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Abstract

We present an algorithm for computing a Smith form with multipliers of a regular matrix
polynomial over a field. This algorithm differs from previous ones in that it computes a local
Smith form for each irreducible factor in the determinant separately and then combines them
into a global Smith form, whereas other algorithms apply a sequence of unimodular row and
column operations to the original matrix. The performance of the algorithm in exact arithmetic
is reported for several test cases.
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1. Introduction

Canonical forms are a useful tool for classifying matrices, identifying their key proper-
ties, and reducing complicated systems of equations to the de-coupled, scalar case. When
working with matrix polynomials over a field K, one fundamental canonical form, the
Smith form, is defined. It is a diagonalization

A(λ) = E(λ)D(λ)F (λ) (1)
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of the given matrix A(λ) by unimodular matrices E(λ) and F (λ) such that the diagonal
entries di(λ) of D(λ) are monic polynomials and di(λ) is divisible by di−1(λ) for i ≥ 2.

This factorization has various applications. The most common one [7, 10, 15] involves
solving the system of differential equations

A(q) d
qx

dtq
+ · · ·+A(1) dx

dt
+A(0)x = f(t), (2)

where A(0), . . . , A(q) are n × n matrices over C. For brevity, we denote this system by
A(d/dt)x = f , where A(λ) = A(0)+A(1)λ+ · · ·+A(q)λq. Assume for simplicity that A(λ)
is regular, i.e. det[A(λ)] is not identically zero, and that (1) is a Smith form of A(λ). The
system (2) is then equivalent to




d1(
d
dt
)

. . .

dn(
d
dt
)







y1
...

yn


 =




g1
...

gn


 ,

where y = F (d/dt)x(t) and g = E−1(d/dt)f(t). Note that E−1(λ) is a matrix polynomial
over C due to the unimodularity of E(λ). This system splits into n independent scalar
ordinary differential equations

di

( d

dt

)
yi(t) = gi(t), 1 ≤ i ≤ n,

and the solution of (2) is then given by x = F−1(d/dt)y, where F−1(λ) is also a matrix
polynomial over C.

Another important application of the Smith form concerns the study of the algebraic
structural properties of systems in linear control theory [10, 16, 20]. For example, the
zeros and poles of a multivariable transfer function H(s) are revealed by the Smith-
McMillan form of H(s), which is a close variant of the Smith form, but for rational (as
opposed to polynomial) matrices. In many applications, one only needs to compute a
minimal basis for the kernel of a matrix polynomial. Specialized algorithms [15, 26] have
been developed for this sub-problem of the Smith form calculation.

Smith forms of linear matrix polynomials (i.e. matrix pencils) are related to the con-
cept of similarity of matrices. A fundamental theorem in matrix theory [5, 7] states that
two square matrices A and B over a field K are similar if and only if their characteristic
matrix polynomials λI − A and λI − B have the same Smith form D(λ). Other appli-
cations of this canonical form include finding the Frobenius form [22, 24] of a matrix A
over a field by computing the invariant factors of the matrix pencil λI −A.

Many algorithms have been developed for the computation of canonical forms of ma-
trix polynomials in floating point arithmetic. One common approach involves finding an
equivalent linear matrix pencil with the same finite zeros as the original matrix polyno-
mial and a closely related Smith form [20]. The Kronecker form [19, 20, 3] of the matrix
pencil is then computed to determine the eigenstructure of the original polynomial ma-
trix. Another approach centers around computing the local spectral structure of a matrix
polynomial at a single complex root, λ0, of the characteristic determinant [6, 25]. These
methods usually boil down to computing kernels of nested Toeplitz matrices [25, 26].
One advantage of this local approach over the global matrix pencil approach is that only
a few terms in an expansion of the matrix polynomial in powers of λ − λ0 are needed
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to compute the spectral behavior. This can lead to a significant computational savings,
and also allows for generalization from matrix polynomials to analytic matrix functions
[6, 25]. Such local canonical forms can be used to efficiently compute successive terms
in the Laurent expansion of the inverse of an analytic matrix [1, 25]. Backward stability
analysis of the effect of roundoff error may be found in [20, 25, 26]. A geometric approach
to the perturbation theory of matrix pencils is discussed in [4].

The symbolic computation of Smith forms of matrices overQ[λ] is also a widely studied
topic. Kannan [13] gave a method for computing the Smith form with repeated trian-
gularizations of the matrix polynomial over Q. Kaltofen, Krishnamoorthy and Saunders
[11] gave the first polynomial time algorithm for the Smith form (without multipliers) us-
ing the Chinese remainder theorem. A new class of probabilistic algorithms (the Monte
Carlo algorithms) were proposed by Kaltofen, Krishnamoorthy and Saunders [11, 12].
They showed that by multiplying the given matrix polynomial by a randomly generated
constant matrix on the right, the Smith form with multipliers is obtained with high prob-
ability by two steps of computation of the Hermite form. A Las Vegas algorithm given by
Storjohann and Labahn [17, 18] significantly improved the complexity by rapidly check-
ing the correctness of the result of the KKS algorithm. Villard [21, 23] established the
first deterministic polynomial-time method to obtain the Smith form with multipliers
by explicitly computing a good-conditioning matrix that replaces the random constant
matrix in the Las Vegas algorithm. Villard also applied the method of Marlin, Labhalla
and Lombardi [14] to obtain useful complexity bounds for the algorithm.

We propose a new deterministic algorithm for the symbolic computation of Smith
forms of matrix polynomials over a field in Section 3. Our approach differs from previous
methods in that we begin by constructing local diagonal forms that we later combine
to obtain a (global) post-multiplier. Although we do not discuss complexity bounds, we
compare the performance of our algorithm to Villard’s method with good conditioning
in Section 4, and discuss the reasons for the increase in speed. The new algorithm is also
easy to parallelize. In Appendix A, we present an algebraic framework that connects this
work to [25], and give a variant of the algorithm in which all operations are done in the
field K rather than manipulating polynomials directly.

As mentioned above, local canonical forms have been used successfully to study the
structure of a matrix polynomial near a single root λ0 ∈ C of the characteristic deter-
minant. An important point that has been neglected in the literature is that these roots
λ0 may not be expressible in radicals, or may involve such complicated expressions that
current algorithms can only be carried out in floating point arithmetic. A major goal of
this paper is to develop a machinery for computing local forms for all the complex roots
of a Q-irreducible factor p(λ) of the characteristic determinant simultaneously, without
having to resort to floating point arithmetic at each root separately. This is done by
working over the fields Q or Q+ iQ rather than R or C when computing local forms.

2. Preliminaries

In this section, we describe the theory of Smith forms of matrix polynomials over a
field K, which follows the definition in [7] over C. In practice, K will be Q, Q + iQ,
R, or C, but it is convenient to deal with all these cases simultaneously. We also give a
brief review of the theory of Jordan chains as well as Bézout’s identity, which play an
important role in our algorithm for computing Smith forms of matrix polynomials.
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2.1. Smith Forms

Suppose A(λ) =
∑q

k=0 A
(k)λk is an n × n matrix polynomial, where A(k) are n × n

matrices whose entries are in a fieldK. Assuming that A(λ) is regular, i.e. the determinant
of A(λ) is not identically zero, the following theorem is proved in [7] (for K = C).

