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Abstract

We develop a method for computing three-dimensional gravity-driven water waves, which we
use to search for time-periodic standing wave solutions. We simulate an inviscid, irrotational,
incompressible fluid bounded below by a flat wall, and above by an evolving free surface. The
computations make use of spectral derivatives on the surface, but also require computing a velocity
potential in the bulk, which we carry out using a finite element method with fourth-order elements
that are curved to match the free surface. This computationally expensive step is solved using a
parallel multigrid algorithm, which is discussed in detail. Time-periodic solutions are searched for
using a previously developed overdetermined shooting method. Several families of large-amplitude
three-dimensional standing waves are found in both shallow and deep regimes, and their physical
characteristics are examined and compared to previously known two-dimensional solutions.
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1. Introduction

Gravity-driven water waves have been studied for well over a century and have a rich mathemat-
ical structure arising from their nonlinearity. Effects such as resonances [1, 2] can have important
consequences in ocean engineering, and may be exploited in the design of maritime structures [3].
One method of investigating the properties of water waves has been to search for special solutions of
the free-surface Euler equations for an inviscid, incompressible fluid such as traveling and standing
waves. One of the earliest examples of this is due to Stokes, who in 1880 postulated that the traveling
wave of maximum height has a crest with an internal angle of 120◦. This was later investigated
numerically [4, 5], and proved analytically [6]. The self-similar asymptotics of the almost-highest
traveling wave has also been investigated [7, 8, 9].

A similar proposition was given for standing waves by Penney and Price in 1952 [10]. By
considering several terms in a perturbation expansion, they proposed that the largest amplitude
standing wave would form a sharp crest with an internal angle of 90◦. This prediction was in
reasonable agreement with experiments carried out by Taylor [11]. However, subsequent analytical
and numerical studies have reached a variety of different conclusions concerning the precise form of
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the geometric singularity the limiting extreme wave should possess [12, 13, 14, 15, 16, 17, 18, 19].
Recently, Wilkening [20] has shown that at higher resolutions, the self-similar sharpening of the
crest eventually breaks down, and several families of time-periodic solutions can be found featuring
small-scale oscillations near the crest. This casts doubt on the assumption that a limiting wave
profile exists at all, much less one with 90◦ crests.

All of the aforementioned studies consider two-dimensional (2D) fluids with one-dimensional
surfaces, and it is natural to ask how these results may generalize to three dimensions. However,
the investigation of three-dimensional standing waves has been comparatively limited. Verma and
Keller [21] and Bridges [22] carried out calculations of small-amplitude waves using perturbation
expansions. They were able to examine bifurcations in the families of solutions, and to determine
how the periods of standing waves vary as a function of amplitude. More recently Bryant and
Stiassnie [23] and Zhu et al. [24] have investigated questions of three-dimensional wave stability
and evolution while Engsig-Karup et al. [25] have developed a large-scale parallel code for solving
the nonlinear evolution of free-surface waves using a finite difference framework. None of these
works attempt a computation of large-amplitude three-dimensional standing waves.

Searching for three-dimensional standing water waves offers a number of technical challenges.
Some methods used to search for two-dimensional standing waves, such as conformal mapping
methods [26, 27, 28, 29, 30], do not have a generalization to three dimensions. Furthermore,
calculating three-dimensional standing waves requires significantly more computational resources.
Simulating the wave itself requires one more dimension, and the number of degrees of freedom
parameterizing the configuration space over which to search is also larger.

In this paper, we take advantage of improvements in computational power and new algorithms to
calculate time-periodic, three-dimensional gravity-driven waves in an incompressible, inviscid fluid.
To search for time-periodic solutions, we make use of a recently developed methodology where the
problem is framed as an overdetermined nonlinear system and a minimization technique is employed
to search a configuration space for solutions that are progressively closer to being time-periodic.
This approach has been used to find time-periodic solutions of the Benjamin–Ono equation [31, 32],
the vortex sheet with surface tension [33], and two-dimensional standing water waves [34]. Different
minimization methods have been employed, such as an adjoint-based BFGS approach [35], but
here we make use of a variant of the trust-region based Levenberg–Marquardt minimization. This
technique requires computing an entire Jacobian: at a given wave configuration, it is necessary to
determine how the time-periodicity will change in each direction of the configuration space. While
this is expensive to calculate, the minimization requires far fewer iterations than the BFGS approach,
and is more amenable to parallelization. Newton–Krylov methods [36, 37] would be an interesting
alternative to explore; however, these methods generally work better in externally driven, dissipative
systems [38, 39, 40] in which viscosity damps high-frequency oscillations as the solution evolves.

Computation of irrotational water waves requires time-integrating the height of the free surface
and a velocity potential on the surface. However, at each step, it is also necessary to solve the
Laplace equation in the three-dimensional bulk of the fluid. We have developed a fourth-order finite
element discretization of the fluid domain for this purpose, where the order is measured with respect
to the H1 Sobolev norm. The use of finite elements is not typical, and for two-dimensional studies,
boundary integral methods are more common. However in three dimensions, an argument can be
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made that a finite element discretization is more suitable, since it requires solving an O(N3) sparse
linear system, as opposed to an O(N2) dense linear system for a boundary integral approach (where
N is a typical number of grid points in one dimension). This difference in complexity is more
favorable in two dimensions, where the comparison would be between an O(N2) sparse system and
an O(N) dense system. Naturally, fast algorithms can be used to reduce the computational cost of
the boundary integral approach, but the prefactors are currently very large in three-dimensional
implementations of these algorithms [41].

Solving the finite element problem is the most computationally intensive part of our fluid solver.
To carry this out, we have developed a parallel geometric multigrid algorithm, which is presented
in detail below. The multigrid algorithm can also compute solutions for several right-hand sides
concurrently, and due to memory bandwidth considerations, this can be carried out in a fraction of
the time required to compute each solution sequentially. This feature is exploited in the computation
of the Jacobian needed in the Levenberg–Marquardt minimization.

In this paper, we present several families of time-periodic solutions that we have found using
this methodology. We examine waves in two depth regimes, one relatively shallow (with fluid depth
equal to 1/12 the wavelength) and one relatively deep (with fluid depth equal to 1/2 the wavelength).
The distinction boils down to whether tanhkh is close to 1, where k is the wave number and h is the
depth. Given the difficulties of computation, whereby calculating a single time-periodic solution
can take several days using sixteen threads, the numerical results we present are of relatively low
resolution when compared to two-dimensional studies, and we exploit a large amount of symmetry
in order to reduce the dimension of the configuration space that must be searched. Since little is
known about three-dimensional standing waves, our main aim in this paper is to examine their
physical characteristics and compare them to two-dimensional solutions, paying particular attention
to ways in which there may be significant differences. In three dimensions, we are also able to
ask fundamentally new questions about wave morphology that would not be applicable in two
dimensions. Our results cover only a very small part of the possible range of three-dimensional
time-periodic solutions that may exist, but serve to highlight some interesting questions for further
study.

2. Methods

2.1. Governing equations
We make use of an (x,y,z) coordinate system that is periodic in the horizontal x and y directions,

and where gravity g points in the negative z direction. We employ non-dimensionalized units, where
g = 1 and the horizontal coordinates cover the range [0,2π). The fluid is bounded below by a flat
base at z = 0, and has a free surface given by z = η(x,y, t). The fluid is inviscid, irrotational, and
incompressible, and its velocity can therefore be given as v = ∇φ for a potential function φ(x,y,z, t).
The height of the free surface satisfies the partial differential equation

ηt = ∂nφ
√

1+η2
x +η2

y = φz−ηxφx−ηyφy (1)

where the subscripts refer to derivatives, and ∂n refers to a derivative normal to the surface. We also
make use of the function

ϕ(x,y, t) = φ(x,y,η(x,y, t), t), (2)
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which is the restriction of the velocity potential to the free surface. Based on the unsteady Bernoulli
equation, and the equation ϕt = φt +φzηt , the velocity potential can be shown to satisfy

ϕt = P
[

φzηt−
|∇φ |2

2
−gη

]
(3)

where P is the projection operator to zero mean and g = 1, as mentioned above. While including
P is not standard in the water waves literature, it is a natural means of pinning down the arbitrary
additive constant in the velocity potential, which must be done when comparing the initial and final
states of the system to measure deviation from time-periodicity.

Since the fluid is incompressible and ∇ · v = 0, the bulk velocity potential must satisfy the
three-dimensional Laplace equation ∇2φ = 0. By solving the Laplace equation in the bulk, with
Dirichlet conditions given by Eq. 2 and the Neumann condition

φz(x,y,0, t) = 0, (4)

the bulk velocity potential can be uniquely determined in terms of ϕ . To track the time-evolution
of the free surface, it is therefore sufficient to track η(x,y, t) and ϕ(x,y, t), and integrate them
according to Eqs. 1 and 3. However, at each stage, it is necessary to determine the bulk velocity
potential in order to be able to evaluate the partial derivatives of φ that feature in these equations.

2.2. Spatial discretization
The fields η and ϕ are discretized on a square M×M grid with spacing h = 2π

M . To evaluate
the terms in these equations, the spectral derivatives ηx, ηy, ϕx and ϕy are calculated with the fast
Fourier transform (FFT) using the FFTW3 library [42]. To evaluate the normal derivative of the bulk
velocity potential, we make use of a fourth-order finite element discretization [43, 44], employing
a rectangular grid of M×M× (N +1) nodes, which is scaled in the vertical direction to conform
with the free surface. Specifically, the (i, j,k) node is located at (hi,h j,η(hi,h j)k/N), for i and j in
the range 0, . . . ,M−1 and k in the range 0, . . . ,N.

