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Abstract. The analysis of spinning axisymmetric bodies undergoing finite deformation
is useful for understanding the behavior of a wide variety of engineering systems – for
example, rolling tires. However, progress beyond the axisymmetric case has been lacking.
In this work, we present a methodology for the treatment of treaded rolling bodies by
devising a Newton-Krylov shooting scheme for the computation of cyclic steady states of
motion. The scheme advocated permits one to determine the entire transient (cyclically
steady) motion of a spinning treaded body with consideration of viscoelasticity as well
as contact. We demonstrate the viability of the method through three examples, (1) a
viscoelastic cylinder with eight sinusoidal tread blocks, (2) a viscoelastic cylinder with 16
square tread blocks, and (3) a viscoelastic oval in which repeated contact and separation
from a rigid plane excites distinct transient vibrational modes in the body during each
cycle. For practical values of the viscoelastic relaxation time, the new approach is found
to converge faster than the näıve approach of evolving an initial guess over many cycles
until a cyclic steady state is reached.

1. Introduction

The analysis of finitely deformable rolling bodies is an important and well-known problem
in engineering. In the case where the body (in the reference configuration) is axisymmetric,
important early works include Padovan and Paramodilok [18, 19], Oden and Lin [16],
Padovan [17], Bass [3], and Kennedy and Padovan [13]. This literature formulates the
equations of motion in the frame of reference of an observer translating alongside the
rotating body, who measures deformation at a point relative to the location of the material
point that would have been there were the body rotating rigidly with constant angular
velocity. We will refer to this as the “lab frame” and the usual reference configuration as
the “material” or “Lagrangian” frame. The lab frame permits a formulation of the equations
of motion that allows for finite deformation elastic and viscoelastic stress analysis of the
body while in contact with, say, a rigid plane – e.g. a roadway. The solution computed is
a true steady-state solution; it is strictly time independent in the lab frame.

A major and long-standing shortcoming of this analysis framework is that it strictly
requires an axisymmetric reference configuration of the body [15, 9]. Indeed the material
properties and geometry of the body must be invariant under rotation about the cylinder
axis for the equations of motion in the lab frame to be independent of time. In particular,
for applications where the rolling body has a tread pattern, the framework outlined above
is not applicable since the reference domain in the lab frame would vary in time.

Key words and phrases. treaded, rolling, tires, cyclic steady-state, time-periodic solutions.
1



2 SANJAY GOVINDJEE, TREVOR POTTER, AND JON WILKENING

Notwithstanding, if one contemplates the motion of a rolling treaded body, it is apparent
that for a wide class of conditions a cyclic steady state will be reached. Consider for example
an automobile tire rolling down the road. In principle, for uniform roadways, the state of
deformation of the tire will appear the same to an observer moving with the axle at the
instant that a tread block is in centered contact with the roadway. It matters not which
tread block is presently in contact. Furthermore as the tread block rotates, the tire will
undergo a dynamic oscillation that will return to the exact same state once the tread
block has rotated through any element of the body’s symmetry group. One näıve method
for dealing with this issue would be to attempt to roll the body (computationally) in a
Lagrangian frame from zero velocity up to the the desired rolling velocity and then waiting
for the system to settle into the desired cyclic steady state. This brute force approach
is certainly valid but can require large computational resources and leaves, as an open
question, the difficulty of ensuring that the cyclic steady state has been reached. In the
work of Qi et al. [21] a second method of treating the treaded body problem is discussed.
However, the method described is proprietary and no detail is provided to allow for a
scientific assessment of the procedure. It is the main objective of this work to outline a
scheme by which cyclic steady state motions of a rolling body can be computed in the
presence of viscoelasticity as well as contact.

In §2 we review in detail the geometrical modeling of the problem, the relevant bound-
ary conditions, and material modeling assumptions. In §3 we define our scheme for the
determination of cyclic steady solutions. The methodology amounts to finding the zero
of an expression that measures the difference between the system’s state at the start and
end of a (defined) period of motion, under the constraint of a system of partial differential
equations representing the evolution of the system. We outline our numerical methods in
§4 and, in §5, we demonstrate our scheme on a sequence of examples. In §6 we summarize
our findings.

2. Constitutive equations and boundary conditions

2.1. Reference configuration. For simplicity, we will consider two-dimensional treaded
bodies, although our methods also apply to three-dimensional problems. To describe a two-
dimensional body, we define a reference domain B with material points X = (X1, X2). We
work in a Lagrangian frame since the reference domain in the lab frame is not stationary
in time. Without treads, the two-dimensional body is an annulus about the origin with
inner radius r1 and outer radius r2. The reference configuration is then given by the set

(2.1) B = {(X1, X2) | r1 ≤ ‖X‖2 ≤ r2} .

