. (3.30)

Φ and Ψ are known as Kolosov functions.

If the domain is simply connected, there exist harmonic φ, ψ and χ such that

φ′ = Φ, ψ′ = Ψ, and χ′ = ψ. One readily checks that

∂

∂z̄

(
1
2
[κφ− zΦ̄− ψ̄]

)
= −zΦ̄′ − Ψ̄ = −γ + iτ, (3.31)

∂

∂z

(
1
2
[κφ− zΦ̄− ψ̄]

)
=

1
2
(
κΦ− Φ̄

)
=
κ− 1

2
p+ i

κ+ 1
2

q, (3.32)

so the expression in parentheses on the left hand side satisfies Equations (3.10) and (3.11):

ux − vy = −γ,

uy + vx = τ,
(3.33)

vx − uy =
κ+ 1

2
q,

vy + ux =
κ− 1

2
p.

(3.34)

Since solutions to (3.33) and (3.34) for fixed p, q, γ, τ differ by at most a constant vector (due

to the fact that the difference satisfies ∇u = ∇v = 0), we may add appropriate constants

to φ and ψ so that the displacements satisfy

u+ iv =
1
2
[κφ− zΦ̄− ψ̄]. (3.35)

The functions φ and ψ are known as Muskhelishvili functions.
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The function U = Re{z̄φ+ χ} is known as the Airy stress function. Since φ and

χ are holomorphic, U satisfies the biharmonic equation

∆2U = 16
∂4U

∂z̄2∂z2
= 0, (3.36)

and using ∂x = (∂z +∂z̄), ∂y = i(∂z−∂z̄) we compute Ux = Re{z̄Φ+ψ+φ}, Uy = Re{i(z̄Φ+

ψ− φ)}, Uxx = Re{z̄Φ′ + Ψ + 2Φ}, Uxy = Re{i(z̄Φ′ + Ψ)}, and Uyy = Re{−z̄Φ′ −Ψ + 2Φ},
which means

σ11 = µUyy, σ22 = µUxx, σ12 = −µUxy. (3.37)

Often µ is omitted here and included in Φ, Ψ, φ, ψ, χ and U . In the multiply connected

case, it can be necessary to include logarithm terms in φ, ψ, χ for each connected component

of the complement of the domain. For more information on the use of complex function

theory in plane elasticity, see [53, 57, 58]. The functions φ and ψ will prove useful in the

next section, and again in Chapter 4 when we compute corner singularities. In summary,

on a simply connected domain, for any solution to the Lamé equations there exist analytic

functions φ and ψ such that

p+ iq = 2φ′, (3.38)

γ + iτ = z̄φ′′ + ψ′, (3.39)

u+ iv =
1
2
[
κφ− zφ̄′ − ψ̄

]
. (3.40)

3.3 An Infinite Interconnect Line

In this section, we work out an exact solution to the grain boundary diffusion problem

gt = −σ22[g]xx for an infinite interconnect line with a single grain boundary running through

the center. This provides useful insight about the problem without the complication of

boundary conditions at grain boundary endpoints or singularities in the stress field. The

approach is to solve the elastic equations for a sinusoidal separation function g, and then

use separation of variables and the Fourier transform to determine the evolution for an

arbitrary initial condition.

3.3.1 Elastic Equations for Sinusoidal Separation

As shown in Fig. 3.3, let the center of the interconnect line (the grain boundary) coincide

with the x-axis, and let h denote the width of each grain. By symmetry, for any separation
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u = v = 0

u = v = 0

symmetry

exploited

y = −h

y = 0

y = h

τ = 0, 2v = g = α cos ωx + β sin ωx

Figure 3.3: The geometry and boundary conditions for the grain growth problem on an
infinite strip.

g(x) the displacements in the top grain will be related to the displacements in the bottom

grain via

u+(x, y) = u−(x,−y), v+(x, y) = −v−(x,−y). (3.41)

From (3.10) and (3.11), we see that the other variables will be related through

p+(x, y) = p−(x,−y), q+(x, y) = −q−(x,−y), (3.42)

γ+(x, y) = γ−(x,−y), τ+(x, y) = −τ−(x,−y). (3.43)

It is therefore sufficient to restrict attention to the top grain. At y = h, we impose the

Dirichlet boundary conditions u = v = 0, and along the grain boundary, the four conditions

u+ = u−, v+ − v− = g, p+ + γ+ = p− + γ−, τ+ = τ− reduce via symmetry to τ = 0,

v = g/2. We observe that in the limit as h → ∞, these boundary conditions coincide

with the problem of a rigid stamp without friction on a half-space, and can be solved using

singular integrals [58]. We omit details since the result for finite h covers this case in the

limit.

For finite h, the singular integral approach doesn’t work (at least not easily), so

instead we make an ansatz for the form of the Muskhelishvili functions:

φ = (a1 + ia2) cosωz + (a3 + ia4) sinωz, (3.44)

ψ = (a5 + ia6) cosωz + (a7 + ia8) sinωz + (a9 + ia10)z cosωz + (a11 + ia12)z sinωz,

(3.45)

and wish to determine if there are real coefficients ai for which the boundary conditions

are satisfied. We begin by constructing the 4 × 12 real matrix A0(ω, κ, h, x) whose ith
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column contains the boundary conditions u(y = h), v(y = h), v(y = 0), τ(y = 0) for the

corresponding φ and ψ. For example, the second column corresponds to φ = i cosωz, ψ = 0:

col2(A0) =
1
2


ωh sinωx coshωh− ωx cosωx sinhωh+ κ sinωx sinhωh

−ωh cosωx sinhωh− ωx sinωx coshωh+ κ cosωx coshωh

−ωx sinωx+ κ cosωx

−2ω2x cosωx

 . (3.46)

Next we define the 16 × 12 real matrix A(ω, κ, h) by expanding each row of A0 into four

rows containing the coefficients of cos(ωx), sin(ωx), x cos(ωx), x sin(ωx). In order to satisfy

the boundary conditions in Fig. 3.3, we need to find a ∈ R12 such that Aa = b, where b

contains the desired coefficients of the terms cos(ωx), sin(ωx), x cos(ωx), x sin(ωx) in the

boundary conditions. Explicitly, b and the second column of A are given by

b =
1
2



0

0

0

0

0

0

0

0

α

β

0

0

0

0

0

0



, col2(A) =
1
2



0

ωh coshωh+ κ sinhωh

−ω sinhωh

0

−ωh sinhωh+ κ coshωh

0

0

−ω coshωh

κ

0

0

−ω
0

0

−2ω2

0



. (3.47)

We verify that a solution exists by computing the nullspace of AT symbolically and checking

that b ∈ (kerAT )⊥ = imageA. We then select 12 linearly independent rows of A (and the

corresponding rows of b) and solve Aa = b symbolically. The resulting a determines φ and

ψ, which we use to compute σ22 = p+γ along the grain boundary. This only has to be done
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Figure 3.4: A plot of C(ω) for h = 1 and κ = 1.15, 1.4, 2.0, 3.0. Note that C(ω) diverges in
the incompressible (κ→ 1), long wavelength (ω → 0) limit.

once since the paramaters such as κ and h appear symbolically. All of this, including the

construction of A0 and A via (3.38), (3.39), (3.40), (3.44), and (3.45), can be done without

difficulty using Mathematica or Maple.

The result of this computation is that along the grain boundary, σ22 is a constant

multiple of g for any α, β, ω:

σ22(x, y = 0) = −C(ω)g(x), C(ω) =
ω[1 + κ2 + 4h2ω2 + 2κ cosh 2hω]

(1 + κ)[κ sinh 2hω − 2hω]
. (3.48)

A plot of C(ω) for a few values of κ is given in Fig. 3.4. For large and small ω, we see that

C(ω) has the asymptotic form

C(ω) =
2ω

1 + κ
, (|hω| � 1), (3.49)

C(ω) =
1
h

{
κ+ 1

2(κ− 1)
− (κ− 2)(κ− 3)

3(κ− 1)2
(hω)2 + . . .

}
, (|hω| � 1). (3.50)

The fact that σ22 is proportional to g when g varies harmonically will allow us to use the

Fourier transform to solve the grain boundary diffusion problem for an arbitrary initial

separation g(x, t = 0).
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3.3.2 Evolution for an Arbitrary Initial Separation

Because σ22(x) = −C(ω)g(x) when g(x) varies harmonically, we see that the solution to

gt = −σ22[g]xx with initial condition g(x, t = 0) = cosωx is given by

g(x, t) = e−C(ω)ω2t cosωx. (3.51)

This gives the time evolution of each Fourier mode for an arbitrary initial separation: if we

write g at t = 0 as

g(x, 0) =
∫ ∞

−∞
eiωxĝ(ω, 0) dω, (3.52)

then at any later time g will be

g(x, t) =
∫ ∞

−∞
eiωxĝ(ω, t) dω =

∫ ∞

−∞
eiωxe−C(ω)ω2tĝ(ω, 0) dω. (3.53)

It is instructive to compare the dissipation rate C(ω)ω2 to that for the heat equa-

tion and the linearized surface diffusion equation:

Dissipation Rate Equation
bω2 ut = buxx (b > 0)

C(ω)ω2 gt = −σ22[g]xx

bω4 ut = −buxxxx (b > 0)

-1 -0.5 0.5 1

1

2

3

4

κ = 1.001

κ = 2.0

ω

C(ω)ω2

Figure 3.5: A plot of the dissipation rate C(ω)ω2 for h = 1 and κ = 1.001, 1.01, 1.1, 2.0.
Note that even though C(ω) is not monotonic for κ < 2, C(ω)ω2 is monotonic for ω ≥ 0.
The envelope of the graphs approaches 3

2 + 27
10ω

2 near the origin as κ→ 1.
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Looking back at Figure 3.4 and Equations (3.48)–(3.50), we see that low frequency modes

decay like the heat equation with b = (κ+ 1)[2h(κ− 1)]−1, whereas high frequency modes

decay as exp(−b|ω|3) with b = 2(1 + κ)−1, which is halfway between the heat equation and

the linearized surface diffusion equation. This is an interesting observation, as it gives us an

understanding of the type of diffusion process involved. Even though C(ω) is not monotonic

in ω when κ < 2, the dissipation rate C(ω)ω2 is monotonic for ω ≥ 0, as can be seen from

Figure 3.5.

3.3.3 Steady Current

In the above analysis, we considered the equation gt = −σ22[g]xx with no electromigration

term. For the infinite interconnect line, a steady current would be characterized by the

potential ψ(x, y) = αx, which does not contribute to Equation (3.2) on page 33, so in fact

we have solved the problem for the steady current case as well. At first sight, it is surprising

that a steady current has no effect on the solution, but this is due to the fact that the atoms

are simply migrating down the line due to electromigration; they don’t accumulate anywhere

and there are always more atoms upstream to replace the atoms that leave a given section

of the line. This situation will change dramatically for a finite geometry, where zero flux

boundary conditions at grain boundary endpoints act as barriers which lead to depletion

and accumulation of atoms in their vicinity as soon as an electric current is present.

3.4 A Finite Geometry

In this section we reformulate the grain boundary diffusion problem as an ordinary differ-

ential equation on a Hilbert space. This transforms the question of well-posedness into a

question about the nature of the spectrum and eigenspaces of a compact operator. This

reformulation provides a nice solution to the issue of how to enforce non-local boundary

conditions, and leads directly to a numerical method for solving the problem. We begin by

looking at two well understood model problems to provide intuition and help us formulate

a strategy.
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3.4.1 Two Model Problems

It was shown earlier that for an infinite geometry, the grain boundary diffusion problem

was in a sense halfway between the equations ut = uxx and ut = −uxxxx. Understand how

these problems change when the domain becomes finite will help us formulate a strategy

for the grain growth problem.

The heat equation and linearized surface diffusion equation are “easy” because

the operators (u 7→ −uxx) and (u 7→ uxxxx) (with appropriate boundary conditions) are

self-adjoint. Self-adjointness implies [20, 59] the existence of a complete, L2-orthonormal

basis of eigenfunctions for the operator, with real eigenvalues that accumulate only at ±∞.

Explicitly, the boundary value problem

Lu = −uxx, Uu = (u(0), u(1))T = 0 (3.54)

has eigenfunctions and eigenvalues

ϕk(x) =
√

2 sin kπx, λk = k2π2, k = 1, 2, . . . (3.55)

and the boundary value problem

Lu = uxxxx, Uu = (u(0), u(1), u′(0), u′(1))T = 0 (3.56)

has eigenfunctions and eigenvalues

ϕk(x) =

ck[cosωkπ(x− 1
2)− cos(ωkπ/2)

cosh(ωkπ/2) coshωkπ(x− 1
2)] k = 1, 3, 5, . . .

ck[sinωkπ(x− 1
2)− sin(ωkπ/2)

sinh(ωkπ/2) sinhωkπ(x− 1
2)] k = 2, 4, 6, . . .

(3.57)

λk = ω4
kπ

4, ωk = 1.5056, 2.4998, 3.50001, 4.4999995, 5.50000002, . . . . (3.58)

Here the ck are chosen so that (ϕk, ϕk)L2 = 1. Writing the equations (ut = uxx) and

(ut = −uxxxx) in the form

ut = −Lu, Uu = 0, u(x, t = 0) = u0(x), (3.59)

we obtain the solution by decomposing the initial condition u0 into the eigenfunctions of

the operator L

u0(x) =
∞∑

k=1

akϕk(x), (3.60)
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and then evolving each component separately

u(x, t) =
∞∑

k=1

ake
−λktϕk(x). (3.61)

Because the spectrum of L is positive and goes to infinity, high frequency modes decay very

rapidly, and it is easy to show that Eqn. (3.61) satisfies (3.59).

In practice, Equation (3.59) would normally be solved using an implicit method

such as Backward Euler or Crank-Nicholson [74]. An alternative to this approach is to make

use of (3.61) to compute the “time t evolution operator” by solving eigenvalue problems to

compute the ϕk. For the grain growth problem, we have found the latter approach to be

more fruitful, so we focus on this approach in the remainder of this section.

The proof [20] of the expansion and completeness theorem for self-adjoint boundary

value problems is based on the construction of a compact operator K which is the inverse

of the unbounded operator L in the sense that

LKf = f, KLu = u (3.62)

for all f ∈ C[a, b] and u ∈ Cr[a, b] (r = order of L) satisfying Uu = 0. L and K have the

same eigenfunctions with reciprocal eigenvalues. Standard theorems on the spectrum and

eigenspaces of a self-adjoint compact operator on a Hilbert space are then readily applicable

[30, 66]. The operator K may be expressed as an integral operator in terms of a Green’s

function G(x, ξ):

Kf(x) =
∫ 1

0
G(x, ξ)f(ξ) dξ. (3.63)

For Lu = −uxx and Lu = uxxxx respectively, G has the explicit form

G(x, ξ) =

(1− ξ)x, x < ξ

(1− x)ξ, x > ξ
, G(x, ξ) =


1
6(1− ξ)2x2(3ξ − x− 2xξ), x < ξ

1
6(1− x)2ξ2(3x− ξ − 2xξ), x > ξ

. (3.64)

In addition to being of theoretical interest in the expansion and completeness theorem, the

compact operator K is useful to work with numerically for solving eigenvalue problems. If

we didn’t know the expansions (3.55), (3.57) explicitly, we could compute them using finite

elements or finite differences. Either method provides an approximation to K by providing

a solution u for any right hand side f such that

Lu = f, Uu = 0. (3.65)
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The fact that K is compact means that it is well approximated by finite rank operators,

which is why it is possible to compute the spectra in this way.

Focusing on the finite element approach [10], we can approximately solve

Lu = λu (3.66)

by choosing a finite element space Sh with basis ε1, . . . , εm and seeking all λ and z ∈ Rm

such that uh =
∑
zkεk satisfies

(εk, Luh)L2 = λ(εk, uh)L2 (k = 1, . . . ,m), (3.67)

the left hand side taken in the weak sense using integration by parts. For the model problems

considered here, this leads to a generalized eigenvalue problem from linear algebra on Rm,

namely

Az = λMz, (3.68)

where A and M are symmetric, sparse, and positive definite. Note that M is generally

not the identity because the basis εk is generally not orthogonal. Special techniques [27]

exist to exploit the sparsity of A and M to solve (3.68), but in one dimension the matrices

are generally small enough that dense linear algebra can be used without difficulty. The

operator A−1M is our approximation for K on the subspace spanned by the εk, expressed

as a matrix in this basis. The approximate eigenvalues µ of K are the reciprocals of the

λ’s obtained by solving (3.68), and the corresponding eigenfunctions are obtained from the

eigenvectors z via
∑
zkεk.

The largest eigenvalues of K correspond to smooth eigenfunctions which can be ac-

curately represented by standard finite element spaces, and therefore accurately computed.

The small eigenvalues of K correspond to large eigenvalues of L, which by (3.61) decay ex-

tremely rapidly. This means that it is not important to resolve small eigenvalues and their

eigenfunctions insofar as failing to do so does not prevent an accurate computation of the

large eigenvalues and corresponding eigenfunctions. Due to the guaranteed orthogonality of

the eigenfunctions for a self-adjoint problem, the coefficients ak in (3.60) are simply given

by (u0, ϕk)L2 , and therefore do not depend on the other ϕl. This situation could be quite

different if K were not self-adjoint. Everything that can happen in the finite dimensional

case (such as Jordan chains of generalized eigenvectors) can happen here, and in fact there

need not be any eigenvectors at all (e.g. the Volterra operator V f(x) =
∫ x
0 f(t) dt has no
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eigenfunctions). Even if K has eigenfunctions which span a dense subspace of L2, the eigen-

functions corresponding to smaller eigenvalues could become highly linearly dependent on

the earlier eigenfunctions. In that case, if an expansion like (3.60) is possible at all, the

coefficients ak are obtained by taking the inner product of u0 with a vector ϕ∗k in the orthog-

onal complement of the span of the other ϕl, and determining them could become difficult

or impossible depending on the severity of the linear dependence in the limit as k → ∞.

The vector ϕ∗k is an eigenfunction of K∗ with eigenvalue µ̄k; see Section 3.4.2.

In the grain boundary diffusion problem gt = −σ22[g]xx on a finite geometry, the

operator (g 7→ σ22[g]xx) is not self-adjoint, so we will have to watch out for these difficulties.

In the case of the infinite interconnect line, the eigenfunctions turned out to be orthogonal,

and the dissipation rate C(ω)ω2 was seen to behave asymptotically as |ω|3 for large |ω|. For

a finite interconnect line, we can expect to lose orthogonality, and don’t have any guarantee

that the spectrum will even be real, much less positive. (In fact we do have this guarantee

— see Section 3.4.9; the spectrum of K is both real and non-negative). In the case of

ut = −uxxxx, the effect of the endpoints remains localized due to the fact that the cosh

and sinh terms in Eqn. (3.57) are only significant near the ends. We may hope that the

grain boundary diffusion problem exhibits the same behavior, in which case the infinite

interconnect line should provide a good description of the behavior of high frequency modes

away from the ends. This suggests that the spectrum of K will behave asymptotically like

λk = ck−3, and the high frequency eigenfunctions will be nearly orthogonal. This prediction

is verified numerically in Section 3.4.6; see Figure 3.15 on page 77.

3.4.2 Operator Adjoints

As mentioned in the previous section, adjoints play an important role in non-self-adjoint

problems, so we briefly present a convenient framework for dealing with them. Let H1 and

H2 be Hilbert spaces. We adopt the convention that an inner product is linear in the second

argument and conjugate linear in the first. The adjoint of an operator X : H1 → H2 is

uniquely defined as the mapping X∗ : H2 → H1 such that

(X∗u, v)H1 = (u,Xv)H2 , (u ∈ H2, v ∈ H1). (3.69)

Let us assume that H1 is either Rn or l2 with inner product

(x, y)H1 =
∑

i

x̄iyi = x̄T y. (3.70)
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If U : H1 → H2 is invertible, then (U−1)∗ : H1 → H2 satisfies

((U−1)∗ei, Uej)H2 = (ei, U−1Uej)H1 = δij , (3.71)

thus the “columns” of U and (U−1)∗ are dual to one another as bases in H2. We will denote

the jth column of U by ϕj and the ith column of (U−1)∗ by ϕ∗i so that

(ϕ∗i , ϕj)H2 = δij . (3.72)

Suppose K : H2 → H2 can be diagonalized by an invertible operator U : H1 → H2. Then

(U−1)∗ diagonalizes K∗:

K = UΛU−1 ⇒ K∗ = (U−1)∗Λ̄U∗, (3.73)

where we have used the fact that the adjoint of a composition is the composition of the

adjoints in reverse order, that ((U−1)∗)−1 = U∗, and that the adjoint of a diagonal matrix

Λ : H1 → H1 is its complex conjugate. This last fact only holds when H1 is given the inner

product (3.70). By (3.72), the eigenvectors ϕi of K are dual to the eigenvectors ϕ∗i of K∗.

Note that when K is self-adjoint, orthogonality of the eigenvectors implies U∗ = U−1.

If we wish to decompose a vector w ∈ H2 in terms of the ϕi, we may write

w =
∑

i

aiϕi = Ua, (3.74)

which means that a = U−1w, and hence the ai are given by

ai = (ei, U−1w)H1 = ((U−1)∗ei, w)H2 = (ϕ∗i , w)H2 . (3.75)

Thus the vectors ϕ∗i act as linear functionals on H2 to give the coefficients of an expansion

in terms of the basis {ϕi}.
We primarily have two cases in mind in which to apply this framework. First,

denoting the grain boundary network by Γ, the case when H1 = l2 and H2 = L2(Γ) is

helpful in understanding eigenfunction expansions for diagonalizable but non-self-adjoint

operators. Second, the case when H1 and H2 are finite dimensional helps us understand

how to deal with a non-orthonormal finite element basis. Let H1 = Rn with the standard

inner product (3.70), and let H2 = Rn with the inner product inherited from L2(Γ) with

respect to the finite element basis {εi}ni=1, given by

(u, v)H2 = (u, v)M = ūTMv, Mij = (εi, εj)L2(Γ). (3.76)



3.4. A FINITE GEOMETRY 55

To compute the adjoint of K : H2 → H2 in this case, we note that M is real, symmetric,

and positive definite, and therefore the equation (u,Kv)H2 = (K∗u, v)H2 means that

ūTMKv = (K∗u)
T
Mv = ūT (K∗)TMv ⇒ K∗ = M−1K̄TM. (3.77)

When we diagonalize K, we obtain a diagonal matrix Λ : H1 → H1 and an invertible matrix

U : H1 → H2 such that K = UΛU−1, and we verify that (u, (U−1)∗x)H2 = (U−1u, x)H1

implies

ūTM(U−1)∗x = ūT Ū−Tx ⇒ (U−1)∗ = M−1Ū−T . (3.78)

The columns of M−1Ū−T are the ϕ∗i which determine the coefficients ai in expansion (3.74)

via (3.75).