Theorem 1. There exist matrix polynomials E(λ) and F (λ) over K of size n× n, with
constant nonzero determinants, such that

A(λ) = E(λ)D(λ)F (λ), D(λ) = diag[d1(λ), . . . , dn(λ)], (3)

where D(λ) is a diagonal matrix with monic scalar polynomials di(λ) over K such that
di(λ) is divisible by di−1(λ).

Since E(λ) and F (λ) have constant nonzero determinants, (3) is equivalent to

U(λ)A(λ)V (λ) = D(λ), (4)

where U(λ) := E(λ)−1 and V (λ) := F (λ)−1 are also matrix polynomials over K.

Definition 2. The representation in (3) or (4), or oftenD(λ) alone, is called a Smith form
of A(λ). The matrices U(λ), V (λ) are known as multipliers. Square matrix polynomials
with constant nonzero determinants like E(λ) and F (λ) are called unimodular.

The diagonal matrix D(λ) in the Smith form is unique, while the representation (3)
is not. Suppose that

∆(λ) := det[A(λ)] (5)

can be decomposed into prime elements p1(λ), . . . , pl(λ) in the principal ideal domain

K[λ], that is, ∆(λ) = c
∏l

j=1 pj(λ)
κj where c 6= 0 is in the field K, pj(λ) is monic and

irreducible, and κj are positive integers for j = 1, . . . , l. Then the di(λ) are given by

di(λ) =

l∏

j=1

pj(λ)
κji , (1 ≤ i ≤ n)

for some integers 0 ≤ κj1 ≤ · · · ≤ κjn satisfying
∑n

i=1 κji = κj for j = 1, . . . , l.
We now define a local Smith form for A(λ) at p(λ). Let p(λ) = pj(λ) be one of the

irreducible factors of ∆(λ) and define αi = κji, µ = κj . Generalizing the case that
p(λ) = λ− λj , we call µ the algebraic multiplicity of p(λ).

Theorem 3. Suppose A(λ) is an n × n matrix over K[λ] and p(λ) is an irreducible
factor of ∆(λ). There exist n× n matrix polynomials E(λ) and F (λ) such that

A(λ) = E(λ)D(λ)F (λ), D(λ) = diag[p(λ)α1 , . . . , p(λ)αn ], (6)

where 0 ≤ α1 ≤ · · · ≤ αn are non-negative integers and p(λ) does not divide det[E(λ)]
or det[F (λ)].

E(λ) and F (λ) are not uniquely determined in a local Smith form. In particular, we
can impose the additional requirement that F (λ) be unimodular by absorbing the missing
parts of D(λ) in Theorem 1 into E(λ). Then the local Smith form of A(λ) at p(λ) is given
by

A(λ)V (λ) = E(λ)D(λ), (7)

where V (λ) := F (λ)−1 is a matrix polynomial.
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2.2. Multiplication and division in R/pR

We define R = K[λ] and M = Rn. Note that R is a principal ideal domain and M

is a free R-module of rank n. Suppose p is a prime element in R. Since p is irreducible,
R/pR is a field and M/pM is a vector space over this field.

Multiplication and division in R/pR are easily carried out using the companion matrix
of p. If we set s := deg p and define γ : Ks → R/pR by

γ(x)(λ) = x(0) + · · ·+ λs−1x(s−1) + pR, x =
(
x(0); . . . ;x(s−1)

)
∈ Ks, (8)

we can pull back the field structure of R/pR to Ks to obtain

xy = γ(x)(S)y = [x(0)I + x(1)S + · · ·+ x(s−1)Ss−1]y

= [y, Sy, . . . , Ss−1y]x = [x, Sx, . . . , Ss−1x]y
(9)

and x/y = [y, Sy, . . . , Ss−1y]−1x, where

S =




0 . . . 0 −a0

1
. . .

...
...

. . . 0 −as−2

0 1 −as−1




(10)

is the companion matrix of p(λ) = a0+a1λ+ · · ·+as−1λ
s−1+λs. Note that S represents

multiplication by λ in R/pR. The matrix [y, Sy, . . . , Ss−1y] is invertible when y 6= 0 since
a non-trivial vector x in its kernel would lead to non-zero polynomials γ(x), γ(y) ∈ R/pR

whose product is zero (mod p), which is impossible as p is irreducible.

2.3. Jordan Chains

Finding a local Smith form of a matrix polynomial over C at p(λ) = λ−λ0 is equivalent

to finding a canonical system of Jordan chains [6, 25] for A(λ) at λ0. We now generalize

the notion of Jordan chain to the case of an irreducible polynomial over a field K.

Definition 4. Suppose A(λ) is an n × n matrix polynomial over a field K, p(λ) is
irreducible in K[λ], and α ≥ 1 is an integer. A vector polynomial x(λ) ∈ M = K[λ]n is

called a root function of order α for A(λ) at p(λ) if

A(λ)x(λ) = O(p(λ)α) (11)

and p(λ) ∤ x(λ). The meaning of (11) is that each component of A(λ)x(λ) is divisible by
p(λ)α. If the root function x(λ) has the form

x(λ) = x(0)(λ) + p(λ)x(1)(λ) + · · ·+ p(λ)α−1x(α−1)(λ) (12)

with deg x(k)(λ) < s := deg p(λ), the coefficients x(k)(λ) are said to form a Jordan chain

of length α for A(λ) at p(λ). A root function can always be converted to the form (12)
by truncating or zero-padding its expansion in powers of p(λ). If K can be embedded in

C, (11) implies that over C, x(λ) is a root function of A(λ) of order α at each root λj of

p(λ) simultaneously.
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Definition 5. Several vector polynomials {xj(λ)}
ν
j=1 form a system of root functions at

p(λ) if

1. A(λ)xj(λ) = O(p(λ)αj ), (αj ≥ 1, 1 ≤ j ≤ ν)

2. The set {ẋj(λ)}
ν
j=1 is linearly independent in M/pM over R/pR,

where R = K[λ], M = Rn, ẋj = xj + pM .

(13)

It is called canonical if (1) ν = dimker Ȧ, where Ȧ is the linear operator on M/pM in-
duced by A(λ); (2) x1(λ) is a root function of maximal order α1; and (3) for i > 1, xi(λ)
has maximal order αi among all root functions x(λ) ∈ M such that ẋ is linearly inde-
pendent of ẋ1, . . . , ẋi−1 in M/pM . The integers α1 ≥ · · · ≥ αν are uniquely determined
by A(λ). We call ν the geometric multiplicity of p(λ).

Definition 6. An extended system of root functions x1(λ),. . . ,xn(λ) is a collection of
vector polynomials satisfying (13) with ν replaced by n and αj allowed to be zero. The
extended system is said to be canonical if, as before, the orders αj are chosen to be
maximal among root functions not in the span of previous root functions in M/pM .
The resulting sequence of numbers α1 ≥ · · · ≥ αν ≥ αν+1 = · · · = αn = 0 is uniquely
determined by A(λ).