The grid is then divided into 4×4×4 patches as shown in Fig. 1. At each node, a finite element
basis function can be defined in terms of Lagrange interpolants on each of the patches that includes
that node; details of this are discussed below. This leads to a set of basis functions ψ1, . . . ,ψn at
all of the interior nodes where k < N, and a further set of basis functions ψ̃1, . . . , ψ̃m on all surface
nodes where k = N. The solution can be represented as

φ =
n

∑
i=1

φiψi +
m

∑
i=1

φ̃iψ̃i (5)

where φ̃i are coefficients that are known from the current state of ϕ , and φi are unknown coefficients.
The finite element formulation of the Laplace equation for the potential can then be expressed as

n

∑
i=1

φi

∫∫∫
V

∇ψi ·∇ψ j d3x =−
m

∑
i=1

φ̃i

∫∫∫
V

∇ψ̃i ·∇ψ j d3x (6)
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Figure 1: Illustration of the finite element formulation, in which the bulk of the fluid is divided into 4×4×4 patches
that are scaled according to the height of the fluid z = η(x,y, t). To compute the finite element matrix, a reference space
U = [0,4]3 is introduced, and a map f from U to one of these patches is considered.

where the integration domain V refers to the entire fluid volume. To calculate the integrals in Eq. 6,
a reference space U = [0,4]3 is introduced, with coordinates (α,β ,γ). In this space, the Lagrange
interpolants L0,L1,L2,L3,L4 can be defined as quartic polynomials that satisfy Li(i) = 1, L j(i) = 0
for i = 0, . . . ,4, and j = 0, . . . ,4 with j 6= i. A map f from the reference space into the 4×4×4
patch in the real space f (U) can then be defined as

f (α,β ,γ) = (x,y,z) =
(

h(nx +α),h(ny +β ), η(α,β )
N (nz + γ)

)
.

Here, η(α,β ) is the height of the surface, given by

η(α,β ) =
4

∑
i=0

4

∑
j=0

ηi jLi(α)L j(β )

where ηi j are coefficients that are given from the position of the top surface. The integers nx, ny, and
nz are multiples of four and determine which patch is being considered. To construct the stiffness
matrix, we consider two basis functions on the reference space

T1(α,β ,γ) = La(α)Lb(β )Lc(γ),
T2(α,β ,γ) = Ld(α)Le(β )L f (γ),

along with ψ1 = T1 ◦ f−1 and ψ2 = T2 ◦ f−1. The corresponding contribution to the finite element
matrix is then

A12 =
∫

f (U)
∇xψ1(x) ·∇xψ2(x)d3x

=
∫

U
(D−1∇αT1(α)) · (D−1∇αT2(α))(detD)d3α, (7)
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where the gradients are treated as column vectors and D is the (transpose of the) Jacobian matrix,
given by

D =


∂x
∂α

∂y
∂α

∂ z
∂α

∂x
∂β

∂y
∂β

∂ z
∂β

∂x
∂γ

∂y
∂γ

∂ z
∂γ

=

 h 0 nz+γ
N ∑i j ηi jL′i(α)L j(β )

0 h nz+γ
N ∑i j ηi jLi(α)L′j(β )

0 0 η(α,β )/N

 .

The finite element matrix depends on the the height of the surface and has to be recomputed each
time the surface moves. As described in more detail in Appendix B, many of the terms that feature
in Eq. 7 can be simplified by storing pre-computed tables of integrals of the Li basis functions and
their derivatives. However, one term requires the use of two-dimensional integration by Gaussian
quadrature.

For nodes on patch boundaries, the corresponding finite element basis function has a part in
each adjoining patch. The number of neighbors to which a node is connected therefore varies from
5×5×5 (if it is in a patch interior) to 9×9×9 (if it is at a patch corner). The finite element problem
is solved using a multigrid method described in more detail in the following section. However, once
this is accomplished, a further step is required to extract a fourth-order accurate value for ∂nφ , with
errors on derivatives measured in L2. For an arbitrary test function v, assumed periodic in x and y,
applying Green’s first identity gives∫∫∫

V
∇φ ·∇vd3x =

∫∫
S

v
∂φ
∂n

dS =
∫ 2π

x=0

∫ 2π

y=0
v

∂φ
∂n

√
1+η2

x +η2
y dxdy. (8)

Here we used periodicity in x and y and the Neumann boundary condition of Eq. 4 to eliminate
the other boundary terms. Rather than use this formula to compute ∂nφ , it is more convenient to
compute the quantity

G (η)[ϕ] =
√

1+η2
x +η2

y ∂nφ ,
(
ϕ as in Eq. 2

)
(9)

since the additional factor is already present in Eq. 1. G is known as the Dirichlet–Neumann
operator, and is readily shown to be self-adjoint [45]. If the solution in the bulk is represented as in
Eq. 5 and the required quantity on the surface is

G [ϕ] =
m

∑
i=1

ζiψ̃i|S,

Eq. 8 can be written as the linear system
n

∑
i=1

φiAi j +
m

∑
i=1

φ̃iÃi j =
m

∑
i=1

ζiB̃i j (10)

where
Ai j =

∫∫∫
V

∇ψi ·∇ψ̃ j d3x, Ãi j =
∫∫∫

V
∇ψ̃i ·∇ψ̃ j d3x

and

B̃i j =
∫ 2π

x=0

∫ 2π

y=0

(
ψ̃i|S

)(
ψ̃ j|S

)
dxdy.
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Eq. 10 is a two-dimensional linear system for ζi, which can also be solved using the same multigrid
algorithm described in the following section, by setting the vertical grid size to be one. Compared
to the bulk finite element problem, the computation time required to solve this problem is small.

2.3. Multigrid algorithm
2.3.1. Mathematical formulation

In the calculations, solving the finite element problem in the bulk is the most computationally
expensive step. Therefore, we have written a parallel geometric multigrid algorithm in C++ using
the OpenMPI library that can take advantage of the problem’s structure. The finite element problems
introduced in the previous section are equivalent to solving a linear system A0x0 = b0, where A0 is a
sparse matrix, b0 is a source term, and x0 is the unknown quantity.

In the algorithm, the computational grid is labeled as the zeroth grid, and a hierarchy of
progressively coarser grids labeled from 1 to G are introduced. The hierarchy follows standard
procedures [46], where at each coarser level, the odd-numbered grid points are removed, so that
grid g has dimensions 2−gM×2−gM× (2−gN +1). The interpolation operator Tg from grid g to
grid g−1 is implemented using trilinear interpolation; the interpolation is with respect to the logical
grid structure, and does not take into account the curved, physical placement of the nodes. The
corresponding restriction operator can then be defined as the matrix transpose, so that Rg = T T

g+1.
If the linear operator describing the finite element problem on the computational grid is denoted

as A0, then the coarsened versions Ag can be recursively defined on the grid hierarchy by making
use of

Ag+1 = RgAgTg+1. (11)

Once these matrices are determined, they can be used to define smoothing operators Sg on each level
that improve the solution via a Gauss–Seidel sweep. The restriction, interpolation, and smoothing
operators can then be employed to carry out a standard V-cycle [46], discussed in more detail in
Sec. 2.3.4.

2.3.2. Parallel decomposition of the top level problem
The multigrid algorithm is carried out in parallel by dividing the computational domain of grid

points into a rectangular grid of 2P vertical columns, so that a given thread will be responsible for
the nodes satisfying ilo ≤ i < ihi, jlo ≤ j < jhi. Each point is uniquely assigned to one thread and
there are no overlaps at the boundaries, and thus ihi for one thread is equal to ilo for the neighboring
thread in the positive x direction. Typically, in the grids considered here, the number of grid points in
the horizontal directions are larger than in the vertical direction, and thus it was found unnecessary
to also decompose the domain in the vertical direction. During the multigrid algorithm, each thread
is responsible for storing the parts of the solution within its vertical column of grid points, as well as
the corresponding rows of the sparse matrix A0. Each thread is assigned a unique index (discussed in
more detail in the following section), and has a table of the eight threads that are either orthogonally
and diagonally adjacent.

For the finite element problem considered, in the row of A0 corresponding to a given grid point
(i, j,k) there will be non-zero entries in columns corresponding to a rectangular box of nearby
grid points (i′, j′,k′) that satisfy the constraints i− ≤ i′ ≤ i+, j− ≤ j′ ≤ j+, and k− ≤ k′ ≤ k+.
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Figure 2: Typical multigrid hierarchy when using sixteen threads. On the finest grid 0, the domain is divided into a
4×4 grid, which is assigned to the threads via a binary numbering scheme as described in the text. At each coarser
level, the number of threads involved is halved, and the domains are amalgamated between the remaining threads.

For each grid point, the code therefore stores the indices i±, j±, and k±, plus an array of length
(i+ − i− + 1)( j+ − j− + 1)(k+ − k− + 1) of the corresponding matrix entries. Each thread is
responsible for computing the matrix entries using the tables and quadrature calculations that are
described above, which requires knowledge of η in the local patch of grid points corresponding to
that thread’s column.

Grid points near the boundary of a particular column will have matrix entries corresponding to
grid points in neighboring columns, and the solution values x0 at these points will be required in
order to carry out a smoothing operation. Because of this, memory is allocated for ghost regions of
appropriate dimensions in which to store the values of x0 from neighboring threads. A smoothing
operation can then be carried out as a two step process:

1. Communicate with the eight orthogonally and diagonally adjacent threads to populate the
ghost regions with the current solution x0.