3.4.3 A Reformulation

We begin by considering the simplest possible finite geometry, shown in Fig. 3.6. The grain

boundary is aligned with the x-axis between x = 0 and x = l, and each grain has width

y1. In this section, we will assume that no current is flowing through the line. The solution

when a current is present can be found as follows. First, we find the values of g and σ22

that correspond to the steady solution. Using dimensionless variables (c.f. Eqn. (3.2)), they

will satisfy

σ22 = −ψ + c, (3.79)

where c is determined by mass conservation (
∫
gsteady =

∫
g0). Note that for this simple

geometry, ψ simply increases linearly with x. Then we set up a side problem with no

current but initial conditions equal to g0 − gsteady. The analysis below is applied to the

u+
− u−

= 0, v+
− v− = g, σ+

= σ−

g = 0, ∂xσ22 = 0

x = 0

y = 0

x = l

y = y1

y = −y1

Figure 3.6: The geometry and boundary conditions of a finite interconnect line with a single
horizontal grain boundary running through its center.
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s22
0.43751
0.37501
0.31251
0.25001
0.18751
0.12501
0.06251
0.00001

-0.06249
-0.12499
-0.18749
-0.24999
-0.31249
-0.37499
-0.43749

Figure 3.7: A contour plot of σ22(x, y) corresponding to the steady state solution. Note that
σ22 decreases linearly along the grain boundary to balance the constant electromigration
force that arises due to the linearly increasing potential ψ. (s22 is σ22).

side problem, and at any time t we just add gsteady to obtain the solution for the original

problem. Therefore it is sufficient to be able to find the steady solution and to know how

to solve for the evolution with no current present.

The symbol σ22 is being used in this section to represent the normal stress at

points along the grain boundary. Both g and σ22 are scalar functions of the position x

along the grain boundary, and of time. This does not mean that the “ambient” σ22(x, y, t)

(which agrees with σ22(x, t) on the grain boundary) is independent of y; see Fig. 3.7.

We denote the separation to stress map by S (i.e. the mapping which gives the

normal stress along the grain boundary for a given separation), and the second derivative

operator by L:

g
S−−−−→ σ22

L−−−−→ ∂2
xσ22. (3.80)

The separation g and the normal stress σ22 are constrained at all times to satisfy the

boundary conditions

g(0) = g(l) = 0, (∂xσ22)(0) = (∂xσ22)(l) = 0. (3.81)

The evolution of g is governed by

gt = −LSg, g(x, t = 0) = g0(x). (3.82)
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αḡ

L2

MZ

g0

g at time t

O

Figure 3.8: It suffices to be able to solve gt = −LSg for g ∈ L2
MZ .

Integrating by parts, we see that any twice differentiable function η(x) which satisfies η′(0) =

η′(l) has the property that Lη has mean zero, i.e.
∫
Lη dx = 0. Since gt is in the range of

L and Sg = σ22 satisfies (3.81), mass is conserved:

∂

∂t

∫ l

0
g(x) dx =

∫ l

0

∂g

∂t
dx = 0. (3.83)

Let e(x) ≡ 1, and let ḡ(x) denote the separation corresponding to a constant

normal stress σ22(x) ≡ 1 along the grain boundary:

Sḡ = e, LSḡ = 0. (3.84)

Let L2
MZ denote the space of “mean zero” functions f ∈ L2(0, l) which satisfy

∫
f = 0. If

g0 /∈ L2
MZ , let α = (

∫
ḡ)−1(

∫
g0) and note that [g(x, t) − αḡ(x)] satisfies gt = −LSg and

has mean zero for all time due to (3.83). Thus, if we can solve (3.82) when g0 ∈ L2
MZ , we

can solve it for any g0 by a simple parallel translation; see Fig. 3.8. We therefore assume

without loss that g0 ∈ L2
MZ .

The key idea to reformulating the problem is to turn all the maps around so that we

are dealing with compact operators instead of unbounded operators. Let B = S−1 denote

the stress to separation map (which takes normal stress values on the grain boundary and

returns the separations there), and let G = (L|L2
MZ

)−1 solve the Poisson problem ∆η = f ,

η′(0) = η′(l) = 0 with f and η restricted to L2
MZ to avoid difficulties with the nullspace of

L. Let P be the (non-orthogonal) projector onto L2
MZ along ḡ given by

P = id− ḡ (e, ·)
(e, ḡ)

, (3.85)

and consider the composite map K̃ = PBG : L2
MZ → L2

MZ

g
P←−−−− g̃

B←−−−− σ̃22
G←−−−− ∂2

xσ22. (3.86)
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Here the tildes reflect the possibility that σ̃22 may differ from σ22 by a constant, and g̃ may

differ from g by a multiple of ḡ, both due to the fact that L kills constants and G likely

selects the wrong one. The operator K̃ is the inverse of the operator LS in the sense that

LSK̃ = idL2
MZ
, K̃LS = idD(LS), (3.87)

where the linear subspace D(LS) ⊂ L2
MZ is the (dense but non-closed) domain of the

unbounded operator LS [61]. As discussed in the previous section, G is a compact operator,

and I believe that B is bounded (and probably even compact since it is a type of Neumann

to Dirichlet map), therefore K̃ is compact. The idea now is to solve gt = −LSg by finding

the eigenfunctions and eigenvalues of the operator LS as the eigenfunctions and reciprocal

eigenvalues of the operator K̃. If we apply K̃ to both sides of gt = −LSg, we can also think

of this as solving the equation
∂

∂t
K̃g = −g, (3.88)

which is in many ways nicer to work with than the original equation since K̃ is defined on

all of L2
MZ , whereas LS is only defined on a dense subspace. In particular, the boundary

conditions (3.81) have been built intoK through the definition ofG and B. These conditions

posed a problem for us in (3.82) due to the fact that functions in L2 aren’t smooth enough

for (3.81) to be defined in the trace sense. They are defined for functions in D(LS), but

the L2 norm does not majorize them in any way when limits are taken. On the other hand,

K̃ is defined for all g ∈ L2
MZ , and K̃g and SK̃g satisfy (3.81) for any choice of g. By

writing K̃ as a composite map with separate boundary conditions built into B and G, we

have found a way to address the difficulty that the flux conditions on σ22 in (3.81) impose

a global constraint on g (rather than a local constraint like g(0) = 0).

It is inconvenient to deal with L2
MZ and to have the intermediate variables σ̃22 and

g̃ differ from σ22 and g by functions in a one dimensional subspace. We can overcome these

technicalities by transferring the evolution problem from the space of separation functions

g over to the space of normal stresses σ22. Let us denote the area functional in L2 by wT .

In other words, for any separation g(x), we write wT g = (e, g) =
∫
g. With this notation,

we may transfer the projection P over to the space of stresses via

PB = BP̃ , P̃ = I − e(wTBe)−1wTB. (3.89)

The projection P̃ projects along constants onto the subspace L2
MZσ of normal stresses with

mean zero separations. Note that wTB is a linear functional which maps σ22 to the integral
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of the corresponding g = Bσ22. Now we apply S to each side of the expression

K̃g = λg (3.90)

and write

K̃ = PBG = BP̃G

I︷︸︸︷
BS (3.91)

to conclude that

P̃GBσ22 = λσ22, (3.92)

where σ22 = Sg. Thus we see that the operators K̃ and P̃GB have the same spectrum and

the eigenfunctions of one can be obtained from the other by applying S or B. The operator

P̃GB only makes sense on L2
MZσ since G is only defined on L2

MZ , but we may extend it

to the whole stress space L2 without altering its eigenfunctions and eigenvalues (aside from

the obvious addition of a one dimensional kernel) by inserting the projection P between G

and B. We denote the resulting compact operator by K:

K = P̃GPB. (3.93)

By construction, K annihilates constants and has range L2
MZσ.

Assuming σ22 starts out in L2
MZσ at t = 0, it will remain there since g remains in

L2
MZ . In that case, the evolution of σ22 is governed by the equation

∂

∂t
Kσ22 = −σ22. (3.94)

We emphasize that σ22 ∈ L2
MZσ does not mean that

∫
σ22 = 0 nor even that

∫
σ22 remains

constant; it means
∫
Bσ22 = 0. If σ22 starts out in some coset of L2

MZσ, it will remain in

that coset, just as g will remain in its initial coset of L2
MZ in Fig. 3.8. We simply subtract

off a constant c so that η := (σ22 − c) is in L2
MZσ and evolve η according to ∂tKη = −η; at

all times σ22 is given by σ22 = η + c.

See Section 3.4.7 for the generalization of this reformulation to the case of a more

general geometry.

3.4.4 Desired Properties of K

In this section we derive sufficient conditions on the operator K for the ODE (3.94) to be

well-posed. This section was written before we had a proof that the spectrum of K was
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real and non-negative, so the condition in Proposition 3 that the spectrum lie in a cone is

overkill. The case is still useful to us numerically, however, as occasionally one of the high

frequency, poorly resolved eigenvalues deviates slightly (by perhaps 10−5 radians) from the

real axis.

Formally, the solution of the equation

∂tKη = −η, η(0) = η0 (3.95)

in a Banach space is given by the formula

η(t) = exp(−K−1t)η0. (3.96)

There are many situations where a formal solution such as (3.96) turns out to be nonsense,

such as the backward heat equation ut = −uxx. Such problems are ill posed in the sense

of Hadamard, and we must investigate this possibility for the grain boundary diffusion

problem. The fact that the solution is well behaved for an infinite geometry is reassuring.

The biggest question is whether the boundary conditions for a finite geometry are compatible

with the equation. We wish to impose both flux and displacement boundary conditions.

This clearly cannot be done for the heat equation since the conditions u(0) = u(l) = 0

already uniquely determine the solution. On the other hand, for the equation ut = −uxxxx,

we saw that two boundary conditions [e.g. u(0) = u′(0) = u(l) = u′(l) = 0] were required at

each end. It remains to be seen if the boundary conditions for the grain boundary diffusion

problem that seem most appropriate physically also lead to a well posed mathematical

problem.

Generally speaking, it is better to invert the identity plus a compact operator

rather than a compact operator. This is the reason that boundary integral methods lead to

such well conditioned matrices. In the case of Eqn. (3.96), however, it is the combination

of the exponential and the inverse that has the potential of being well behaved. If K

were self-adjoint and injective, and its spectrum consisted of zero together with a sequence

of positive real numbers converging to zero, we could apply the spectral theorem [61] to

produce the operator exp(−K−1t) for any t. This works because e−1/x is continuous from

the right at zero, and hence is continuous on the spectrum of Kt (which accumulates only

at zero). This procedure is essentially what was done in the expansion (3.61) for the two

model problems. On the other hand, this would not work if the spectrum of K contained

a subsequence approaching the origin from the negative side since e−1/x is not continuous
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on (−ε, 0] for any ε > 0. This is the situation for the backward heat equation. Since K for

the grain boundary diffusion problem is not self-adjoint (nor even normal), the continuous

functional calculus from the theory of C∗-algebras discussed above does not apply, and we

must look for an alternative construction of exp(−K−1t).

Let us suppose that K can be diagonalized by a bounded, invertible operator

U : l2 → L2, i.e. that there exist U and Λ such that

KU = UΛ, (3.97)

where the “columns” of U are (possibly complex valued) L2 functions and Λ is an infinite

diagonal matrix with ith diagonal entry λi = αi + iβi. We assume that αi > 0 for all i,

that C := supβi/αi is finite, and that (αi) is a non-increasing sequence which converges to

zero. In other words, we assume that the spectrum of K lies in the cone | Im z| ≤ C Re z

in the right half plane, that we don’t encounter any Jordan blocks during the process of

diagonalizing K, and that the eigenvectors of K are linearly independent enough that U is

invertible. We then have

e−K−1t = Ue−Λ−1tU−1, (3.98)

where e−Λ−1t is diagonal with ith diagonal entry equal to e−t/λi . Note that because αi >

0, we have that |e−t/λi | < 1. Moreover, since |βi| < Cαi, and αi → 0, we have that

limi e
−t/λi = 0 for any fixed t. Thus e−Λ−1t is compact for any t > 0. For any fixed i,

we have limt→0 e
−t/λi = 1. This does not, of course, imply that e−Λ−1t converges to the

identity in the norm topology. It cannot since the set of compact operators is norm closed

and the identity is not compact. However, we do have the following:

Proposition 1. e−Λ−1t (and hence e−K−1t) converges to the identity in the strong operator

topology, i.e. for any x ∈ l2,
lim
t→0

e−Λ−1tx = x. (3.99)

Proof. Let ε > 0 and choose n large enough that
∑∞

n+1 |xi|2 < ε. Pick t0 small enough that

max
1≤i≤n

|1− e−t0/λi |2 < ε. (3.100)

Then for any positive t < t0

||x− e−Λ−1tx||2 ≤
n∑
1

|(1− e−t/λi)xi|2 +
∞∑

n+1

(|xi|2 + |e−t/λixi|2)

≤
n∑
1

|xi|2ε+ 2ε ≤ (||x||2 + 2)ε.

(3.101)
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The importance of this result is that it shows that the solution η(t) = e−K−1tη0 of

(3.95) has the right limit as t→ 0. Now we verify that ∂tKη(t) = −η(t).

Proposition 2. For any x ∈ l2 and t > 0, Λe−Λ−1tx is differentiable at t and

d

dt
Λe−Λ−1tx = −e−Λ−1tx. (3.102)

Proof. Fix t > 0, x ∈ l2. For −t < h < t, define

e(h)2 :=

∥∥∥∥∥Λe−Λ−1(t+h)x− Λe−Λ−1tx

h
+ e−Λ−1tx

∥∥∥∥∥
2

=
∞∑
1

∣∣∣∣e− t
λi

[
λi

h
(e−

h
λi − 1) + 1

]
xi

∣∣∣∣2 .
(3.103)

We must show that limh→0 e(h) = 0. Define f(z) on the right half plane by

f(z) =
1
z
(e−z − 1) + 1. (3.104)

It is readily verified that f(0) = 0 and that |f(z)| is bounded above by some constant c. The

latter fact follows from the continuity of f on {Re z ≥ 0} and the observation that f(z)→ 1

for large |z| in the right half plane. A plot of f(z) along various rays in the complex plane

appears in Fig. 3.9. Note also that |e−
t

λk | ≤ 1 for all k. Let ε > 0, and choose n large

enough that |e−
t

λk | < ε
c for k > n. Choose h0 small enough that max1≤k≤n |f( h

λk
)| < ε for

|h| < h0. Then for |h| < h0 we have

e(h)2 ≤

(
sup

1≤k≤∞
|e−

t
λk f(

h

λk
)|2
) ∞∑

1

|xi|2 ≤ ε2‖x‖2, (3.105)

as desired.

Because the operator K maps real L2 functions to real L2 functions, we may

arrange to have the “columns” of U and the entries of Λ real. The only trade-off is that Λ

will acquire a 2×2 block for each complex conjugate pair of eigenvalues. If Kw = (α+ iβ)w

with β > 0, then we also have Kw̄ = (α− iβ)w̄, and therefore writing u = Rew, v = Imw

we find that

Ku = αu− βv, Kv = βu+ αv. (3.106)

Thus we may replace a complex conjugate pair of eigenvectors in U by their real and

imaginary parts, and replace the corresponding diagonal entries λi, λi+1 = λ̄i of Λ by the
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Figure 3.9: A plot of the absolute value of f(z) = 1
z (e−z − 1) + 1 along the rays z = s,

z = 1+2i√
5
s, z = 1+7i√

50
s, z = is. The maximum principle together with the graph along

z = ±is gives that |f(z)| < 1.5 for all z in the right half plane.

2× 2 block  αi βi

−βi αi

 (0 < βi ≤ Cαi). (3.107)

The corresponding block of e−Λ−1t becomes

e
− t

τi

 cos βi

αi

t
τi

sin βi

αi

t
τi

− sin βi

αi

t
τi

cos βi

αi

t
τi

 , τi = αi

[
1 +

(
βi

αi

)2
]
≤ αi(1 + C2). (3.108)

This decomposition is very useful in practice when we are dealing with real functions in L2.

The assumption that K is diagonalizable can presumably be weakened consider-

ably, but has proved sufficient for the numerical solution of the grain boundary diffusion

problem. The following proposition summarizes what we have shown in this section.

Proposition 3. If the compact operator K is diagonalizable by an invertible mapping U :

l2 → L2 so that

K = UΛU−1, (3.109)

and if K is injective and its spectrum consists of zero together with a sequence of points

converging to zero which lie in a cone | Im z| ≤ C Re z in the complex plane, then the

operator

e−K−1t (3.110)

exists, and for any initial condition η0, the solution to

∂tKη = −η, η(0) = η0 (3.111)

is given by η(t) = e−K−1tη0.
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3.4.5 Numerical Strategy

The plan is to compute the operator K = P̃GPB as a matrix in a reasonable basis, solve the

eigenproblem for K using standard (dense) linear algebra techniques to compute the real

block diagonal decomposition K = UΛU−1, and then compute σ22(x, t) = e−K−1tσ22(x, 0)

using (3.98) for the desired values of t. The well-posedness of the problem will be checked

by monitoring the eigenvalues and the condition number of U . The following properties will

be investigated:

• For the problem to be well-posed, the eigenvalues should lie in a cone in the right half

plane. We know from Sec. 3.4.9 that the eigenvalues of K form a decreasing sequence

of positive real numbers converging to zero. We expect the effect of the ends to remain

localized near the ends, in which case the solution for the infinite interconnect line

(by analogy with the model problems) suggests that we should have λk ∼ ck−3.

• The high frequency eigenfunctions should be sinusoidal far away from the ends since

the eigenfunctions for the infinite geometry are sinusoidal. The condition number

of U should not be too large since we expect high frequency eigenfunctions to be

almost orthogonal. The eigenfunctions should satisfy the flux boundary conditions

∂xσ22(0) = ∂xσ22(l) = 0.

• The solution should be preserved under mesh refinement.

• The resulting evolution should make physical sense in terms of the development of

stress in the line and the profile of the grain separation g.

We compute K in two stages. First, we need to be able to compute the stress

to separation map B. For this purpose, we use the singularity capturing least squares

finite element method developed in Chapter 5. We choose a mesh parameter h and choose

equally spaced points no larger than h along each wall, and along the grain boundary. We

triangulate each grain separately using a freely available triangulation program [71]. This

leads to an unstructured mesh with duplicate nodes along grain boundaries. In the mesh

shown in Fig. 3.10, there are 1264 triangles, 734 nodes and 1996 edges. Quadratic C0

elements are used for each of the six elasticity variables u, v, p, q, γ and τ , except that v is

given an extra degree of freedom along the grain boundary to allow for a jump discontinuity

in normal component of displacement. This leads to a system of 15013 equations and
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Figure 3.10: Each grain is triangulated separately, leading to an unstructured mesh with
duplicate nodes along grain boundaries. This particular mesh corresponds to a mesh pa-
rameter h = 0.05 for an interconnect line of unit height and length two.

unknowns. 10 of these unknowns correspond to special basis functions used to capture self-

similar asymptotic behavior: one in each of the four corners, and three at each end of the

grain boundary. There are 81 normal stress (σ22) degrees of freedom to be specified along

the grain boundary, and 85 separation degrees of freedom, (79 standard degrees of freedom

for g along the grain boundary, and 6 corner degrees of freedom which affect g).

The restriction of σ22 to the grain boundary is a one dimensional, continuous,

piecewise quadratic function that will be denoted by η to avoid confusion with the two

dimensional function σ22. The separation g = v+ − v− is also continuous, and is piecewise

quadratic except near the ends, where it is a sum of piecewise quadratic and power solution

terms of the form Re{crλ}. At the endpoints, g = 0 and η is finite. The stress tensor

can have singularities near the ends of the grain boundary, but the σ22 component along

the grain boundary will remain well behaved. The reason for this is that the self-similar

solutions that determine the asymptotic behavior near junctions and corners are solutions to

the homogeneous boundary value problem, which in this case implies that the σ22 component

of each such function vanishes along the grain boundary, but the contribution to g does not.

This will be explained in Chapter 4. For any η, the elastic solver provides a solution to the
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problem

Lw = 0 (c.f. Sec. 3.1) (3.112)

u = v = 0 along walls (3.113)

u+ = u−, σ+
12 = σ−12, σ±22 = η along grain boundary. (3.114)

This solution is defined at every node in the structure. In particular, it gives a value of

g = v+− v− along the grain boundary. To determine the separation to stress matrix B, we

repeatedly solve (3.112)–(3.114) as η ranges over all the quadratic basis elements for the

grain boundary, and record the solution g as a column of B. For the mesh in Fig. 3.10,

there are 81 degrees of freedom for η and 85 degrees of freedom for g, so we solve the system

of 15013 equations 81 times, recording a column with 85 entries for each.

The least squares finite element method is a machinery for converting an elliptic

system of partial differential equations into a sparse, symmetric, positive definite linear sys-

tem. Much work has been done in developing iterative methods such as the preconditioned

conjugate gradient method or multigrid to rapidly solve the resulting equations. In our

case, however, we have to solve the linear system repeatedly with many different right hand

sides, so it is actually better to do a sparse Cholesky factorization once, and then repeat-

edly backsolve for each right hand side. In our implementation (written in C), we have

used a variant of the min-degree heuristic known as symamd [49] to re-order the matrix

for our fast sparse Cholesky solver, which stores the matrix efficiently, re-orders the rows

and columns, computes the factorization with as few memory access bottlenecks as possi-

ble, solves the linear system repeatedly, does iterative refinement, and computes LAPACK

estimates for various quantities such as condition number, forward and backward error, etc.

Fig. 3.11 shows the sparsity pattern for the stiffness matrix A corresponding to the mesh

in Fig. 3.10, the re-ordered matrix Ã, and the Cholesky factor L such that LLT = Ã. The

ratio of nonzero to zero entries in the lower triangle of Ã is .0038 compared to .0165 for L.

Due to re-ordering, the matrix L has only 4.34 times as many nonzero entries as Ã, so once

L is computed, it takes only 4.34 times as long to solve Ax = b for a given b as it takes to

compute Ax for a given x.

The second stage of the computation of K is the computation of G. For this,

we use standard Galerkin finite elements, except that the solution and the right hand side

belong to slightly different finite element spaces. The operator G takes a function g in the

space of separations and gives a function η in the space of normal stresses along the grain
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Figure 3.11: Sparsity pattern for several matrices. (a) The stiffness matrix A which results
from the least squares finite element method for the mesh in Fig. 3.10. (b) The lower
triangle of the matrix Ã obtained from A using symamd to re-order the rows and columns.
(c) The Cholesky factorization L, where LLT = Ã.
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boundary such that

η′′(x) = g, η′(0) = η′(l) = 0. (3.115)

A solution exists only if
∫
g = 0, and in that case the solution is only defined up to a

constant. We denote the basis elements for the space of separations by {ei}ni=1 and for

the space of stresses by {εi}mi=1. For the mesh in Fig. 3.10, each of the m = 81 functions

εi is a piecewise quadratic, continuous function; 79 of the n = 85 functions ei are also

piecewise quadratic, continuous functions – two fewer than m due to the constraint that

the separation is zero at the endpoints. The remaining six ei are special basis functions

made up of a power solution piece and a quadratic piece. See Fig. 3.12.