The inner boundary Γh = {X| ‖X‖2 = r1} is called the hub and the outer boundary
Γe = {X| ‖X‖2 = r2} is called the edge.

The treadless body above can be seen as the image of the set A = {(r, θ)| r1 ≤ r ≤
r2, 0 ≤ θ < 2π} under the polar coordinate map P (r, θ) = (r cos θ, r sin θ). To obtain a
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hub
edge

Figure 1. The treaded rolling body corresponding to the reference domain B0.1,8.

body with treads, we perturb P (r, θ):

Pε,β(r, θ)
def
= ψ(r, ε, β)(cos θ, sin θ)

ψ(r, ε, β)
def
= r + ε(r − r1) cos(βθ) .

(2.2)

The integer β is the number of tread blocks and the parameter ε is the amplitude of
the treads relative to the body’s size. We then define the reference configuration for the
treaded body to be Bε,β = Pε,β(A) with hub Γh = {Pε,β(r, θ) | r = r1, 0 ≤ θ < 2π} and edge
Γe = {Pε,β(r, θ) | r = r2, 0 ≤ θ < 2π} . Fig. 1 shows the reference domain for β = 8, ε = 0.1.
When there is no danger of confusion, we will drop the subscripts from Bε,β and write B for
the reference configuration. We remark that the methodology described below is not limited
to sinusoidal perturbations of P (r, θ). While most of the paper focuses on ψ(r, ε, β) having
the form above, we consider a discontinuous square-wave perturbation in Section 5.6.

2.2. Elastic response. The motion of the body is given by φ(X, t) with deformation
gradient F = ∂φ/∂X. Without loss of generality, we assume a plane strain elastic response
that is described by a compressible Mooney-Rivlin model, with stored energy function
Ψe(I1, I2, I3) given in terms of the invariants of the three-dimensional right Cauchy-Green

tensor C3 =

[
C 0
0 1

]
, where C = FTF:

(2.3) Ψe =
κ

4
(I3 − log I3 − 1) +

µ

2
(1− s) (I1 − log I3 − 3) +

µ

2
s (I2 − 2 log I3 − 3) .

Here κ > 0 is the bulk modulus, µ > 0 is the shear modulus, and s ∈ [0, 1] can be chosen
to balance the two shear terms. The energy Ψe is polyconvex [4, §4.9] and satisfies the
conditions for Ball’s theory [2] of existence in finite deformation elasticity.

The first Piola-Kirchhoff stress tensor Pe that arises from Ψe is

(2.4) Pe =
∂Ψe

∂F
=
κ

2
(I3 − 1)F−T + µ(1− s)(F− F−T) + µs(I1F− FC− 2F−T) .

2.3. Viscoelastic response. Many popular models of viscoelasticity employ linear evo-
lution equations for the (large deformation) viscoelastic stresses and we have, indeed, suc-
cessfully applied our methods in this case [20] using a model of Simo [25]. However, it has



4 SANJAY GOVINDJEE, TREVOR POTTER, AND JON WILKENING

been demonstrated in [10], by counterexample, that such models can lead to exponential
energy growth and thus may not satisfy the 2nd Law of Thermodynamics. Therefore, here,
we use the viscoelastic model of Reese and Govindjee [11, 23, 22], a nonlinear Sidoroff-class
model [24] that has been proven to satisfy the 2nd Law.

The model of Reese and Govindjee [23] is derived by assuming a multiplicative split of
the deformation gradient

(2.5) F = FeFv

into an elastic part Fe and a viscous part Fv. We define a viscoelastic stored energy function
Ψv that depends only on a deformation measure associated with the so-called elastic part,
be = FeF

T
e :

(2.6) Ψv = ν
(κ

4
(Ie3 − log Ie3 − 1) +

µ

2
(1− s) (Ie1 − log Ie3 − 3) +

µ

2
s (Ie2 − 2 log Ie3 − 3)

)
.

Here Ie1 , I
e
2 , I

e
e are the invariants of the three-dimensional tensor b3e =

[
be 0
0 1

]
and ν is

a parameter that weights the strength of the viscoelastic response. Ψv gives rise to the
viscoelastic part of the first Piola-Kirchhoff stress tensor Pv:

Pv = 2
∂Ψv

∂be
beF

−T

= ν
(κ

2
(Ie3 − 1)I + µ(1− s)(be − I) + µs(Ie1be − b2

e − 2I)
)

F−T .