2. Carry out a Gauss–Seidel sweep at all grid points in the column.

This smoothing operation is a hybrid between the Gauss–Seidel and Jacobi methods. While the
values of x0 within a thread’s column are updated in situ, the values of x0 at the ghost grid points
that a thread uses remain fixed throughout step 2. For comparison, a variation on this method
was considered in which a Jacobi iteration was employed by each thread in step 2, in which case
the overall update is equivalent to a Jacobi iteration. However, the hybrid approach gave faster
convergence, although with the largest residuals typically occurring at column boundaries.

2.3.3. Implementation of the multigrid hierarchy
In certain parallel architectures (e.g. a cluster of multi-core processors), it is faster to commu-

nicate between threads with similar indices, and thus the assignment of the different columns in
the multigrid algorithm is done in a way to maximize the proportion of communication between
threads in appropriate consecutive ranges. To do this, a thread’s index is viewed as a binary number,
and the odd-numbered bits are used to create the x position of the column, while the even-numbered
bits are used to create the y position of the column. Thus, if a thread has a binary representation
given by f edcba, its x position is eca and its y position is f db. An example thread decomposition
on sixteen threads into a 4×4 grid is shown in Fig. 2.

Within the multigrid algorithm, as the grid is coarsened, the number of grid points that are
owned by a single thread will rapidly decrease, making the column decomposition less efficient, as
proportionally more time will be spent communicating solution values with neighboring threads.
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Because of this issue, the multigrid algorithm employs a strategy of halving the number of threads
used to compute each coarser level, by amalgamating pairs of neighboring domains together.
Specifically, for the computations on grid g, the threads with indices that are multiples of 2g are
employed. To restrict from grid g to grid g+1, a thread with index of the form 2g(2k+1) passes its
domain to 2g(2k). Because of the binary thread numbering system used, the thread amalgamation
will happen alternately in the x and y directions. A typical thread decomposition for the multigrid
hierarchy with sixteen threads is shown in Fig. 2.

On each of the coarser levels, the threads involved employ exactly the same procedures for
representing the linear system and carrying out the smoothing operation as discussed in the previous
section. While the majority of communication in the algorithm comes from the amalgamation of
grids from neighboring threads when moving between levels, it is also necessary to carry out small
communications within a level to complete some operations. To carry out the interpolation operation,
threads require an edge strip from their neighbors in order to be able compute the interpolated
values at their local domain boundaries.

To initially set up the linear system, the following recursive procedure is carried out to compute
the system at level g+1 using the information at level g:

1. Threads at level g communicate the bound information (i±, j±,k±) in edge strips to their
neighbors. Using this, and their own bound information, they calculate the bound information
at level g+1.

2. Threads at level g with indices of the form 2g(2k+1) communicate their calculated bound
information to those with the form 2g(2k).

3. Threads at level g+1 use the bound information to calculate the precise amount of memory
required for their representation of the linear system at level g+1, and allocate it.

4. Threads at level g communicate edge strips of the linear system to their neighbors. Using this,
and their own information they calculate the linear system at level g+1.

5. Threads at level g with indices of the form 2g(2k+ 1) communicate the calculated linear
system to those with the form 2g(2k).

For the current problem, where the finite element coefficients change as the surface moves, but the
bound information remains constant, a quicker set-up method can be carried out by only employing
steps 4 and 5.

2.3.4. Testing and configuration of the multigrid algorithm
The multigrid code was tested on the fourth-order curved finite element problem described

previously, as well as a simpler fourth-order finite element problem using rectangular patches.
Within the V-cycle, ndown pre-smoothing Gauss–Seidel operations are applied on the way down the
grid hierarchy, and nup post-smoothing Gauss–Seidel operations are applied on the way up. On the
coarsest grid level, the problem was smoothed by making use of twenty Gauss–Seidel operations;
changing this number of smoothing operations did not affect the computed residuals, suggesting
that this was adequate in solving the coarse problem, without the need to carry out a direct solve
using dense linear algebra.

To find optimal choices of ndown and nup, a test problem for Ω(x,y,z) was considered where
0≤ z≤ 2π , and x and y are 2π-periodic. The function satisfied ∇2Ω = 0 subject to the boundary

9



nup = 1 nup = 2 nup = 3 nup = 4 nup = 5 nup = 6
ndown = 0 19.58 24.73 26.43 28.77 28.63 25.66
ndown = 1 24.66 27.00 28.61 28.38 25.45 23.04
ndown = 2 27.17 28.71 28.36 25.40 23.04 21.25
ndown = 3 28.82 28.38 25.33 23.03 21.22 19.79
ndown = 4 28.38 25.39 23.05 21.26 19.80 18.65
ndown = 5 25.31 23.03 21.24 19.84 18.65 17.60

Table 1: Convergence rates for a test problem using a 64× 64× 33 grid using eight threads on a dual Intel Xeon
E5-2650L system. For each choice of nup and ndown in the V-cycle, the convergence rate measured in terms of digits of
accuracy obtained per wall-clock second is reported. Each measurement is based on the average of sixteen trials.

nup = 1 nup = 2 nup = 3 nup = 4 nup = 5 nup = 6
ndown = 0 0.802 1.005 1.101 1.159 1.150 1.016
ndown = 1 1.002 1.097 1.158 1.147 1.026 0.916
ndown = 2 1.097 1.159 1.145 1.026 0.928 0.843
ndown = 3 1.163 1.146 1.027 0.929 0.855 0.786
ndown = 4 1.147 1.025 0.929 0.857 0.798 0.739
ndown = 5 1.022 0.928 0.856 0.798 0.748 0.692

Table 2: Convergence rates for the multigrid test problem using a 256×256×65 grid using 32 threads on a dual Intel
Xeon E5-2650L system. For each choice of nup and ndown in the V-cycle, the convergence rate measured in terms of
digits of accuracy obtained per wall-clock second is reported. Each measurement is based on the average of sixteen
trials.

conditions ∂zΩ(x,y,0) = 0 and

Ω(x,y,2π) =
{

1 for 0≤ x < π and 0≤ y < π ,
0 otherwise. (12)

This problem was solved with a variety of grid sizes and choices of ndown and nup. Here, and for
all subsequent timing results, a Scientific Linux system with 64 GB of memory and dual 1.8 GHz
Intel Xeon E5-2650L processors was used—this system has sixteen physical cores, and thirty-two
virtual cores using hyperthreading. Version 4.7.1 of the GNU Compiler and version 1.6 of the
OpenMPI library were used. For each parameter choice, the wall-clock time tw for fifteen V-cycles
was measured, and the residuals r10 and r15 were computed after ten and fifteen V-cycles. From
this, a convergence rate can be calculated as (log10 r10− log10 r15)/(3tw), as a measure of digits of
convergence per wall-clock time.

Table 1 shows the convergence rates on a 64× 64× 33 grid using eight threads for various
choices of ndown and nup. Table 2 shows corresponding data for 256× 256× 65 grid using 32
threads. In both cases, it can be seen that the convergence rates are largely governed by the sum
ndown +nup, and are optimal for ndown +nup = 4 and ndown +nup = 5. Values of ndown = nup = 2
were therefore chosen. Other multi-processor systems, such as a 64-core AMD Opteron server
or Intel Mac Pro, had the same optimal values of ndown and nup. However, the optimal values are
likely to be hardware dependent and on systems with a slower method of data transfer (e.g. a
Beowulf cluster) they may be larger. A full multigrid cycle [46] was also investigated although for
the problems considered here the convergence rate was similar to the V-cycle.
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Carrying out a multigrid solve therefore proceeds as follows. Initially, for diagnostic purposes,
the mean square residual is calculated. V-cycles are then performed, and after every five the mean
square residual per grid point is evaluated to see if a threshold of 10−25 has been reached. Once
the threshold has been reached, an additional five V-cycles are carried out to approach the limit of
machine precision. In this multigrid solution procedure the residual is only checked after every five
V-cycles since it is relatively expensive to evaluate.

2.4. Time-integration of the forward problem
By making use of the Fourier transform to compute ηx, ηy, ϕx, ϕy and the finite element

problem to compute ∂nφ , all information needed to time-integrate Eqs. 1 and 3 can be obtained. By
considering the matrix problem ϕx

ϕy

∂nφ
√

1+η2
x +η2

y

=

 1 0 ηx
0 1 ηy
−ηx −ηy 1

 φx
φy
φz


at each grid point, the surface derivatives and normal derivative of the velocity potential can be
used to calculate the orthogonal derivatives that feature in these equations. The equations are
time-integrated by making use of the eighth-order Dormand–Prince DOP853 scheme [47]. This is
a thirteen-step scheme with the “first same as last” property, requiring twelve evaluations of the
right hand sides of Eqs. 1 and 3 per time step. We have also found the six-stage fifth-order explicit
scheme DOPRI5 [47] to be very effective for this problem.

The code was tested against a previously developed two-dimensional boundary integral code
by using initial conditions that were a function of the x coordinate only, and it produced identical
results to a high degree of accuracy. In these tests it was discovered that filtering was required to
keep the calculations stable over long time intervals. The largest source of error was due to the
computation of ∂nφ , and an oscillation with a wavelength of four grid points (corresponding to the
width of a finite element patch) became visible in the height and velocity potential fields. Because
of this, we filter out all Fourier modes with frequencies down to and including this four grid point
oscillation. Filtering is applied at each intermediate step of the Dormand–Prince time-integration.

Figure 3 shows several snapshots of a test simulation with initial conditions

η(x,y,0) =
π + e−3((x−π)2+(y−π)2)

2
, ϕ(x,y,0) = 0,

extended to be 2π-periodic in x and y. The simulation was carried out on a 256× 256× 65
computational grid using 32 threads on the test system with dual Intel Xeon E5-2650L processors.
For this example, the sparse matrix representing the finite element problem has 896,598,016 non-
zero entries; total memory allocation for the simulation was 8.3 GB. The simulation was integrated
from t = 0 to t = 20 using 200 time steps of fixed size 0.1.