Adopting the summation convention on repeated indices, we write g = giei, η =

ηiεi and integrate (3.115) against each εi to obtain m equations in the m unknown ηi

−Aη = M̃g, Aij = (∂xεi, ∂xεj)L2 , M̃ij = (εi, ej)L2 , Mij = (εi, εj)L2 . (3.116)

Note that the stiffness matrix A is m×m while the mass matrix M̃ is m×n. We point out

that there are two stiffness matrices for this problem: the large matrix used to solve the

elasticity equations that was Cholesky factored above, and the small matrix A used here,

which is the standard one dimensional stiffness matrix for quadratic elements. The mass

matrix M̃ in the current context is unusual due to the constraint that g(0) = g(l) = 0,

and due to the use of extra power solution basis functions. All entries of M̃ are computed

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

Figure 3.12: The first 14 basis functions ei for the space of separations. Each of the three
special basis functions shown consists of a power solution piece (of the form Re{crλ}) and
a quadratic piece. The exponents involved here are λ = 0.680 and 1.709± 0.604 i.
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analytically, including the entries that involve the integration of a power solution ej against

a piecewise quadratic εi. Most of the matrix M̃ agrees with the standard mass matrix

M for quadratic elements due to the fact that we are able to use the same elements for

both stress and displacement in the ambient elasticity problem. This is a major selling

point for the least squares finite element method for this problem. If we were to use stan-

dard displacement based finite elements for the elasticity solver, the stress variables would

not belong to nice continuous spaces because they are determined from the displacements

through differentiation. Even for mixed finite element methods, the Babus̆ka-Brezzi inf-

sup condition [32, 10] usually prevents the simultaneous use of continuous spaces for both

stress and displacement. The use of Lagrange multipliers to determine the ηi is one way of

overcoming this problem [9, 33], but it is still not possible to determine η at the endpoints,

(and later at triple points), and there can be a large discrepancy (due to the singularity in

the stress field) between the η obtained as a Lagrange multiplier and the σ22 obtained by

differentiating the displacements near the ends; see Fig. 5.7 on page 158.

We are now in a position to compute the matrix K = P̃GPB. G is given by

−A−1M̃ , except that A has a one dimensional kernel, so we use the pseudo-inverse of A

instead. This is perfectly acceptable since the projection P is already being employed to deal

with this issue. The area functional wT is obtained by taking advantage of the definition of

M̃ and the fact that the εi are a partition of unity:

wT = eT M̃. (3.117)

Here e ≡ 1 is a vector of length m consisting of ones, and has nothing to do with the finite

element basis {ei}ni=1 for separations. The projections P and P̃ onto L2
MZ and L2

MZσ along

ḡ = Be and e, respectively, are given by

P = In − ḡ(wT ḡ)−1wT , P̃ = Im − e(wT ḡ)−1wTB. (3.118)

Thus we obtain K = P̃GPB in the form of an m × m matrix with respect to the non-

orthogonal quadratic finite element basis {εi}.

The next step is to obtain the time t evolution operator Et for the the grain

boundary diffusion problem in the absence of an electric field. We begin by solving the

eigenproblem

KU = UΛ (3.119)
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using standard LAPACK-based dense linear algebra routines (with Matlab or Octave, for

example). Next, we re-order the columns of U so that the real parts of the diagonal of

Λ appear in decreasing order, and if any eigenvalues are complex, we use the procedure

from Section 3.4.4 to convert complex conjugate pairs into 2× 2 real blocks, as was done in

Eqn. (3.107). At this point we verify that the resulting spectrum lies in a cone in the right

half plane with a very small opening angle (ideally sp(K) ⊂ [0,∞)), and that the kernel of

K consists only of the one dimensional space of constant functions. In our computations,

the spectrum has turned out to be real and positive most of the time, although for some

geometries we have encountered a single complex eigenvalue with βi ∼ .00001αi. The index

i of this eigenvalue is always very large — well into the region where the corresponding

eigenfunction has too high a frequency to be properly resolved by the grid — therefore

our numerical results are in agreement with the theory of Section 3.4.9. Decomposing

L2 as a direct sum L2
MZσ ⊕ Ce and writing K = K0 ⊕ 0, where K0 is the restriction of

K to the invariant subspace L2
MZσ, the time t evolution operator may be written Et =

exp(−K−1
0 t) ⊕ id. Here the identity on the last component ensures mass conservation for

any initial state (i.e.
∫
g(x, t) dx =

∫
g0(x) dx for all time). Having ordered the vectors of

U so that the basis vector for the kernel appears last, we write Λ = Λ0 ⊕ 0 and compute

Et = U(exp(−Λ−1
0 t)⊕ I1×1)U−1. (3.120)

The final step is to find the steady state solution ηsteady when an electric current

is present, and to use Eqn. (3.120) to determine the evolution of η via

η(x, t) = ηsteady(x) + Et[η0(x)− ηsteady(x)]. (3.121)

This requires solving Laplace’s equation for the electrostatic potential ψ, and then deter-

mining the constant c so that the solution to (3.112)–(3.114) with

ηsteady = −ψ
∣∣
Γ

+ c (3.122)

yields a gsteady such that
∫
gsteady =

∫
g0. For the simple geometry here, ψ simply increases

linearly in x from 0 on the left wall to ψ0 on the right wall. Normally we take g0 to be

identically zero, which physically means no grain growth has occurred prior to turning on

the electric current. In that case c is chosen to project the restriction of −ψ
∣∣
Γ

onto L2
MZσ:

ηsteady = P̃ (−ψ
∣∣
Γ
). (3.123)
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We re-iterate that this does not imply that
∫
ηsteady = 0.

In our implementation, the setup of the geometry is done with Xfig, Perl, and

Triangle [71]. The computation of power solutions is done in C++, Perl and Mathematica.

The computation of ψ, B, A and M̃ is done using our least squares/variational finite element

C++ code; much of the setup of data for boundary conditions is done in Perl. The sparse

Cholesky code is written in C. We use Matlab or Octave to compute K, U , Et, and ηsteady.

The computation of stress and displacement for visualization is done with C, C++ and

Perl. We use LAPACK extensively, and have also used the packages ARPACK, MINPACK,

Colamd, and Meschach. We use Tecplot, Gnuplot, Matlab and IBM Data Explorer for

visualization. Version control is handled with CVS, and we are very much indebted to the

developers of Linux, GCC, GDB, Perl, LAPACK, etc.

As a final remark for this section, the dense linear algebra being done here is quite

inexpensive in comparison to the time it takes to set up and solve the stress problem to

construct the matrix B. For the mesh we have been using for illustration, to compute B

we need to solve a system of 15013 equations 81 times, yielding an 85 × 81 matrix. After

that, we are only working with matrices with around 80 rows and columns, which can be

diagonalized in less than a second on a 500 MHz single processor machine. For one of the

more complicated geometries in a later section, we must solve a system of 80000 equations

500 times to construct B, and then do dense linear algebra on matrices with around 500

rows and columns. Because the stress problem is sparse, however, it scales significantly

better with problem size than the dense linear algebra does, and for that problem the time

spent computing Λ and U is comparable to the time it takes to compute B (a few minutes).

For a very long, narrow geometry, the ratio of grain boundary nodes to total nodes can be

large enough that it takes longer to compute K, Λ and U than it takes to set up B, but we

have not encountered a situation where it was worth the effort to find alternatives to using

standard dense linear algebra for this stage of the computation.

3.4.6 Results

In this section we compare the results obtained using the mesh (Fig. 3.10) discussed in the

previous section, which has a mesh parameter h = .05, and a mesh which is twice as fine

with h = .025 (and approximately four times as many triangles).

In Figures 3.13 and 3.14, we show the evolution of normal stress η and separation
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g to steady state. The normal stress is solved using Eqn. (3.121), and the separation is

obtained by applying the operator B. We use a Poisson ratio for aluminum of 0.35 (so

κ = 1.6), and take ψ0 = 1 on the right wall, deferring use of the correct dimensionless value

until (3.124) below. Using L = 10µm, µ = 24.4 GPa, Ω = 1.68×10−23 cm3, νb = 1.5×1015,

Db = 10−8 cm2/s, T = 533 K, and k = 1.38 × 10−23 J/K, we calculate the timescale

t0 = kTL3

νbDbΩ2µ
to be 71000 s = 20 h. A more realistic geometry would be 10 times as long

(increasing t0 by a factor of 1000) but would also have an aspect ratio 50 times larger

(resulting in the attainment of steady state at a dimensionless time approximately 50 times

smaller). To get physical values of stress, we multiply the computed stress by

σ∗ = µψ0 =
|Z∗|e

Ω
ψphysical

0 . (3.124)

Taking the resistivity of aluminum to be 3.6µohm-cm and a current density of 20 mA/µm2,

we compute ψphysical
0 = (.72 V/cm)(20µm) = 1.44 mV. Using Z∗ = −1.3 [68], we obtain the

rough estimate σ∗ = 18 MPa.

Qualitatively, the evolution behaves the way we expect. The flux boundary con-

ditions are immediately realized, causing the stress to have slope −1/2 at x = 0, 2. Small

depletion and accumulation regions appear near the ends shortly after the current is turned

on. In between these regions, there is a steady flux caused by the electromigration force,

but as was true in the infinite geometry, this does not lead to grain growth initially be-

cause atoms don’t accumulate unless the flux is decreasing with position. These regions

grow in size and move toward each other at a progressively slower rate until the S-shaped

steady state separation is reached (within some tolerance), which corresponds to a linearly

decreasing normal stress which perfectly balances the electromigration force.

In Figure 3.15, we plot the eigenvalues λj of K versus the index j. The following

table gives a comparison of selected eigenvalues computed on the two meshes:

j λfine
j (λcoarse

j − λfine
j )/λfine

j

1 8.0× 10−2 −4.8× 10−5

2 1.97× 10−2 −1.33× 10−4

4 3.9× 10−3 −1.27× 10−3

8 5.7× 10−4 −1.39× 10−2

16 7.6× 10−5 −9.8× 10−2

32 9.0× 10−6 −3.1× 10−1

64 8.1× 10−7 −7.7× 10−1

We see that the eigenvalues that are most important for correctly modeling the evolution

(those with smallest index) are the eigenvalues that are computed most accurately. We
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also observe that our prediction that the spectrum would asymptotically behave as cj−3 for

large j appears to be correct.

In Figures 3.16 and 3.17 we plot the first few eigenfunctions ϕj of K and φj of K̃;

(recall φj = Bϕj). By construction, the normal stress eigenfunctions satisfy ϕ′j(0) = ϕ′j(l) =

0 and the separation eigenfunctions satisfy φj(0) = φj(l) = 0. The condition number of U

in the diagonalization K = UΛU−1 for the fine and coarse meshes were found to be

coarse fine
cond(U) 2.35 2.57

Thus U is an extremely well conditioned matrix, and the eigenvectors of K are not becoming

linearly dependent as the dimension of the finite element space increases.

In Figure 3.18, we were pleasantly surprised to observe that the eigenfunctions

ϕ∗j of the adjoint K∗ look suspiciously similar to the functions φj from Fig. 3.17. Scaling

the latter appropriately, we have perfect agreement aside from the small amplitude, high

frequency noise that appears in the ϕ∗j . Recall from Section 3.4.2 that ϕ∗j is the jth column

of M−1Ū−T , and that ϕ∗j can be interpreted as a linear functional which determines the

jth coefficient in the eigenfunction expansion w =
∑
aiϕi via

aj = (ϕ∗j , w)M . (3.125)

Because the least accurately computed columns of U (those with large index) influence

all the columns of Ū−T , even the low frequency dual vectors ϕ∗i contain noticeable high

frequency oscillations. Note, however, that because the ϕ∗i are used as linear functionals,

this high frequency noise does not significantly affect the coefficients aj when w is smooth.

The fact that the ϕ∗i turn out to be multiples of the φi means that K̃ = K∗ since we

already knew that sp(K) = sp(K̃) and suspected that sp(K) ⊂ R. On the one hand, this

fact allows us to compute the ϕ∗i more accurately, and on the other hand, it tells us that

B = B∗. This numerical discovery has led us to prove it rigorously, which is almost enough

to prove that the grain boundary diffusion problem is well posed. (The invertibility of

U remains unproved, although the condition numbers we obtained for U above are quite

convincing). See Section 3.4.9.

Finally, in Figure 3.19, we show contour plots of some of the elasticity variables

for the steady state stress distribution in which the gradient of σ22 perfectly balances the

electromigration force. The first two plots show the displacement variables u and v. Note

that g = v+ − v− is negative on the left end of the grain boundary and positive on the
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right end because the atoms have been depleted on the left and deposited on the right. The

horizontal component of displacement u is non-zero due to the Poisson contraction effect:

the right side of the line is under compression and the left side is under tension, so the

material expands transversally on the right and contracts on the left, leading to a negative

value of u throughout. Along the grain boundary, σ22 is decreasing linearly, but off the

grain boundary it behaves in a more complicated way subject to the Lamé equations with

Dirichlet boundary conditions at the walls. The shear force τ is strongest near the ends

because the Dirichlet boundary conditions on the walls must overcome the separation forces

along the grain boundary, imparting vertical forces along walls with horizontal normals.
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Figure 3.13: Evolution of the normal stress η along the grain boundary for the two meshes
at t = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32.
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Figure 3.14: Evolution of the separation function g along the grain boundary for the two
meshes at t = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32.
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Figure 3.15: Log-Log plot of eigenvalues λj of K vs. index j. The red and blue curves (a)
and (b) show the eigenvalues obtained from the coarse and fine meshes, respectively. The
green line (c) is a plot of 0.32j−3, which appears to be the asymptotic limit of the spectrum
of K for large j. In the bottom plot, we zoom in on a portion of the top plot.
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Figure 3.16: The first 4 eigenfunctions ϕk of K. Note that the eigenfunctions are smooth,
oscillatory, and satisfy zero flux boundary conditions at the endpoints. The scales are
arbitrary (normalized as vectors in Rn rather than in L2).
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Figure 3.17: The first 4 eigenfunctions φk of K̃. Note that they are smooth, oscillatory,
and satisfy the zero displacement boundary conditions at the endpoints. The scales are
arbitrary (normalized as vectors in Rn rather than in L2).
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Figure 3.18: The first 3 eigenfunctions ϕ∗k of K∗ along with the corresponding (rescaled)
eigenfunctions φk of K̃. A surprising discovery: K̃ = K∗. The coefficients in the expansion
η =

∑
akϕk are determined by ak =

∫
ηϕ∗k, so these functions can be thought of as linear

functionals.
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Figure 3.19: Steady state solution.
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3.4.7 More Complicated Geometries

The approach used above to solve the grain boundary diffusion problem for a finite rect-

angular strip with a single symmetric grain boundary generalizes nicely to an arbitrary

branched grain boundary structure. Let the grain boundary Γ =
⋃

Γj be a union of closed

line segments. Each Γj is given an arbitrary orientation, a local arclength parameter s, a

tangent vector t, and a normal vector n; see Fig. 3.20. The segments Γj can be grouped

together into connected components as sets in R2. We denote a component by ΓJ , where J

is the set of appropriate indices of the Γj which belong to the component. We denote the

set of J ’s by J and the number of components by NJ . Define the Hilbert space H by

H = L2(Γ). (3.126)

We define the operator B : H → H : η 7→ g as follows. Let w = (u, v, p, q, γ, τ)T be the

solution of the Lamé system

Lw = 0 (c.f. Sec. 3.1) (3.127)

u = v = 0 along walls (3.128)

Bcw
± = (0, 0, η, η)T along grain boundaries, (3.129)

where w± = (w+, w−) and Bc is the interface boundary condition matrix obtained by

choosing θ so that t = (cos θ, sin θ)T , n = (− sin θ, cos θ)T , and defining

Bc =


cos θ sin θ 0 0 0 0 − cos θ − sin θ 0 0 0 0

0 0 0 0 sin 2θ cos 2θ 0 0 0 0 − sin 2θ − cos 2θ

0 0 1 0 cos 2θ − sin 2θ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 cos 2θ − sin 2θ

 . (3.130)

t

nleft (+)
grain

grain
right (−)

Figure 3.20: Arbitrary local orientation of grain boundary segment determines tangential
and normal directions, left and right grain labels, etc.
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In other words, in the notation of Eqn. (3.16) on page 39, u‖, σs and σ⊥ are continuous

across the grain boundary (which implies σ‖ is as well; see page 19), and σ⊥ = η at the

grain boundary. Then g is defined by

g = u+
⊥ − u

−
⊥ = n · [(u, v)T

left − (u, v)T
right]. (3.131)

The operator B will be shown to be self-adjoint and negative in Section 3.4.9.

Define the subspace H0 of H by

H0 = {f ∈ H :
∫

ΓJ

f = 0, J ∈ J } (3.132)

For each J in J , define the function eJ ∈ H by

eJ(x) =

1 x ∈ Γj for some j ∈ J,

0 otherwise.
(3.133)

For each J , let gJ = BeJ ∈ H, and note that (eJ , ·) is the area functional of the Jth

component, i.e.

(eJ , f)H =
∫

ΓJ

f ds. (3.134)

Let P ∈ B(H) be the projection onto H0 along the gJ , i.e.

P = id−
∑

I,J∈J
gIWIJ(eJ , ·). (3.135)

Here W is the NJ ×NJ matrix which has the property that

(eI , gK)WKJ = δIJ , (summation implied). (3.136)

W exists and is self-adjoint since B is self-adjoint and negative, and therefore the matrix

(eI , gK)IK is invertible:

(W−1)IK = (eI , gK) = (eI , BeK) = (BeI , eK) = (gI , eK). (3.137)

If (eI , gK)IK were not invertible, then we could find numbers aK such that for each I,

(eI , BeK)aK = 0; hence setting x = eKaK we would get (x,Bx) = 0, a contradiction. The

adjoint P ∗ of P is the projection along constants onto the space

H∗
0 = range(P ∗) = {gJ : J ∈ J }⊥, (3.138)
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i.e. P ∗ is given by

P ∗ = id−
∑

I,J∈J
eIWIJ(gJ , ·). (3.139)

Because B(span{eJ}) = span{gJ}, we know that B∗(span{gJ}⊥) = span{eJ}⊥. But B is

self-adjoint, span{eJ}⊥ = H0, and span{gJ}⊥ = H∗
0 , therefore

H0 = B(H∗
0 ). (3.140)

Note also that the invertibility of (eI , gJ)IJ implies that span{eJ}∩H∗
0 = {0} and span{gJ}∩

H0 = {0}. Thus we have

P ∗(H0) = H∗
0 , P (H∗

0 ) = H0. (3.141)

We define the self-adjoint compact operator G : H0 → H0 : g 7→ η by solving the

Poisson equation

d2

ds2
η(xi(s)) = g(xi(s)) along interior of each Γi (3.142)

d

ds

∣∣∣
s0

η(x(s)) = 0 x(s0) a wall endpoint (3.143)∑
i∈{i1,i2,i3}

d

ds

∣∣∣
0
η(xi(si

0 ± s)) = 0 xi(si
0) a triple point, ± chosen outward. (3.144)

Note that it was necessary to restrict G to H0 since there is no solution for g ∈ H \H0 and

when g ∈ H0 the solution is only defined up to addition of constants on each component

ΓJ .

We now define the operators K and K̃ to be

K = P ∗GPB, K̃ = PBGP = BP ∗GP = K∗. (3.145)

The evolution of the normal stress η(x, t) and the corresponding separation g(x, t) =

Bη(x, t) is governed by

∂

∂t
Kη(x, t) = −η(x, t), ∂

∂t
K̃g(x, t) = −g(x, t). (3.146)

We begin by solving the eigenproblem

Kϕi = λiϕi, K̃φi = λiφi, (φi = ciBϕi), (3.147)

where ci is chosen so that

(φi, ϕj)H = δij . (3.148)
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There are precisely NJ eigenvalues λi equal to zero, and the rest are positive real numbers

(c.f. Sec. 3.4.9). We order the λi so that all λi = 0 come first, and after that they form

a decreasing sequence converging to zero. For any initial η0(x), the solution to (3.146) for

homogeneous boundary conditions (i.e. no electric current) is given by

η(x, t) =
NJ∑
i=1

aiϕi +
∞∑

i=NJ+1

aie
− t

λi ϕi, (3.149)

where

ai = (φi, η0(x))H . (3.150)

Equivalently, we define U : l2 → H to have the ϕi for columns, write K = U(0 ⊕ Λ)U−1,

and have

η(x, t) = Etη0(x), Et = U [id⊕ exp(−Λ−1t)]U−1. (3.151)

When an electric current is present, we find the steady solution ηsteady by solving Laplace’s

equation for the electrostatic potential to determine ψ on Γ, and then find constants cJ so

that mass conservation holds on each component

ηsteady = −ψ
∣∣
Γ

+
∑
J∈J

cJeJ ⇒ ∀J ∈ J , (eJ , gsteady) = (eJ , g0), (3.152)

where gsteady = Bηsteady. Normally we take g0 to be identically zero, which physically means

no grain growth has occurred prior to turning on the electric current. In that case the cJ

are chosen to project −ψ
∣∣
Γ

onto H∗
0 :

ηsteady = P ∗(−ψ
∣∣
Γ
). (3.153)

The evolution to the steady state is then determined using (3.151) via

η(x, t) = ηsteady(x) + Et[η0(x)− ηsteady(x)]. (3.154)

In the computations, we construct K in several stages. To compute the separation

to stress map B, we use the singularity capturing least squares finite element method

developed in Chapter 5. We choose a mesh parameter h and choose equally spaced points

no larger than h along each wall, and along the grain boundary. We triangulate each grain

separately using a freely available triangulation program [71]. This leads to an unstructured

mesh with duplicate nodes along grain boundaries and triple (quadruple, etc.) nodes at

grain boundary junctions; see Figure 3.21.
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Figure 3.21: Each grain is triangulated separately, leading to an unstructured mesh with
duplicate nodes along grain boundaries and triple nodes at triple junctions. Offsets have
been added to the nodes of each grain here to show the finite element connectivity of
the spacially coincident grain boundary nodes to the interior nodes. This particular mesh
corresponds to a mesh parameter h = 0.06 for an interconnect line which fits in a rectangle
of length 4.25 and height 2.

The branching structure of the grain boundary network leads to a challenging

book-keeping problem, especially in light of the fact that additional basis functions are being

used to capture asymptotic behavior near grain boundary junctions and endpoints. We set

up a second finite element structure on the grain boundary network which is essentially one

dimensional (except at junction points) and does not duplicate any nodes; e.g. there is a

single node at a triple junction. We have several interwoven data structures that allow us

to determine the index of the nodes in the ambient elasticity finite element space which

coincide with a grain boundary node, determine which one is on the right or left, determine

which self-similar basis functions contain the node in their support, etc. We also have

data structures to go back the other way, i.e. nodes of the big finite element space carry

information about whether they are on a grain boundary, what the boundary conditions

look like there, which singular basis elements affect them, etc. Since no ordering of the grain

boundary nodes is particularly natural, we order the endpoints first, and then arbitrarily

sweep through the segments in a random order and assign node and edge indices. This

makes visualization somewhat challenging since points which are spacially close are not

necessarily labeled with nearby indices; see Fig. 3.22. We have found it useful to create an

operator for each segment which maps the jumbled variables to a picture of the result on
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Figure 3.22: The normal stress variables are ordered by taking the grain boundary end-
points and triple points first, and then sweeping through the interior of each grain bound-
ary segment. The separation variables include the special basis functions used to capture
asymptotic behavior near corners and triple junctions. These basis functions all have zero
normal stress on grain boundaries. The apparently large amplitude of the coefficients on
these special basis functions is an artifact of how they are normalized in the code. This
evolution will be further discussed in Section 3.4.8.
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Figure 3.23: To visualize an evolution such as the one shown in Fig. 3.22, we define a
matrix which maps the jumbled variables to a picture of the result on that segment, taking
into account the singular basis functions. Shown here is the support of the operator for
the segment from corner 16 to corner 24, and its use in visualizing the evolution on this
segment.
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(the xi are infinitesimally
close to the triple point.)
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Figure 3.24: Compatibility condition on the separation function g at a triple point.

that segment; see Fig. 3.23.

