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Abstract

We describe an efficient numerical method for the computa-
tion of time-periodic solutions of nonlinear systems of partial dif-
ferential equations. The strategy is to minimize a functional that
measures how far solutions of the initial value problem are from
being time-periodic by solving an adjoint problem to compute the
gradient of the functional. We discuss applications to two dif-
ferent problems in interfacial fluid dynamics, the Benjamin-Ono
equation and the vortex sheet with surface tension.

1 Introduction

Many evolutionary systems of partial differential equations possess spe-
cial solutions such as traveling waves or time-periodic solutions. It can be
useful to understand the set of all such solutions, but it can frequently be
difficult to make either analytic or numerical studies of these solutions.
In this paper, we will describe a numerical method for the computa-
tion of families of time-periodic solutions of nonlinear systems of partial
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differential equations which the authors have recently developed. The
solutions we study are taken to also be spatially periodic.

The main idea of this numerical method is to define a functional
(depending on the initial data and the presumed period) which is zero if
the solution of the system is time-periodic with this period, and which
is positive otherwise. This functional is then minimized; in order to do
this, we need to be able to compute the variational derivative of the
functional with respect to the initial data and the presumed period.

There are two primary types of alternative methods. Orthogonal
collocation methods, such as AUTO [6], can be efficient when computing
traveling solutions, but can be difficult to use for the much larger problem
of finding time-periodic solutions. There are also shooting and multi-
shooting methods [12], which require computing the variation for each
of the unknowns individually (the unknowns being the discretized values
of the initial data, or its leading Fourier modes). We believe that the
present method is in many cases more efficient than these alternatives.

We have applied the method to two problems from interfacial fluid
dynamics, finding time-periodic solutions of the Benjamin-Ono equation
[1, 2], and finding time-periodic symmetric vortex sheets with surface
tension [3, 4].

2 Formulation and Numerical Method

Consider the solution u(x, t) of the initial value problem

∂tu = F (u), u(x, 0) = u0(x). (2.1)

No assumptions are made about the operator F ; it can include nonlinear,
nonlocal, and unbounded operators. We take the spatial domain to be
2π, with periodic boundary conditions, which is to say, u(x + 2π, t) =
u(x, t). We consider the following functional:

G(u0, T ) =
1
2

∫ 2π

0

(u(x, T )− u0(x))2 dx.

Clearly, a solution u of (2.1) with initial data u0 is time-periodic with
period T if and only if G(u0, T ) = 0.

We seek to minimize G numerically. To do this, we use the BFGS
minimization algorithm [10]. This requires computing the derivative of G
with respect to each of u0 and T. It is clear how to compute the derivative
with respect to T ; we now describe how to calculate the derivative with
respect to u0. We remark that in applications, we may instead choose
to minimize a different functional depending on the situation. In any
case, computing the derivative with respect to the initial data will use
the same ideas as the present calculation.
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To begin, we compute the variation of G as follows:

Ġ =
d

dε

∣∣∣∣∣
ε=0

G(u0 + εu̇0, T ) =
∫ 2π

0

(u(x, T )− u0(x))(u̇(x, T )− u̇0(x)) dx.

We seek to write this as Ġ = 〈 δGδu0
, u̇0〉. To this end, we define an auxiliary

quantity Q(x, s), where Q(x, 0) = u(x, T )− u0(x) and s = T − t. We see
then that Ġ = 〈Q(·, 0), u̇(·, T ) − u̇0〉. We will define Q(x, t) for positive
s so that 〈Q(·, s), u̇(·, T − s)〉 is constant.

Notice that since ut = F (u), we have u̇t = (DF (u))u̇, where DF
is the linearization of the operator F. Now, differentiating our inner
product with respect to s, we have

〈Qs(·, s), u̇(·, T − s)〉 − 〈Q(·, s), (DF (u(·, T − s)))u̇(·, T − s)〉 = 0.

Taking the adjoint of DF, we se that this equality can be accomplished
by setting Qs = (DF (u(·, T − s))∗Q. We then have

δG

δu0
(x) = Q(x, T )−Q(x, 0).

3 Results: Benjamin-Ono

The Benjamin-Ono equation is

ut −Huxx + uux = 0,

where H is the Hilbert transform and subscripts denote differentiation.
This is a well-known dispersive PDE which arises as a long-wave model
in interfacial fluid dynamics. For β ∈ (−1, 1), there are the stationary
solutions

u(x;β) =
1− 3β2

1− β2
+

4β(cos(x)− β)
1 + β2 − 2β cos(x)

.