For this test calculation, Table 3 shows a breakdown of the average wall-clock times needed to
evaluate the derivatives (ηt ,ϕt) for one step of the time integration. The times given here are based
on when the zeroth thread starts and ends each task, and no explicit synchronization is employed;
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Snapshots of an example computation, in which the fluid is initially at rest, and the surface is flat apart from a
small Gaussian peak in the center of the simulation domain. Snapshots of the system at t = 0,1,2.5,4.5,6.5,9.5 are
given in (a) to (f) respectively, showing how the peak collapses and a ripple moves radially outwards.
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Task Wall clock time Percentage
x and y derivatives using FFT 25.85 ms 0.094%
Quadrature pre-calculation 0.1714 s 0.624%
Bulk system initialization 2.731 s 9.943%
Bulk multigrid {24.99} 23.38 s 85.118%
Bulk error evaluations {4.999} 1.018 s 3.705%
Surface setup 62.63 ms 0.228%
Surface multigrid {14.98} 63.80 ms 0.232%
Surface error evaluations {2.997} 4.851 ms 0.018%
FFT filtering of normal derivative 8.593 ms 0.031%
Evaluation of ηt and ϕt 1.357 ms 0.005%

Table 3: Summary of the time required for a single evaluation of the time derivatives ηt and ϕt for the test problem
discussed in the text, using 32 threads on a 256×256×65 grid. Times are recorded by the zeroth thread and no explicit
synchronization is used. Results are averaged over 2,400 evaluations (200 time steps with 12 evaluations each). For
the multigrid calculations and error evaluations, the values in braces show the average number of V-cycle and error
evaluations respectively that are employed. The tasks are listed in the order of execution, other than the V-cycle and
error evaluations, which are interspersed.

Level Grid size Threads ASE Pre-smoothing Restriction Interpolation Post-smoothing
0 256×256×65 32 210 31/65 37.179% 19.556% 37.180%
1 128×128×33 16 62 18/33 1.929% 1.123% 0.272% 1.810%
2 64×64×17 8 25 16/17 0.239% 0.146% 0.040% 0.209%
3 32×32×9 4 25 0.073% 0.043% 0.015% 0.059%
4 16×16×5 2 23 2/5 0.027% 0.017% 0.006% 0.017%
5 8×8×3 1 21 0.054% 0.007%

Table 4: Percentage of times spent in each stage of the bulk multigrid computation for the test wave problem, using
explicit processor synchronization. ASE refers to the average number of stencil entries in a row of the linear system.
Pre- and post-smoothing involves two Gauss–Seidel sweeps for levels 0 to 4, and twenty Gauss–Seidel sweeps on level
5. The average wall-clock time for a single V-cycle is 30.28 s, 30% slower than when run asynchronously as in Table 3.
Results are averaged over the 59,985 V-cycles that are required to carry out the test problem.

Level Grid size Threads ASE Pre-smoothing Restriction Interpolation Post-smoothing
0 256×256 32 36 25.640% 12.355% 19.435%
1 128×128 16 16 7.587% 4.704% 1.832% 5.878%
2 64×64 8 9 3.142% 1.812% 0.847% 2.429%
3 32×32 4 9 2.153% 1.288% 0.678% 1.463%
4 16×16 2 9 1.183% 1.136% 0.395% 1.202%
5 8×8 1 9 4.302% 0.541%

Table 5: Percentage of times spent in each stage of the surface multigrid computation for the test wave problem, using
explicit processor synchronization. ASE refers to the average number of stencil entries in a row of the linear system.
Pre- and post-smoothing involves two Gauss–Seidel sweeps for levels 0 to 4, and twenty Gauss–Seidel sweeps on
level 5. The average wall-clock time for a single V-cycle is 78.14 ms, 22% slower than when run asynchronously as in
Table 3. Results are averaged over the 35,960 V-cycles that are required to carry out the test problem.
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while this gives the best reflection of the normal operation, it does not take into account that some
tasks may start and end on the other processors at slightly different times. For solving the velocity
potential in the bulk, it can be seen that the quadrature calculation takes a relatively small amount
of time, since it only needs to be carried out over a two-dimensional grid of points. The time to
initialize the finite element matrix is appreciable, but the time to carry out the bulk multigrid solve
dominates. The time spent on the surface problem is much smaller than for the bulk problem,
and fewer V-cycles are needed on average. Compared to the multigrid problems, the times for
the two-dimensional calculations, such as computing the x and y derivatives and filtering ∂nφ , are
relatively minor.

For this test problem the different operations within the bulk multigrid algorithm were also timed
and are shown in Table 4. Here, to ensure representative timings of each operation, an MPI_Barrier
call was inserted between each component of the algorithm, so that all processors are synchronized.
With the addition of the barriers, the average time for the multigrid algorithm is 30.28 s, which is a
30% speed reduction compared to the time in Table 3. It can be seen that the wall-clock times of
the Gauss–Seidel sweeps are the largest, since they require multiple evaluations of all of the matrix
components. Restrictions are more expensive than interpolations, since they require an evaluation
of the residual, which involves accessing all of the matrix components.

The wall-clock times reduce rapidly at each level down the hierarchy. The number of grid points
is reduced by a factor of eight, and in addition the stencil size is also decreased; taken together, these
two factors significantly outweigh that the number of processors is halved. As a consequence, the
majority of time, 74.36%, is spent on Gauss–Seidel smoothing on the top level. Table 5 shows the
corresponding data for the surface multigrid calculation. Since this is a two-dimensional problem,
the reduction in work at each level down the hierarchy is not as significant, but the largest fraction
of wall-clock time is still spent on top-level smoothing.

2.5. Optimization
To search for periodic solutions, a situation is considered whereby a wave is at rest so that

ϕ(x,y,0) = 0, and the initial wave surface is given by

η(x,y,0) =
Q

∑
i=1

αi fi(x,y), (13)

where the αi are real parameters and the fi are a basis of functions for the surface; typically, the fi
are given in terms of a two-dimensional Fourier decomposition of the free surface, and are described
in detail in the specific problems that are presented in the following sections.

We are interested in solutions that pass through a rest configuration twice per cycle. A time-
reversal argument shows that if ϕ ≡ 0 at t = 0 and t = T

2 , the solution will be time-periodic with
period T . Thus, to numerically search for a time-periodic solution, the functional

S =
1
2

∫ 2π

0

∫ 2π

0

∣∣∣∣ϕ(x,y,
T
2

)∣∣∣∣2 dxdy (14)

is minimized over the configuration space given by

c = (T,α1, . . . ,αQ). (15)
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In a discretized form, this functional can be written as

S(c) =
1
2

r(c)T r(c)

where r is a residual vector of length N2 representing the discretized field ϕ at T
2 . Since the surface

is represented spectrally, we use a two-dimensional trapezoidal rule to approximate S in Eq. 14
rather than integrating patch by patch using the finite element basis. Either approach can be done by
weighting the components of r appropriately.

The minimization procedure is carried out in the overdetermined shooting framework of Wilken-
ing and Yu [34], which has been found to be more robust than a standard shooting method in
which the number of nonlinear equations is equal to the number of unknowns. The problem is
overdetermined because the initial conditions are zero-padded in Fourier space while the residual
vector r contains ϕ at all grid points. Sufficient zero-padding ensures that all the unknown modes
in Eq. 13 are well-resolved by the finite element mesh. The underlying solver is a variant of the
Levenberg–Marquardt method [48] in which re-computation of the Jacobian

J = ∇cr (16)

is delayed for several iterations until the previous Jacobian ceases to be helpful. In this approach, S
is approximated near a particular configuration c via

Sapprox(c+ p) = S(c)+ rT Jp+
pT (JT J)p

2

and minimized over a trust region ‖p‖ ≤ ∆. Details of how the trust region radius ∆ should be varied
when the Jacobian updates are delayed over several residual computations are given in Ref. [34].

To carry out the minimization procedure, it is therefore necessary to be able to efficiently
evaluate the Jacobian in Eq. 16 for a given configuration c. Computing the first column of the
Jacobian, corresponding to ∂T r, can be done by evaluating ϕt(x,y, T

2 ). This is straightforward since
ϕt is already required to time-evolve the original problem. To evaluate the remaining columns of
J, it is necessary to consider a variational problem for a solution (η∗,ϕ∗) where η∗ = η + εη̇ and
ϕ∗ = ϕ + εϕ̇ . Here (η ,ϕ) is the base solution, and (η̇ , φ̇) corresponds to a small perturbation. To
compute the column of J corresponding to αi in Eq. 15, the initial conditions η̇(x,y,0) = fi(x,y)
and ϕ̇(x,y,0) = 0 are employed, with fi as in Eq. 13.

As described in Appendix A, a partial differential equation system for η̇ and ϕ̇ can be derived
by substituting the expressions for η∗ and ϕ∗ into Eqs. 1, 2, and 3 and using that η and ϕ are
a solution of these equations. In a similar manner to the original problem, a velocity potential
variation φ̇(x,y,z, t) in the bulk must be considered. It satisfies

∇2φ̇ = 0 (17)

in the region 0 < z < η(x,y, t), and ∂zφ̇ = 0 at z = 0. However, by considering Eq. 2, it can be seen
that on the free surface at z = η(x,y, t),

ϕ̇ = φ̇ +φzη̇ , (18)

15



with the additional term arising because a variation in the surface η̇ affects the point at which ϕ̇ is
evaluated. By considering Eq. 1 and 3 the evolution equations

η̇t =−(η̇φx)x− (η̇φy)y + φ̇n

√
1+η2

x +η2
y (19)

and
ϕ̇t = P [−(η̇φxφz)x− (η̇φyφz)y−K− η̇ ] (20)

can be derived, where

K =
(

φx φy −φz
) 1 0 ηx

0 1 ηy
−ηx −ηy 1

 φ̇x
φ̇y
φ̇z

 .