(2.7)

In order to have a closed system, the dynamics of the internal variable be must be
specified:

(2.8) ḃe = `be + be`
T − 2V(τ v)be ,

where

` = ḞF−1, τ v = 2
∂Ψv

∂be
be

V(τ v) =
1

2µτ

(
τ v −

1

2
(tr τ v)I

)
+

1

4κτ
(tr τ v)I .

(2.9)

Note that τ is a viscoelastic relaxation time parameter, while τ v is the Kirchhoff stress
tensor corresponding to Pv.

Finally, we define the total first Piola-Kirchhoff stress tensor to be the sum of the elastic
and viscoelastic stress tensors:

(2.10) P = Pe + Pv .

Assuming constant Dirichlet or Neumann boundary conditions, a computation shows that
the total stored energy function Ψ = Ψe + Ψv satisfies the 2nd Law of Thermodynamics
and may be used to construct a Lyapunov function of the dynamical system.
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Figure 2. Illustration of the positioning of the road and the traction forces
experienced on the edge. The traction increases in magnitude the deeper the
body penetrates the road. The direction of rotation is also indicated.

2.4. Boundary conditions. We imagine the body is being spun at a constant speed ω
along the hub so that

(2.11) φ(X, t) = R(t)X on Γh ,

where R(t) is the rotation matrix given by

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
. On the edge, there is

either a free surface or the body is in contact with, say, a roadway (or other stiff surface).
The free surface is described by the absence of traction along that part of the boundary of
the reference configuration. It is given by the formula PN = 0.

We model contact with the road by prescribing a simple penalty force pushing against
the edge of the body whenever the edge penetrates beneath the surface of the road (see Fig.
2). More specifically, let h > r1 be the distance from the x-axis to the road, so that the road
is lying along y = −h. If X is a point on the edge and x2 = φ2 = φ2(X) < −h, we consider
a force of magnitude kγ(−h−x2) per unit reference area in the x2 direction, e2. We require
that γ(0) = 0 and that γ(z) is monotonically increasing for z > 0. The parameter k > 0
controls the road stiffness. The specific choice of γ will be discussed in §5. The traction
force is applied at the point x = φ(X) in the deformed configuration. In precise terms, at
a point X on the edge with outward normal N of the reference configuration, we have

(2.12) PN = kγ(−h− x2)e2 .

The free boundary condition and the road boundary condition on the edge can both be
expressed via (2.12) by choosing γ such that γ(z) = 0 for z ≤ 0. For later convenience we
define

(2.13) h = kγ(−h− x2)e2 .

2.5. Equations of motion. The motion is given by

(2.14)
ρRφ̈ = DIV P on B

ḃe = `be + be`
T − 2V(τ v)be on B ,
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with boundary conditions

(2.15)
φ(X, t) = R(t)X on Γh

PN = h on Γe .

We reduce the second order equation to a system of first order equations by introducing
the velocity of the motion, ν(X, t), as an independent field variable. The equations of
motion on B then become:

φ̇ = ν

ν̇ =
1

ρR
DIV P

ḃe = `be + be`
T − 2V(τ v)be ,

(2.16)

with boundary conditions

(2.17)

φ(X, t) = R(t)X on Γh

ν(X, t) = Ṙ(t)X on Γh

PN = h on Γe .

The weak formulation of the equations of motion, which we will need later for finite element
analysis, are ∫

B
φ̇ · ζ =

∫
B
ν · ζ∫

B
ν̇ · η =

∫
B
− 1

ρR
P : Dη +

∫
Γe

1

ρR
h · η∫

B
ḃe : K =

∫
B

(
`be + be`

T − 2V(τ v)be
)

: K .

(2.18)

Here ζ, η and K are arbitrary test functions, with K being symmetric tensor-valued. We
take the test functions ζ and η to be 0 on the hub, Γh. When convenient, we will denote
the triple (φ,ν,be) by z.

2.6. Linearization. We will need the linearization of the weak form equations, in order
to apply Newton’s method. We will use the following notation: given a function f of z and

a tangent ẑ, we denote the derivative of f(z) in the direction of ẑ as f̂ . Precisely,

(2.19) f̂
def
=

d

dε

∣∣∣
ε=0

f(z + εẑ) .