Given such a system (not necessarily canonical), we define the matrices

V (λ) = [x1(λ), . . . , xn(λ)], (14)

D(λ) = diag[p(λ)α1 , . . . , p(λ)αn ], (15)

E(λ) = A(λ)V (λ)D(λ)−1 . (16)

E(λ) is a polynomial since column j of A(λ)V (λ) is divisible by p(λ)αj . The following
theorem shows that aside from a reversal of the convention for ordering the αj , finding a
local Smith form is equivalent to finding an extended canonical system of root functions:

Theorem 7. The following three conditions are equivalent:
(1) the columns xj(λ) of V (λ) form an extended canonical system of root functions

for A(λ) at p(λ) (up to a permutation of columns).
(2) p(λ) ∤ det[E(λ)].
(3)

∑n
j=1 αj = µ, where µ is the algebraic multiplicity of p(λ) in ∆(λ).

This theorem is proved e.g. in [6] for the case that K = C. The proof over a general
field K is identical, except that the following lemma is used in place of invertibility of
E(λ0). This lemma also plays a fundamental role in our construction of Jordan chains
and local Smith forms.

Lemma 8. Suppose K is a field, p is an irreducible polynomial in R = K[λ], and
E = [y1, . . . , yn] is an n × n matrix with columns yj ∈ M = Rn. Then p ∤ det(E) ⇔
{ẏ1, . . . , ẏn} are linearly independent in M/pM over R/pR.

Proof. The ẏj are linearly independent iff the determinant of Ė (considered as an n× n
matrix with entries in the field R/pR) is non-zero. But

det Ė = detE + pR, (17)

where detE is computed over R. The result follows. 2
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2.4. Bézout’s Identity

As K[λ] is a principal ideal domain, Bézout’s Identity holds, which is our main tool
for combining local Smith forms into a single global Smith form. We define the notation
gcd(f1, . . . , fl) to be 0 if each fj is zero, and the monic greatest common divisor (GCD)
of f1, . . . , fl over K[λ], otherwise.

Theorem 9. (Bézout’s Identity) For any two polynomials f1 and f2 in K[λ], where K
is a field, there exist polynomials g1 and g2 in K[λ] such that

g1f1 + g2f2 = gcd(f1, f2). (18)

Bézout’s Identity can be extended to combinations of more than two polynomials:

Theorem 10. (Generalized Bézout’s Identity) For any scalar polynomials f1, . . . , fl in
K[λ], there exist polynomials g1, . . . , gl in K[λ] such that

l∑

j=1

gjfj = gcd(f1, . . . , fl).

The polynomials gj are called the Bézout coefficients of {f1, . . . , fl}.

In particular, suppose we have l distinct prime elements {p1, . . . , pl} in K[λ], and

fj is given by fj =
∏l

k 6=j p
βk

k , where β1, . . . , βl are given positive integers and the

notation
∏l

k 6=j indicates a product over all indices k = 1, . . . , l except k = j. Then
gcd (f1, . . . , fl) = 1, and we can find g1, . . . , gl in K[λ] such that

l∑

j=1

gjfj = 1. (19)

In this case, the polynomials gj are uniquely determined by requiring deg(gj) < sjβj ,
where sj = deg(pj). The formula (19) modulo pk shows that gk is not divisible by pk.

The Bézout coefficients are easily computed using the extended Euclidean algorithm
[2]. In practice, we use MatrixPolynomialAlgebra[HermiteForm] in Maple to find a unimod-
ular matrix Q such that

Q




f1

f2
...

fl




=




r

0

...

0




, (20)

where r = gcd(f1, . . . , fl) = 1. The first row of Q is [g1, . . . , gl]. One could avoid com-
puting the remaining rows of Q by storing the sequence of elementary unimodular oper-
ations required to reduce [f1; . . . ; fl] to [r; 0; . . . ; 0] and applying them to the row vector
[1, 0, . . . , 0] from the right to obtain [g1, . . . , gl].

3. An Algorithm for Computing a (global) Smith Form

In this section, we describe an algorithm for computing a Smith form of a regular
n×n matrix polynomial A(λ) over a field K. We have in mind the case where K = C, R,
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Q or Q + iQ ⊂ C, but the construction works for any field. The basic procedure follows
several steps, which will be explained further below:
• Step 0. Compute ∆(λ) = det[A(λ)] and decompose it into irreducible monic factors in
K[λ],

∆(λ) = const ·p1(λ)
κ1 . . . pl(λ)

κl . (21)

• Step 1. Compute a local Smith form

A(λ)Vj(λ) = Ej(λ) diag
[
pj(λ)

κj1 , . . . , pj(λ)
κjn
]

(22)

for each factor pj(λ) of ∆(λ).

• Step 2. Find a linear combination Bn(λ) =
∑l

j=1 gj(λ)fj(λ)Vj(λ) using the Bézout

coefficients of fj(λ) =
∏l

k 6=j pk(λ)
κkn so that the columns of Bn(λ) form an extended

canonical system of root functions for A(λ) with respect to each pj(λ).
• Step 3. Eliminate extraneous zeros from det

[
A(λ)Bn(λ)

]
by finding a unimodular

matrix V (λ) such that B1(λ) = V (λ)−1Bn(λ) is lower triangular. We will show that
A(λ)V (λ) is then of the form E(λ)D(λ) with E(λ) unimodular and D(λ) as in (3).

Remark 11. Once the local Smith forms are known, the diagonal entries of the matrix
polynomial D(λ) are given by

di(λ) =

l∏

j=1

pj(λ)
κji , i = 1, . . . , n.

This allows us to order the columns once and for all in Step 2.

3.1. A Local Smith Form Algorithm (Step 1)

In this section, we show how to generalize the construction in [25] for finding a canon-
ical system of Jordan chains for an analytic matrix function A(λ) over C at λ0 = 0 to
finding a local Smith form for a matrix polynomial A(λ) with respect to an irreducible
factor p(λ) of ∆(λ) = det[A(λ)]. The new algorithm reduces to the “exact arithmetic”
version of the previous algorithm when p(λ) = λ. In Appendix A, we present a variant
of the algorithm that is easier to implement than the current approach, and is closer in
spirit to the construction in [25], but is less efficient by a factor of s = deg p.

Our goal is to find matrices V (λ) and E(λ) such that p(λ) does not divide det[V (λ)]
or det[E(λ)], and such that

A(λ)V (λ) = E(λ)D(λ), D(λ) = diag[p(λ)α1 , . . . , p(λ)αn ], (23)

where 0 ≤ α1 ≤ · · · ≤ αn. In our construction, V (λ) will be unimodular, which reduces
the work in Step 3 of the high level algorithm, the step in which extraneous zeros are
removed from the determinant of the combined local Smith forms.

We start with V (λ) = In×n and perform a sequence of column operations on V (λ)
that preserve its determinant (up to a sign) and systematically increase the orders αi in
D(λ) in (23) until det[E(λ)] no longer contains a factor of p(λ). This can be considered
a “breadth first” construction of a canonical system of Jordan chains, in contrast to the
“depth first” procedure described in Definition 5 above.