The corresponding column of J can then be computed using ϕ̇(x,y, T
2 ). The partial differential

equation system given by Eqs. 19 and 20 is solved using the same numerical procedures as for the
original problem. In order to solve these equations, it also necessary to concurrently integrate the
base solution η and φ , since these terms feature in the equations.

A significant numerical speed-up can be achieved by solving for multiple columns of J simul-
taneously. The velocity potential variation in the bulk is solved on the same geometry for each
different variation, and thus solving Eq. 17 for different variations is equivalent to solving the same
linear system Ax = b for different inputs b. The matrix A is very large, and expensive to read from
memory, and thus it is more efficient to make use of the values multiple times once they have been
read. The parallel multigrid algorithm described in the previous section was therefore extended
to allow for solving a linear system for a vector of different inputs. The code to carry this out is
automatically built from the source code of the base algorithm by adding loops over the different
inputs b and corresponding solutions, and by increasing the size of all inter-thread communications.

For a test problem on a 160×160×65 grid, the wall-clock time for a V-cycle on a vector input
of length n on the dual Intel Xeon E5-2650L system using sixteen threads can be well-modeled by a
linear relationship (0.616+0.155n) s, meaning that each additional input adds only a fifth as much
additional computation time. Since memory allocation increases as n is increased, the columns of
J are computed in batches of up to 64 columns at a time. For the problems considered here, this
typically results in no more than three batches of columns being considered. Since the columns in a
batch will represent disparate wavelengths and oscillation frequencies, each with a different stepsize
requirement, a uniform timestep is used and adaptive timestepping procedures are not considered.

3. Results

Compared to previous two-dimensional studies, the computational cost of searching for three-
dimensional time-periodic solutions is very high. For typical cases that are considered, where the
free surface is parameterized with up to 150 degrees of freedom, a search takes three to seven days
using sixteen threads on a multiple-processor machine. For each of the cases considered, the search
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for time-periodic solutions begins by considering small perturbations to a flat surface of the form

η(x,y, t) = H + ε coskx cos ly cos
2πt
T

, (21)

ϕ(x,y, t) = −εT
2π

coskx cos ly sin
2πt
T

, (22)

where ε is a small parameter. By substituting these perturbations into Eqs. 19 and 20, this can be
verified to be a solution provided that

T =
2π√

κ tanhκH
, (23)

where κ2 = k2 + l2. Searching for a time-periodic solution can then be carried out by fixing the size
of the perturbed mode, and then minimizing over a configuration space c = (T,α1, . . . ,αQ) where
the αi are other modes of a Fourier decomposition of the surface. As an initial guess to supply
to the minimization, T is taken from Eq. 23, and the αi are all assumed to be zero. For a small
perturbation, the corrections needed from the αi are small, and decay rapidly with wave number.
Typically the minimization procedure only requires a single Jacobian computation to converge.

This procedure can be used to find several configurations c1,c2, . . . ,cb corresponding to small
values ε1,ε2, . . . ,εb of the fixed mode. To move to a slightly higher value of the mode, ε∗, an initial
guess for the configuration vector can be found using Lagrangian interpolation, as

c′∗ =
b

∑
i=1

ci

 b

∏
j=1
j 6=i

ε∗− ε j

εi− ε j

 . (24)

This formula can then be used trace out a path of time-periodic solutions by moving to progressively
larger amplitudes of the fixed mode. In previous two-dimensional studies [20], a similar numerical
continuation approach has been used, although using only linear extrapolation from two previous
solutions. Here, given the high cost of each minimization, and the fact that a good initial guess may
reduce the number of Jacobian computations, high-order extrapolation was deemed advantageous.
Throughout the study, each extrapolation was carried out manually, usually using three or four
previous solutions to achieve quadratic or cubic accuracy.

3.1. Waves of intermediate depth
The first case that is considered is for water of depth H = π , which is comparable to the

wavelengths λx = λy = 2π . The free surface height is assumed to be even in the x and y directions,
and also symmetric about the line x = y. With these constraints, the free surface can be described in
terms of Fourier modes of the form

fr,s(x,y) = cosrx cossy+ cossx cosry, (25)

which is referred to as the (r,s) mode. In this section, we consider time-periodic solutions by
varying the (1,1) mode. By reference to Eq. 23, the period for a small amplitude mode of this form
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is T = 5.28424. At this depth the hyperbolic tangent featuring in the equation is close to one, and
the period of small-amplitude waves is close to the infinite depth limit, T = 23/4π .

The waves are calculated on a 160×160×65 grid, making use of 25 time steps to simulate up
to T

2 . The (1,1) mode has an additional symmetry under a translation by (π,π), and in order to
preserve this symmetry it is therefore sufficient to search for a time-periodic solution using modes
of the form in Eq. 25 with r+ s being even. The configuration space vector c = (T,α1, . . . ,αQ) was
therefore assembled as all of the modes (r,s) with r+ s even, omitting (1,1), up to a cutoff.

To begin the search for time-periodic solutions, all modes with r < 12 and s < 12 were con-
sidered, which corresponds to a total of 41 degrees of freedom once all symmetries have been
accounted for. The (1,1) amplitude was fixed to be 0.02, and the linearized solution was used as
the initial guess for the period; the initial guess for each of the other modes was set to zero. The
minimization procedure converged rapidly, with the residual in Eq. 14 being S = 5.93× 10−21.
Figure 4(a) shows a plot of the initial wave surface η(x,y,0), which appears very close to the
linearized solution given by 0.02 f1,1(x,y). The largest amplitude found during the minimization
is 2.829×10−4 in the (2,2) mode, and the period of the wave is 5.28551, which differs from the
linearized period by 0.024%.

In a similar manner, a wave with a (1,1) amplitude of 0.04 can be found, and using these two
solutions Eq. 24 can be employed to search for waves of increasingly higher amplitude. A sequence
of cross-sections of the waves on the line y = 0 is shown in Fig. 4(b). By the time that the (1,1)
amplitude has been increased to 0.28, the wave heights clearly deviate from the linearized form,
with the wave crests becoming sharper and wave troughs becoming wider, in a similar manner to
the trends seen in two-dimensional computations [14, 49].

Figure 4(c) shows a plot of the initial wave surface for the case when the (1,1) amplitude is 0.24.
The wave crests are noticeably sharper than in Fig. 4(a), and appear pyramidal, being connected
by four diagonal ridges to the neighboring crests. Here, and in subsequent analysis, it is useful
to examine diagonal cross-sections of the waves, by introducing a new coordinate ξ such that
(x,y) = (ξ/

√
2,ξ/

√
2). Figure 4(d) shows cross-sections along this coordinate, demonstrating that the

ridges between crests grow in height as the (1,1) amplitude is increased.
The wave shapes can be compared to previously-studied two-dimensional waves. To do this,

we applied the minimization procedure to a degenerate system with translational symmetry, using
a basis of the form f ′r(x,y) = cos(r(x+ y)). Figure 5(a) shows a plot of a standing wave ηd for
the case when the amplitude of f ′1 is 0.24. The other modes f ′r for r = 2,3, . . . ,19 were found by
minimization. Finding solutions of this form was a useful test of the minimization procedure, since
it verified that translational symmetry of the solutions can be preserved even when the symmetry is
not aligned with a coordinate direction. The solid lines in Fig. 5(b) show cross-sections of the wave
height along the x-axis for four amplitudes of f ′1. For comparison, the thin dashed black overlays are
calculated using the boundary integral method of Ref. [34] for deep water, which has very similar
dynamics to the current regime. Since the functions f ′r have a wavelength of 2π/

√
2, it is necessary

to rescale the boundary integral results by 1/
√

2 to make the comparison. Each boundary integral
curve is calculated by fixing the amplitude of cosx to be equivalent to that of f ′1. The two methods
agree to 5–6 digits of accuracy, with the discrepancies being due to both numerical errors and the
difference in fluid depth.

18



0

π/2

π
y

3π/2

2π

0
π/2

π
x 3π/2

2π

-0.03

0

0.03

0.06

η
(x
,y
,0
)
−

π
(a)

0

π/2

π
y

3π/2

2π

0
π/2

π
x 3π/2

2π

-0.36

0

0.36

0.72

η
(x
,y
,0
)
−

π

(c)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 π/2 π 3π/2 2π

η
(x
,0
,0
)
−

π

x

(b)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 π/2 π 3π/2 2π

η
(

ξ √
2
,

ξ √
2
,0
)
−

π

ξ/
√

2

(d)

α1,1 = 0.04
α1,1 = 0.08, . . . ,0.24

α1,1 = 0.28

α1,1 = 0.04
α1,1 = 0.08, . . . ,0.24

α1,1 = 0.28

Figure 4: (a) The initial surface of a time-periodic wave close to the linearized regime, in which the amplitude of the
(1,1) mode is fixed to be 0.02 and the amplitudes of the other modes are determined by minimizing S; (b) cross-sections
of the initial wave heights for a sequence of (1,1) mode amplitudes, defined as α1,1; (c) the initial surface of a wave
where the (1,1) mode is increased to 0.24, showing noticeably sharper wave crests and wider wave troughs; (d) diagonal
cross-sections of initial wave heights for a sequence of (1,1) mode amplitudes.