With this notation, the linearized weak form equations become∫
B

˙̂
φ · ζ =

∫
B
ν̂ · ζ∫

B

˙̂ν · η =

∫
B
− 1

ρR
P̂ : Dη +

∫
Γe

1

ρR
ĥ · η∫

B

˙̂
be : K =

∫
B

(̂̀be + b̂e`
T − 2 ̂V(τ v)be

)
: K .

(2.20)
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Figure 3. The top figure is the reference configuration with material points
X and XR = RT(T )X. Bottom left is the deformed configuration at time 0.
Bottom right is the deformed configuration at time T , for which the body is
in the same state as at time 0. We observe that φ(XR, T ) = φ(X, 0).

with boundary conditions φ̂ = ν̂ = 0 on Γh. See Appendix A for a detailed computation

of the terms P̂,
˙̂

be, and ĥ.

3. Cyclic steady states

With the equations of motion in hand, we turn to finding cyclic steady states of the
treaded body. Other systems in which time-periodic solutions of partial differential equa-
tions are of interest include Couette turbulence [26], integrable equations [1], mode-locked
lasers [28], and surface water waves [27]. Below, we adopt a similar mathematical frame-
work as in these works.

We seek solutions of (2.18) that return to the same state as their initial configuration
after some time T . This corresponds (see Fig. 3) to searching for a solution z = (φ,ν,be)
that satisfies

φ(RT(T )X,T ) = φ(X, 0)

ν(RT(T )X,T ) = ν(X, 0)

be(R
T(T )X,T ) = be(X, 0).

(3.1)

For a body with no treads, the above equations make sense for any value of T , and by
solving them for all T simultaneously, one would obtain the steady rolling state of the
body. This cannot be done for a treaded body, since T must be an integer multiple of
2π/(ωβ), where β is the number of tread blocks. In this case, we refer to a solution of (3.1)
as a cyclic steady state. In general, one may expect to find different dynamics for different
choices of T , but in the viscoelastic case, we observe a single cyclic steady state for any
admissible choice of T .
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Figure 4. The reference element is mapped to the r-θ plane, where it is
then mapped by Pε,β onto the reference configuration Bε,β.

We rewrite equations (3.1) as a function of an initial condition z0 = (φ0,ν0, (be)0):

(3.2) HT (z0) = z(RT(T )X,T )− z0 ,

where z(X, t) evolves according to (2.18) with initial condition z0. We can now search for
cyclic steady states by finding a solution to HT (z0) = 0. To find a 0 of HT , we will also
require its derivative:

(3.3) DHT [z0](ẑ0) = ẑ(RT(T )X,T )− ẑ0 ,

where ẑ(X, t) evolves according to the linearized equations (2.20) with initial condition ẑ0.

4. Numerical methods

We now describe the numerical methods employed to discretize and then solve HT (z0) =
0. We employ quartic quadrilateral C0 iso-geometric elements to discretize the weak equa-
tions as in Fig. 4. We use a structured mesh that is mapped to the reference configuration
via Pε,β. The numerical degrees of freedom are given by the coefficients of the finite ele-
ment basis functions used to represent φ, ν, and be. The requisite mass matrix solves are
performed iteratively using conjugate gradients, which typically converges in 50 iterations,
independent of problem size. We evolve the discretized equations in time using a 5th or
8th order explicit Runge-Kutta method, both due to Dormand and Prince [12, 5, 6].

We chose to use high order iso-geometric elements to obtain more spatial accuracy relative
to the number of degrees of freedom on the mesh. Nothing in our method prevents us
from using lower order approximations; in fact, we have carried out experiments using
bi-linear elements on non-smooth structures (see Section 5.6). We chose an explicit time
stepping scheme to avoid solving non-linear equations at every time step. This comes at
the cost of small time steps needed to resolve compression waves. The 5th and 8th order
Dormand/Prince schemes have larger stability regions than lower order explicit methods,
which largely offsets any disadvantage of having 6 and 12 internal stages, respectively. The
stability regions of the 5th and 8th order methods are similar in size, making the 8th order
method roughly twice as expensive as the 5th order method when run with a timestep just
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small enough to achieve stability; however, at that point, the 8th order method is several
orders of magnitude more accurate at evolving the discrete equations, at least for smooth
tread patterns ψ(r, ε, β) and road force functions γ(x). Both timestepping schemes proved
successful in all the test problems reported below.

With the above numerical techniques we can compute z(X,T ) given an initial condition
z0. But to discretize HT , we must compute z(RTX,T ). We choose the number of elements
in the circumferential direction, ec, to be a multiple of β, the number of tread blocks. This
allows us to compute z(RTX,T ) by shifting the values of z(X,T ) at the nodes. Specifically,
if after time T the body has rotated over n tread blocks, we shift the values at the nodes
by nec/β elements counterclockwise.