The basic algorithm is presented in Figure 1. The idea is to run through the columns
of V in turn and “accept” columns whenever the leading term of the residual A(λ)xi(λ)
is linearly independent of its predecessors; otherwise we find a linear combination of

8



Algorithm 1. (Local Smith form, preliminary version)

k = 0, i = 1, V = [x1, . . . , xn] = In×n

while i ≤ n
rk−1 = n+ 1− i rk−1 := dim. of space of J. chains of length ≥ k
for j = 1, . . . , rk−1

yi = rem(quo(Axi, p
k), p) define yi so Axi = pkyi +O(pk+1)

if the set {ẏ1, . . . , ẏi} is linearly independent in M/pM over R/pR
αi = k, i = i+ 1 accept xi and yi, define αi

else

find ȧ1, . . . , ȧi−1 ∈ R/pR so that ẏi −
∑i−1

m=1 ȧmẏm = 0̇

⋆ x
(new)
i = x

(old)
i −

∑i−1
m=1 p

k−αmamxm

xtmp = xi, xm = xm+1, (m = i, . . . , n− 1), xn = xtmp

end if
end for j
k = k + 1

end while
β = k − 1, rβ = 0 β := αn = maximal Jordan chain length

Fig. 1. Algorithm for computing a local Smith form. Here quo(·, ·) and rem(·, ·) are the quotient
and remainder of polynomials: g = quo(f, p), r = rem(f, p) ⇔ f = gp+ r, deg r < deg p.

previously accepted columns to cancel this leading term and cyclically rotate the column
to the end for further processing. Note that for each k, we cycle through each unaccepted
column exactly once: after rotating a column to the end, it will not become active again
until k has increased by one. At the start of the while loop, we have the invariants

(1) Axm is divisible by pk, (i ≤ m ≤ n).
(2) Axm = pαmym +O(pαm+1), (1 ≤ m < i).

(3) if i ≥ 2 then {ẏm}i−1
m=1 is linearly independent in M/pM over R/pR.

The third property is guaranteed by the if statement, and the second property follows
from the first due to the definition of αi and yi in the algorithm. The first property is
obviously true when k = 0; it continues to hold each time k is incremented due to step ⋆,

after which Ax
(new)
i is divisible by pk+1:

Ax
(old)
i −

i−1∑

m=1

pk−αmamAxm = pkyi +O(pk+1)−
i−1∑

m=1

pk−αmam

(
pαmym +O(pαm+1)

)

= pk
(
yi −

i−1∑

m=1

amym

)
+O(pk+1) = O(pk+1).

This equation is independent of which polynomials am ∈ R are chosen to represent
ȧm ∈ R/pR, but different choices will lead to different (equally valid) Smith forms; in
practice, we choose the unique representatives such that deg am < s, where

s = deg p. (24)

This choice of the am leads to two additional invariants of the while loop, namely

9



(4) deg xm ≤ max(sαm − 1, 0), (1 ≤ m < i),
(5) deg xm ≤ max(sk − 1, 0), (i ≤ m ≤ n),

which are easily proved inductively by noting that

deg(pk−αmamxm) ≤ s(k − αm) + (s− 1) + deg(xm) ≤ s(k + 1)− 1. (25)

The while loop eventually terminates, for at the end of each loop (after k has been
incremented) we have produced a unimodular matrix V (λ) such that

A(λ)V (λ) = E(λ)D(λ), D = diag[pα1 , . . . , pαi−1 , pk, . . . , pk︸ ︷︷ ︸
rk−1 times

]. (26)

Hence, the algorithm must terminate before k exceeds the algebraic multiplicity µ of p(λ)
in ∆(λ):

k ≤
(∑i−1

m=1 αi

)
+ (n+ 1− i)k ≤ µ, ∆(λ) = f(λ)p(λ)µ, p ∤ f. (27)

In fact, we can avoid the last iteration of the while loop if we change the test to

while
[(∑i−1

m=1 αi

)
+ (n+ 1− i)k

]
< µ

and change the last line to

β = k, αm = k, (i ≤ m ≤ n), rβ−1 = n+ 1− i, rβ = 0.

We know the remaining columns of V will be accepted without having to compute the
remaining yi or check them for linear independence. When the algorithm terminates, we
will have found a unimodular matrix V (λ) satisfying (23) such that the columns of

Ė(λ) = [ẏ1(λ), . . . , ẏn(λ)]

are linearly independent inM/pM overR/pR. By Lemma 8, p(λ) ∤ det[E(λ)], as required.
To implement the algorithm, we must find an efficient way to compute yi, test for

linear independence in M/pM , find the coefficients am to cancel the leading term of the
residual, and update xi. Motivated by the construction in [25], we interpret the loop over
j in Algorithm 1 as a single nullspace calculation.

To this end, we define Rl = {a ∈ R : deg a < l} and Ml = Rn
l , both viewed as vector

spaces over K. Then we have an isomorphism Λ of vector spaces over K

Λ : (Ms)
k → Msk,

Λ(x(0); . . . ;x(k−1)) = x(0) + px(1) + · · ·+ pk−1x(k−1).
(28)

At times it will be convenient to identify Rls with R/plR and Mls with M/plM to obtain
ring and module structures for these spaces. We also expand

A = A(0) + pA(1) + · · ·+ pqA(q), (29)

where A(j) is an n× n matrix with entries in Rs.
By invariants (4) and (5) of the while loop in Algorithm 1, we may write xi =

Λ(x
(0)
i ; . . . ;x

(α)
i ) with α = max(k − 1, 0). Since Axi is divisible by pk, we have

yi = rem(quo(Axi, p
k), p) =

k∑

j=0

rem(A(k−j)x
(j)
i , p) +

k−1∑

j=0

quo(A(k−1−j)x
(j)
i , p). (30)
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The matrix-vector multiplications A(k−j)x
(j)
i are done in the ring R (leading to vector

polynomials of degree ≤ 2s − 2) before the quotient and remainder are taken. When
k = 0, the second sum should be omitted, and when k ≥ 1, the j = k term in the first

sum can be dropped since x
(k)
i = 0 in the algorithm. It is convenient to write (30) in

matrix form. If k = 0 we have

[y1, . . . , yn] = A(0). (31)

If k ≥ 1, suppose we have already computed the nk × rk−1 matrix Xk−1 with columns

Xk−1( : ,m+ 1− i) =
(
x(0)
m ; . . . ;x(k−1)

m

)
, i ≤ m ≤ n. (32)

Note that Λ(Xk−1) (acting column by column) contains the last rk−1 columns of V (λ)
at the start of the while loop in Algorithm 1. Then by (30),

[yi, . . . , yn] = rem([A(k), . . . , A(1)]Xk−1, p) + quo([A(k−1), . . . , A(0)]Xk−1, p). (33)

As before, the matrix multiplications are done in the ring R before the quotient and
remainder are computed. The components of each ym belong to Rs.

Next we define the auxiliary matrices

Ak =

{
A(0), k = 0,[
Ak−1 , [yi, . . . , yn]

]
, 1 ≤ k ≤ β − 1.