The normal stress η(x) is continuous on the grain boundary structure, and piece-

wise quadratic on any particular line element joining two nodes. At a triple point, η(x)

has a single value which is the limit approached along each incoming line element. This

condition was derived in Chapter 2 (c.f. Eqn. (2.39)) as a requirement of chemical potential

continuity:

η(x1) = η(x2) = η(x3). (3.155)

The separation g(x) is more complicated. On any grain boundary segment it is continuous,

but it has a different limit from the three incoming directions at a triple junction subject

to the compatibility condition discussed in Chapter 2 (c.f. Eqn. (2.16)):

g(x1)n1 + g(x2)n2 + g(x3)n3 = 0. (3.156)

On each line element (sub-segment of a grain boundary segment), g is a sum of a quadratic

function and possibly several power solution functions, just as in the simple horizontal ge-

ometry; see Fig. 3.12 on page 68. At triple points, a single singular basis function influences

the nearby nodes of each incident segment. To enforce (3.156), we set the value of the

quadratic portion of g on each incident line-element to zero at the triple point and use

a power solution basis element with exponent α = 0 to provide the separation degree of

freedom there; the appropriate self-similar solution to model this separation always exists.

To compute G, we run through each line-element and compute its contribution to

the stiffness matrix A and mass matrices M and M̃ , just as we did for the simple horizontal

geometry:

−Aη = M̃g, Aij = (∂sεi, ∂sεj)L2 , M̃ij = (εi, ej)L2 , Mij = (εi, εj)L2 . (3.157)
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Natural boundary conditions are used at all endpoints and triple points, which automatically

enforces the conditions (3.143) and (3.144). The matrices A and M are symmetric m×m
matrices; M is positive definite, and A has a kernel with dimension equal to the number of

connected components of the grain boundary structure, with nullspace

NA = span{eJ : J ∈ J }, (c.f. Eqn. (3.133)). (3.158)

On the orthogonal complement N⊥
A , A is positive definite. The m × n matrix M̃ is not

square due to the constraints on g at walls and the extra self-similar basis functions which

affect g but not η. Our numerical approximation of G is the m× n matrix

G = pinv(A)M. (3.159)

We compute the projections P and P ∗ from Eqns. (3.135) and (3.139) as follows.

First define the m×NJ matrix e to have columns eJ , i.e. the columns of e are a basis for

NA. Then the gJ are the columns of Be, and P and P ∗ are given by

P = I −Be(eTMBe)−1eTM, P ∗ = I − e(eTMBe)−1eTMB. (3.160)

K and K∗ are then formed using (3.145), the potential ψ is solved using Galerkin finite

elements on the same mesh used to compute B, and η(x, t) is found from (3.151), (3.153),

and (3.154) in the same way that it was done for the simple horizontal geometry.

3.4.8 More Results

In this section we apply the method described above to two geometries. The first geometry

was shown in Fig. 3.21 with a mesh parameter of h = .06, which led to a triangulation

with 2366 triangles. The results here were obtained using a mesh with h = .035, 6686

triangles, 3797 vertices, 10476 edges, and 477 vertex and edge nodes along the grain bound-

ary. The resulting linear system has 79920 unknowns, and must be solved 477 times to

compute B. A total of 101 self-similar basis functions were used near corners and triple

points (Fig. 3.25), several of them stabilized to avoid degeneracy; see Chapter 4. The second

geometry (Fig. 3.31) consists of a straight interconnect line with a network of grain bound-

aries with two connected components. The mesh used has 6788 triangles, 3856 vertices,

10632 edges and 550 grain boundary nodes, leading to a linear system with 81336 variables

that is solved 550 times to compute B. A total of 80 self-similar basis functions were used
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near corners and triple points, stabilized when necessary. The condition number of U from

Eqn. (3.151) was 9.74 for the first geometry and 21.7 for the second, so the eigenfunctions

form a nice basis.

In Figures 3.26–3.28 we show the evolution to steady state of g(x, t) and η(x, t)

along various segments of the grain boundary network. The evolution of the full set of

interwoven variables was shown in Figure 3.22 on page 87. We point out two interesting

features of this particular simulation. First, we note that ψ does not vary linearly from

left to right due to the complicated geometry, so the steady state normal stress ηsteady

is not as simple on each segment as it was for the horizontal geometry. Second, along the

segment from junction 24 to 27, the flux of material out of the segment through the junction

changes sign midway through the evolution, which means that early in the evolution the

grains are pulled together, but eventually extra material enters the segment and they are

pushed apart. There are three things that contribute to this. First, the angle of the segment

is such that ψ(x) decreases as x moves from x24 to x27, therefore the electric field acts to

keep η(x27) > η(x24). Second, the segment lies to the right of the “center of mass” of

the network, so eventually η(x24) will be negative. And third, the segment is short, so it

equilibrates more quickly than the structure as a whole. As a result, η(x27, t) increases

relative to η(x24, t) on a shorter timescale than the scale on which η(x24, t) settles into its

eventual decreasing trajectory (pulling η(x27, t) down with it).

In Figure 3.29, we illustrate the separation g(x) of the steady state configuration

by choosing a constant C (to make the displacements visible) and plotting x + Cu+(x)

and x + Cu−(x) as x traverses the grain boundary network. We also show a contour plot

of the magnitude of the displacements in each grain, together with streamlines tangent to

the displacement vector field. The general behavior is that material has been transported

from the left end of the interconnect line to the right, causing the grains to move toward

each other (g < 0) on the left side and to separate (g > 0) on the right. The magnitude is

greatest near the left and right ends of the interconnect line, but still must go to zero at

the walls.

Figure 3.30 contains contour plots of the steady state values of p, normalized

energy density, and maximum shear stress. Recall that pressure is given by −µp and energy

density is given by σijεij = µ
[

κ−1
2 p2 + γ2 + τ2

]
. We see that the left and right ends of the

line are generally in a state of tension and compression, respectively, due to the transport of

mass from left to right. We also observe that the stresses are largest at the ends, especially
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at re-entrant corners and grain boundary junctions where there are singularities.

In Figure 3.31 we show some of the steady state variables for the geometry with a

grain boundary network with two connected components. On each component, material has

been transported from left to right until the gradient of σnn balances the electromigration

force. The break in the network in the middle of the line acts as a barrier to limit the

effective length of the line. Large shear stresses develop on the top and bottom walls where

they prevent the grain between the two grain boundary networks from being pushed to the

right by grain growth on its left and grain annihilation on its right. The net result of the

barrier, however, is to reduce the distance over which the stress gradient must balance the

electromigration force, and hence the maximum stress is smaller than it would be for a

single component grain boundary network on an interconnect line of this length. The idea

is similar to the observation that the maximum height of the function y = x− 1
2 on the unit

interval is larger than the maximum height of

y =

x−
1
4 0 ≤ x ≤ 1

2 ,

x− 3
4

1
2 < x ≤ 1.

(3.161)

In real materials, mass transport occurs at passivation interfaces as well, so material can

be transported from one such structure to the next. This possibility would lead to larger

stresses at the ends of the interconnect line and smaller stresses in the middle. It is in-

teresting, however, that if passivation interfaces can be made with small enough diffusion

coefficients, they can effectively inhibit the development of stresses in an interconnect line

with disconnected grain boundaries.
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Figure 3.25: Top: Corners and grain boundary junctions are numbered arbitrarily. Middle:
The electrostatic potential ψ satisfies Laplace’s equation with Dirichlet boundary conditions
at the ends and Neumann boundary conditions on the side walls. We use standard varia-
tional finite elements with quadratic elements on the mesh used in the elasticity problem to
determine ψ along Γ. Bottom: A plot of the number of degrees of freedom that affect the
variables at a given vertex or edge node. In this simulation, 101 extra basis functions near
corners and junctions are used to capture asymptotic behavior.
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Figure 3.26: The evolution of g and η on the segment from junction 16 to junction 24
in Fig. 3.25. Times shown are t = .03, .06, .12, .24, .48, .96,∞. The plot was obtained by
applying the visualization operator for this segment (c.f. Fig. 3.23) to the evolution of the
variables shown in Fig. 3.22 on Page 87.
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Figure 3.27: The evolution of g and η on the segment from junction 24 to junction 27 at
t = .03, .06, .12, .24, .48, .96,∞. Note that initially material leaves this segment, but the flux
of mass at the triple point changes sign around t = .045 and ultimately the grains separate
along this segment.
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Figure 3.28: The evolution of g and η on the segment from junction 25 to junction 7
at t = .03, .06, .12, .24, .48, .96,∞. Note that unlike the simple horizontal geometry, the
steady state normal stress η = P ∗(−ψ

∣∣
Γ
) does not vary linearly along grain boundary

segments. Also note that g develops an infinite slope at the endpoints due to singularities.
Asymptotically, g ∼

∑
cir

λi with λ
(7)
i ∈ {0, .799, .886} and λ

(25)
i ∈ {0, .725, .951}. The

other stress components diverge at the ends (like rλ−1 with λ(7) ∈ {.799, .886} and λ(25) ∈
{.725, .951}), but η remains well behaved.
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uvmag
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Figure 3.29: Top: Magnified view of the steady state separation g(x), obtained by plotting
x + Cu+(x) and x + Cu−(x) with x along the grain boundary. Bottom: Contour plot
of the magnitude of the displacements in each grain, together with streamlines tangent to
the displacement vector field. Note that material is transported from the left end of the
interconnect line to the right, causing the grains to move toward each other (g < 0) on the
left side and to separate (g > 0) on the right.
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Figure 3.30: Contour plots of the steady state values of p = 1
2(σ11 + σ22), µ−1σijεij =

κ−1
2 p2 + γ2 + τ2, and (γ2 + τ2)

1
2 . Note that the left and right ends of the line are generally

in a state of tension and compression, respectively, due to the transport of mass from left
to right. Also note that the stresses are largest where the grains have separated the most,
and at re-entrant corners and grain boundary junctions where they have singularities.
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uvmag: 0.00238 0.00475 0.00713 0.00950 0.01188 0.01425 0.01663 0.01901 0.02138 0.02376 0.02613 0.02851 0.03089 0.03326 0.03564

p: -0.20000 -0.17143 -0.14286 -0.11429 -0.08571 -0.05714 -0.02857 0.00000 0.02857 0.05714 0.08571 0.11429 0.14286 0.17143 0.20000

t: -0.12000 -0.10286 -0.08571 -0.06857 -0.05143 -0.03429 -0.01714 0.00000 0.01714 0.03429 0.05143 0.06857 0.08571 0.10286 0.12000

Energy: 0.00000 0.00214 0.00429 0.00643 0.00857 0.01071 0.01286 0.01500 0.01714 0.01929 0.02143 0.02357 0.02571 0.02786 0.03000

Figure 3.31: Contour plots of the steady state values of (u2 + v2)
1
2 , p, τ , and κ−1

2 p2 + γ2 +
τ2 for a grain boundary network with two connected components. On each component,
material has been transported from left to right until the gradient of σnn balances the
electromigration force. The break in the network in the middle of the line acts as a barrier
to limit the effective length of the line. Large stresses develop at the gb–wall junctions
where the centermost grain is being pushed to the right by grain growth on its left and
grain annihilation on its right, but is clamped in place at the top and bottom. The net
result of the barrier, however, is to reduce the distance over which the stress gradient must
balance the electromigration force, and hence the maximum stress is smaller than it would
be for a single component grain boundary network on an interconnect line of this length.



100 CHAPTER 3. THE GRAIN GROWTH PROBLEM

3.4.9 Properties of B and K

The results illustrated in Fig. 3.18 provide evidence that B is self-adjoint. In this section,

we prove that B is self-adjoint and negative, and that K has non-negative real eigenvalues

with eigenfunctions which span a dense subspace of L2(Γ). As in Section 3.4.7, Γ =
⋃

Γi is

the grain boundary network. We are unable to prove that the eigenfunctions form a basis

for L2(Γ), but provide a useful criterion to be tested numerically.

For convenience, in this section we treat the elasticity variables as truly two-

dimensional, with stress, traction, and energy density having units force
length = energy

area . Let

η(x, θ) be a one-parameter family of normal stresses along Γ. Let u(x, y, θ) and σ(x, y, θ)

be the solution to the Lamé equations in the interior of each grain satisfying homogeneous

Dirichlet boundary conditions at the walls and the four conditions u+
‖ = u−‖ , σ+

s = σ−s ,

σ+
⊥ = σ−⊥ = η along grain boundaries. Then g = Bη is defined as before as u+

⊥ − u
−
⊥ on Γ.

Label the grains in some order, and let Dk be the kth grain. The elastic energy stored in

the kth grain is given by

Ek(θ) =
1
2

∫
Dk

σijεij dA, (3.162)

and, with n as in Fig. 3.32, Equation (2.24) on page 25 implies

∂Ek

∂θ
=
∫

∂Dk

T(x(s), θ) · ∂
∂θ

u(x(s), θ) ds, T = σ(−n) = traction. (3.163)

Since u(x, θ) = 0 for all θ when x is on a wall, only grain boundary segments contribute to

this integral. If we add the energies of all the grains to get the total elastic energy E =
∑
Ek

stored in the interconnect line, each grain boundary segment will contribute two terms to

an expression for ∂θE, one when the left grain is traversed with increasing s, and one when

the right grain is traversed with decreasing s. The orientation of Γj is arbitrary as a reversal

n
n

b

a

Γj

+ −

+ −
n

a

b

Dl

Dk

a

b

− +

Figure 3.32: Each grain is traversed counterclockwise with unit inward normal n. The
contribution of a particular grain boundary segment to the total elastic energy E =

∑
Ek

contains precisely one term from the left grain and one term from the right grain.
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of the orientation also switches the left and right grain labels. The contribution from the

left grain is given by ∫
Γj

σ(−n) · ∂u
+

∂θ
ds (3.164)

and the contribution from the right grain is given by∫
Γj

σ(n) · ∂u
−

∂θ
ds. (3.165)

Since u+ − u− = gn and σ(n) · n = η, we see that

∂E

∂θ
= −

∑
j

∫
Γj

η
∂g

∂θ
ds = −

∫
Γ
η
∂

∂θ
Bη ds. (3.166)

Setting η = θη0 and integrating from 0 to 1, we find that

E[η0] = −1
2

∫
Γ
η0Bη0 ds. (3.167)

With η = η0 + θη1, we get

E[η0 + η1]− E[η0] = −
∫

Γ
η0Bη1 −

1
2

∫
Γ
η1Bη1 ds. (3.168)

Combining (3.167), (3.168) and the corresponding result using η = η1 + θη0, we conclude

that ∫
Γ
η0Bη1 ds =

∫
Γ
η1Bη0 ds

(
η0, η1 ∈ L2(Γ)

)
, (3.169)

which shows that B is self-adjoint. By (3.167), B is also negative, i.e.

(η,Bη)L2(Γ) < 0,
(
η ∈ L2(Γ) \ 0

)
. (3.170)

I believe that B : L2(Γ)→ L2(Γ) is a compact operator as well, but I don’t have a proof.

The operator G : H0 → H0 defined in Equations (3.142)–(3.144) on page 84 as the

solution to the Poisson problem subject to various Neumann boundary conditions is also a

compact, self-adjoint, negative operator. This can be proved easily using Green’s function

techniques from standard ODE theory. We define an auxiliary system of n ODE’s on the

unit interval (0 < s < 1) by defining ui(s) and fi(s) by

ui(s) = η(x0
i + s(x1

i − x0
i )), fi(s) = l2i g(x

0
i + s(x1

i − x0
i )), (3.171)

where n is the number of segments, x0,1
i are the endpoints of segment i, and li is the length

of the segment. In terms of the new variables, we have u′′i (s) = f(s) with 2n boundary

conditions of the form

M0u(0) +M1u′(0) +N0u(1) +N1u′(1) = 0. (3.172)
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For example, for a network with 3 grain boundary segments of lengths 1, 2, and 5 meeting

at a triple point, we could parametrize each from outside in to get the boundary conditions

u′1(0) = 0
1
2
u′2(0) = 0

1
5
u′3(0) = 0

u2(1)− u1(1) = 0

u3(1)− u1(1) = 0

u′1(1) +
1
2
u′2(1) +

1
5
u′3(1) = 0.

(3.173)

Now we can apply standard theorems on boundary value problems for systems of ODE’s

(which account for the NJ dimensional kernel of Lu = uxx with these boundary conditions)

to conclude that G well-defined, negative, and compact on the subspace H0; see [20], [59].

We extend G to all of H = L2(Γ) by using the projections P and P ∗ from

Eqns. (3.135) and (3.139) on page 83, and define K by

K = P ∗GPB = AP, A = P ∗GP. (3.174)

Since B is negative, self-adjoint, and compact, it can be diagonalized by an isometry U :

l2 → H such that

U∗BU = −D, U−1 = U∗, (3.175)

where D is an infinite diagonal matrix with a monotonic sequence of positive real numbers

converging to zero along the diagonal. Since A is self-adjoint and compact, the operator

X : l2 → l2 given by

X = D
1
2U∗AUD

1
2 . (3.176)

is also self-adjoint and compact. Furthermore, X is non-positive and has an NJ dimensional

kernel. Therefore there is a unitary V : l2 → l2 and a diagonal matrix Λ : l2 → l2 which

satisfy the following properties:

• The firstNJ entries of Λ are zero and the remaining entries form a decreasing sequence

of positive real numbers converging to zero.

• V and Λ satisfy

V ∗XV = −Λ, V −1 = V ∗. (3.177)

For any diagonal matrix S, the columns of W = AUD
1
2V D

1
2S are eigenvectors of K = AB

with eigenvalues equal to the diagonal of Λ:

KW = A(UU∗)B(UU∗)AUD
1
2V D

1
2S = AU(−D

1
2D

1
2 )U∗AUD

1
2V D

1
2S =

= −AUD
1
2XVD

1
2S = AUD

1
2V ΛD

1
2S = AUD

1
2V D

1
2SΛ = WΛ. (3.178)
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In the last two steps, we used XV = −V Λ and the fact that diagonal matrices commute.

Note that because Λ has precisely NJ diagonal entries which are zero (the first ones), we

may replace the first NJ columns of W with the eJ (which span the kernel of K), after

which any finite collection of the columns of W are linearly independent.

Lemma 4. The closure of range(D
1
2V D

1
2 ) is l2.

Proof. Fix x ∈ l2, ε > 0. Choose n large enough that
∑∞

n |xi|2 < ε2. Define Fk : l2 → l2 to

be the diagonal matrix

(Fk)ii =

(Dii)−
1
2 i < k

0 i ≥ k
(3.179)

Then Fk is bounded and D
1
2F = idk−1 ⊕ 0. Let y = V ∗Fnx, (so that ‖D

1
2V y − x‖2 =∑∞

n |xi|2 < ε2) and choose m large enough that
∑∞

m |yi|2 < ε2. Let z = Fmy. Then

w = D
1
2 z − y satisfies ‖w‖2 =

∑∞
m |yi|2 < ε2, hence

‖D
1
2V D

1
2 z − x‖ = ‖D

1
2V (y +w)− x‖ ≤ ‖D

1
2V w‖+ ‖D

1
2V y − x‖ < (‖D

1
2 ‖+ 1)ε. (3.180)

Lemma 5. The closure of range(G) is H0. The closure of range(B) is H.

Proof. G : H0 → H0 and B : H → H are self-adjoint, compact, and strictly negative, so we

may diagonalize them and use an argument similar to the proof of Lemma 4 to obtain the

desired result.

Lemma 6. The closure of range(A) is H∗
0 .

Proof. This follows from A = P ∗GP , Lemma 5 and Equation (3.141):

P ∗(H0) = H∗
0 , P (H∗

0 ) = H0. (3.181)

Proposition 7. The closure of the column span of W is H. In other words, the eigenfunc-

tions of K are dense in H, and Jordan chains do not arise in the eigendecomposition.
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Proof. In the Banach space setting, it is easy to show that if E1 : X → Y and E2 : Y → Z

are bounded operators and E1 has dense range, then the closure of range(E2E1) is the

closure of range(E2). Using the above lemmas and the fact that U is invertible, this implies

that range(AUD
1
2V D

1
2 ) is dense in H∗

0 . Moreover, the invertibility of (eI , BeJ)IJ as an

NJ ×NJ matrix (c.f. Eqn. (3.137)) gives that span{eJ} complements H∗
0 in H.

Applying B to both sides of ABW = WΛ, we see that BA(BW ) = (BW )Λ, hence

the columns of BW are eigenvectors of K∗. Moreover, since the culumn span of W is dense

in H and the range of B is dense in H, the column span of BW is also dense in H. In

general, if ϕ is an eigenvector of an operator E with eigenvalue λ, and φ is an eigenvector

of E∗ with eigenvalue µ, then

(λ− µ̄)(φ, ϕ) = (E∗φ, ϕ)− (φ,Eϕ) = 0. (3.182)

Thus if λ 6= µ̄, φ and ϕ are orthogonal. Since K is compact, the dimension of any eigenspace

is finite dimensional. Choose λ ∈ sp(K) \ {0}, and let (j0 < j ≤ j0 + n) be the range of

indices for which λj = λ. Let Φ = (φ1, . . . , φn) contain columns j0 + 1 through j0 + n of

W . We wish to find an n× n matrix C such that ΦC and −BΦC are dual to one another

in the sense that

(φiCij ,−BφkCkl) = δjl. (3.183)

Consider the matrix Rij = (φi,−Bφj). Since B is self-adjoint and negative, R is self-

adjoint and invertible. If R were not invertible, we could find numbers aj such that for each

i, (φi,−Bφj)aj = 0; hence setting x = φjaj we would get (x,−Bx) = 0, a contradiction.

Since R is self-adjoint and positive, there is a unitary n×n matrix Q and a diagonal matrix

Σ with positive entries on the diagonal such that R = UΣU∗. We then set C = QΣ− 1
2 and

verify that

(φiCij ,−BφkCkl) = C̄ijRikCkl = (C∗RC)jl = δjl. (3.184)

Thus we may replace columns (j0 < j ≤ j0 + n) of W with ΦC so that the columns of W

and the columns of −BW are dual in the sense that if ϕj is the jth column of W and φi is

the ith column of −BW , then

(φi, ϕj) = δij . (3.185)

Note that for any diagonal S : l2 → l2 with non-zero diagonal entries, replacing W by

Φ = WS and −BW with Φ̃ = −BWS−1 gives another pair of matrices with columns that



3.4. A FINITE GEOMETRY 105

are dual to one another. We wish to choose S so that the both Φ and Φ̃ are bounded

operators from l2 → H, in which case {ϕj} and {φi} are each bases for H [34], Φ̃ = (Φ−1)∗,

and we have diagonalized K as

K = Φ−1ΛΦ. (3.186)

I don’t know how to prove that an appropriate S exists that can do this (Λ−1 is a good

candidate, replacing the NJ zeros on the diagonal with ones first), but it is still useful

to know that K has a real spectrum consisting of zero together with a positive sequence

converging to zero, that K has a dense spanning set of eigenfunctions, and that K has

an NJ dimensional kernal spanned by the functions eJ , where eJ is constant on the Jth

component of the grain boundary network. The condition number of Φ can be checked

in numerical experiments to indicate whether the eigenvectors of K are becoming linearly

dependent as the dimension increases, and we have found that these matrices are very well

conditioned; see Sections 3.4.6 and 3.4.8.
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Chapter 4

Corner Singularities

In this chapter we present the numerical techniques we have developed for com-

puting a basis to capture the asymptotic behavior of solutions to ADN-elliptic systems near

corners and interface junctions. We have used the method to produce hundreds of self-

similar (not always singular) solutions to augment our least squares finite element spaces

for the grain growth problem; see Fig 3.25 on page 93. In Sections 4.1 and 4.2, we set up

our notation and give several examples. In Sections 4.3, 4.4 and 4.6, we cover some of the

basic theory which is prerequisite to understanding the later results. In Section 4.5, we give

a new algorithm for removing rank deficiencies from an analytic matrix F̃ (λ, θ) which plays

an essential role in the numerical procedures. In Section 4.7, we explain how to compute

critical exponents, with several new features of our implementation appearing in Section

4.7.1. In Section 4.8, we prove a new theorem which allows us to construct an algorithm for

computing Keldysh chains and understanding the structure of the power solutions simply

by knowing the boundary condition matrix A(λ) and its first few derivatives. An interesting

example is presented to illustrate the technique. In Section 4.9, we present a stabilization

algorithm in which we remove near linear dependency from a basis of power solutions that

have exponents clustered together in the complex plane. This method is essential for em-

ploying such self-similar functions in finite element computations, and has the nice feature

that at a nearly critical angle of the geometry, it will give nearly the same basis as the

Keldysh chain procedure of Section 4.8 at exactly the critical angle.
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Figure 4.1: The angles ωk divide R2 into several regions Ωk.