We denote the discretization of HT by H̄T and denote its derivative, taken about a point

z0, by DH̄T [z0]. H̄T = 0 is solved using Newton’s method. Assuming a solution z
(∗)
0 that

satisfies H̄T (z
(∗)
0 ) = 0 and a first approximation to z

(∗)
0 , denoted z

(0)
0 , Newton’s method

produces successive approximations z
(i)
0 by the following procedure:

(4.1)
Solve DH̄T [z

(i)
0 ](ẑ

(i)
0 ) = −H̄T (z

(i)
0 ) for ẑ

(i)
0 .

Set z
(i+1)
0 = z

(i)
0 + ẑ

(i)
0 .

To solve for ẑ
(i)
0 in (4.1), we employ the iterative solver GMRES, which finds an approximate

solution to the linear equation Ax = b using only matrix-vector products. See [14] for an
introduction to this and other Newton-Krylov methods. We choose this approach over
a direct solve, which we implemented but found expensive. Indeed, forming the matrix

corresponding to DH̄T [z
(i)
0 ] is an O(n2k) operation and directly solving it is an order O(n3)

operation, where n is the number of spatial degrees of freedom and k is the number of
time steps. By contrast, the GMRES algorithm is O(n(k +m)m), where m is the number
of GMRES iterations performed (typically 12). In either approach, the constants in the
operation counts involving k are quite large due to the number of internal Runge-Kutta
stages and the use of conjugate gradients on the mass matrix.

We now briefly describe the GMRES algorithm applied to our Newton procedure (4.1).

We compute an orthonormal basis for span{b, Ab,A2b, . . . , Amb} with A = DH̄T [z
(i)
0 ] and

b = −H̄T (z
(i)
0 ). The minimizer of the residual ‖Ax − b‖2 over this subspace gives the

approximate solution to the linear system, which we set to be ẑ
(i)
0 .

To compute a basis for span{b, Ab,A2b, . . . , Amb}, we must apply the operator DH̄T [z
(i)
0 ]

to multiple inputs. Specifically, we first compute the solution z(X, t) of the nonlinear

equations (2.18) with initial condition z
(i)
0 and then evolve the equations linearized about

z, (2.20), for multiple initial conditions, i.e. those that arise when forming the Krylov
vectors. Since the values of z(X, t) are needed to evolve the linearized equations, the values
of z(X, t) are stored for all time steps and interpolated (to 5th or 8th order [12]) as needed
by the Runge-Kutta time-stepper for the linearized equations. Alternatively, one can avoid
interpolation by re-evolving the nonlinear equations along with the linearized ones [27].
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5. Results

5.1. Units and constants. Our choice of units is Newtons (N), megagrams (Mg), and
seconds (s). This choice implies the unit for length is millimeters (mm).

In the remainder of the results section, we will use the following values for constants,
unless otherwise noted. The body has inner radius r1 = 240 mm and outer radius r2 = 400
mm. The density of the body is ρ = 1 × 10−9 Mg/mm3. The bulk modulus κ and shear
modulus µ are 689 N/mm2 and 6.89 N/mm2, respectively. The dimensionless viscous
strength parameter ν has value 1 and the relaxation time is 0.01 seconds. The distance
from the axis to the road, h, is 380 mm and the road stiffness parameter k is 1000 N/mm2.
The body’s tread amplitude parameter ε is 0.1 and the number of treads β is 8.

We must also define the road force function γ(x), which should be monotonically increas-
ing for x > 0 and satisfy γ(x) = 0 for x ≤ 0. A simple choice would be

(5.1)

{
γ(x) = 0, x ≤ 0
γ(x) = x, x ≥ 0 .

However, this choice of γ is not smooth and will lead to non-smooth discretized equations.
Instead we choose the smooth function

(5.2)

{
γ(x) = 0, x ≤ 0
γ(x) = exp(x− x−1), x ≥ 0 .

This function has the drawback of converging to zero exponentially fast as x→ 0 from the
right, resulting in an weak road force for small road penetration. This trade-off between
smoothness and enforcement of constraints arises frequently in contact problems.

5.2. Example computation of a cyclic steady state. Figures 5–9 show the results of
a typical computation of a cyclic steady state of a treaded body. The mesh size is ec = 32,
er = 4. The body has β = 8 treads and is rotating with frequency ω = 10 rad/s. We rotate
the body over one tread block, which implies T = 2π/(βω).