(34)

and compute the reduced row-echelon form of Ȧk using Gauss-Jordan elimination over
the field R/pR. The reduced row-echelon form of Ȧk can be interpreted as a tableau
telling which columns of Ȧk are linearly independent of their predecessors (the accepted
columns), and also giving the linear combination of previously accepted columns that
will annihilate a linearly dependent column. On the first iteration (with k = 0), step ⋆
in Algorithm 1 will build up the matrix

X0 = null(Ȧ0), (35)

where null(·) is the standard algorithm for computing a basis for the nullspace of a
matrix from the reduced row-echelon form (followed by a truncation to replace elements
in R/pR with their representatives in Rs). But rather than rotating these columns to
the end as in Algorithm 1, we now append the corresponding yi to the end of Ak−1 to
form Ak for k ≥ 1. The “dead” columns left behind (not accepted, not active) serve only
as placeholders, causing the resulting matrices Ak to be nested. We use rref(·) to denote
the reduced row-echelon form of a matrix polynomial. The leading columns of rref(Ȧk)
will then coincide with rref(Ȧk−1), and the nullspace matrices will also be nested. We
denote the new columns of null(Ȧk) beyond those of null(Ȧk−1) by [Yk;Uk]:


X0 Y1 · · · Yk−1 Yk

0 [U1; 0] · · · [Uk−1; 0] Uk


 := null(Ȧk). (36)

Note that Ak is n× (n+Rk−1), where

R−1 = 0, Rk = r0 + · · ·+ rk = dim ker Ȧk, (k ≥ 0). (37)

We also see that X0 is n× r0, Yk is n× rk, Uk is rk−1 × rk, and

rk ≤ rk−1, (k ≥ 0). (38)
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This inequality is due to the fact that the dimension of the kernel cannot increase by
more than the number of columns added.

If column i of Ȧk is linearly dependent on its predecessors, the coefficients am used
in step ⋆ of Algorithm 1 are precisely the (truncations of the) coefficients that appear in
column i of rref(Ȧk). As shown in Figure 2, the corresponding null vector (i.e. column
of [Yk;Uk]) contains the negatives of these coefficients in the rows corresponding to the
previously accepted columns of Ȧk, followed by a 1 in row i. Thus, in step ⋆, if k ≥ 1

and we write xm = Λ
(
x
(0)
m ; . . . ;x

(α)
m

)
with α = max(αm − 1, 0), the update

x
(new)
i = x

(old)
i −

i−1∑

m=1

pk−αmamxm, amxm = Λ
(
z(0); . . . ; z(αm)

)
,

z(j) =





rem(amx
(0)
m , p), j = 0,

rem(amx
(j)
m , p) + quo(amx

(j−1)
m , p), 1 ≤ j < αm,

quo(amx
(j−1)
m , p), j = αm and αm > 0,

is equivalent to

Xk = ιk(X−1)Yk + rem
([

ιk−1ρ(X0) , . . . , ι
0ρ(Xk−1)

]
Uk , p

)

+ quo
([

ιk(X0) , . . . , ι
1(Xk−1)

]
Uk , p

)
,

(39)

where ι, ρ : (Ms)
l → (Ms)

l+1 act column by column, padding them with zeros:

ι(x) = [0;x], ρ(x) = [x; 0], x ∈ (Ms)
l, 0 ∈ Ms. (40)

Here ΛιΛ−1 is multiplication by p, which embeds Mls
∼= M/plM in M(l+1)s

∼= M/pl+1M
as a module over R, while ρ is an embedding of vector spaces over K (but not an R-
module morphism). If we define the matrices X0 = X0 and

Xk = [ι(Xk−1), Xk] =




0nk×r0

X0


 ,


0n(k−1)×r1

X1


 , . . . ,

(
Xk

)
 , (k ≥ 1), (41)

then (39) simply becomes

Xk = [rem(Xk−1Uk, p);Yk] + quo(ι(Xk−1Uk), p). (42)

As in (33) above, the matrix multiplications are done in the ring R before the quotient
and remainder are computed to obtain Xk. Finally, we line up the columns of Xk−1 with
the last rk−1 columns of Ȧk and extract (i.e. accept) columns of Xk−1 that correspond
to new, linearly independent columns of Ȧk. We denote the matrix of extracted columns
by X̃k−1. At the completion of the algorithm, the unimodular matrix V (λ) that puts
A(λ) in local Smith form is given by

V (λ) =
[
Λ(X̃−1), . . . ,Λ(X̃β−1)

]
. (43)

The final algorithm is presented in Figure 3. In the step marked •, we can avoid re-
computing the reduced row-echelon form of the first n+Rk−2 columns of Ȧk by storing
the sequence of Gauss-Jordan transformations [8] that reduced Ȧk−1 to row-echelon form.
To compute [Yk;Uk], we need only apply these transformations to the new columns of
Ȧk and then proceed with the row-reduction algorithm on these final columns. Also, if
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Fig. 2. The reduced row-echelon form of Ȧβ contains all the information necessary to construct

V (λ) = [Λ(X̃
−1), . . . ,Λ(X̃s−1)]. An arrow from a column [v;u] of [Yk;Uk] indicates that the

vector
(
[rem(Xk−1u, p); v] + quo(ι(Xk−1u), p)

)
is a column of X̃k.

Algorithm 2. (Local Smith form, final version)

k = 0, R−1 = 0, A0 = A(0)

X0 = X0 = null(Ȧ0)
r0 = R0 = num cols(X0) (number of columns)

X̃−1 = [ej1 , . . . , ejn−r0
], (columns ji of rref(Ȧ0) start new rows)

while Rk < µ (µ = algebraic multiplicity of p)
k = k + 1

Ak =
[
Ak−1 , rem(

[
A(k), . . . , A(1)

]
Xk−1, p) + quo(

[
A(k−1), . . . , A(0)

]
Xk−1, p)

]

• [Yk;Uk] = new columns of null(Ȧk) beyond those of null(Ȧk−1)
rk = num cols(Uk), (Uk is Rk−1 × rk)
Rk = Rk−1 + rk
Xk = [rem(Xk−1Uk, p);Yk] + quo(ι(Xk−1Uk), p) (Xk is n(k + 1)× rk)
Xk = [ι(Xk−1), Xk] (Xk is n(k + 1)×Rk)

X̃k−1 = Xk−1(:, [j1, . . . , jrk−1−rk ]), (columns n+Rk−2 + ji of

end while rref(Ȧk) start new rows)
β = k + 1 (maximal Jordan chain length)

X̃β−1 = Xβ−1

V (λ) =
[
Λ(X̃−1), . . . ,Λ(X̃β−1)

]

Fig. 3. Algorithm for computing a unimodular local Smith form.