4.1 Interface Problems

The problem of understanding the asymptotic behavior of the solution to an ADN-elliptic

system near a corner is a local problem. There is a standard technique using cutoff functions

which converts the problem on a finite domain with piecewise smooth boundary to a problem

on an infinite wedge [36], [45], [54]. The asymptotic behavior of the solution to the principal

part (c.f. Sec. 3.1) of the elliptic system (itself a homogeneous ADN system) for the infinite

wedge determines the asymptotic behavior for the original problem. In this section, we

restrict attention to interface problems for homogeneous ADN-elliptic systems on a union

of such wedges. Suppose we are given

ω0 < ω1 < · · · < ωK ≤ ω0 + 2π, (4.1)

and consider the K regions Ωk in R2 given in polar coordinates by

Ωk = {x ∈ R2 : 0 < r(x), ωk−1 < θ(x) < ωk} (k = 1, . . . ,K). (4.2)

Along each ray, we have unit tangent and normal vectors

t = (cosωk, sinωk), n = (− sinωk, cosωk). (4.3)

We denote the restriction of our variables {wi}Ni=1 to region Ωk by wk
i , and assume that

the restriction Mk of our ADN-elliptic operator M(x, y, ∂x, ∂y) to region Ωk is independent

of x and y, i.e. we allow for the possibility that the material parameters such as µ and κ in

the case of elasticity change between regions, but require that they be constant within each

Ωk. We assume that each Mk is homogeneous of multi-degree. Summarizing Sec. 3.1, this

means we have equation and variable indices si, tj and an integer m such that

•
∑

i(ti + si) = 2m is even,
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• either Mk
ij(a, b) ≡ 0 or the degree of Mk

ij(a, b) as a polynomial in a and b is si + tj ,

• detMk(a, b) 6= 0 for all (a, b) ∈ R2 \ 0,

• the equation [detMk(ξ + zξ′) = 0] as a polynomial in z has precisely m roots in the

positive half-plane and m roots in the negative half-plane for any linearly independent

ξ, ξ′ ∈ R2.

We wish to solve Mkwk = fk on each region Ωk, subject to the boundary conditions

Bw = g, (4.4)

which is an expression of the 2mK equations

B0
i (∂x, ∂y)w1(r, ω0) = g0

i (r) (i = 1, . . . ,m) (4.5)

Bk
i (∂x, ∂y)wk+1(r, ωk) + B̃k

i (∂x, ∂y)wk(r, ωk) = gk
i (r) (i = 1, . . . , 2m) (4.6)

B̃K
i (∂x, ∂y)wK(r, ωK) = gK

i (r) (i = 1, . . . ,m). (4.7)

Here Bk and B̃k control the variables on the positive and negative side of ray (θ = ωk),

respectively, and ∂x, ∂y act on r and θ before ωk is substituted for θ. If ωK = ω0 + 2π,

conditions (4.5) and (4.7) are replaced with

B0
i (∂x, ∂y)w1(r, ω0) + B̃K

i (∂x, ∂y)wK(r, ωK) = g0
i (r) (i = 1, . . . , 2m). (4.8)

Each Bk
i and B̃k

i is a row vector assumed homogeneous of multi-degree, (i.e. stresses aren’t

added to displacements). This is expressed mathematically as a statement of the existence

of boundary condition indices qk
i such that

degBk
ij(a, b) = qk

i + tj if Bk
ij 6≡ 0, (4.9)

deg B̃k
ij(a, b) = qk

i + tj if B̃k
ij 6≡ 0. (4.10)

If ω0 = ωK , then we require (q0i ) = (qK
i ). These boundary conditions must satisfy the

Lopatinskij covering condition, as discussed in Sec. 3.1.

4.2 Examples

Example 8. (Diffusion equation with discontinuous coefficients). We wish to solve

−∇ · αk∇uk = F k on Ωk (4.11)
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subject to Dirichlet boundary conditions along (θ = ω0) and (θ = ωK) and continuity and

flux boundary conditions at interior interfaces (θ = ωk). The flux is given by jk = −αk∇uk,

so we impose uk+1 = uk and (jk+1 − jk) · nk = 0 along the interface. We can put this

in the above framework by defining wk = (uk,−αku
k
x,−αku

k
y)

T , m = 1, (si) = (2, 1, 1),

(tj) = (0,−1,−1), (q0i ) = (0), (qk
i ) = (0, 1), (qK

i ) = (0), fk = (F k, 0, 0)T ,

Mk(∂x, ∂y) =


0 ∂x ∂y

∂x α−1
k 0

∂y 0 α−1
k


B0 = B̃K = (1, 0, 0),

Bk = −B̃k =

1 0 0

0 − sinωk cosωk

 .
(4.12)

Here we assume the Dirichlet data g0(r) and gK(r) are given, and all other gk(r) = (0, 0)T .

This is a variant of the problem studied by Berndt in his dissertation [4].

Example 9. (Elasticity near a corner). We wish to solve the Lamé equations subject to

Dirichlet boundary conditions along one ray and traction boundary conditions along the

other; see Figure 4.2. Since there is only one region, we drop unnecessary superscripts, set

w = (u, v, p, q, γ, τ)T as in Section 3.1, and use

Mκ(a, b) =



a −b 0 0 1 0

b a 0 0 0 −1

−b a 0 −κ+1
2 0 0

a b −κ−1
2 0 0 0

0 0 a −b 0 0

0 0 b a 0 0


, fµ,κ = − 2µ−1

κ+ 1



0

0

0

0

F1(x, y)

F2(x, y)


, (4.13)

m = 2, (si) = (2, 2, 1, 1, 1, 1), (tj) = (0, 0,−1,−1,−1,−1). (4.14)

The tangential and normal components of displacement g0
i (r) and traction g1

i (r) are specified

along (θ = ω0) and (θ = ω1), respectively, and we have

B0 =

(
cos ω0 sin ω0 0 0 0 0

− sin ω0 cos ω0 0 0 0 0

)
, B̃1 = µ

(
0 0 0 0 sin 2ω1 cos 2ω1

0 0 1 0 cos 2ω1 − sin 2ω1

)
(4.15)

with ADN indices (q0i ) = (0, 0) and (q1i ) = (1, 1).

Example 10. (Elasticity at a wall–gb–wall interface). The elastic constants µ and κ are

assumed the same in both regions, so there is no need for superscripts on M and f , which
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1
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Figure 4.2: Geometry of Example 9: a corner with Dirichlet boundary conditions imposed
along one ray and traction boundary conditions imposed along the other. Recall (page 39)
that u‖ = u · t, u⊥ = u · n, σs = t · σn, σ⊥ = n · σn, and T = σn.

are again given by (4.13). Along (θ = ω0) and (θ = ω2), we have homogeneous dirichlet

conditions

B0 =

 cosω0 sinω0 0 0 0 0

− sinω0 cosω0 0 0 0 0

 , B̃2 =

 cosω2 sinω2 0 0 0 0

− sinω2 cosω2 0 0 0 0

 (4.16)

with g0 = g2 = (0, 0)T and (q0i ) = (q2i ) = (0, 0). Along (θ = ω1), we require that u‖, σs and

σ⊥ are continuous across the grain boundary (which implies σ‖ is as well; see page 19), and

that σ⊥ = η is specified along the grain boundary. Thus we define

B1 =


cosω1 sinω1 0 0 0 0

0 0 0 0 µ sin 2ω1 µ cos 2ω1

0 0 µ 0 µ cos 2ω1 −µ sin 2ω1

0 0 0 0 0 0

 , g1(r) =


0

0

η(r)

η(r)

 ,

B̃1 =


− cosω1 − sinω1 0 0 0 0

0 0 0 0 −µ sin 2ω1 −µ cos 2ω1

0 0 0 0 0 0

0 0 µ 0 µ cos 2ω1 −µ sin 2ω1

 ,
(q1i ) =

(0, 1, 1, 1).

(4.17)

Example 11. (Triple grain boundary junction). This time ω3 = ω0+2π and Equations (4.5)

and (4.7) are replaced with Equation (4.8). All pairs (B0, B̃3), (B1, B̃1), (B2, B̃2) have

the form (4.17).

Example 12. (Several materials welded together). In each region, we have different elastic

constants, so Mk = Mκk
and fk = fµk,κk

from (4.13). We have ωK = ω0 + 2π, so we again

use Equation (4.8). Along each weld, we require continuity of u‖, u⊥, σs and σ⊥ (which
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together imply continuity of σ‖). Each pair (B0, B̃K), (B1, B̃1), . . . , (BK−1, B̃K−1) has

the form

Bk =


cosωk sinωk 0 0 0 0

− sinωk cosωk 0 0 0 0

0 0 0 0 µk+1 sin 2ωk µk+1 cos 2ωk

0 0 µk+1 0 µk+1 cos 2ωk −µk+1 sin 2ωk



−B̃k =


cosωk sinωk 0 0 0 0

− sinωk cosωk 0 0 0 0

0 0 0 0 µk sin 2ωk µk cos 2ωk

0 0 µk 0 µk cos 2ωk −µk sin 2ωk



(4.18)

with gk = (0, 0, 0, 0)T and (qk
i ) = (0, 0, 1, 1). Here ω0 is used in B0 and ωK is used in B̃K

to impose the welding conditions along (θ = ω0).

4.3 Mellin Transform

A useful theoretical tool for solving elliptic PDE on sectors in the plane is the Mellin

transform [76]. Let λ = c+ is. The Mellin transform of a function f : R≥0 → C such that

r−c−1f(r) ∈ L1(0,∞) is given by

f̃(λ) =
∫ ∞

0
f(r)r−λ−1 dr. (4.19)

With the substitution r = ey, dr = r dy, we see that the Mellin transform is just the Fourier

transform in disguise:

f̃(c+ is) =
∫ ∞

−∞

(
f(ey)e−cy

)
e−isy dy. (4.20)

If [f(ey)e−cy ∈ L2(−∞,∞)], we may use the Fourier inversion formula to conclude

f(ey)e−cy =
1
2π

∫ ∞

−∞
f̃(c+ is)eisy ds. (4.21)

This implies the Mellin inversion formula

f(ey) =
1
2π

∫ ∞

−∞
f̃(c+ is)e(c+is)y ds, (4.22)

which is more commonly expressed as a contour integral:

f(r) =
1

2πi

∫ c+i∞

c−i∞
f̃(λ)rλ dλ. (4.23)
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Note that if f is identically zero for large r and if there is a c ∈ R such that

r−c−1/2f(r) ∈ L2(0,∞), (4.24)

then changing variables we have

f(ey)e−c ∈ L2(−∞,∞), (4.25)

which together with (4.20) and the Paley–Wiener theorem [65] implies that f̃(z) is ana-

lytic for (Re z < c) and its restriction to vertical lines form a bounded set in L2(−∞,∞).

Integration by parts shows that if f → 0 fast enough at 0 and ∞, then

r̃∂rf(λ) =
∫ ∞

0
(∂rf)r−λ dr = fr−λ

∣∣∣∞
0

+
∫ ∞

0
λfr−λ−1 dr = λf̃(λ). (4.26)

If we have a function f(r, θ) defined in polar coordinates on a sector of the plane,

we define its partial Mellin transform f̃(λ, θ) by taking the transform with respect to r

treating θ as fixed. If we have a scalar differential operator A(θ, ∂θ, r∂r), then by (4.26) the

transform of g(r, θ) = A(θ, ∂θ, r∂r)f(r, θ) is given by

g̃(λ, θ) = A(θ, ∂θ, λ)f̃(λ, θ). (4.27)

Given an operator M(∂x, ∂y) which is homogeneous of multi-degree si and tj , then substi-

tuting

∂x = r−1(cos θ r∂r − sin θ ∂θ)

∂y = r−1(sin θ r∂r + cos θ ∂θ)
(4.28)

into

diag(rsi)M(∂x, ∂y) diag(rtj ) (4.29)

and using the general observation that

r∂r(rαf(r)) = rα (αf(r) + r∂rf(r)) , (4.30)

we may move all occurences of r∂r to the right of lone powers of r in each term Ckl∂
k
x∂

l
yr

tj

of rsiMij(∂x, ∂y)rtj to get a sum of terms of the form rsir−(k+l)rtjAkl(θ, ∂θ, r∂r). Because

Mij(a, b) is a homogeneous polynomial in a and b of degree si + tj , the powers of r cancel

and we have

diag(rsi)M(∂x, ∂y) diag(rtj ) =M(θ, ∂θ, r∂r). (4.31)
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For the interface problem, then, we may use the Mellin transform to convert the system of

equations

Mk(∂x, ∂y)wk = fk, (4.32)

Bw = g (4.33)

into a one parameter family of ODE’s on a collection of intervals {(ωk−1, ωk)}Kk=1 with

boundary conditions which couple the variables of adjacent intervals:

Mk(θ, ∂θ, λ)W̃ k(λ, θ) = F̃ k(λ, θ), (4.34)

BW̃ = G̃. (4.35)

The meaning of (4.35) is that[
B0

i (θ, ∂θ, λ)W̃ 1(λ, θ)
]
θ=ω0

= G̃0
i (λ) (i = 1, . . . ,m),[

Bk
i (θ, ∂θ, λ)W̃ k+1(λ, θ) + B̃k

i (θ, ∂θ, λ)W̃ k(λ, θ)
]
θ=ωk

= G̃k
i (λ) (i = 1, . . . , 2m),[

B̃K
i (θ, ∂θ, λ)W̃K(λ, θ)

]
θ=ωK

= G̃K
i (λ) (i = 1, . . . ,m),

with obvious modifications based on (4.8) when ωK = ω0 + 2π. To do this we multiply the

ith row of (4.32) by rsi and the ith row of the boundary conditions for the kth ray in (4.33)

by rqk
i . We define W k

j (r, θ) = r−tjwk
j (r, θ), F k

i (r, θ) = rsifk
i (r, θ), and Gk

i (r) = rqk
i gk

i (r).

We then take the Mellin transform of the equations and boundary conditions using (4.31)

to get (4.34) and (4.35). Once W̃ k is solved as a function of θ for each λ along a vertical

line λ = c+ is, the inverse Mellin transform (4.23) can be used to determine W k(r, θ), from

which we get the solution to the original problem wk
j (r, θ) = rtjW k

j (r, θ).

4.4 Homogeneous Solutions

In this section we drop the superscript k indexing the different regions of the domain.

Suppose that each Wj(r, θ) = r−tjwj(r, θ) behaves well enough at the origin that there is a

constant c1 such that for each fixed θ

r−c1−1/2Wj(r, θ) ∈ L2(0,∞). (4.36)

Recall that w is assumed identically zero for large r due to the cutoff function that was

used to convert the problem to the sector geometry. Then as in (4.25), we conclude that
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W̃ (λ, θ) is analytic in λ for each fixed θ on (Reλ < c1), and its restriction to vertical lines

form a bounded set in L2(−∞,∞). When we use the inverse Mellin transform on W̃ along

a vertical line (Reλ = c) in the complex plane with (c < c1), we get W back. It frequently

happens that F̃ and G̃ are analytic on a larger region (Reλ < c2), where (c1 < c2). In this

case, the boundary value problem (4.34), (4.35) has a unique solution for each λ satisfying

(Reλ < c2) except at a finite number of isolated points λν ∈ S with real part between c1

and c2. Near each such λν ∈ S, W̃ has the form

W̃ (λ, θ) =
d∑

p=1

mp−1∑
q=0

c(ν,p,q)(λ− λν)−q−1ψ(ν,p,q)(λ, θ) + V (λ, θ), (4.37)

ψ(ν,p,q)(λ, θ) = φ(ν,p,0)(θ) + (λ− λν)φ(ν,p,1)(θ) + · · ·+ (λ− λν)qφ(ν,p,q)(θ). (4.38)

Here V is analytic at λν and the φ(ν,p,s)(θ) are the characteristic and associated functions

[59] at λν of the generalized eigenvalue problem M(θ, ∂θ, λ)w = 0, Bw = 0. Thus we

have found a meromorphic continuation of W̃ on (Reλ < c2) which agrees with the Mellin

transform of W on (Reλ < c1). If we apply the inverse Mellin transform along a vertical

line Reλ = c with (c1 < c < c2), we will obtain a function Wc(r, θ) which is not necessarily

equal to W . Wc can be shown [45, 54, 63, 36] to have more regularity at the origin than W ,

and (Wc −W ) is obtained from Equations (4.23) and (4.37) as a contour integral around a

curve γ enclosing the λν :

Wc(r, θ)−W (r, θ) =
d∑

p=1

mp−1∑
q=0

c(ν,p,q)

[
1

2πi

∫
γ
(λ− λν)−q−1ψ(ν,p,q)(λ, θ)rλ dλ

]
. (4.39)

Applying the residue theorem to the term in brackets and noting that

Resλν [(λ− λν)−s−1rλ] =
1
s!

(ln r)srλν , (4.40)

we find that

1
2πi

∫
γ
. . . dλ = rλν

[
1
q!

(ln r)qφ(ν,p,0)(θ) + · · ·+ 1
0!

(ln r)0φ(ν,p,q)(θ)
]
. (4.41)

In summary, this means that when f and g approach zero fast enough at the origin, the

solution w to (4.32) and (4.33) can be decomposed into a regular part (diag(rtj )Wc above),

and a singular part which is a sum of solutions to the homogeneous problem

M(∂x, ∂y)w = 0, Bw = 0 (4.42)
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of the form

wj(r, θ) = rλ+tj

[
1
q!

(ln r)qφ0
j (θ) + · · ·+ 1

0!
(ln r)0φq

j(θ)
]
. (4.43)

In this expression, φ0(θ) satisfies

M(θ, ∂θ, λ)φ = 0, Bφ = 0 (4.44)

and φ0, . . . , φq form a Keldysh chain of characteristic and associated functions (defined in

Section 4.8) for (4.44). If the maximum length of this chain at λν is m, then there will be

m different singular functions obtained from (4.43) by taking (q = 0, . . . ,m− 1).

The problem of finding the λν for which solutions of the form (4.43) exist is equiva-

lent to finding nontrivial solutions to (4.44), which is in turn equivalent to finding nontrivial

solutions to

Mw = 0, Bw = 0 (4.45)

of the form

wj(r, θ) = rλ+tjφj(θ). (4.46)

See Figure 4.3. Once the λν are found, we can look for any associated functions φ(ν,p,s) that

exist in addition to the eigenfunction φ(ν,p,0). (The index p accounts for the possibility that

several linearly independent eigenfunctions exist with the same eigenvalue).

4.5 A Basis for W(λ)

In this section we present a new constructive technique for finding an analytic basis for

the space W(λ) (defined below) which is linearly independent for all λ. The method is

illustrated for the case of elasticity, but applies equally well to fixing the degeneracies in the

basis functions obtained using the construction in [21] for a general ADN-elliptic system

which is homogeneous of multi-degree.

The first thing we need in order to find nontrivial solutions of the homogeneous

boundary value problem is a basis for the space W(λ) without boundary conditions:

W(λ) = {w ∈ C∞(Ω)N : wj = rλ+tjφj(θ), Mw = 0}. (4.47)

Here we let Ω refer to one of the Ωk and let M denote Mk. One can prove [21] that the

dimension of W(λ) is 2m. Making use of (4.31), we see that any solution w ∈ W(λ) has
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Figure 4.3: Top: Radial and angular dependence of the six components u, v, p, q, γ, τ of
a nontrivial solution of the form wj(r, θ) = rλ+tjφj(θ) (λ = 0.6157) to the incompressible
Lamé equations with Dirichlet boundary conditions on each ray of the region (−π/6 < θ <
7π/6). Bottom: A 3D plot of the variable τ .
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the form wj = rλ+tjφj(θ) with φ ∈ W̃(λ):

W̃(λ) = {φ ∈ C∞(ωk−1, ωk)N : M(θ, ∂θ, λ)φ(θ) = 0}. (4.48)

We wish to find an N × 2m matrix F̃ (λ, θ) such that the columns of F̃ span W̃(λ) and the

columns of F (λ, r, θ) = diag(rλ+tj )F̃ (λ, θ) span W(λ).

Example 13. (Diffusion problem). Making use of the identities

∂x = cos θ∂r − sin θr−1∂θ,

∂y = sin θ∂r + cos θr−1∂θ,
(4.49)

it is readily verified that M(∂x, ∂y)F (λ, r, θ) = 0, where

F (λ, r, θ) =


rλ

rλ−1

rλ−1




cosλθ θ sincλθ

−αλ cos(λ− 1)θ −α sin(λ− 1)θ

αλ sin(λ− 1)θ −α cos(λ− 1)θ

 , (4.50)

M(∂x, ∂y) =


0 ∂x ∂y

∂x α−1 0

∂y 0 α−1

 , sinc z =
sin z
z

. (4.51)

Note that we have scaled the last column of F̃ (λ, θ) so that the columns remains linearly

independent when λ→ 0.

Example 14. (Elasticity). We need to find four linearly independent power solutions

since dimW(λ) = 2m = 4. Recall from Section 3.1 that for analytic φ and ψ, if w =

(u, v, p, q, γ, τ)T is determined by

p+ iq = 2φ′, (4.52)

γ + iτ = z̄φ′′ + ψ′, (4.53)

u+ iv =
1
2
[
κφ− zφ̄′ − ψ̄

]
, (4.54)

thenM(∂x, ∂y)w = 0, withM as in (4.13). Since we want solutions of the form rλ+tjφj(λ, θ),

with (tj) = (0, 0,−1,−1,−1,−1), we try powers zλ for φ and ψ:

column 1: φ = 0, ψ = 2zλ, (4.55)

column 2: φ = 0, ψ = 2izλ, (4.56)

column 3: φ = 2zλ, ψ = 0, (4.57)

column 4: φ = 2izλ, ψ = 0. (4.58)
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This leads to the matrix F̃ (λ, θ) given by



− cos λθ

sin λθ

0

0

2λ cos(λ− 1)θ

2λ sin(λ− 1)θ

sin λθ

cos λθ

0

0

−2λ sin(λ− 1)θ

2λ cos(λ− 1)θ

κ cos λθ − λ cos(λ− 2)θ

κ sin λθ + λ sin(λ− 2)θ

4λ cos(λ− 1)θ

4λ sin(λ− 1)θ

2λ(λ− 1) cos(λ− 3)θ

2λ(λ− 1) sin(λ− 3)θ

−κ sin λθ + λ sin(λ− 2)θ

κ cos λθ + λ cos(λ− 2)θ

−4λ sin(λ− 1)θ

4λ cos(λ− 1)θ

−2λ(λ− 1) sin(λ− 3)θ

2λ(λ− 1) cos(λ− 3)θ


.