We take 10000 time steps to evolve the weak equations and the linearized weak equations.
This number is chosen to be big enough that the time stepping remains stable. We have
found that with the 8th order method, the number of timesteps required for stability is
also sufficient to ensure that the temporal discretization is fully converged.

We first perform a static calculation to determine the deformation of the body at rest
when pressed against the road. This is used as an initial guess for Newton’s method,
which solves the cyclic steady state equations for the rotating body to approximately 8
digits of accuracy. Within each Newton iteration, GMRES performs linear solves on the
Jacobian of H̄T . Setting the tolerance on the GMRES residual to δ = 10−3, where we
require ‖b − Ax‖ < δ‖b‖ when approximately solving Ax = b, is sufficient for Newton’s
method to perform well, as shown in Section 5.4 below. A typical number of GMRES
iterations for this tolerance is 12 and a typical number of Newton iterations is 5. The
GMRES algorithm dominates the computation. Each iteration requires approximately 15
minutes on 32 processors, hence the entire simulation requires approximately 15 × 5 × 12
minutes = 15 hours.
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Figure 5. Plot of the body as it rotates counterclockwise from one tread
to the next. Red indicates high first principal stress while blue indicates low
first principal stress.

It is also possible to incrementally increase the road strength, rotation speed, or tread
amplitude until the desired values are reached but we found this unnecessary in the above
computation.

5.3. Time evolution of stress of the treaded body. After computing a cyclic steady
state for the treaded body, we compute the first principal stress. Fig. 5 shows the principal
stress of the body at various points in time over a full rotation, while Fig. 6 shows the
first principal stresses at a material point as it makes one full revolution around the body.
At time t = 0 the material point begins on the positive x-axis. The first principal stress
spikes as the material point passes near the road, and is largest at the outer boundary of
the body where contact with the road is made. We note that the slight double peak in the
first principal stress for a material point on the hub occurs because of high shear stresses
on either side of the portion of the hub closest to the road. It is to be observed that the
solutions found correspond to the cyclic steady state – the starting and ending values at
t = 0 and t = 2π/ω are identical.

Fig. 7 quantifies the difference in stresses at different points along a tread. The first
principal stress decreases as we move from the tread crest to the tread trough. At the
trough, it is appreciable in size when one or both of the adjacent tread crests are in contact
with the road (approximately during the time interval 0.27 < t < 0.58 in the bottom plot
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Figure 6. Plots of the evolution of the first principal stress over one revo-
lution. The plots represent points at different distances from the hub, from
furthest to closest. The constant lines indicate the initial and final values in
each plot, which are equal due to time-periodicity.

in Fig. 7). This is caused by the tread trough being squeezed by the adjacent treads due
to its concave geometry.

We also plot the magnitude of the traction experienced by a material point along the
edge as it rotates with the body in Fig. 8. As might be expected, the traction is largest at
the tread peak and smallest at the tread trough when the point passes over the road.

In Fig. 9 we observe the shear stress along the hub, specifically PN · t, where N is the
outward normal pointing into the hub and t is the tangent vector along the hub in the
counterclockwise direction. This figure indicates that the largest shear stresses on the hub
occur radially inline with the tread troughs.

5.4. Comparison with other methods. To give perspective on the computational cost
of our method, we compare it against two commonly used methods: (1) time independent
steady state computation and (2) evolving the body in time until it reaches a cyclic steady
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Figure 7. Plots of the evolution of the first principal stress over one revo-
lution. The plots represent points at different locations along the edge of the
body. The top plot is at a tread peak, the bottom plot is at a tread trough,
and the middle plot is midway between. The constant lines correspond to
the initial and final values in each plot.
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Figure 10. The smooth lines shows the error of the method presented in
this paper (3) while the jagged lines shows the error of method (2). Blue
corresponds to a relaxation time of τ = 0.015 while green corresponds to
τ = 0.01.

state due to damping. We will refer to our method as method (3). Since method (1) is only
applicable to axisymmetric bodies, we apply all three methods to such a body. Our method,
however, requires the specification of a period, T . In the case of an axisymmetric body,
any value of T will work. For the examples below, we have arbitrarily selected T = 2π/8ω,
which is the ε = 0 limit of the geometry studied in §5.2 above. We also utilize a quartic
mesh size of ec = 16, er = 2. Aside from these points, the parameters are the same as in
§5.2.