To quantitatively compare the shapes of the degenerate two-dimensional waves to the three-
dimensional counterparts, note that

f1,1(x,y) = 2cosxcosy = cos(x+ y)+ cos(x− y) = f ′1(x,y)+ f ′1(x,−y) (26)

and thus f1,1 is the linear superposition of two translationally invariant waves. It is therefore possible
to examine how much the three-dimensional waves shown in Fig. 4 differ from a linear superposition
of the degenerate wave shown in Fig. 5(a). Figure 5(c) shows a plot of the superposition, defined as

ηs(x,y,0) = ηd(x,y,0)+ηd(x,−y,0)−π. (27)

The height of the superposition is similar to Fig. 4(c) but there are some small variations. In Fig. 5(d)
the difference between the three-dimensional wave and the linear superposition is plotted, showing
that the three-dimensional wave has both higher crests and troughs, while having lower ridges
between crests.
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Figure 5: (a) A degenerate standing wave ηd with translational symmetry, found by fixing the mode 0.24cos(x+ y) and
then searching over modes of the form cos(r(x+y)) for r > 1; (b) cross-sections of waves with α1 cos(x+y) held fixed,
and a comparison to rescaled, pure 2D standing wave solutions in deep water, computed using the boundary integral (BI)
method from Ref. [34]; (c) a linear superposition of two waves ηs, defined as ηs(x,y,0) = ηd(x,y,0)+ηd(x,−y,0)−π;
(d) the difference in height between the superposition ηs and the three-dimensional standing wave shown in Fig. 4(d).

The dynamics of three-dimensional standing waves over a period will now be examined. In
Fig. 6(a) to Fig. 6(e) a sequence of plots of the wave height are shown for the case when the (1,1)
amplitude is fixed to 0.28. The plots cover the time interval from t = 0 up to t = T

2 , when the wave
comes to rest again. To confirm this, a plot of the velocity potential at t = T

2 is given in Fig. 6(f).
This plot has a vertical scale on the order of 10−6, showing that the wave is almost stationary other
than for numerical errors, and limitations of the Fourier modes to capture the initial wave shape.
For this solution the residual is S = 5.82×10−13.

The plot of the wave at t = T
4 shown in Fig. 6(c) is not flat as would be the case for the linearized

solution, and has small peaks at intervals of π/2. To investigate this, and the general shape of the
wave surface, contour plots of the wave height were plotted. The contours at t = 0 are shown in
Fig. 7(a), with the thick magenta lines corresponding to the contour η(x,y, t) = π , and a spacing
of 0.1 between subsequent contours. The positive contours are shown in blue, and exhibit square
shapes, corresponding to the pyramidal forms seen in the previous figures. The negative contours
shown in cyan are more rounded and further apart, indicating wide and shallow wave troughs. The
contours for t = T

4 are shown in Fig. 7(b), using a smaller contour spacing of 0.02. Similar patterns
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Figure 6: (a–e) Plots of the wave height η(x,y, t) over half a period, at t = 0, T
8 ,

T
4 ,

3T
8 , T

2 , for the time-periodic wave
where the (1,1) mode amplitude is fixed to 0.28; (f) a plot of the velocity potential at t = T

2 , showing that it is on the
order of 10−6, corresponding to the wave being almost stationary.
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Figure 7: Contour plots of the time-periodic wave where the (1,1) mode is fixed to 0.28 for (a) t = 0 using a contour
spacing of 0.1, and (b) t = T

4 using a contour spacing of 0.02. The contour η(x,y, t) = π is shown by the thick magenta
lines, and positive and negative contours are shown in blue and cyan respectively.

can be seen, whereby the small peaks are pyramidal in shape, although they are rotated by 45◦.
Figure 8(a) shows a sequence of cross-sections of the wave height of the same solution along the

x axis, at times from t = 0 to t = T
2 . On this axis, the cross-sections look similar to two-dimensional

time-periodic waves. In Fig. 8(b), cross-sections on the diagonal ξ axis are shown. At t = 0 the
cross-section passes through the wave crests and along ridges between them, whereas at t = T

2 , the
cross-section passes through the wave troughs, and over the ridges.

To examine the growth of the Fourier modes that make up the solution, a large sequence of
runs was carried out for different values of the (1,1) mode. Figure 9 shows a log–log plot of all of
these other modes that are determined using the optimization procedure, in terms of the fixed (1,1)
mode. As expected, the other modes grow in size as the (1,1) mode increases, so that at higher
amplitudes more modes are needed to accurately represent the solution. Four computational regimes
were considered. Below a (1,1) amplitude of 0.1, 41 modes with r,s < 12 were used, leading to
wall-clock times of two days for a 16-thread computation. Above an amplitude of 0.08, 63 modes
with r,s < 15 were used, requiring three days of computation time. Above an amplitude of 0.2, 109
modes with r,s < 20 were used, requiring five days of computation time. Above an amplitude of
0.26, the computation was switched to a 256×256×65 grid, which showed near-identical results
for modes larger than 10−6, and improved the accuracy for smaller modes.

An interesting feature of Fig. 9 is that while all of the modes initially start out as positive, some
begin to switch to negative at higher amplitudes. To study this in more detail, a bar chart of the
sizes of the modes is shown in Fig. 10 when the (1,1) mode amplitude is fixed to 0.1. At this
amplitude, the modes decay with a regular pattern as the wave number is increased. Physically, if
all the mode amplitudes are positive, then each mode sharpens the initial wave crest at the origin
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Figure 10: Bar charts of the mode sizes calculated using the optimization procedure for the cases when the (1,1) mode
amplitude is fixed to (a) 0.1 and (b) 0.2. Positive modes are shown in blue, and negative modes are shown in red. The
(r,s) mode amplitudes for r ≤ s are determined by the optimization procedure and exactly match vertical cross-sections
of the data in Fig. 9. By symmetry, each (r,s) mode amplitude for r > s is plotted as being equal to the value at (s,r).

since all the terms have negative mean (and positive Gaussian) curvature there. However, when the
(1,1) mode amplitude is increased to 0.2, the modes with large values of |r− s| change sign and
have a slight flattening effect against the remaining (larger) positive terms that sharpen the crest. We
do not know the geometric significance of this sign pattern beyond observing that in Fig. 7 above,
the contour lines near the crests flatten into square-like shapes while the troughs remain closer to
circular. Figures 9 and 10 show that for the entire sequence of runs, the Fourier modes appear
to grow smoothly in magnitude as the amplitude of the wave increases, and decay exponentially
as r and s increase for fixed amplitude. Resonant effects lead to mildly erratic behavior in the
smaller-amplitude Fourier modes of Fig. 10(b). This is expected by analogy with theoretical results
on two-dimensional standing waves [29, 30], which have only been proved to exist for values of an
amplitude parameter in a totally disconnected Cantor set.

Figure 11(a) shows a plot of the wave period T versus the (1,1) mode amplitude, indicating
that as the (1,1) amplitude is increased, the period increases slightly. This can be compared to the
second-order asymptotic expansion for the period that was calculated by Verma and Keller [21].
For the case of a wave in a square domain, the angular frequency is given by

ω = ω0 +2α2
1,1ω2 +O(α3

1,1), (28)

where α1,1 is the (1,1) mode amplitude, ω2
0 =
√

2tanh(
√

2H) in agreement with Eq. 23, and

ω2 =−
(3ω4

0 −2)2

16ω0(tanh2H−2ω2
0 )

+
72ω−7

0 −48ω−3
0 +10ω0−46ω5

0
128

. (29)

For a depth of H = π these formulae give ω0 = 1.189043 and ω2 =−0.357535. As can be seen in
Fig. 11(a), this is in close agreement with the computed results although some deviations become
visible at higher amplitudes.
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Figure 11: Plots of (a) period versus size of the fixed (1,1) mode amplitude, compared against the asymptotic expansion
of Verma and Keller [21], and (b) crest acceleration versus wave steepness.

In studies of two-dimensional standing waves [14, 20], it has been useful to examine the
relationship between the initial downward acceleration of the crest, and the wave steepness, defined
as half of the crest-to-trough height difference. The dashed line in Fig. 11(b) is based on two-
dimensional data from Ref. [20], and shows that wave steepness initially grows linearly with crest
acceleration before flattening out and passing through a turning point at a crest acceleration of 0.93.
As discussed in Ref. [20], for crest accelerations beyond 0.99, the deep water bifurcation curve
fragments into a number of disjoint branches corresponding to different resonant mode patterns that
emerge near the crest tip due to complex dynamics. However, these features are too small to be
seen in Fig. 11(b), and occur in a regime that we cannot currently reach with our three-dimensional
code. The corresponding data for the family of degenerate 2D standing waves that were considered
is also shown, with the wave steepnesses multiplied by a factor of 1/

√
2 due to the aforementioned

difference in wavelength. The two methods agree to approximately 4–5 digits of accuracy.
The data for the three-dimensional standing waves is also shown. For compatibility with the

2D data, and since the three-dimensional waves have a wavelength of 2π/
√

2 in the ξ direction, the
three-dimensional wave steepness was also multiplied by 1/

√
2. Initially the wave steepness grows

approximately linearly, but at high crest accelerations the opposite trend to the 2D data is seen and
the slope of the curve increases with crest acceleration. This suggests that the limiting behavior
of three-dimensional waves may be fundamentally different than in two dimensions. Physically,
when the fluid converges to form a wave crest in three dimensions, it generates a stronger fluid jet
pushing the surface upward. This is consistent with Fig. 5(d), which shows that three-dimensional
wave crests are higher than would be expected from a superposition of two-dimensional standing
waves oriented orthogonally to each other.