(4.59)

Unfortunately, the columns of F̃ become linearly dependent at λ = 0. To remedy this

defect, we use the following (new) procedure:

Algorithm 15. (Change of basis to obtain linear independence at λ = 0)

• Compute F̃0(θ) = F̃ (0, θ).

• Let k = dim ker F̃0, where F̃0 is treated as a linear mapping from C2m → C∞(R).

• Find a basis {wi}2m
1 for C2m such that span{w1, . . . , wk} = ker F̃0.

• Replace F̃ (λ, θ) by

F̃ (λ, θ)
(w1

λ
, . . . ,

wk

λ
,wk+1, . . . , w2m

)
. (4.60)

• Repeat if the columns of F̃ (0, θ) are not linearly independent.

This procedure is guaranteed to terminate because for any fixed θ0 6= 0, the an-

alytic family of N × 2m matrices F̃ (λ, θ0) has full rank except at λ = 0, so choosing any

λ0 6= 0 and multiplying by any 2m×N constant matrix C such that CF̃ (λ0, θ0) is invertible,

we find that detCF̃ (λ, θ0) is an analytic function which is not identically zero. At λ = 0,

it has a root of order p, say, and each time through the loop the order p decreases by the

dimension of the nullspace of F̃ (0, θ). If detCF̃ (0, θ0) 6= 0, then the columns of F̃ must

be linearly independent. Thus the procedure is guaranteed to terminate in no more than p

steps.
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In the current case, we have

F̃0(θ) =



−1 0 κ 0

0 1 0 κ

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, (4.61)

so we use w1 = (κ, 0, 1, 0)T , w2 = (0,−κ, 0, 1)T , w3 = (1, 0, 0, 0)T , and w4 = (0, 1, 0, 0)T .

Replacing F̃ by F̃ · (w3, w4,
w1
λ ,

w2
λ ) is equivalent to using the Muskhelishvili functions

column 1: φ = 0, ψ = 2zλ, (4.62)

column 2: φ = 0, ψ = 2izλ, (4.63)

column 3: φ = 2λ−1zλ, ψ = 2κλ−1zλ, (4.64)

column 4: φ = 2iλ−1zλ, ψ = −2iκλ−1zλ, (4.65)

and we obtain the following matrix F̃ (λ, θ) with linearly independent columns for all λ:
− cos λθ

sin λθ

0

0

2λ cos(λ− 1)θ

2λ sin(λ− 1)θ

sin λθ

cos λθ

0

0

−2λ sin(λ− 1)θ

2λ cos(λ− 1)θ

− cos(λ− 2)θ

2κθ sinc λθ + sin(λ− 2)θ

4 cos(λ− 1)θ

4 sin(λ− 1)θ

2(λ− 1) cos(λ− 3)θ + 2κ cos(λ− 1)θ

2(λ− 1) sin(λ− 3)θ + 2κ sin(λ− 1)θ

−2κθ sinc λθ + sin(λ− 2)θ

cos(λ− 2)θ

−4 sin(λ− 1)θ

4 cos(λ− 1)θ

−2(λ− 1) sin(λ− 3)θ + 2κ sin(λ− 1)θ

2(λ− 1) cos(λ− 3)θ − 2κ cos(λ− 1)θ

 .

(4.66)

In the literature, some variant of the version of F̃ presented in Eqn. (4.59) is always used,

with the case λ = 0 treated as a special case; see [36, 35, 67, 23]. To our knowledge, no one

has ever done anything to fix the problem at λ = 0 in order to obtain a a single analytic

matrix such as (4.66) whose columns span W̃(λ) for all λ.

4.6 The Boundary Condition Matrix A(λ)

When the material parameters change from one region to the next, we denote by Wk(λ)

the space of all solutions to Mkw = 0 of the form

wj(r, θ) = rλ+tjφj(θ). (4.67)

Wk(λ) is spanned by the columns of F k(λ, r, θ) = diag(rλ+tj )F̃ k(λ, θ) obtained in the

examples of the previous section by replacing α by αk in (4.50) and κ by κk in (4.66). The
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power solutions of the interface problem Mkwk = 0 correspond precisely to the functions

wk(r, θ) = F k(λ, r, θ) · ck (4.68)

with ck ∈ C2m. Thus a nontrivial solution to Mkwk = 0, Bw = 0 exists if and only if there

exist vectors ck not all zero such that[
B0

i (θ, ∂θ, λ)F̃ 1(λ, θ)c1
]
θ=ω0

= 0 (i = 1, . . . ,m) (4.69)[
Bk

i (θ, ∂θ, λ)F̃ k+1(λ, θ)ck+1 + B̃k
i (θ, ∂θ, λ)F̃ k(λ, θ)ck

]
θ=ωk

= 0 (i = 1, . . . , 2m) (4.70)[
B̃K

i (θ, ∂θ, λ)F̃K(λ, θ)cK
]
θ=ωK

= 0 (i = 1, . . . ,m). (4.71)

We may organize this system of equations into a 2mK × 2mK matrix equation A(λ)C = 0

by defining the vector C = (c1, . . . , cK)T of length 2mK and, for example with K = 3,

defining the matrix

A(λ) =


B0F̃ 1 0 0

B̃1F̃ 1 B1F̃ 2 0

0 B̃2F̃ 2 B2F̃ 3

0 0 B̃3F̃ 3


← m equations, θ = ω0,

← 2m equations, θ = ω1,

← 2m equations, θ = ω2,

← m equations, θ = ω3.

(4.72)

When ωK = ω0 + 2π and K = 3, A(λ) takes the form

A(λ) =


B0F̃ 1

∣∣
θ=ω0

0 B̃3F̃ 3
∣∣
θ=ω3

B̃1F̃ 1
∣∣
θ=ω1

B1F̃ 2
∣∣
θ=ω1

0

0 B̃2F̃ 2
∣∣
θ=ω2

B2F̃ 3
∣∣
θ=ω2


← 2m equations,

← 2m equations,

← 2m equations.

(4.73)

Note that if qk
i + tj = 0 whenever Bk

ij 6= 0, (i.e. B(a, b) is a constant matrix independent of

a and b), then Bk
ij = Bk

ij . Because we have reduced to the case of first order ADN systems,

all boundary conditions of interest to us have this property.

A nontrivial solution to A(λ)C = 0 exists when λ = λ0 if and only if the charac-

teristic determinant

∆(λ) = detA(λ) (4.74)

has a zero at λ0. Since all entries of A(λ) are holomorphic in λ, ∆(λ) is an entire function

which is not identically zero since the boundary conditions satisfy the covering condition

discussed in Sec. 3.1.
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Example 16. (Diffusion equation with discontinuous coefficients, K = 2) Using (4.12) and

(4.50) in (4.72) we get

A(λ) =


cosλω0 ω0 sincλω0 0 0

− cosλω1 −ω1 sincλω1 cosλω1 ω1 sincλω1

−α1ω1 sincλω1 α1 cosλω1 α2ω1 sincλω1 −α2 cosλω1

0 0 cosλω2 ω2 sincλω2

 , (4.75)

∆(λ) = −1
2
(α1 + α2)(ω2 − ω0) sincλ(ω2 − ω0) +

+
1
2
(α2 − α1)(ω2 − 2ω1 + ω0) sincλ(ω2 − 2ω1 + ω0).

(4.76)

Example 17. (Elasticity on a wedge with various boundary conditions). For wall–wall,

wall–traction, and traction–traction boundary conditions the matrix A(λ) can be computed

symbolically using (4.66), (4.72) and the appropriately modified version of (4.15). Since we

assemble the A(λ) in parts using these equations in practice, it is not particularly useful

to record them here. The determinant of the resulting 4 × 4 matrices can be simplified to

obtain:

wall–wall: ∆(λ) = 4(sin2 ω − κ2ω2 sinc2 λω), (4.77)

wall–traction: ∆(λ) = −4µ2((1 + κ)2 − 4λ2 sin2 ω − 4κ sin2 λω), (4.78)

traction–traction: ∆(λ) = 64µ4λ2(sin2 λω − λ2 sin2 ω), (4.79)

where ω = ω1 − ω0. Note that λ = 0 is a zero of ∆(λ) in the traction–traction case. The

corresponding power solutions correspond to rigid translations.

4.7 Computing the Roots of ∆(λ)

In this section we describe a numerical method for computing the roots of ∆(λ) and finding

the corresponding eigenfunctions φ. The method is based heavily on the method described

in [23], with improvements made in its ability to handle multiple roots, find Keldysh chains,

and to stabilize the resulting basis of singular functions. We also describe how to organize

the algorithm to be well suited for use by a scripting language which calls the routine

multiple times with different geometries and boundary condition types.

For the 4× 4 matrices above, the complexity of computing the determinants and

simplifying the resulting expressions symbolically is low enough that it can be done in a



4.7. COMPUTING THE ROOTS OF ∆(λ) 123

second or two on a desktop computer. For the 8×8 case of a wall–gb–wall junction, it takes

10–15 minutes to compute the determinant symbolically, but the resulting expression is so

complicated that it is completely worthless for finding roots. For the 12×12 case of a triple

grain boundary junction, it is obviously futile to try to find the roots in this way.

A common numerical approach for determining the exponents is to solve the eigen-

value problem

Mk(θ, ∂θ, r∂r)φk(θ) = 0, Bφ = 0 (4.80)

numerically using finite elements, for example. For the diffusion problem (left in the form

of a second order scalar equation), we have Mk(∂x, ∂y) = −αk(∂2
x +∂2

y), soMk(θ, ∂θ, r∂r) =

−αk

[
(r∂r)2 + ∂2

θ

]
and the eigenvalue problem which arises is a Sturm-Liuville problem:

[
λ2 + ∂2

θ

]
φk(θ) = 0, Bφ = 0. (4.81)

For the Lamé system, the resulting eigenproblem is much more complicated; see [50, 60, 4]

for more details.

As a starting point, we prefer to take the approach of Costabel and Dauge [23]

for finding the zeros of ∆(λ), which is to use root finding algorithms for analytic functions

using contour integrals. The basic idea is to make use of the identity∑
zk∈S

g(zk) =
1

2πi

∫
∂S
g(z)

f ′(z)
f(z)

dz (4.82)

with f(z) = ∆(z) and appropriately chosen g(z) to determine the roots zk of f contained

in S. If g(z) = 1, we obtain the number of roots enclosed. If one root is enclosed and we

take g(z) = z, we obtain the root. If the contour contains N roots, we take g(z) = zn with

n ranging from 1 to N to obtain the sums sn =
∑N

i=1 z
n
i . For example, if N = 3, we will

obtain the right hand side of the system of equations

z1 + z2 + z3 = s1

z2
1 + z2

2 + z2
3 = s2

z3
1 + z3

2 + z3
3 = s3.

(4.83)

It is a standard result from algebra [78] that the elementary symmetric functions

σj =
∑

i1<···<ij

zi1 · · · zij , (j = 1, . . . , N) (4.84)
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of the zeros {z1, . . . , zN} are polynomials in the power sums. There is a recurrence relation

between the sj and the σj [26]:

σ0 = 1

(−1)nnσn +
n−1∑
k=0

(−1)kσksn−k = 0, (n = 1, . . . , N).
(4.85)

We define aj = (−1)jσj so that

N∏
j=1

(z − zj) =
N∑

j=0

ajz
N−j . (4.86)

The recurrence (4.85) can then easily be used to determine the coefficients ai of the monic

polynomial whose roots are the zi. The solution to (4.83), for example, are the roots of the

polynomial with coefficients

a0 = 1, a1 = −s1, a2 =
s21 − s2

2
, a3 = −s

3
1 − 3s1s2 + 2s3

6
. (4.87)

In [23], Costabel and Dauge use (4.82) with f(z) = ∆(z), making use of the

identity
f ′(z)
f(z)

= tr(A−1(z)A′(z)) (4.88)

in the integrand. They isolate roots using g(z) = 1, and then find the roots using g(z) = z.

They do not deal with the case of multiple (or nearly multiple) roots.

We have instead used Davies’ method [26] for locating the zeros of an analytic

function, which is obtained from (4.82) using integration by parts:

1
2πi

∫
γ
zn f

′

f
dz = − n

2πi

∫
γ
zn−1 log[f(z)] dz. (incorrect) (4.89)

This formula is incorrect because log[f(z)] is not single valued on γ. The imaginary part of

log[f(z)] increases by 2πN as we traverse the contour since there are N zeros of f(z) inside

γ. The way to get around this problem is to choose any z∗ inside γ, let Zk = zk − z∗, set

h(z) = (z − z∗)−Nf(z) (which does have a single valued logarithm on γ), and define sn for

n ≥ 1 as

sn =
N∑

k=1

Zn
k =

1
2πi

∫
γ
(z − z∗)n f

′(z)
f(z)

dz =
1

2πi

∫
γ
(z − z∗)nh

′(z)
h(z)

dz =

= − n

2πi

∫
γ
(z − z∗)n−1 log[h(z)] dz = − n

2πi

∫
γ
(z − z∗)n−1 log[(z − z∗)−Nf(z)] dz. (4.90)
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The recurrence (4.85) is then used to get the coefficients aj , and we solve for the roots of∏N
j=1(Z − Zj) =

∑N
j=0 ajZ

N−j by finding the eigenvalues Zj of the matrix

−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0


(4.91)

using LAPACK. The original roots zj are obtained using zj = Zj + z∗. Care must be taken

to stay on the same branch of the logarithm as the contour is traversed.

4.7.1 Implementation

In our C++ implementation, we have developed an object-oriented approach for finding

the roots. We define a class called singular which contains the matrices F̃ and A along

with methods for computing their entries for given values of λ, κ, µ and θ, as well as for

computing detA. The routine for computing A is a virtual method which is instantiated in

subclasses (e.g. wall wall, wall traction, traction traction wall gb wall, gb gb gb, weld4, etc.)

which contain information specific to the geometry and boundary conditions, such as the

angles ωk and the matrices Bk
ij . We have a class called grid which contains a pointer to a

singular and a rountine for calling this pointer’s compute det function to fill a uniform grid

of points with values of ∆(λ); grid also contains methods for finding all boxes (4 adjacent

points) which contain a crossing of the zero level sets of the real and imaginary parts of

∆(λ), and for clustering them into groups of adjacent boxes. See Figure 4.4.

Each such cluster is implemented as a class with methods for constructing a con-

tour which surrounds it at a distance of half a grid cell, for computing 10 point gaussian

quadrature weights on each segment of this contour to do the integrations involved in (4.90),

and for finding the roots enclosed. For each root, a data file is written and an external call

of Mathematica is made to repeat the calculation with higher precision using a circular

contour centered at the computed root. In this external call, the trapezoidal quadrature

rule is used, which leads to exponential convergence due to the analyticity of ∆(λ) and the

fact that it is periodic on a circle. It is permissible for the circle to contain several tightly

clustered roots. We have found that the roots computed initially using the line segments

around the cluster are accurate to 12-14 digits for isolated roots, but can be significantly
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Figure 4.4: Contour plots of the zero level sets of the real and imaginary parts of ∆(λ)
along with the contours generated by the clustering algorithm for finding roots. Top: wall–
gb–wall geometry with ω0 = 90◦, ω1 = 173◦, ω2 = 270◦. Bottom: triple grain boundary
junction with ω0 = −174◦, ω1 = −51◦, ω2 = 45◦, ω3 = 186◦. Note that some clusters
contain multiple (or nearly multiple) roots which must be resolved accurately.
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less accurate for multiple roots. A six-fold root has only about 3 digits of precision due to

the extreme sensitivity of such a root on the coefficients of the polynomial. Calling Mathe-

matica allows us to obtain full 16 digit accuracy for all roots and their corresponding power

solutions. The implementation of Costabel and Dauge [23] does not deal with degenerate

cases of multiple roots.

In addition to finding each of the roots λi of ∆(λ) in the desired region of the

complex plane, the program determines the vectors C which span the nullspace of A(λi).

Each such C determines the corresponding vectors ck in equation (4.68), yielding the desired

power solution w of (4.45). If several roots are clustered together, the implementation

stabilizes the power solution basis as described in Section 4.9. This new idea has proved to

be very powerful in our grain growth computations. The information about the new basis

functions is recorded in a file which can be read by the singularity capturing finite element

method described in Chapter 5. For each geometry, the code also creates a contour plot

image of the zero level set of the real and imaginary parts of ∆(λ) and saves it in a file

for later reference (c.f. Fig. 4.4), which is useful in checking that no roots were missed. We

have used the method to compute hundreds of singularity exponents and power solutions

to obtain the results of Chapter 3. It has therefore been essential to have an automated

process for finding the power solutions which can handle multiple types of geometries (wall–

wall, wall–gb–wall, gb–gb–gb, wall–traction, etc.), and which can be called from a scripting

language like Perl for each instance of a corner or grain boundary junction in the geometry.

4.8 Computing Pure and Associated Power Solutions

In this section we present an algorithm for finding Keldysh chains of associated functions

φ(ν,p,q)(θ) at the eigenvalue λν of the generalized eigenproblem

M(λ)φ = 0, Bφ = 0. (4.92)

Such an algorithm was not previously known, so the results of this section are new. The

eigenvalue of interest throughout will be λν , so we drop the index ν from the notation.

We also suppress the index k designating the sector, understanding that φ(p,q)(θ) can have

discontinuities at θ = ωk which are controlled by the boundary operator B. We assume that

B does not depend on λ, which is the case for all physically meaningful boundary conditions

due to the fact that we have reduced to a first order system; for example, in our formulation
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of elasticity, traction boundary conditions may be expressed directly in terms of p, γ and τ

without taking derivatives of u and v at the boundaries.

A good reference for the theory of characteristic and associated functions for

boundary value problems in ordinary differential equations is the book by Naimark [59].

Because we have removed the degeneracy of our basis for W̃(λ) using Algorithm 15, the

columns of F̃ are analytic and everywhere linearly independent. As a result, we may apply

the theory presented in [59] to conclude

Proposition 18. The eigenvalues of (4.92) are the zeros of the function ∆(λ). If λ0 is a

zero of ∆(λ) of multiplicity m, then the multiplicity d of the eigenvalue λ0 (the dimension

of the eigenspace) cannot be greater than m. There exist d integers mi such that

m1 + · · ·+md = m (4.93)

and m functions

φ(p,q)(θ), (p = 1, . . . , d), (q = 0, . . . ,mp − 1) (4.94)

such that

Bφ(p,q) = 0 (4.95)

and

Mφ(p,0) = 0, (4.96)

Mφ(p,1) +
1
1!
∂λMφ(p,0) = 0, (4.97)

. . .

Mφ(p,mp−1) +
1
1!
∂λMφ(p,mp−2) + · · ·+ 1

(mp − 1)!
∂

mp−1
λ Mφ(p,0) = 0, (4.98)

where each derivative of M is evaluated at λ0. The eigenspace is spanned by

φ(1,0)(θ), . . . , φ(d,0)(θ), (4.99)

and each sequence

φ(p,0)(θ), . . . , φ(p,mp−1)(θ) (4.100)

is known as a Keldysh chain associated with the eigenfunction φ(p,0).



4.8. COMPUTING PURE AND ASSOCIATED POWER SOLUTIONS 129

Remark 19. Equations (4.95)–(4.98) are equivalent to requiring that the function ψ(p,q)(λ, θ)

given by

ψ(p,q)(λ, θ) = φ(p,0)(θ) + (λ− λ0)φ(p,1)(θ) + · · ·+ (λ− λ0)qφ(p,q)(θ) (4.101)

with (q = mp − 1) satisfies

M(λ)ψ(p,q)(λ, θ) = O(λ− λ0)q+1, Bψ(p,q)(λ) ≡ 0. (4.102)

The main idea to finding the associated functions is the following. With (4.102)

as a guide indicating the key property of a Keldysh chain, we try to construct a function y

which satisfies the equation exactly and the boundary conditions inexactly, and then read

off the terms in the expansion:

M(λ)y(λ, θ) = 0, By(λ) = O(λ− λ0)mp , (4.103)

y(λ, θ) = φ0(θ) + (λ− λ0)φ1(θ) + (λ− λ0)2φ2(θ) + · · · . (4.104)

The general solution to M(λ)y(λ, θ) = 0 is

y(λ, θ) = F̃ (λ, θ) · a(λ). (4.105)

We set (q = mp − 1) and look for a(λ) of the form

a(λ) = a0 + (λ− λ0)a1 + · · ·+ (λ− λ0)qaq. (4.106)

We wish to find the constant vectors ai such that

By(λ) = A(λ) · a(λ) =

=
[
A(λ0) + (λ− λ0)A′(λ0) +

1
2
(λ− λ0)2A′′(λ0) + · · ·

]
×

×
[
a0 + (λ− λ0)a1 + (λ− λ0)2a2 + · · ·

]
= O(λ− λ0)q+1.

(4.107)

Setting the coefficient of (λ− λ0)s to zero for each term (s = 0, . . . , q), this is equivalent to

requiring that

A(λ0) · a0 = 0, (4.108)

A(λ0) · a1 +A′(λ0) · a0 = 0, (4.109)

· · ·

A(λ0) · aq + · · ·+ 1
q!
Aq(λ0) · a0 = 0. (4.110)
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We now determine the characteristic and associate functions using (4.104) and (4.105)

φ0(θ) = F̃ (λ0, θ) · a0 (4.111)

φ1(θ) = F̃ (λ0, θ) · a1 + (∂λF̃ )(λ0, θ) · a0 (4.112)

· · ·

φq(θ) = F̃ (λ0, θ) · aq + · · ·+ 1
q!

(∂q
λF̃ )(λ0, θ) · a0. (4.113)

Theorem 20. If there exist vectors (a0, . . . , aq) satisfying (4.108)–(4.110), then the func-

tions φ1(θ), . . . , φq(θ) given by (4.111)–(4.113) form a Keldysh chain for (4.92). Conversely,

if a Keldysh chain φ1(θ), . . . , φq(θ) for (4.92) exists, then there are vectors (a0, . . . , aq) sat-

isfying (4.111)–(4.113) such that (4.108)–(4.110) holds.

Proof. Suppose we are given (a0, . . . , aq) satisfying (4.108)–(4.110). Define a(λ), y(λ, θ) and

φs(θ) as above, and let

ψ(λ) = φ0(θ) + · · ·+ (λ− λ0)qφq(θ). (4.114)

Then by construction, we have

Bψ(λ, θ) ≡ 0, M(λ)y(λ, θ) ≡ 0, y(λ, θ)− ψ(λ, θ) = O(λ− λ0)q+1. (4.115)

Therefore

M(λ)ψ(λ, θ) =M(λ) [ψ(λ, θ)− y(λ, θ)] = O(λ− λ0)q+1. (4.116)

By Remark 19, this implies that φ0, . . . , φq is a Keldysh chain.