A0 is large and sparse, rather than reducing to row-echelon form, one could find kernels

using an LU factorization designed to handle singular matrices. This would allow the use

of graph theory (clique analysis) to choose pivots in the Gaussian elimination procedure

to minimize fill-in. We also note that if ∆(λ) contains only one irreducible factor, the

local Smith form is a (global) Smith form of A(λ).
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3.2. From Local to Global (Step 2)

Now that we have a local Smith form (22) for every irreducible factor pj(λ) of ∆(λ), we
can use the extended Euclidean algorithm to obtain a family of polynomials {gj(λ)}

l
j=1

with deg(gj(λ)) < sjκjn, where sj = deg(pj), such that

l∑

j=1

[
gj(λ)

l∏

k=1,k 6=j

pk(λ)
κkn

]
= 1, (44)

where pj(λ)
κjn is the last entry in the diagonal matrix of the local Smith form at pj(λ).

The integers κjn are positive. We define a matrix polynomial Bn(λ) via

Bn(λ) =

l∑

j=1

[
gj(λ)Vj(λ)

l∏

k 6=j

pk(λ)
κkn

]
. (45)

The main result of this section is stated as follows.

Proposition 12. The matrix polynomial Bn(λ) in (45) has two key properties:
(1) Let bni(λ) be the ith column of Bn(λ). Then A(λ)bni(λ) is divisible by di(λ), where

di(λ) =
∏l

j=1 pj(λ)
κji is the ith diagonal entry in D(λ) of the Smith form.

(2) det[Bn(λ)] is not divisible by pj(λ) for j = 1, . . . , l.

Proof. (1) Let vji(λ) be the ith column of Vj(λ). Then A(λ)vji(λ) is divisible by pj(λ)
κji

and

bni(λ) =

l∑

j=1

[ l∏

k 6=j

pk(λ)
κkn

]
gj(λ)vji(λ).

Since κjn ≥ κji for 1 ≤ i ≤ n and 1 ≤ j ≤ l, A(λ)bni(λ) is divisible by di(λ).
(2) The local Smith form construction ensures that pj(λ) ∤ det[Vj(λ)] for each 1 ≤ j ≤

l. Equation (44) modulo pj(λ) shows that pj(λ) ∤ gj(λ). By definition,

det[Bn(λ)] = det
([
bn1(λ) , . . . , bnn(λ)

])
= det

([
bni(λ)

]n
i=1

)

= det

([ l∑

j′=1

( l∏

k 6=j′

pk(λ)
κkn

)
gj′(λ)vj′i(λ)

]n

i=1

)
.

Each term in the sum is divisible by pj(λ) except j
′ = j. Thus, by multi-linearity,

rem(det[Bn(λ)], pj(λ)) = rem

([ l∏

k 6=j

pk(λ)
κkn

]n[
gj(λ)

]n
det
[
Vj(λ)

]
, pj(λ)

)
6= 0,

as claimed. 2

Remark 13. It is possible for det[Bn(λ)] to be non-constant; however, its irreducible
factors will be distinct from p1(λ), . . . , pl(λ).

Remark 14. Rather than building Bn(λ) as a linear combination (45), we may form
Bn(λ) with columns

bni(λ) =

l∑

j=1

[ l∏

k 6=j

pk(λ)
max(κki,1)

]
gij(λ)vji(λ), (1 ≤ i ≤ n),
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where {gij}
l
j=1 solves the extended GCD problem

l∑

j=1

[
gij(λ)

l∏

k 6=j

pk(λ)
max(κki,1)

]
= 1.

The two properties proved above also hold for this definition of Bn(λ). This modification
can significantly reduce the size of the coefficients in the computation when there is a
wide range of Jordan chain lengths. But if κji only changes slightly for 1 ≤ i ≤ n, this
change will not significantly affect the total running time of the algorithm.

3.3. Construction of Unimodular Multipliers (Step 3)

Given [f1(λ); . . . ; fn(λ)] ∈ K[λ]n, we can compute the Hermite form (20) to obtain
a unimodular matrix Q(λ) such that, after reversing rows, Q(λ)f(λ) = [0; . . . ; 0; r(λ)],
where r = gcd(f1, . . . , fn). We apply this procedure to the last column of Bn(λ) and
define Vn(λ) = Q(λ)−1. The resulting matrix

Bn−1(λ) := Vn(λ)
−1Bn(λ)

is zero above the main diagonal in column n. We then apply this procedure to the first
n− 1 components of column n− 1 of Bn−1(λ) to get a new Q(λ), and define

Vn−1(λ) =




0

Q(λ)−1
...

0
0 · · · 0 1


 . (46)

It follows that Bn−2(λ) := Vn−1(λ)
−1Bn−1(λ) is zero above the main diagonal in columns

n−1 and n. Continuing in this fashion, we obtain unimodular matrices Vn(λ), . . . , V2(λ)
such that

A(λ)Bn(λ) = A(λ)Vn(λ) · · · V2(λ)︸ ︷︷ ︸
V (λ)

V2(λ)
−1 · · ·Vn(λ)

−1Bn(λ)︸ ︷︷ ︸
Bn−1(λ)

= A(λ)V (λ)B1(λ),

where V (λ) is unimodular, B1(λ) is lower triangular, and

det[B1(λ)] = const · det[Bn(λ)]. (47)

The matrix V (λ) puts A(λ) in Smith form:

Proposition 15. There is a unimodular matrix polynomial E(λ) such that

A(λ)V (λ) = E(λ)D(λ), (48)

where D(λ) is of the form (3).

Proof. Let rmi(λ) denote the entry of B1(λ) in the mth row and ith column. Define yi(λ)
and zi(λ) to be the ith columns of A(λ)V (λ) and A(λ)V (λ)B1(λ), respectively, so that

zi(λ) = yi(λ)rii(λ) +
n∑

m=i+1

ym(λ)rmi(λ), (1 ≤ i ≤ n). (49)

15



By Proposition 12, zi(λ) is divisible by di(λ) for 1 ≤ i ≤ n and pj(λ) ∤ det[B1(λ)] for
1 ≤ j ≤ l. It follows that the diagonal entries rii(λ) of B1(λ) are relatively prime to each
of the di(λ). As dn(λ) divides yn(λ)rnn(λ) and is relatively prime to rnn(λ), it divides
yn(λ) alone. Now suppose 1 ≤ i < n and we have shown that dm(λ) divides ym(λ) for
i < m ≤ n. Then since di(λ) divides dm(λ) for m > i and rii(λ) is relatively prime to
di(λ), we conclude from (49) that di(λ) divides yi(λ). By induction, di(λ) divides yi(λ) for
1 ≤ i ≤ n. Thus, there is a matrix polynomial E(λ) such that (48) holds. Because V (λ)
is unimodular and det[A(λ)] = const · det[D(λ)], it follows that E(λ) is also unimodular,
as claimed. 2

Remark 16. V (λ) constructed as described above puts A(λ) in a global Smith form
whether we build Bn(λ) as a linear combination (45) or as in Remark 14.

Remark 17. We can stop before reaching V2(λ) by adding a test

while dk 6= 1

to the loop in which V (λ) is constructed. When the loop terminates, we have V (λ) =
Vn(λ) · · ·Vk+1(λ), where k is the largest integer for which

d1(λ) = · · · = dk(λ) = 1.