Using the same depth of fluid, a second case was considered with less symmetry, using an
alternative Fourier basis of

f ∗r,s(x,y) = cosrx cos2sy. (30)

An example solution in which the f ∗1,2 mode amplitude is fixed to 0.2 is shown in Fig. 12(a). In
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Figure 12: (a) A time-periodic wave for the case when the Fourier mode cosx cos2y is fixed to amplitude 0.2; (b) a
contour plot of the wave height, where the magenta curves correspond to η(x,y,0) = π , the blue curves are positive
contours and cyan curves are negative contours. The contour spacing is 0.04.

a similar manner as the previous case, the wave crests are noticeably sharper than the linearized
solution. It also appears that the crests begin to take on a wedge-like shape. A contour plot shown
in Fig. 12(b) also highlights this behavior.

3.2. Waves in shallow water
In this section, waves with a much shallower fluid depth of π/6 are considered. The symmetric

Fourier basis given by Eq. 25 is used, although here, the (0,1) mode corresponding to cosx+ cosy
is fixed. From Eq. 23, the linearized period is 9.06453, with the hyperbolic tangent term having
a significant effect. Unlike the previous case, the mode that is varied is not invariant under a
translation of (π,π). In searching for periodic solutions, it is therefore necessary to consider all
modes (r,s) with r ≥ s without imposing the constraint that r+ s is even. In a similar manner to the
previous case, initial solutions close to the linearized regime are first determined, making use of a
256×256×17 grid and considering 152 degrees of freedom up to r,s < 17. After this, Eq. 24 is
used to move to successively larger amplitudes of the fixed mode.

Figure 13 shows a sequence of plots of the wave height for the case when the (0,1) amplitude
is fixed to 0.14. The plots share a number of features with those in Fig. 6, with sharp pyramidal
wave crests and ridges between adjacent crests. However, the troughs are wider and flatter, in a
similar manner to those seen in two-dimensional studies. Fig. 13(f) shows the velocity potential at
t = T

2 , using a vertical scale on the order of 10−5; the computed residual is S = 3.95×10−10. Cross
sections of the wave height are shown in Fig. 14, which highlight the flat wave troughs between
successive peaks.

In a similar manner to the intermediate depth fluid, the wave shapes can be compared with their
two-dimensional counterparts. We present this analysis at t = T

2 , since at that time the wave crest
is in the middle of the simulation domain and easier to visualize. We denote the degenerate basis
functions by f †

r (x,y) = cos(rx). Figure 15(a) shows a plot of a standing wave ηd at t = T
2 for the
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Figure 13: (a–e) Plots of the wave height of a standing wave in a shallow fluid depth of π/6 at t = 0, T
8 ,

T
4 ,

3T
8 , T

2 for the
case when the (0,1) mode amplitude is fixed to 0.14; (f) a plot of the velocity potential at t = T

2 , showing that it is on
the order of 10−5, corresponding to the wave being almost stationary at that instant.

27



-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 π/2 π 3π/2 2π

η
(x
,y
,t
)
−

π 6

x

(a)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 π/2 π 3π/2 2π

η
(x
,y
,t
)
−

π 6

ξ/
√

2

(b)t = 0
t = T

2

t = 0
t = T

2
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Figure 15: (a) A degenerate standing wave ηd in a shallow fluid of depth π/6, found by fixing the 0.14cosx mode and
minimizing over modes of the form cosrx for r > 1, plotted at t = T

2 ; (b) a linear superposition of two degenerate
waves, defined as ηs(x,y, T

2 ) = ηd(x,y, T
2 )+ηd(y,x, T

2 )− π
6 ; (c) difference between height of the three-dimensional

wave shown in Fig. 13 and the linear superposition ηs; (d) cross-sections of the ridges for three-dimensional waves
for various values of the (0,1) mode α0,1, shown in solid lines, compared to the equivalent data for a superposition of
degenerate two-dimensional waves ηs in dashed lines.
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Figure 16: (a) Plot of the wave height for a time-periodic wave in a shallow fluid of depth π/6, for the case when the
(2,4) mode amplitude is fixed at 0.028; (b) plot of the period for the case when the (0,1) mode amplitude is varied,
corresponding to solutions of the type shown in Fig. 13; (c) plot of three times the period of solutions on the (2,4)
branch, such as the wave shown at left. Plots (b) and (c) share the same vertical axis, indicating the possibility of finding
a combined solution incorporating significant (0,1) and (2,4) components.

case when the amplitude of f †
1 is fixed to 0.14, and a solution is searched for over modes f †

r for
r = 2,3, . . . ,19. A superposition can then be constructed as

ηs
(
x,y, T

2

)
= ηd

(
x,y, T

2

)
+ηd

(
y,x, T

2

)
− π

6 , (31)

and is plotted in Fig. 15(b). While similar to the three-dimensional counterpart shown in Fig. 14(e),
the wave crest of ηd is noticeably less pronounced. This can be confirmed by plotting the difference
between the two, as shown in Fig. 15(c), which has similar features to Fig. 5(d) with the crests
being higher and the ridges being lower. Figure 15(d) shows a quantitative comparison between the
ridge shape in three dimensions and the corresponding linear superpositions of two-dimensional
standing waves.

In the study of two-dimensional waves, it has been shown that there are many more complex
periodic solutions, which often occur due to resonances between different modes. A good candidate
for resonant solutions in three dimensions would combine the (2,4) and (0,1) modes. Small-
amplitude (2,4) standing waves have a period of 2.9987, which is approximately a third of the
period of small-amplitude (0,1) waves. Figure 16 shows a typical solution on the (2,4) branch,
along with the periods T and 3T versus amplitude on the (0,1) and (2,4) branches, respectively.
Since the two curves cross, there is a good chance that a combined solution exists with large (0,1)
and (2,4) components.

Using this data, we constructed a guess for a combined solution by superposing the solution
with the (2,4) amplitude fixed to 0.016, and the solution with the (0,1) amplitude fixed to 0.04822,
which are both time-periodic with a period of approximately 9.027. From this initial guess, the
minimization procedure was successful in finding a combined solution. The initial surface of this
solution is shown in Fig. 17(b). From this solution, it was possible to use the extrapolation procedure
to trace out a new family of solutions. In one direction, the (2,4) amplitude increases, and the (0,1)
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Figure 17: Plots of the initial wave height for several time-periodic solutions featuring both a (0,1) component and a
(2,4) component. The (0,1) amplitude is (a) 0.0280, (b) 0.0482, (c) 0.0680, (d) 0.0540. The (2,4) amplitude is (a)
0.0207, (b) 0.0159, (c) 0.0072, (d) -0.0140.

amplitude decreases; a typical solution on this path is shown in Fig. 17(a). In the opposite direction,
the (2,4) amplitude decreases and the (0,1) amplitude increases, and a typical solution is shown in
Fig. 17(c). Eventually, as the (2,4) amplitude decreases further, this branch of solutions meets the
branch of pure (0,1) solutions. A further branch can be found where the (2,4) amplitude becomes
negative, as shown in Fig. 17(d).

Figure 18 shows a plot of the different families of solutions and their connections in terms of
the (0,1) and (2,4) mode amplitudes. The basic (0,1) branch of solutions is shown in blue; at large
amplitudes, the line becomes slightly curved, indicating a non-negligible correction term from the
(2,4) mode. The (2,4) branch forms a perfect vertical line, since a (0,1) contribution would break
symmetry. The solutions forming the combined mode, shown in yellow, form an arc connecting the
pure mode branches together. The solutions plotted in Figs. 17(a–c) are on the branch in the top
right quadrant, while the solution in Fig. 17(d) is on the branch in the bottom right quadrant.

The gray lines in the plot can be deduced using symmetry. Given any solution, another solution
must exist when the height field is translated by (π,π), which will flip the sign of the (0,1) mode,
and leave the (2,4) mode invariant. This can be used to deduce all of the solutions in the left half of
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Figure 18: Plots of several families of admissible periodic solutions for a fluid depth of π/6, in terms of the (0,1) and
(2,4) mode amplitudes. Dots represent individual solutions, each requiring approximately a week of computation time
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the graph. For a pure (2,4) mode, another valid solution is obtained from translation by (π/2,π/2),
which can be used to deduce the branch of solutions pointing downward from the origin. With these
symmetries accounted for, a complete ring of combined modes becomes apparent, intersecting the
pure mode branches in four locations.

We believe that the intersections of the mixed mode branches with the (2,4) branches are perfect
bifurcations while those with the (0,1) branches are imperfect bifurcations. At the critical depth
H ≈ 1.020325π/6, the period of small-amplitude (0,1) mode solutions is exactly three times that
of small-amplitude (2,4) mode solutions:

T =
2π√

tanhH
=

6π√
κ tanhκH

, κ =
√

20. (32)

In our simulations, if the depth were varied from π/6 to this critical depth, we believe the four
secondary bifurcations from pure to mixed-mode solutions would coalesce at the origin, leading
to a degenerate bifurcation with eight rays leaving the origin. The four mixed mode rays would
correspond to a Wilton’s ripple phenomenon [50, 51, 52, 53, 54] in which multiple wavelengths
are present in the leading order asymptotics. Although this is speculation, it is consistent with
recent finding in the two-dimensional case [34], where it was computationally feasible to resolve
the degenerate bifurcation and study how it splits under perturbation of the fluid depth. It is also
consistent with Bridges’ analysis [22] of degenerate bifurcations for three-dimensional water waves
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in the weakly nonlinear regime.