Conversely, suppose we are given a Keldysh chain φ0, . . . , φq. Define ψ as in (4.114)

and choose an arbitrary θk in the interior of each segments (ωk−1, ωk). Let y(λ, θ) be defined

on each segment as the solution to the initial value problem

M(λ)y(λ, θ) = 0, y(λ, θk) = ψ(λ, θk). (4.117)

Recall thatMy = 0 is a first order system; if it were higher order, derivatives with respect

to θ would also be used in the initial conditions. Standard ODE theory ensures that y(λ, θ)

depends analytically on λ since M and ψ are analytic in λ [20]. Taylor expanding

[M+ (λ− λ0)∂λM+ · · · ][y + (λ− λ0)∂λy + · · · ] = 0 (4.118)
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and setting the coefficient of each (λ − λ0)s to zero, we conclude that on segment k, the

functions
1
s!
∂sy

∂λs
(λ0, θ), φs(θ), (s = 0, . . . , q) (4.119)

satisfy the same ODE due to Equations (4.96)–(4.98). Differentiating (4.117) with respect

to λ, we see that they also satisfy the same initial condition at θk. Therefore they are equal,

which means ψ(λ, θ) is equal to the sum of the first q + 1 terms in the Taylor expansion

of y(λ, θ). Since the columns of F̃ (λ, θ) are a basis for the solution to M(λ)φ(θ) = 0

and y(λ, θ) is analytic in λ and satisfies this equation for all λ, there is an analytic vector

function a(λ) such that

y(λ, θ) = F̃ (λ, θ) · a(λ). (4.120)

Taylor expanding and recalling that the first q + 1 terms in the expansion for y(λ, θ) are

the φs, we get the relations (4.111)–(4.113). Since the φs satisfy the boundary conditions,

this implies that the ai satisfy (4.108)–(4.110), as required.

In Figure 4.5, we present an algorithm based on this theorem for finding all Keldysh

chains at λ0. The idea is to start with the kernel of A and build chains of subspaces of

vectors ai which satisfy (4.108)–(4.110). We extract the chains of length zero first, followed

by those of length one, and so on.

Example 22. (T-shaped triple grain boundary junction). In Figure 4.6, we show a contour

plot of the zero level sets of the real and imaginary parts of ∆(λ) for a T-shaped triple

grain boundary junction. We use Equation (4.73) on page 121 to compute A(λ), using the

boundary condition matrices described in Example 11 on page 111 and F̃ (λ, θ) given in

Equation (4.66) on page 120. At λ = 0, we see by counting contours that ∆(λ) has a zero

of order 6. If we compute the kernel of A(0), however, we find that it has dimension 3. This

means there must be associated functions present. Applying Algorithm 21, we set p = 3

and

V 0
0 =


1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0


T

. (4.121)

The columns of V corresponds physically to the following three self-similar solutions with

exponent (λ = 0): region 1 moves rigidly left while the other two remain fixed (i.e. negative

separation occurs along the vertical grain boundary); all regions move rigidly left; all regions
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Algorithm 21. (Keldysh chains)

Keldysh chains(n× n matrix A(λ), complex λ0)

Returns a stack of all tuples of Keldysh chain vectors (a0, . . . , aq) for A(λ) at λ0.

In what follows, A means A(λ0), A′ means A′(λ0), etc.

p = dim kerA

V 0
0 = n× p matrix, columns form basis for kerA.

q = 0

while p > 0

q = q + 1

Wq = A′V q−1
q−1 + · · ·+ 1

q!A
(q)V 0

q−1. (Wq is n× p)
r = dim [colspan(Wq) ∩ range(A)]

if r > 0

C = any p× r matrix such that WqC = colspan(Wq) ∩ range(A)

V q
q = any n× r matrix such that AV q

q +WqC = {0}
for i = 0, . . . , q − 1

V i
q = V i

q−1C

if r < p

E = any full rank p× (p− r) matrix such that the columns of E and C

are linearly independent. Thus colspan(WqE) ∩ range(A) = {0}.
foreach column v of E

chains.push back
(
(V 0

q−1v, . . . , V
q−1
q−1 v)

)
.

p = p− 1

(note p = r at this point)

return chains

Figure 4.5: Algorithm for finding all Keldysh chains at λ0.
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Figure 4.6: Top: Contour plot of the zero level sets of the real and imaginary parts of ∆(λ)
for a T-shaped triple grain boundary junction with angles ω0 = −90◦, ω1 = 90◦, ω2 = 180◦,
ω3 = 270◦ and elastic constant κ = 1.6. There is a zero of order 6 at λ = 0, a simple zero
at λ = 0.6298473, a zero of order 4 at λ = 1, and a zero of order 3 at λ = 2. At λ = 0,
the kernel of A(λ) has dimension 3 and there are 3 linearly independent Keldysh chains of
length two. At λ = 1 and λ = 2, the dimension of the kernel is respectively 4 and 3, so there
are no associated functions at these values of λ. Bottom: When the geometry is perturbed,
(ω1 → 80◦ here), the root at λ = 0 remains unchanged (including Keldysh chain structure),
the root at λ = 1 splits into a simple root at λ ≈ 1 and a threefold root at λ = 1, and the
root at λ = 2 splits into three simple roots, one equal to 2 and the others complex. This
example illustrates many of the complicated possibilities that can occur.
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move rigidly up. The reason they move left rather than right is due to the sign of the first

column of F̃ (λ = 0, θ) in Equation (4.66) on page 120. We compute W1 = A′V 0
0 and find

that colspanW1 = range(A), so r = 3. We take C = I3×3 and obtain

V 1
1 =


0 0 −1

κ+1 0 0 −π(κ−1)
2(κ+1) 0 0 0 π(κ−1)

2(κ+1) 0 0

0 0 −1
κ+1 0 0 0 −1

κ+1 0 0 2π(κ−1)
κ+1

−1
κ+1 0

0 0 0 1
κ+1 0 0 0 1

κ+1 0 0 0 1
κ+1


T

, (4.122)

V 0
1 = V 0

0 C = V 0
0 . (4.123)

Since r = p, there are no characteristic functions which aren’t tied in with an associated

function, so no chains are added to the stack on this iteration. The second time through

the loop, we get W2 ∩ range(A) = {0}, so r = 0. This means there are no chains of length

greater than two, so we move to the case (r < p), take E = I3×3, and add the three chains

(a0, a1), (b0, b1), (c0, c1) to the stack, where

a0 =
(

1 0 0 0 0 0 0 0 0 0 0 0
)T

b0 =
(

1 0 0 0 1 0 0 0 1 0 0 0
)T

c0 =
(

0 1 0 0 0 1 0 0 0 1 0 0
)T

a1 =
(

0 0 −1
κ+1 0 0 −π(κ−1)

2(κ+1) 0 0 0 π(κ−1)
2(κ+1) 0 0

)T
b1 =

(
0 0 −1

κ+1 0 0 0 −1
κ+1 0 0 2π(κ−1)

κ+1
−1
κ+1 0

)T
c1 =

(
0 0 0 1

κ+1 0 0 0 1
κ+1 0 0 0 1

κ+1

)T
.

(4.124)

Since p = 0, there are no more chains left to be found, so the stack of Keldysh chains is

returned to the calling program. Recalling that the wk
j refers to the jth component of the

solution w on the kth region, the corresponding six self-similar power solutions obtained

from Equation (4.43) on page 116 are given by:

{
w1 = (−1, 0, . . . )T , w2 = (0, 0, . . . )T , w3 = (0, 0, . . . )T

}
(4.125)

{
w1 = (−1, 0, . . . )T , w2 = (−1, 0, . . . )T , w3 = (−1, 0, . . . )T

}
(4.126){

w1 = (0, 1, . . . )T , w2 = (0, 1, . . . )T , w3 = (0, 1, . . . )T
}

(4.127)
w1 =

(
cos 2θ − (κ+ 1) ln r

κ+ 1
,
sin 2θ − (κ− 1)θ

κ+ 1
, . . .

)T

−w2 = w3 =
(

0,
π(κ− 1)
2(κ+ 1)

, . . .

)T

 (4.128)
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w1 = w2 =

(
cos 2θ − (κ+ 1) ln r

κ+ 1
,
sin 2θ − (κ− 1)θ

κ+ 1
, . . .

)T

w3 =
(

cos 2θ − (κ+ 1) ln r
κ+ 1

,
(2π − θ)(κ− 1) + sin 2θ

κ+ 1
, . . .

)T

 (4.129)

{
w1 = w2 = w3 =

(
−sin 2θ + (κ− 1)θ

κ+ 1
,
cos 2θ + (κ+ 1) ln r

κ+ 1
, . . .

)T
}

(4.130)

We have checked that each of these solutions satisfies the boundary conditions and the

Lamé equations, as expected.

4.9 Stabilizing the Self-Similar Basis Functions

As we saw in the T-shaped grain boundary junction example of Figure 4.6, the roots of the

characteristic equation ∆(λ) = 0 can be very close to one another without being a multiple

root. When this happens, the basis functions obtained in their natural power solution form

can be nearly linearly dependent, which means that unnecessarily large coefficients can

appear in the asymptotic expansions. The most unusual situation that we have encountered

corresponds to the checkerboard welding problem where two materials with different µ and

κ occupy the first and third quadrants and the second and fourth quadrants, respectively.

In Figure 4.7, we show contour plots of the zero level sets of the real and imaginary parts of

∆(λ) when µ1 = 1, µ2 = 10, κ1 = 1, κ2 = 2.4. Thus an incompressible material is welded

to a stiffer but compressible material. There are four distinct roots clustered together near

λ = 2.8± .96i, and if something special isn’t done, the functions wν given by

wν
j (r, θ) = rλν+tjφν

j (θ) (ν = 1, . . . , 4) (j = 1, . . . , 6) (4.131)

which span the power solution basis near the top cluster, for example, will be practically

linearly dependent, and useless in a finite element code.

Suppose that the points λν , (ν = 1, . . . , νmax) are zeros of ∆(λ) that are clustered

together. Suppose for simplicity that the dimension nν of kerA(λν) is equal to the order of

the zero of ∆(λ) at λ0, i.e. there are no nontrivial Keldysh chains to deal with. (Generally,

the Keldysh chains arise in the limit when the roots become exactly equal to each other, so

this assumption is very reasonable in practice). For each λν , we have nν vectors

a(ν,p) =


a(ν,p,1)

· · ·
a(ν,p,K)

 ,
a(ν,p,k) ∈ C2m

p = 1, . . . , nν

(m from ADN theory)

(K = number of regions)
(4.132)
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Figure 4.7: Contour plot of the zero level sets of the real and imaginary parts of ∆(λ) for
a checkerboard pattern of two materials with Lamé coefficients µ1 = 1, µ2 = 10, κ1 = 1,
κ2 = 2.4. Note the four nearly identical roots near λ = 2.8± .96i.

such that the nν nontrivial power solutions to the boundary value problem M(∂x, ∂y)w = 0,

Bw = 0 are given by

w(ν,p,k)(r, θ) = F k(λν , r, θ) · a(ν,p,k). (4.133)

Here the index k specifies the restriction of w(ν,p) to region Ωk. Because the λν are clustered

together and the basis matrices F k(λ, r, θ) depend analytically on λ, the F k(λν , r, θ) will

not change very much as the index ν changes. Indeed this is what we mean when we say

the points are clustered together. Since the F k(λ, r, θ) do not become rank deficient for any

value of λ (due to Algorithm 15), near linear dependency of the w(ν,p) must be a consequence

of near linear dependency of the a(ν,p).

Working in C2mK , we do a QR factorization of the (n = n1 + · · ·+ nνmax) vectors

a(ν,p), finding orthogonal vectors q(ν,p) and an n × n upper triangular matrix R such that,

after assigning an arbitrary order to the (ν, p), we have

a(νj ,pj) =
n∑

i=1

q(νi,pi)Rij . (4.134)

Since the columns of q(νj ,pj) =
∑

i a
(νi,pi)(R−1)ij are orthonormal in C2mK , we use R−1 to
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stabilize the power solution basis to obtain a new basis

v(νj ,pj ,k)(r, θ) =
n∑

i=1

F k(λνi , r, θ) · a(νi,pi,k)(R−1)ij . (4.135)

We then use the v(ν,p)(r, θ) in the applications.

Obviously this won’t work if n > 2mK, but we have never encountered a situation

for which this was a concern. For example, the welding problem of Figure 4.7 has 2mK = 16

with n = 4 at each cluster.

As a typical example from the simulations of Chapter 3, consider the case of a

triple grain boundary junction with κ = 1.6, ω0 = −90◦, ω1 = 80◦, ω2 = 180◦, ω3 = 270◦

(see the bottom plot of Figure 4.6). There are two roots very close together with

λ1 = 1.0, λ2 = 0.993965370442. (4.136)

We compute an orthonormal basis a(1,1), a(1,2), a(1,3) for the nullspace of A(λ1), and a unit

vector a(2,1) which spans the nullspace of A(λ2). The QR factorization yields an R equal to
1 0 0 0.942397312276

0 1 0 −0.1115950807344

0 0 1 0.312809607674

0 0 0 −0.0397994110277

 , (4.137)

and the small diagonal entry shows that the basis was indeed poorly conditioned. Inverting

R and applying it as in (4.135), we obtain

v(1,p)(r, θ) = w(1,p)(r, θ), (p = 1, 2, 3)

v(2,1,k)(r, θ) = F k(λ1, r, θ) · xk
1 + F k(λ2, r, θ) · xk

2

(4.138)

x1
1

x2
1

x3
1

 =



0.00000000000

−14.01115636607

0.00000000000

−8.75697272879

0.00000000000

11.55282653062

0.00000000000

7.22051658164

0.00000000000

11.11218024269

0.00000000000

6.94511265168



x1
2

x2
2

x3
2

 =



−0.1325049098813

14.26550909261

0.0465944534498

8.35000836633

−0.382710667398

−11.31651187973

0.1809796983307

−7.59862002305

−0.374395709498

−10.87465303354

0.1757946545638

−7.32515618632



. (4.139)
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Note that xk
1 and xk

2 are behaving as something of a finite difference operator on the two

matrices F k(λ1), F k(λ2). As we take the angle ω1 to 90◦, it is reasonable to expect that

this procedure will capture any logarithm terms that might arise in a Keldysh chain at the

critical angle when λ1 and λ2 coalesce. This is because F k(λ, r, θ) has the form

diag(rλ+tj )F̃ k(λ, θ), (4.140)

so appropriate differencing can lead to derivatives of rλ+tj with respect to λ, giving loga-

rithm terms. In this particular case, the limiting angle has A(λ = 1) with a four dimensional

kernel, so no Keldysh chains arise and hence no logarithm terms will appear. But in general,

this is how our stabilization procedure at a nearly critical angle will give nearly the same

basis as the Keldysh chain procedure at exactly the critical angle.



139

Chapter 5

XFOSLS

In this chapter we describe our implementation of the First Order System Least

Squares Finite Element method (known as FOSLS [15]) for the Lamé equations, which

has been extended to include self-similar basis functions near corners and interface junc-

tions to capture asymptotic behavior. We will refer to the method as XFOSLS, borrowing

terminology from the developers of XFEM [25]. We defer rigorous convergence and error

analysis studies to later work, and focus here on the design of efficient algorithms and

data structures to handle the considerable complexity of interface boundary conditions and

overlapping singular basis functions.

Each extra basis function is a linear combination of self-similar power solutions.

In the most typical case it consists of a single function with components of the form

wj(r, θ) = rλ+tjφj(θ), but Keldysh chains with logarithm terms and stabilized linear combi-

nations of nearly linearly dependent power solutions with clustered exponents are also used

when needed; see Chapter 4. We generically refer to the extra basis functions as “singular

functions” even though they often represent non-singular stress fields such as rigid body

motions, or correspond to exponents with real part greater than one.

Each singular function has a near region where it is a solution to the PDE, a fringe

region where it transitions to zero, and a far region where it is zero. Singular functions

corresponding to exponents with smaller real parts are given larger supports to give the

singularity room to die out and become well approximated by the standard quadratic basis

functions. The beauty of the least squares finite element framework over the Galerkin

framework for adjoining singular functions is that because they satisfy the PDE in the

near and far regions, only the fringe region is relevant for computing the inner products.



140 CHAPTER 5. XFOSLS

Therefore inner products only need to be computed in regions where the functions are

well-behaved, and numerical integration schemes like Gaussian quadrature work well. By

contrast, to adjoin singular functions in variational finite elements, special methods must

be used to get the integrations right, and it would be difficult to compute inner products

between overlapping singular functions.

We refer back to Section 1.6 for background information about the Least Squares

Finite Element Method and our motivation for developing XFOSLS. Some of the major

strengths of the method are as follows:

• The stress and displacement variables may both be modeled in nice continuous spaces

without having to satisfy an inf-sup condition. This is a huge advantage in the grain

growth problem of Chapter 3 since the stress and displacement variables are coupled

together in an evolution equation.

• The condition number of the linear system is O(h−2) even for problems like the bi-

harmonic equation where the Galerkin method is O(h−4).

• XFOSLS can be used in many practical cases that FOSLS cannot due to the fact that

singularities can destroy H2 regularity even when the data is smooth. XFOSLS only

requires that the regular part of the solution satisfy an H2 regularity condition.

• There is an a-posteriori measure of the error J which indicates where the finite element

space is having difficulty resolving the solution.

• Very complicated interface boundary conditions can be implemented.

• It is easier to augment the space with singular functions than in the Galerkin setting.

• Singularities are captured explicitly, and the accuracy of the solution does not degrade

near corners and triple junctions.

• Stable combinations of self-similar functions are used to avoid ill-conditioned linear

systems as a result of adjoining extra basis functions.

• The operator K from chapter 3 could not have been computed effectively without

many of these properties.
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In Section 5.1, we describe an object-oriented approach to representing corner

singularities, which allows us to handle the case of a stabilized cluster almost as easily as

a pure power solution, and allows the same code to be used for different elliptic systems

with only the form of the basis matrix F (λ, r, θ) changing from one case to the next. In

Section 5.2 we show how to find the fringe region efficiently, and describe the way in which

the singular functions transition to zero across the fringe region. In Sections 5.3 and 5.4

we show how to implement complicated boundary conditions using affine subspaces. In

Section 5.5, we describe the minimization problem that we wish to solve numerically. In

Section 5.6, we show how to effectively handle overlapping basis functions when setting

up the corresponding linear system of equations. In Section 5.7, we compare the solution

obtained using XFOSLS to the Galerkin solution near a corner, and also solve the elastic

equations in the incompressible limit on a complicated geometry with re-entrant corners to

show the effectiveness of the method outside of the electromigration problem.

5.1 Data Structures for Extending the Finite Element Space

Suppose we are given a geometry consisting of several polygonal domains Ωk which are

bounded by a collection of segments Γi of wall or interface type. We number each corner in

the geometry arbitrarily, using the term corner from now on to include the case of a junction

between several regions Ωk. We choose a mesh parameter h and divide each Γi into equally

sized subsegments of length less than or equal to h. Each region Ωk is triangulated separately

using freely available software [71], with offsets added to the node numbers so that the first

node of the (k + 1)st region follows the last node of the kth region. The edge and element

connectivity information is offset accordingly. This means that each region has its own copy

of the nodes along an interface, which facilitates the possibility of jump discontinuities in

some of the variables. See Figure 5.1. A node is added at the midpoint of each edge of the

mesh, and we distinguish between vertex and edge nodes. Edge nodes are also duplicated

across interfaces.

Each corner is analyzed by the methods of Chapter 4, and for each stabilized

singular function that we wish to incorporate into the finite element basis, we add an entry

to a vector singularities of objects of type singularity. Each singularity contains a vector

lambda[term] and a triply-indexed complex vector weights[term][region][column]. Here term

is indexing power solutions in a stabilized cluster and runs from 0 to num terms−1, region
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Figure 5.1: Each grain is triangulated separately, leading to an unstructured mesh with
duplicate nodes along grain boundaries. This particular mesh corresponds to a mesh pa-
rameter h = 0.033 for an interconnect line of unit height and length two.

is indexing the Ωk which touch the corner, and column contains the coefficients to use on

the columns of F region(λterm , r, θ) and runs from 0 to 3 = 2m − 1, (m from ADN theory).

When λ is a complex eigenvalue of the boundary value problem (4.44), it is easy to show

that λ̄ is also an eigenvalue, and that the span of the basis functions obtained from λ

and λ̄ is the same as the span of the real and imaginary parts of the basis functions for

λ alone. Therefore when a singularity with complex entries is added to singularities, it is

added twice – once with the field imaginary equal to 0, and once with the field equal to

1. The class singularity has a member function compute which takes a location and an

index (0 ≤ j < N) (specifying, in the case of elasticity, u, v, p, q, γ, or τ), and returns

the value of the jth component of the stabilized cluster of power solutions at the point.

This function must determine which region the point is in so that it can apply the correct

collection of weights to the correct F region(λterm , r, θ) for each term in the cluster. For this

purpose, singularity also contains a vector angles which contains the ωk of the incident

grain boundary segments.

The class singularity described above is implemented as a base class from which

classes such as elast sing or poisson sing are derived. These subclasses implement only an
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auxiliary function compute2 called by compute, where they substitute the appropriate form

of F for the PDE they correspond to.

5.2 The Fringe Region

Each singularity is assigned a parameter fringe radius which describes the size of its support

in units of h. Starting at the corner node of each region Ωk touching the corner, we use the

following algorithm to obtain all nodes and triangles within the desired support radius:

Algorithm 23. (Finding the fringe region)

Tag the corner node and put it on the stack.

while the stack is non-empty

pop node from the stack, mark it as “near”

tag all untagged nodes and triangles adjacent to this node

add newly tagged nodes that lie within the desired radius to the stack

mark newly tagged triangles with “near” or “fringe”

untag everything that was tagged, record the information

A triangle is marked “fringe” if it has a node within the radius and a node outside of it;

see Figure 5.2. Only vertex nodes are used in this algorithm. Edge nodes are “near” if

both endpoints are “near”. For each “near” node and each “near” and “fringe” triangle,

we add ordered pairs (sing idx, node num), (sing idx, tri num) to the associative containers

(i.e. dynamic sets) sing and node, sing and tri near, sing and tri fringe which can later be

unwrapped in lex-order to record the singularity indices which influence a given node or

triangle.

Our heuristic for choosing fringe radius is that basis functions with (0 < Reλ < 1)

should be given a large radius (e.g. 7), and basis functions with (Reλ > 1) should be given

a small radius (e.g. 2). Here λ is the value of lambda[term] with the smallest real part. The

idea is that strong singularities should be given room to die out and become well approx-

imated by the standard quadratic basis functions while non-singular self-similar solutions

are prevented from becoming too linearly dependent on the quadratic basis functions. Self-

similar solutions such as rigid body translations (λ = 0) or rigid rotations (λ = 1) are not

adjoined since these motions can already be captured exactly by the quadratic elements.