In one period, these solutions u(x;β) have one hump; by suitably rescal-
ing, we have N -hump solutions, given by u(x;β,N) = Nu(Nx;β). Fur-
thermore, if u(x) is any such stationary solution of the Benjamin-Ono
equation, then u(x−ct)+c is a traveling wave solution. These are known
to be all of the periodic traveling wave solutions of Benjamin-Ono [5].

Linearizing about the stationary solutions, we find the linearized evo-
lution vt = iBAv, where A = H∂x−u and B = 1

i ∂x. We are able to solve
for the eigenvalues and eigenvectors of the operator BA, and these give
formulas for time-periodic solutions of the linearized equation. We then
look for time-periodic solutions of the full problem, using the period and
initial data for the time-periodic solutions of the linearized equations to
determine the initial guess in the BFGS algorithm when minimizing G.
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Our findings in [1] and [2] are that there are indeed bifurcations
from stationary or traveling solutions of Benjamin-Ono, at all of the
periods predicted by the linear theory. In fact, for each bifurcation, we
have a four-parameter family of solutions emanating from the trivially
time-periodic (i.e., stationary or traveling) solution. We furthermore
find that every such four-parameter family emanating from a trivially
time-periodic solution coincides with a four-parameter family emanating
from a different trivially time-periodic solution; that is to say, we find
that these stationary and traveling solutions are connected to each other
through continua of nontrivial time-periodic solutions. One such non-
trivial time-periodic solution is shown in Figure 3.1.
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Figure 3.1: A time-periodic solution of the Benjamin-Ono equation. This
solution belongs to a continuum of solutions which connect a stationary
solution with one hump to a traveling solution with three humps; these
trivially time-periodic solutions are shown with dotted curves.

For the Benjamin-Ono equation, several other authors have studied
time-periodic solutions, finding explicit formulas for these solutions [9,
11]. It is in fact possible to use these explicit formulas to prove that
the bifurcations we find in [1, 2] do in fact occur; in one case, this is
proved in [2]. This is carried further by the second author in [13], and
additionally, bifurcations which are not predicted by the linear theory
are also shown to occur. The existence of explicit formulas for the time-
periodic solutions of the Benjamin-Ono equation provides an important
validation of our numerical method; we can confirm that every solution
we have computed for this equation does in fact correspond to a time-
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periodic solution of the equation, and is not just a solution of the initial
value problem which comes very close to returning to its initial state.

4 Results: Vortex Sheets

The vortex sheet with surface tension is the interface between two irro-
tational, immiscible fluids satisfying the incompressible Euler equations.
Across the interface, the normal component of the velocity is continuous
while the tangential velocity may jump. This implies that the vorticity
is not identically zero, but is instead a Dirac measure supported on the
interface. We describe the interface as a parameterized curve at each
time, (x(α, t), y(α, t)), horizontally periodic with period 2π :

x(α+ 2π, t) = x(α, t) + 2π, y(α+ 2π, t) = y(α, t).

For this problem, an efficient numerical method for solution of the initial
value problem was developed by Hou, Lowengrub, and Shelley [7, 8].
We use this same method for the numerical solution of the initial value
problem when solving for time-periodic solutions with our algorithm.

The method of [7, 8] uses a natural geometric formulation of the prob-
lem. Rather than evolving (x, y), the tangent angle θ = tan−1(yα/xα)
and the arclength element sα = (x2

α + y2
α)1/2 are evolved instead. Fur-

thermore, the parameterization is taken to be a normalized arclength
parameterization: if L(t) is the length of one period of the interface at
time t, then we insist on the condition sα(α, t) = L(t)/2π. This condition
can be maintained by properly choosing the tangential velocity of the
interface; by contrast, the normal velocity is determined by the fluid dy-
namics. For a given 2π-periodic curve with corresponding tangent angle
θ, the length L can be determined from θ. Therefore, the position of the
interface can be determined from θ and the location of one point.

If we let t̂ and n̂ be unit tangent and normal vectors at each point
of the interface at each time, then the velocity of the interface can be
written (x, y)t = U n̂ + V t̂. It is sometimes convienient to denote the
position of the interface as z = x+ iy. The normal velocity is U = W · n̂,
where W = (W1,W2) is the Birkhoff-Rott integral defined as

W1 − iW2 =
1

4πi
PV

∫ 2π

0

γ(α′) cot
(

1
2

(z(α)− z(α′))
)
dα.