4. Conclusion

In this paper, we have demonstrated the existence of large-amplitude, three-dimensional, time-
periodic water waves. The computations have made use of several high-performance algorithms,
plus advances in computational power, to make them tractable within a reasonable time frame. The
three-dimensional waves that we have computed bear many similarities with their two-dimensional
counterparts, and become more sharply crested as the amplitude is increased. However, there appear
to be significant differences, most notably in the relation between crest acceleration and wave height.
While our computations currently lack the resolution to examine the crest formation in more detail,
this result suggests that the behavior as the crest continues to sharpen may be significantly different
from the behavior in the two-dimensional case [20].

Our results have also been able to examine the shapes of the wave surfaces. For the (1,1)
mode, pyramidal-shaped crests connected by ridges are observed, whereas for the f ∗1,2 mode defined
in Eq. 30, the crests appear to become wedge-like. Both of these results suggest that interesting
behavior may be seen if higher amplitude waves can be calculated. In shallow water, we have
demonstrated the existence of several families of solutions that are connected by bifurcations.

The results that we have presented represent only a very small subset of the time-periodic
waves that are likely to exist. We have mainly been limited by computation time: since a single
solution takes five to seven days to compute, finding families of solutions requires many weeks of
computation. However, in the future, we aim to use the same methodology to search for other types
of time-periodic solutions, such as standing waves with less symmetry or with larger amplitude.
Searching for three-dimensional solitary waves and breathers, as well as pattern formation in
Faraday waves [38, 39, 40], are other avenues to consider.
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Appendix A. Derivation of the variational problem

To derive the variational partial differential equation system given by Eqs. 19 and 20, a solution
(η∗,ϕ∗) for the height and velocity potential can be considered where η∗= η+εη̇ and ϕ∗= ϕ+εϕ̇ .
Here, ε is a small parameter, (η ,ϕ) is a solution of the original partial differential equation system,
and (η̇ , ϕ̇) is a small variation. In a similar manner the bulk velocity potential can be written as
φ∗ = φ + εφ̇ . Since ∇2φ∗ = ∇2φ = 0, it follows that ∇2φ̇ = 0 also. The surface velocity potential
satisfies ϕ∗(x,y, t) = φ∗(x,y,η∗(x,y, t), t) and expanding both sides of this equation gives

ϕ(x,y, t)+ εϕ̇(x,y, t) = φ(x,y,η(x,y, t)+ εη̇(x,y, t), t)
= φ(x,y,η(x,y, t), t)+ εφz(x,y,η(x,y, t), t)η̇(x,y, t)+O(ε2)

= ϕ(x,y, t)+ εϕ̇(x,y, t)+ εφz(x,y,η(x,y, t), t)η̇(x,y, t)+O(ε2).
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By examining the terms of order ε it can be seen that ϕ̇ = φ̇ +φzη̇ . Substituting the expressions for
η and ϕ into Eq. 1 and keeping terms of order ε yields

η̇t = φ̇z +φzzη̇− η̇xφx−ηxφ̇x−ηxφxzη̇− η̇yφy−ηyφ̇y−ηyφyzη̇
= φ̇z−ηxφ̇x−ηyφ̇y− (η̇φxx + η̇xφx +ηxφxzη̇)− (η̇φyy + η̇yφy +ηyφyzη̇)

= φ̇n

√
1+η2

x +η2
y − (η̇φx)x− (η̇φy)y.

Here, φ̇zz =−φ̇xx− φ̇yy is used, and the subscripts on the bracketed terms denote partial derivatives
of the terms when they are viewed as a function restricted to the surface.

To derive the variational equation for the surface velocity potential, Eq. 1 is first substituted into
Eq. 3 to remove the ηt term, giving

ϕt = P

[
−ηxφxφz−ηyφyφz +

φ 2
z −φ 2

x −φ 2
y

2
−gη

]
.

Substituting the expressions for η∗ and ϕ∗ yields

ϕ̇t = P
[
− η̇xφxφz−ηxφ̇xφz−ηxφxφ̇z−ηxφxzη̇φz−ηxφxφzzη̇

−η̇yφyφz−ηyφ̇yφz−ηyφyφ̇z−ηyφyzη̇φz−ηyφyφzzη̇

+φz(φ̇z +φzzη̇)−φx(φ̇x +φxzη̇)−φy(φ̇y +φyzη̇)−gη̇
]
.

This expression features seventeen terms. Ten of the terms can be combined by making use of

−(η̇φxφz)x = −η̇xφxφz− η̇φxxφz− η̇φxφxz− η̇φxzφzηx− η̇φxφzzηx,

−(η̇φyφz)y = −η̇yφyφz− η̇φyyφz− η̇φyφyz− η̇φyzφzηy− η̇φyφzzηy.

Six of the terms feature one derivative of φ and one of φ̇ , which can be expressed as a matrix
product. Hence the equation can be written as

ϕ̇t = P [−(η̇φxφz)x− (η̇φyφz)y−K−gη̇ ]

where

K =
(

φx φy −φz
) 1 0 ηx

0 1 ηy
−ηx −ηy 1

 φ̇x
φ̇y
φ̇z

 .

Appendix B. Finite element computation

Here, we consider the computation of the integral in Eq. 7. The determinant of D is h2η/N and
the inverse is

D−1 =

 h−1 0 −∑i j L′i(α)L j(β )(nz+γ)
hη

0 h−1 −∑i j Li(α)L′j(β )(nz+γ)
hη

0 0 N/η

 .
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Substituting this expression into Eq. 7 yields

A12 =
∫

U

(
∂αT1 ∂β T1 ∂γT1

)(
D−1)T

(detD)D−1

 ∂αT2
∂β T2
∂γT2

 d3α

=
∫

U

(
∂αT1 ∂β T1 ∂γT1

) I 0 J
0 I K
J K M

 ∂αT2
∂β T2
∂γT2

 d3α (B.1)

where

I(α,β ,γ) =
η
N
, (B.2)

J(α,β ,γ) = −nz + γ
N ∑

i j
ηi jL′i(α)L j(β ), (B.3)

K(α,β ,γ) = −nz + γ
N ∑

i j
ηi jLi(α)L′j(β ), (B.4)

M(α,β ,γ) =
(nz + γ)2

ηN

(∑
i j

ηi jL′i(α)L j(β )

)2

+

(
∑
i j

ηi jLi(α)L′j(β )

)2
+

Nh2

η
. (B.5)

It could be possible that the integral in Eq. B.1 would have to be evaluated using quadrature in three
dimensions, carrying out a separate calculation for each different value of nz. However, the terms
in the integral are structured in a manner that allows the calculation to be significantly simplified.
The integral can be decomposed into A12 = AI

12 +AJ
12 +AK

12 +AM
12, where each of these four terms

corresponds the part involving the corresponding function in Eqs. B.2–B.5. To begin,

AI
12 =

∫
U

η(α,β )
N

(∂αT1 ∂αT2 +∂β T1 ∂β T2)d3α

=
1
N ∑

i j
ηi j

∫
U

Li(α)L j(β )
(

L′a(α)Lb(β )Lc(γ)L′d(α)Le(β )L f (γ)

+La(α)L′b(β )Lc(γ)Ld(α)L′e(β )L f (γ)
)

d3α.

If the quantities

Ri j =
∫ 4

0
Li(ω)L j(ω)dω,

Si jk =
∫ 4

0
Li(ω)L j(ω)Lk(ω)dω,

Ti jk =
∫ 4

0
Li(ω)L′j(ω)L′k(ω)dω

are introduced, then AI
12 becomes

AI
12 =

1
N ∑

i j
ηi jRc f (TiadS jbe +SiadTjbe).
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Since R, S and T are integrals of polynomials, they can be computed exactly beforehand. The next
term to consider is

AJ
12 = − 1

N ∑
i j

ηi j

∫
U
(nz + γ)L′i(α)L j(β )

(
L′a(α)Lb(β )Lc(γ)Ld(α)Le(β )L′f (γ)

+La(α)Lb(β )L′c(γ)L
′
d(α)Le(β )L f (γ)

)
d3α.

With the additional pre-computed quantities

Ui j =
∫ 4

0
Li(ω)L′j(ω)dω

Vi j =
∫ 4

0
ωLi(ω)L′j(ω)dω

the integral becomes

AJ
12 =−

1
N ∑

i j
ηi jSbe j

(
Tdai(nzUc f +Vc f )+Tadi(nzU f c +Vf c)

)
.

The next term to consider is very similar:

AK
12 = − 1

N ∑
i j

ηi j

∫
U
(nz + γ)Li(α)L′j(β )

(
La(α)L′b(β )Lc(γ)Ld(α)Le(β )L′f (γ)

+La(α)Lb(β )L′c(γ)Ld(α)L′e(β )L f (γ)
)

d3α.

= − 1
N ∑

i j
ηi jSadi

(
Teb j(nzUc f +Vc f )+Tbe j(nzU f c +Vf c)

)
.

The final term is the most complicated, and cannot rely completely on pre-computed tables due to
the factors of η(α,β ) in the denominator. However, it is possible to carry out the integral in the γ
direction by making use of tables

W k
i j =

∫ 4

0
ωkL′i(ω)L′j(ω)dω

for k = 0,1,2. This allows us to write

AM
12 =

1
N

∫ 4

α=0

∫ 4

β=0

(n2
zW 0

c f +2nzW 1
c f +W 2

c f )
(
(∂αη)2 +(∂β η)2)+N2h2W 0

c f

η(α,β )
×La(α)Lb(β )Ld(α)Le(β )dα dβ ,

which can be evaluated using two-dimensional Gaussian quadrature with a 10×10 grid of nodes.
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