For grain boundary triple junctions, we pin the standard basis functions to be equal to each
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Figure 5.2: The fringe region of a regular hexagonal mesh corresponding to fringe radius=3.
Nodes within a radius of 3h inclusive are “near” nodes. Triangles with some near nodes
and some far nodes are “fringe” triangles. If several singularities exist at the corner, each
may have a different fringe radius.

other at the triple junction, and adjoin the self-similar basis function with λ = 0 which

corresponds to stress free separation. This separation is only defined up to the addition

of a rigid translation to all the grains, so we choose the unique separation which pins the

grain of lowest index. The standard quadratic basis functions at the triple point node then

govern where the pinned grain moves to, and the others retain their positions relative to

this one. This will be discussed in more detail in Section 5.4

As mentioned above, each node and triangle keeps track of the indices of the vector

singularities that correspond to basis functions which affect that node or triangle. On a

given triangle, the components wj of the solution can be decomposed into three parts. The

first part wq
j is quadratic, the second ws

j is a sum of function values of singularities for which

the triangle is “near”, and the third wt
j is a sum of nearly quadratic transition functions

which transition to zero the singularities for which that triangle is in the “fringe”. Let T

be a “fringe” triangle to singularity s, and for the sake of explanation, suppose that s is

the only singularity for which T is a “fringe” triangle. We write sj(x) to denote the value

returned by s.compute(x,j). If T has only one vertex p “near” s, then wt
j(x) is the quadratic
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function which agrees with sj(x) at p and is zero at the other 5 nodes of the triangle. If T

has two vertices “near” s, wt
j(x) is a sum of two pieces. The first piece qj(x) is the quadratic

function which agrees with sj(x) at the three “near” nodes and is zero at the other three.

The second piece ej(x) is equal to sj(x) − qj(x) along the “near” edge of the triangle, is

zero at the “far” vertex of the triangle, and varies linearly along rays joining points on

the “near” edge to the “far” vertex. We assume (by our heuristic choice of fringe radius)

that the “near” edge is far enough from the corner at which s is centered that sj(x) varies

smoothly enough along the “near” edge that ej(x) is small, so we throw away this term

when computing the stiffness and mass matrices. In effect, we are using quadratic functions

for the fringe transition.

5.3 An Affine Subspace

As mentioned earlier, each grain is triangulated separately, with double and triple nodes

along grain boundaries and at triple junctions. We let each of these nodes carry vars per node

degrees of freedom (e.g. u, v, p, q, γ, τ), and let each element of the vector singularities

carry a single degree of freedom. Edge nodes do not have to carry the same number of

degrees of freedom as vertex nodes. If we wish to use quadratic displacements and linear

stress variables on each element, we let vars per node be 6 for vertex nodes and 2 for edge

nodes. This is easily done with an object oriented approach. This defines a linear space V

which we refer to as the space of “physical variables”. The variables have discontinuities

across interfaces when the double and triple nodes have different values for their variables.

To enforce boundary conditions or other constraints on the variables, we construct

a space X = Rn of “free variables” and a space G = Rd of “data”, and define a linear

mapping

φ : X ×G→ V (5.1)

which gives the corresponding physical state. For fixed g ∈ G,

φg(x) := φ(x, g) (5.2)

is an affine mapping onto an affine subspace of V .

To implement this idea in our code, we set up a vector eqn of integers and a

vector alpha of double precision real numbers, and assign to each node an array of integers
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idx[0..vars per node] such that the value of the solution wj at the node is given by

val[j] =
idx[j+1]−1∑

k=idx[j]

alpha[k] ∗soln[eqn[k]]+
jmp idx[j+1]−1∑

k=jmp idx[j]

jmp alpha[k] ∗data[jmp eqn[k]] . (5.3)

Here soln is a vector in X, data is a vector in G, and we are essentially using packed row

format to store the linear mapping φ(x, g).

To get the singularity basis functions to fit with this data strategy, we take the

convention that the first num sing entries of soln refer to the singular basis functions.

When we are setting up the values of eqn and alpha for a given node, we run through the

next batch of ordered pairs (sing idx, node num) of the associative container sing and node

which have the current node’s index in the second slot. This gives a list sing this node

of singularity indices which have the node as a “near” node, and also gives the indices of

soln which correspond to the singularity basis functions. We now go through each of the

vars per node variables and fill the jth variable’s range of eqn and alpha as follows. First,

we set idx[j] to the length of eqn (= length of alpha). For each sing this node, we add the

index of the singularity (call it s) to eqn (increasing the size of eqn by one), and add the

value of s.compute(node location, j) to alpha (increasing the size of alpha by one). If the

node is an interior node with no boundary conditions specified, we increase the size of the

vector soln by one and add its index to eqn and 1.0 to alpha. If the node is affected by

boundary conditions, we parse the boundary condition string (see below) for this node to

determine how many free and jump (i.e. data) variables the jth component depends on,

what their indices in soln and jmp soln are, and what the corresponding weights alpha and

jmp alpha are. The appropriate number of entries are added to eqn, jmp eqn, alpha and

jmp alpha, at which point the node’s value of idx[j+1] is set to the length of eqn.

In this way, the nodes can obtain their values which correspond to any soln and

data using (5.3) without calling the compute method of any singularity objects. If we wish

to zoom in on a region of the solution and look at points in the interior of the triangles

as in Fig. 5.6 on page 157, then we have to decompose the solution on the triangle into

its regular part (a quadratic function), singular part (a sum of results from compute from

singularity objects for which the triangle is “near”), and transition part (a quadratic func-

tion obtained from singularity objects for which the triangle is a “fringe” triangle). This

requires additional book-keeping which we omit here.
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5.4 Boundary Conditions

As we explained in Chapter 4, the self-similar basis functions satisfy homogeneous boundary

conditions on each boundary (or interface) segment which is incident to the corner (or

junction). Thus as long as the fringe regions transition these functions to zero before

they meet any other boundary segments, the self-similar basis functions are invisible to

the boundary conditions. Because the solution near a corner or junction decomposes into

the sum of a regular part and a singular part, and because the singular part satisfies

homogeneous boundary conditions, we may treat the regular (quadratic) variables in our

finite element space as if no singularities were present when deriving relationships between

the variables at corners and junctions for the purpose of imposing boundary conditions.

As mentioned in the previous section, each boundary node is assigned a boundary

condition string which carries information about the free and jump variables which affect

it. In our implementation, each string is generated when the mesh is generated (using Perl)

and is stored in a boundary condition file which the C++ code reads as part of the problem

specification. The boundary condition file is set up to be moderately human readable,

consisting of fields such as shown in Figure 5.3. The first line in this example indicates that

the node is an edge node (as opposed to a vertex node) connecting vertex nodes numbered

2726 and 2727; it also tells us that the node lies on the grain boundary and that this segment

runs from corner 24 to corner 27 in Figure 3.25 on page 93. The header of the previous

entry in the file looks like

vertex 2726 G 24 27

which illustrates the vertex node case. The next 12 lines give the dependence of each of

the six physical variables u, v, p, q, γ, τ on the free and jump variables. The first line, for

example, tells us that u depends on the two free variables numbered 1649 and 1651 with

weights (−.316) and (−.949), which get appended to eqn and alpha after the singularity

information is included.

Example 24. (Wall) Let the grain lie to the left of a boundary segment oriented along

t = (cos θ, sin θ). In addition to u = v = 0 at the node, we impose compatibility conditions

on p, q, γ, τ obtained from ux uy

vx vy

 ·
cos θ

sin θ

 = 0 (5.4)
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edge 2726 2727 G 24 27

2 1649 -0.31622776601683805 1651 -0.94868329805051377

2 1649 0.94868329805051377 1651 -0.31622776601683805

1 1655 0.5

1 1653 1.0

2 1655 0.39999999999999997 1654 -0.6000000000000002

2 1655 -0.3000000000000001 1654 -0.79999999999999993

0

0

1 243 0.5

0

1 243 -0.39999999999999997

1 243 0.3000000000000001

Figure 5.3: Typical entry in the boundary condition file.

and

ux =
κ− 1

4
p− 1

2
γ,

uy =
κ− 1

4
p+

1
2
γ,

vx = −κ+ 1
4

q +
1
2
τ,

vy =
κ+ 1

4
q +

1
2
τ,

(5.5)

which give γ
τ

 =

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

 ·
κ−1

2 p

κ+1
2 q

 . (5.6)

Thus we set up two free variables corresponding to p and q and no jump variables. The

purpose of the compatibility conditions is to improve the condition number of the system

when self-similar functions with Reλ > 1 are added.

Example 25. (Grain Boundary) We have one jump variable corresponding to σ⊥ and seven

free variables corresponding to u‖, u
−
⊥, u+

⊥, q−, q+, σs, and σ‖. The physical variables are
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obtained from the free and jump variables via

u± = cos θ u‖ − sin θ u±⊥, (5.7)

v± = sin θ u‖ + cos θ u±⊥, (5.8)

p =
1
2
σ‖ +

1
2
σ⊥, (5.9)

q± = q±, (5.10)

γ = −1
2

cos 2θ σ‖ + sin 2θσs +
1
2

cos 2θ σ⊥, (5.11)

τ =
1
2

sin 2θ σ‖ + cos 2θσs −
1
2

sin 2θ σ⊥. (5.12)

see Figure 5.3 above for an example of a boundary condition file entry for this case. The

entry shown corresponds to a node on the positive side. The coincident node on the negative

side is the same except that 1651 and 1653 are replaced by 1650 and 1652, respectively.

Example 26. (Wall–Wall) At a corner where two walls meet, all variables are zero, so

there are no equations or jumps. This would be too restrictive if we weren’t using singular

functions to capture the asymptotics near the corner.

Example 27. (Wall–GB–Wall) Let the geometry of the wall–GB–wall junction be given as

in Fig. 5.4. As in Example 24, along the wall we haveγ
τ

 =

 cos 2θ1 − sin 2θ1

− sin 2θ1 − cos 2θ1

 ·
 κ−1

2 p

κ+1
2 q±

 . (5.13)

Since γ, τ and p are continuous across the grain boundary, and since we are working with the

regular part of the solution, γ, τ and p are treated as continuous variables at the junction.

From (5.13), this implies that q+ = q− at the junction. Along the grain boundary, we have

p+ γ cos 2θ2 − τ sin 2θ2 = σ⊥. (5.14)

θ1

θ = θ2 − θ1Wall

GB

−

+

θ2

Figure 5.4: Geometry of a junction where a grain boundary meets a wall.
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Combining these, we get that

p = −
κ+1

2 sin 2θ
1 + κ−1

2 cos 2θ
q +

1
1 + κ−1

2 cos 2θ
σ⊥ = −aq + bσ⊥. (5.15)

Thus we have one equation and one jump: q is free, σ⊥ is data, and the physical variables

are determined by

u = v = 0, (5.16)

p = aq + bσ⊥, (5.17)

q = q, (5.18)

γ =
(
a
κ− 1

2
cos 2θ − κ+ 1

2
sin 2θ

)
q + b

κ− 1
2

cos 2θ σ⊥, (5.19)

τ =
(
−aκ− 1

2
sin 2θ − κ+ 1

2
cos 2θ

)
q − bκ− 1

2
sin 2θ σ⊥. (5.20)

Example 28. (Triple grain boundary junction) As discussed in Section 5.2, we glue the

three nodes at the triple point together as far as the regular basis functions are concerned,

and model the separation separately using a self-similar function with (λ = 0). Since we

are given σ⊥ along the three incident grain boundary segments, and because they are all

equal to each other at the triple point (by chemical potential continuity), the stress tensor

must be of the form ηδij at the triple point. To see this, let η be the limiting value of σ⊥

along each grain boundary, and note that along grain boundary i, we have

p+ γ cos 2θi − τ sin 2θi = η. (5.21)

Thus p, γ and τ satisfy 
1 cos 2θ1 − sin 2θ1

1 cos 2θ2 − sin 2θ2

1 cos 2θ3 − sin 2θ3



p

γ

τ

 =


η

η

η

 . (5.22)

The determinant of the matrix on the left is 4 sin(θ3 − θ2) sin(θ2 − θ1) sin(θ1 − θ3) and

(p = η, γ = τ = 0) is a solution, so unless two of the grain boundaries are colinear, the

stress tensor equals ηδij . In the exceptional case of a colinear grain boundary structure

like the T-shaped junction studied in Section 4.9 on page 135, the stress variables will have

another degree of freedom. We capture this one with a self-similar solution with λ = 1 to

avoid special cases in the boundary condition setup procedure. As we saw in Section 4.9,
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the behavior in the nearly colinear case is quite interesting. As the angle approaches 180◦, a

root of ∆(λ) comes in and “kisses” the root at λ = 1 (of multiplicity 3) creating a nullspace

of dimension 4 instead of 3. It then turns around and decreases again as the angle passes

through 180◦. Since we capture this behavior in a stable way (see Sec. 4.9), there is nothing

“discontinuous” happening in our finite element space at the critical angle.

We therefore have five free variables (u, v, q0, q1, q2) and one jump (p) at a triple

grain boundary junction, and the 18 physical variables are determined via

u0 = u1 = u2 = u, (5.23)

v0 = v1 = v2 = v, (5.24)

q1, q2, q3 are free, (5.25)

p0 = p1 = p2 = p, (5.26)

γ0 = γ1 = γ2 = 0, (5.27)

τ0 = τ1 = τ2 = 0. (5.28)

5.5 A Minimization Problem

In the First Order System Least Squares method for the problem Lw = f , we seek the

minimizer of the residual

J =
1
2

N∑
1

‖Liw − fi‖22 =
1
2
a(w,w)−

N∑
1

(Liw, fi)2 +
1
2

N∑
1

(fi, fi)2 (5.29)

over all functions in our affine subspace, where a(w1, w2) =
∑N

1 (Liw
1, Liw

2)2 [15]. Redun-

dant differential relationships between the variables which follow from the other equations

are also included in L. As we saw in Section 3.1.1, the Lamé system is equivalent to the

equations

ux − vy = −γ,

uy + vx = τ,
(5.30)

vx − uy =
κ+ 1

2
q,

vy + ux =
κ− 1

2
p,

(5.31)
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and one of the two sets of equations

γx − τy = px + µ−1F1,

γy + τx = −py − µ−1F2,
(5.32)

or

px − qy = − 2µ−1

κ+ 1
F1,

py + qx = − 2µ−1

κ+ 1
F2.

(5.33)

Either set (5.32) or (5.33) can be derived from the other and equations (5.30), (5.31).

However, using both of them in the sum (5.29) can dramatically improve the condition

number of the stiffness matrix as a result of placing tight control on the derivatives of the

stress variables rather than relying on (5.30) and (5.31) to control the stresses. The resulting

L and f look like

Lw =



∂x −∂y 0 0 1 0

∂y ∂x 0 0 0 −1

−∂y ∂x 0 −κ+1
2 0 0

∂x ∂y −κ−1
2 0 0 0

0 0 ∂x −∂y 0 0

0 0 ∂y ∂x 0 0

0 0 ∂x 0 −∂x ∂y

0 0 ∂y 0 ∂y ∂x





u

v

p

q

γ

τ


=



0

0

0

0

−2µ−1

κ+1 F1

−2µ−1

κ+1 F2

−µ−1F1

−µ−1F2


= f. (5.34)

Note that because we have imposed more equations than are appropriate for an ADN system

with 6 variables, the right hand side must satisfy constraints in order for a solution to exist.

We are interested in the case that F = 0, so this will not cause difficulties. This particular

choice of L has not been used before, and has the advantage of being uniformly well behaved

in the parameter κ even in the incompressible limit κ→ 1. See also [16].

5.6 Constructing the Stiffness and Jump Matrices

The following theorem is a straightforward generalization of a standard result in the finite

element literature [10]:

Theorem 29. Let V be a linear space, a : V × V → R a symmetric, bilinear, non-negative

definite form, V0 a subspace on which a
∣∣
V0×V0

is positive definite, and Vg = g+V0 for some
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fixed g ∈ V . Then for any linear functional l,

J(v) =
1
2
a(v, v)− 〈l, v〉 (5.35)

is minimized over Vg at u if and only if

a(u, v) = 〈l, v〉 (all v ∈ V0). (5.36)

There is at most one such solution.

Applying this theorem in the case that l = 0, we obtain for any u ∈ Vg that[
a(v, u) = 0 ∀v ∈ V0

]
⇔

[
u minimizes J(v) =

1
2
a(v, v) over Vg

]
. (5.37)

In our case, referring to φg from Eqn. (5.2) and J from Eqn. (5.29), we wish to minimize

J(w) over w ∈ range(φg). We transfer this problem over to our free variables by seeking

the function x ∈ Rn which minimizes

J(x) =
1
2
a
(
φg(x), φg(x)

)
. (5.38)

Equation (5.37) implies that x satisfies

a
(
φ0(y), φg(x)

)
= 0, (all y ∈ Rn), (5.39)

which is equivalent to

a
(
φ0(y), φ0(x)

)
= −a

(
φ0(y), φg(0)

)
, (all y ∈ Rn). (5.40)

Defining

Aij = a
(
φ0(ei), φ0(ej)

)
, Bij = a

(
φ0(ei), φej (0)

)
, (5.41)

this is true for all y ∈ Rn if and only if

Ax = −Bg. (5.42)

A is known as the stiffness matrix, and we call B the jump matrix.

In the usual way, we compute A and B element by element. This can be done

since a(·, ·) is an integral over the domain, and decomposes into a sum over triangles

a(w1, w2) =
∑
T∈T

aT (w1
∣∣
T
, w2

∣∣
T
), aT (w1, w2) =

N∑
i=1

∫
T
(Liw

1)(Liw
2) dA. (5.43)
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On a given triangle, φg(x) is a sum of quadratic terms and self-similar functions which satisfy

the PDE exactly. As a result, the self-similar functions are invisible to a(·, ·) except on the

fringe, where they are transitioned to zero quadratically. Let K be the number of quadratic

degrees of freedom on the triangle. If all 6 variables are modeled quadratically, K = 36.

If the stress variables are modeled linearly while displacements are modeled quadratically,

K = 24. We construct the K ×K matrix E on triangle T given by

Eij = a(εi, εj), (5.44)

where εi is identically zero for all variables but one, and for that variable is quadratic (or

possibly linear if K = 24), is equal to 1 at one node, and is equal to zero at the others.

This is done using standard gaussian quadrature methods to compute the integrals of (5.43)

exactly, making use of Level 3 BLAS routines to make the computation fast.

The contribution to the stiffness matrix due to triangle T is obtained from E

through

STES, (5.45)

where S is a K × n sparse matrix such that Sx gives the values at the nodes of triangle T

corresponding to the free variables x, subject to the condition that if xi corresponds to a

singularity object, (i.e. i <num sing), then the contribution is only taken into account if the

triangle is a “fringe” triangle for that singularity. Since each node carries all the necessary

information for a row of S, we run through each node’s eqn and alpha variables and do a

sparse row to sparse column conversion employing the same trick we used before to record

“near” and “fringe” attributes. The trick is to set up an associative container (a map in this

case) which takes ordered pairs (row, column) to alpha values, and then to unwrap them

in lex order so that the rows come out one column at a time. The condition of whether

or not the singularity object contains the triangle as a fringe triangle can be checked very

rapidly since the triangle has the singularities for which it is a fringe recorded in increasing

order. Once S is stored in sparse column layout, (only non-empty columns are recorded, of

course), it is a simple matter to compute the matrix product STES efficiently. The result

is added to the sparse matrix A after the entire sparse matrix STES has been computed.

A similar procedure is used to compute the contribution of triangle T to B.

Once the matrix A is set up, we factor it using a variant of the min-degree heuristic

known as sym amd to re-order the columns, and use our sparse Cholesky solver as described

in Section 3.4.5.
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5.7 Results

The primary numerical results were shown in Chapter 3. In Figure 3.25 on page 93, we

showed a plot of the number of degrees of freedom that affect the variables at each node.

In that computation, 101 extra basis functions near corners and junctions were used to

capture asymptotic behavior, with many overlapping fringe regions. See also Figures 3.19,

3.29, 3.30, and 3.31 on pages 81, 97, 98, and 99, in which steady state displacement and stress

distributions for the grain boundary diffusion problem were shown for various geometries.

In Figures 5.5, 5.6, and 5.7, we compare the steady state solution to the grain

growth problem near a corner using XFOSLS (top) and standard Galerkin C0 quadratic

finite elements (bottom). It was necessary to refine the grid near the corner significantly in

the Galerkin method, and even after doing so the solution near the corner lacks sufficient

smoothness to be used effectively in the computation of K in Chapter 3. When viewed on

a large scale, the solutions appear to agree perfectly, but when we zoom in on one of the

corners, we find that the stress components obtained using the Galerkin method have very

large discontinuities near the corner, and exhibit a large discrepancy between the specified

traction (Lagrange multiplier) and the stress obtained from the displacements via the Lamé

relations. In contrast, using a much coarser mesh, XFOSLS easily resolves the singularity

smoothly.

In Figure 5.8, in order to show that XFOSLS works well uniformly in κ, we show

the solution to the incompressible Lamé equations (i.e. the Stokes equations) on a hexagonal

donut-shaped geometry with re-entrant corners. The inner hexagon remains fixed while the

outer hexagon has boundary conditions corresponding to rotation clockwise by a radian.

The fields “rotg” and “rott” are obtained from γ and τ via rott = γ sin 2θ + τ cos 2θ and

rotg = γ cos 2θ − τ sin 2θ, where θ is the polar coordinate with origin at the center of the

geometry. Note that adjoining singular solutions spreads the error J evenly throughout the

domain.
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Figure 5.5: Comparison of γ for the steady state solution to the grain growth problem near a
corner using XFOSLS (top) and standard Galerkin finite elements (bottom). The roughness
of the contours in the top plot is an artifact of visualization, where linear interpolation is
being used to compute contour lines on the four sub-triangles joining the six nodes of each
trianglular element; see also Figure 5.6.
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Figure 5.6: A contour plot showing the behavior of the solution γ from Figure 5.5 near a
grain boundary junction with a wall. Points were uniformly sampled within the triangles
of the mesh shown.
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Figure 5.7: The solution obtained via the Galerkin method with a much finer grid still
exhibits undesirable behavior near the corner, where the stress obtained via Lagrange mul-
tipliers differs significantly from the stress obtained by differentiating the displacements.
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Figure 5.8: The solution of the Lamé equations with κ = 1 on a hexagonal geometry.
Here the inner hexagon remains fixed while the outer hexagon has boundary conditions
corresponding to rotation clockwise by a radian.
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Chapter 6

Conclusion

The grain boundary diffusion problem turned out to be a very interesting mathe-

matical problem because of the interplay between stiffness, non-locality, non-selfadjointness,

singular behavior, and correspondence with physical phenomena. It was impossible to

blindly apply a numerical method without first understanding a great deal about the asymp-

totic behavior of the stress variables near corners and junctions, and carefully thinking

through the way the desired boundary conditions should influence the evolution of the

grain boundary separation. (We learned this the hard way). On the other hand, it was not

until we successfully implemented the numerical method that we learned that the operator

B was self-adjoint and thought of a proof that K had a real, non-negative spectrum with a

set of eigenfunctions spanning a dense subspace of L2(Γ). Much of our theoretical knowl-

edge was obtained through struggling with the rather unforgiving numerical challenges of

the problem.

Placing the grain boundary diffusion problem back into the larger model with void

and vacancy evolution, it would be interesting to study the behavior of the solution in the

vicinity of a junction where a void meets a grain boundary. Here again, questions of appro-

priate boundary conditions arise, thermodynamic arguments are murky, and singularities

in the stress tensor and electric field together with the stiffness inherent in grain bound-

ary diffusion and curvature driven surface diffusion make the problem difficult to attack

theoretically and numerically.
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