Note that k is known from the local Smith form calculations. The last n− k columns of
Vn(λ) · · ·Vk+1(λ) are the same as those of Vn(λ) · · ·V2(λ); therefore, either can be used
for V (λ) as they contain identical Jordan chains.

Remark 18. A slight modification of this procedure can significantly reduce the degree
of the polynomials and the size of the coefficients in the computation. In this variant,
rather than applying the extended GCD algorithm on bnn(λ) to find a unimodular matrix
polynomial Q(λ) so that Q(λ)bnn(λ) has the form [0; . . . ; 0; r(λ)], we compute Q(λ) that
puts rem(bnn(λ), dn(λ)) into this form. That is, we replace the last column of Bn(λ) with
rem(bnn(λ), dn(λ)) before computing Q(λ). To distinguish, we denote this new definition

of Vn(λ) = Q(λ)−1 by Ṽn(λ) and the resulting Bn−1(λ) by B̃n−1(λ). Continuing in

this manner, we find unimodular matrix polynomials Ṽn(λ), . . . , Ṽk+1(λ) by applying the
procedure on rem(b̃ii(λ), di(λ)) for i = n, . . . , k + 1, where b̃ii(λ) contains the first i

components of column i of B̃i(λ) and k is defined as in Remark 17. We also define

B̄i = Ṽi+1(λ)
−1 · · · Ṽn(λ)

−1Bn(λ), (k ≤ i ≤ n− 1).

Note that in general, B̄i(λ) 6= B̃i(λ). It remains to show that this definition of Ṽ (λ) =

Ṽn(λ) . . . Ṽk+1(λ), which satisfies

A(λ)Bn(λ) = A(λ) Ṽn(λ) · · · Ṽk+1(λ)︸ ︷︷ ︸
Ṽ (λ)

Ṽk+1(λ)
−1 · · · Ṽn(λ)

−1Bn(λ)︸ ︷︷ ︸
B̄n−1(λ)

= A(λ)Ṽ (λ)B̄k(λ),

also puts A(λ) in Smith form:

Proposition 19. There is a unimodular matrix polynomial Ẽ(λ) such that

A(λ)Ṽ (λ) = Ẽ(λ)D(λ), (50)

where D(λ) is of the form (3).
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Proof. Define q̃i(λ) =
[
quo(b̃ii(λ), di(λ)); 0

]
∈ M = Rn for i = n, . . . , k + 1, where

0 ∈ Rn−i, b̃ii(λ) was defined above, and B̃n(λ) := Bn(λ). Then we have

B̃n−1(λ) = Ṽn(λ)
−1
(
Bn(λ)−

[
0n×(n−1) dn(λ)q̃n(λ)

])

= B̄n−1(λ)−
[
0n×(n−1) dn(λ)Ṽn(λ)

−1q̃n(λ)
]
.

The first n− 1 columns of B̃n(λ) are the same as those of B̄n(λ). Continuing, we have

B̃n−2(λ) = Ṽn−1(λ)
−1
(
B̃n−1(λ)−

[
0n×(n−2) dn−1(λ)q̃n−1(λ) 0n×1

])

= Ṽn−1(λ)
−1
(
B̄n−1(λ)−

[
0n×(n−2) dn−1(λ)q̃n−1(λ) dn(λ)Ṽn(λ)

−1q̃n(λ)
])

= B̄n−2(λ)−
[
0n×(n−2) dn−1(λ)Ṽn−1(λ)

−1q̃n−1(λ) dn(λ)Ṽn−1(λ)
−1Ṽn(λ)

−1 q̃n(λ)
]
.

It follows by induction that

B̃k(λ) = Ṽk+1(λ)
−1
(
B̃k+1(λ)−

[
0n×k dk+1(λ)q̃k+1(λ) 0n×(n−k−1)

])
(51)

= B̄k(λ)−
[
0n×k dk+1(λ)Ṽk+1(λ)

−1q̃k+1(λ) · · · dn(λ)Ṽk+1(λ)
−1 · · · Ṽn(λ)

−1q̃n(λ)
]
.

B̃k(λ) is zero above the main diagonal in columns k + 1 to n. Define

ui(λ) := Ṽk+1(λ)
−1 · · · Ṽi(λ)

−1q̃i(λ), (k + 1 ≤ i ≤ n).

Then the ith column of the difference B̄k(λ)− B̃k(λ) is di(λ)ui(λ) for k + 1 ≤ i ≤ n.

Let r̃mi(λ) denote the entry of B̃k(λ) in the mth row and ith column. Define ỹi(λ)

and zi(λ) to be the ith columns of A(λ)Ṽ (λ) and A(λ)Ṽ (λ)B̄k(λ), respectively, so that

zi(λ) =

[
ỹi(λ)r̃ii(λ) +

n∑

m=i+1

ỹm(λ)r̃mi(λ)

]
+ di(λ)A(λ)Ṽ (λ)ui(λ), (k + 1 ≤ i ≤ n).

By Proposition 12, zi(λ) is divisible by di(λ) and pj(λ) ∤ det[Bn(λ)] = const·det[B̄i−1(λ)]
for k+1 ≤ i ≤ n and 1 ≤ j ≤ l. As di divides dm for i ≤ m ≤ n and since (51) holds with

k replaced by i−1 for k+1 ≤ i ≤ n, det[B̄i−1(λ)]−det[B̃i−1(λ)] is divisible by di(λ) due

to multi-linearity of determinants. We also know that det[B̃i−1(λ)] is divisible by r̃ii(λ).
Proof by contradiction shows that r̃ii(λ) is relatively prime to di(λ) for k + 1 ≤ i ≤ n.
Then we argue by induction as in the proof of Proposition 15 to conclude that di(λ)
divides ỹi(λ) for k + 1 ≤ i ≤ n. It holds trivially for 1 ≤ i ≤ k as d1 = · · · = dk = 1.

Thus, there is a matrix polynomial Ẽ(λ) such that (50) holds. Because Ṽ (λ) is unimodular

and det[A(λ)] = const · det[D(λ)], it follows that Ẽ(λ) is also unimodular. 2

4. Performance Comparison

In this section, we compare our algorithm to Villard’s method with good conditioning
[23], which is another deterministic sequential method for computing Smith forms with
multipliers, and to ‘MatrixPolynomialAlgebra[SmithForm]’ in Maple. All three algorithms
are implemented in exact arithmetic using Maple 13. The maximum number of digits
that Maple can use for the numerator and denominator of a rational number (given by

17



‘kernelopts(maxdigits)’) is over 38 billion. However, limitations of available memory and
running time set the limit on the largest integer number much lower than this. We use
the variant of Algorithm 1 given in Appendix A to compute local Smith forms.

To evaluate the performance of these methods, we generate several groups of diagonal
matrices D(λ) over Q and multiply them on each side by unimodular matrices of the
form L(λ)Z(λ), where L(λ) is unit lower triangular and Z(λ) is unit upper triangular,
both with off diagonal entries of the form λ− i with i ∈ {−10, . . . , 10} a random integer.
As a final step, we apply a row or column permutation to the resulting matrix. We find
that row permutation has little effect on the running time of the algorithms while column
permutation reduces the performance of Villard’s method. We compare the results in two
extreme cases: (1) without column permutation and (2) with columns reversed. Each
process is repeated five times for each D(λ) and the median running time is recorded.