The quantity γ is the vortex sheet strength and measures the jump in
tangential velocity across the interface.

We have the following evolution equations:

θt =
Uα + V θα

sα
, γt = τ

θαα
sα

+
(
γ(V −W · t̂)

sα

)
α

.



6 Ambrose, Wilkening

The constant τ here is the coefficient of surface tension, which is positive.
With surface tension present, the system is dispersive and is well-posed.

If we were to attempt to minimize the functional G described above,
we would need to compute solutions of the initial value problem from
time t = 0 until time t = T, and we would then need to solve the adjoint
problem backward in time over this same interval. Instead of doing this,
we utilize symmetry and only perform one-fourth of the computations.
We do this differently in the cases where the mean of γ is zero or non-zero.
In the case that the mean of γ is zero, we take initial data θ0(α) = 0,
and we seek solutions for which

G1(γ0, T ) =
∫ 2π

0

γ2

(
α,
T

4

)
dα = 0.

In the case that the mean of γ is non-zero, we again use initial data
θ0(α) = 0, and we seek solutions for which

G2(γ0, T ) =
∫ 2π

0

(
γ

(
α,
T

4

)
− γ

(
α− π, T

4

))2

+
(
θ

(
α,
T

4

)
+ θ

(
α− π, T

4

))2

dα = 0 (4.1)

We can argue that zeros of G1 or G2 lead to time-periodic solutions with
period T. We now give the argument in the second case.

Consider γ0 and T such that G2(γ0, T ) = 0. We can then solve the
initial value problem with data θ0 and γ0 to find θ and γ for 0 ≤ t ≤ T

4 ,

and we have θ
(
α, T4

)
= −θ

(
α− π, T4

)
and γ

(
α, T4

)
= γ

(
α− π, T4

)
. If

we define Θ(α, t) = −θ
(
α− π, T4 − t

)
and Γ(α, t) = γ

(
α− π, T4 − t

)
,

then Θ and Γ are also solutions of the vortex sheet evolution prob-
lem. Furthermore, Θ(α, 0) = θ

(
α, T4

)
and Γ(α, 0) = γ

(
α, T4

)
. There-

fore, Θ and Γ continue θ and γ. That is, for T
4 ≤ t ≤ T

2 , we can take
θ(α, t) = Θ

(
α, t− T

4

)
= −θ

(
α− π, T2 − t

)
and γ(α, t) = Γ

(
α, t− T

4

)
=

γ
(
α− π, T2 − t

)
. Similarly, we can continue the solution to T

2 ≤ t ≤
T by making the definitions θ(α, t) = θ

(
α− π, t− T

2

)
and γ(α, t) =

γ
(
α− π, t− T

2

)
. We see then that θ(α, T ) = θ

(
α− π, T2

)
= −θ(α, 0) =

θ(α, 0). Similarly, we have γ(α, T ) = γ
(
α− π, T2

)
= γ(α, 0). So, we have

indeed found a time-periodic solution.
Using the BFGS minimization algorithm requires computing δG1

δγ0
or

δG2
δγ0

as appropriate. As in the calculation of δG
δu0

in Section 2, these
variational derivatives can be found in terms of the solution of the adjoint
PDE for the linearization of the equations of motion. Thus, we linearize
the evolution equations about an arbitrary state, calculating the operator
DF (u) (using the notation of Section 2, with u = (θ, γ) here), and then
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Figure 4.1: Two profiles of a time-periodic vortex sheet with surface
tension with τ = 1 and zero mean vortex sheet strength. The particles
in the fluid are passive tracers added for visualization.

taking its adjoint (DF (u))∗. This is significantly complicated by the
presence of nonlinear, nonlocal singular integral operators, such as the
Birkhoff-Rott integral. Details of the calculation can be found in [3].

In [3] and [4], we compute bifurcations from the flat equilibrium θ = 0
in the case of zero and nonzero mean vortex sheet strength, respectively.
In both cases, we predict bifurcation from the flat vortex sheet using
linear theory, and we then find numerically that the expected bifurcation
does occur. We are thus able to compute many time-periodic solutions,
continuing the bifurcation curves as far as possible. Two such time-
periodic solutions are shown in Figures 4.1 and 4.2.
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Figure 4.2: Two profiles of a time-periodic vortex sheet with surface
tension with τ = 1 and nonzero mean vortex sheet strength. Notice that
the solution exhibits less symmetry than the solution in Figure 4.1.
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