Using 8 processors, method (1) takes less than two seconds to complete. This is far
faster than method (2) and our method (3) due to the time independence of the problem.
In particular, method (1) requires only a handful of linear solves for Newton’s method to
converge to the solution as opposed to the ten thousand time steps required to rotate the
body in method (2) only 1/8th of a revolution. For method (3), the number of time steps
required for one pass scales linearly with the arbitrarily chosen T . Thus, comparing method
(3) to (1) on an axisymmetric body is not so meaningful.

Concentrating on method (2), however, allows us to make a better comparison. Method
(2) requires approximately 20 full revolutions to reduce the L2 norm of the residual vector
below 10−4 when the viscoelastic relaxation parameter τ is 0.0015. Each revolution take
about 160 minutes to compute on 8 processors, the entire solve takes about 53 hours.
Method (3) requires the equivalent of about 10 revolutions to achieve the same error, which
is made up of a combination of evolutions of the full equations of motion and evolution of
the linear equations of motion over the period T . This amounts to about 27 hours, a 50
percent reduction in computational time.



CYCLIC STEADY STATES OF TREADED ROLLING BODIES 17

Figure 11. Plots of a simple oscillating mode of the oval over one period.

Fig. 10 shows the error in the methods as a function of the number of actual (or effective)
revolutions of the body – a proxy for computational time. In the case of method (3) we
count an effective revolution as being equivalent to time integrating our equations from
t = 0 to T a total of 8 times (based on our choice of T ). We note that while our method
converges faster than method (2), the best method for this range of parameters would be
a hybrid: Method (2) performs better when we are far from the solution while our method
is initially inefficient but eventually locks onto a faster convergence rate. Our method
would converge quadratically if the GMRES tolerance were reduced more aggressively as a
function of the residual in Newton’s method, but this requires more iterations of the Krylov
solver in later stages of Newton’s method; see [14, 8, 7]. We also note that the convergence
of both methods is closely related to the viscoelastic relaxation time parameter τ : larger
values of τ lead to longer convergence times, which we can see by comparing the convergence
rates for the different colored plots in Fig. 10. With small values of τ (e.g. τ < 10−3),
convergence can happen in only a few revolutions and there is little advantage in using
method (3) over method (2). As τ becomes larger, the number of revolutions required for
method (2) to converge grows faster than the number of Krylov solves needed in method
(3), and our method converges faster. It should be pointed out that the relaxation times
shown are rather small for common elastomeric materials and thus we are showing method
(2) in its best light – especially when one considers that the ratio (2π/ω)/τ is close to 50.

Finally, we note that the main computational expense of method (2) and method (3)
is the time stepping computation. Since any time stepping algorithm, finite element dis-
cretization, or parallelization can be applied to both of the methods, the performance ratio
of the two methods is independent of these choices.

5.5. A rotating viscoelastic oval. We now consider an example where the numerical
method for finding cyclic steady states can capture the natural damped oscillations of a
viscoelastic body. This demonstrates that the cyclic steady state framework can accurately
capture motions that would not be present in any steady state calculation.

Consider a rotating oval-shaped body, which is modeled in our framework by setting
β = 2, ε = 0.4. The oval is spun at 20 rad/s and can collide with a roadway (a flat
surface), which we expect to excite vibrations. By computing the smallest eigenvalue and
corresponding eigenvector of the tangent operator for the stationary oval, we observe the
fundamental mode (see Fig. 11), which has a period of oscillation of approximately 1.7×10−2

seconds.

We compute a cyclic steady state solution for half a revolution of the oval, which has a
half-period of approximately 0.15 seconds. This is ample time to observe oscillations of the
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Figure 12. Cyclic steady state transient oscillations in a viscoelastic oval.
(top) Schematic figures showing the position of the oval and its right-most
tip. (middle) Plots of displacement (θ − ωt) over a full revolution of the
oval, where θ is the angular position of the right-most tip. (bottom) Plot
of Re (eλt), where λ is the eigenvalues corresponding to the fundamental
mode. The similar frequency and rate of decay of the two plots near 0.1
seconds indicate that the excitation of the fundamental mode is captured in
the middle plot.
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fundamental mode. The computed cyclic steady state solution shows that the fundamental
mode is excited as the oval contacts the road. In Fig. 12 we see good agreement between the
angular displacement of the computed cyclic steady state of the oval and the oscillations
predicted by the fundamental mode analysis. In the middle plot, the oscillation near
0.05 − 0.15 seconds corresponds to the opposite end (left-most tip) of the oval contacting
the road. The large displacement near 0.2− 0.27 seconds corresponds to the right-most tip
itself contacting the road.

5.6. Non-smooth tread patterns. Real automobile tires have complex tread patterns
designed to maintain traction in rain, snow and ice. Such treads are not as smooth as
the sinusoidal perturbations of a cylinder studied above. In this section we confirm that
the methodology developed in this paper can handle non-smooth tread blocks as well as
low-order elements. Figure 13 shows the cyclic steady-state solution of a square-wave per-
turbation of a cylinder computed using continuous bi-linear quadrilateral elements. (Note
that for plotting purposes the elements are shown with diagonals; this is only for plotting).
The mesh consists of an inner cylinder, with 128 nodes in the circumferential direction and
17 nodes in the radial direction, together with 16 tread blocks, each containing a 5×5 array
of nodes. The mesh spacing is uniform in the radial direction, and uniform with respect to
polar angle in the circumferential direction. The behavior of the Newton-Krylov algorithm
in this example is very similar to what was described in Section 5.2, with 5 Newton itera-
tions consisting of 12 GMRES cycles being sufficient to reduce the L2 norm of the residual
by a factor of 10−9. Thus, convergence of the Newton-Krylov scheme does not appear to
suffer when the boundary is not smooth and lower order elements are used to model the
material. Though not shown, we have verified that our method (3) out performs method
(2) on this problem in a similar manner as to what was shown in §5.4.

6. Conclusion

The analysis of spinning and rolling non-axisymmetric bodies undergoing finite defor-
mation has been a long standing computational problem. In this work we have outlined a
scheme for computing their cyclic steady states that does not involve rolling the body in a
Lagrangian frame from zero velocity to its final speed and then waiting for it to settle into
a cyclic steady state. The central idea was to note that the essence of the question is to
determine an initial condition of the body that results in a time evolved state at the end of
a (fixed) period which is identical to the initial condition. This permits one to construct a
residual expression that must be zero for a cyclic steady state. The zero of this residual is
then found under the constraint of the partial differential equations that govern the time
evolution of the rotating body’s motion and internal state variables. The scheme has been
demonstrated on a set of simple examples in order to illustrate its viability and to highlight
the types of technical response quantities that can be computed from such a methodology.
The method is also seen to outperform the näıve method of simply rolling the body from
a static state to the rolling velocity.
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Figure 13. Cyclic steady state of a body with non-smooth treads. The
coloring shows: (left) the magnitude of the displacement from the stress-free
configuration; (right) the principle stress.
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Appendix A. Linearizations

Recall the linearized equations:∫
B

˙̂
φ · ζ =

∫
B
ν̂ · ζ∫

B

˙̂ν · η =

∫
B
− 1

ρR
P̂ : Dη +

∫
Γe

1

ρr
ĥ · η∫

B

˙̂
be : K =

∫
B

(̂̀be + b̂e`
T − 2 ̂V(τ v)be

)
: K .

(A.1)
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We need formulas for P̂, ĥ, and
˙̂

be. This requires a series of computations. The first set

culminates in the computation of P̂e:

F̂ = Dφ̂

Ĉ = F̂
T
F + FTF̂

Î1 = 2(F : F̂)

Î3 = 2I3(F−T : F̂)

F̂−T = −F−TF̂
T
F−T

P̂e =
κ

2
(Î3F

−T + (I3 − 1)F̂−T)

+ µ(1− s)(F̂− F̂−T) + µs(Î1F + I1F̂− (FĈ + F̂C)− 2F̂−T) .

The second set gives P̂v:

Îe1 = (b̂e : I)

Îe3 = Ie3(b−1
e : b̂e)

τ̂v = ν
(κ

2
Î3I + µ(1− s)b̂e + µs(Îe1be + Ie1 b̂e − (beb̂e + b̂ebe))

)
P̂v = τvF̂

−T + τ̂vF
−T .

P̂ is then given by

P̂ = P̂e + P̂v .

A third set of computations leads to
˙̂

be:

˙̂
F = Dν̂̂̀ =

˙̂
FF−1 + ḞF̂−1

V̂(τ v) =
1

2µτ

(
τ̂v −

1

2
(tr τ̂v)I

)
+

1

4κτ
(tr τ̂v)I

˙̂
be = ̂̀be + b̂e`

T − 2 ̂V(τ v)be

= (̂̀be + `b̂e) + (b̂e`
T + be

̂̀T)− 2(V̂(τv)be + V(τv)b̂e) .

Finally, we compute ĥ:

x̂2 = φ̂2

ĥ = −kγ′(−h− x2)x̂2e2 .
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