We use several parameters in the comparison, including the size n of the square matrix
A(λ), the bound d of the polynomial degrees of the entries in A(λ), the number l of
irreducible factors in det[A(λ)], and the maximal Jordan chain length κjn.

In Figure 4, we show the running time of three tests with linear irreducible factors
of the form pj = λ − λj . As Villard’s method and Maple compute the left and right
multipliers U(λ) and V (λ) while our algorithm instead computes E(λ) and V (λ), we
also report the cost of inverting E(λ) to obtain U(λ) at the end of our algorithm (using
Maple’s matrix inverse routine). This step could be made significantly faster by taking
advantage of the fact that E(λ) is unimodular. For example, one could store the sequence
of elementary unimodular operations such that T (λ) = Qm(λ) · · ·Q1(λ)E(λ) is unit
upper triangular. It would not be necessary to actually form the matrices T (λ)−1 or

U(λ) = T (λ)−1Qm(λ) · · ·Q1(λ) (52)

as the right hand side can be applied directly to any vector polynomial using back
substitution to solve T (λ)x(λ) = z(λ) in the last step. The same idea is standard in
numerical linear algebra, where the LU -decomposition of a matrix is less expensive to
compute than its inverse, and is equally useful. In the first test of Figure 4, Dn(λ) is of
the form

Dn(λ) = diag[1, . . . , 1, λ, λ(λ− 1), λ2(λ − 1), λ2(λ− 1)2],

where the matrix size n increases, starting with n = 4. Hence, we have d = 8, l = 2, and
κ1n = κ2n = 2 all fixed. (The unimodular matrices in the construction of A(λ) each have
degree 2.) For this test, inverting E(λ) to obtain U(λ) is the most expensive step of our
algorithm. Without column permutation of the test matrices, our algorithm (with U(λ))
and Villard’s method have similar running times, both outperforming Maple’s built-in
function. With column permutation, the performance of Villard’s method drops to the
level of Maple’s routine while our algorithm remains faster. For the second test, we use
test matrices Dl(λ) of size 9× 9, where l is the number of roots of det[A(λ)]:

Dl(λ) = diag[1, . . . , 1,
l∏

j=1

(λ− j)], (l = 1, 2, . . . ).

Thus, n = 9, d = l+ 4 and κjn = 1 for 1 ≤ j ≤ l. This time the relative cost of inverting
E(λ) to obtain U(λ) decreases with l in our algorithm, which is significantly faster than
the other two methods whether or not we permute columns in the test matrices. In the
third test, we use 9× 9 test matrices Dk(λ) of the form

Dk(λ) = diag[1, . . . , 1, (λ− 1)k], (k = 1, 2, . . . ),
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Fig. 4. Comparison of running time of our algorithm (with or without computing U(λ)) to
Villard’s method, and to Maple’s Smith form routine, on three families of test matrices. (Top
row) without column permutation of test matrices. (Bottom row) with column permutation.

with n = 9, l = 1, κ1n = k and d = k + 4. We did not implement the re-use strategy

for computing the reduced row-echelon form of Ak by storing the Gauss-Jordan trans-
formations used to obtain rref(Ak−1), and then continuing with only the new columns
of Ak. This is because the built-in function LinearAlgebra[ReducedRowEchelonForm] is
much faster than can be achieved by a user defined Maple code for the same purpose.

In a lower level language (or with access to Maple’s internal code), this re-use strategy
would decrease the running time of local Smith form calculations in this test from O(k4)
to O(k3). A similar decrease in the cost of computing the left-multiplier U(λ) = E(λ)−1

could be achieved by computing T (λ) in (52) instead.
We also evaluate the performance on three test problems (numbered 4–6) with irre-

ducible polynomials of higher degree. The results are given in Figure 5. In the fourth test,
we use matrices Dn(λ) similar to those in the first test, but with irreducible polynomials

of degree 2 and 4. Specifically, we define

Dn(λ) = diag[1, . . . , 1, p1, p1p2, p
2
1p2, p

2
1p

2
2], (n = 4, 5, . . . ),

where p1 = λ2 + λ + 1, p2 = λ4 + λ3 + λ2 + 1, κ1n = 2, κ2n = 2, and d = 16. When
the columns of the test matrices are permuted, our algorithm is faster than the other

two methods whether or not U(λ) is computed. When the columns are not permuted,
computing U(λ) causes our method to be slower than Villard’s method. In this test, our
algorithm would benefit from switching to the R/pR version of Algorithm 2 rather than
the version over K described in the appendix. It would also benefit from computing T (λ)
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Fig. 5. Comparison of running times of the algorithms for three test problems in which the
irreducible factors pj(λ) of the determinant are of degree greater than 1. (Top row) without
column permutation of test matrices. (Bottom row) with column permutation.

in (52) rather than the full inverse U(λ) = E(λ)−1. In the fifth test, we use 9 × 9 test
matrices Dk(λ) of the form

Dk(λ) = diag[1, . . . , 1,

k∏

j=1

(λ2 + j),

k∏

j=1

(λ2 + j)2,

k∏

j=1

(λ2 + j)k], (k = 2, 3, . . . ),

with n = 9, l = k, κjn = k and d = 2k2 + 4. Both the number of factors and maximal
Jordan chain length increase with k. Our algorithm performs much better than the others
when column permutations are performed on the test matrices. In the final test, we define
n× n matrices

Dn(λ) = diag[1, 1, (λ2 + 1), (λ2 + 1)2(λ2 + 2), . . . ,
n−2∏

j=1

(λ2 + j)n−1−j ], (n = 3, 4, . . . )

so that all the parameters n, l = n−2, κjn = n−1− j and d = (n−1)(n−2)+4 increase
simultaneously. All three algorithms run very slowly on this last family of test problems.

5. Discussion

The key idea of our algorithm is that it is much less expensive to compute local Smith
forms through a sequence of nullspace calculations than it is to compute global Smith
forms through a sequence of unimodular row and column operations. This is because (1)
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Fig. 6. Running time of each step of our algorithm for the six test problems of Section 4.

row reduction over R/pR in Algorithm 2 (or overK in Appendix A) is less expensive than
computing Bézout coefficients over R; (2) the size of the rational numbers that occur in
the algorithm remain smaller (as we only deal with the leading terms of A in an expansion
in powers of p rather than with all of A); and (3) each column of V (λ) in a local Smith
form only has to be processed once for each power of p in the corresponding diagonal
entry ofD(λ). Once the local Smith forms are known, we combine them to form a (global)
multiplier V (λ) for A(λ). This last step does involve triangularization of Bn(λ) via the
extended GCD algorithm, but this is less time consuming in most cases than performing
unimodular row and column operations on A(λ) to obtain D(λ). This is because we only
have to apply row operations to Bn(λ) (as the columns are already correctly ordered);
we keep the degree of polynomials (and therefore the number of terms) in the algorithm
small with the operation rem(·, di); and the leading columns of Bn(λ) tend to be sparse
(as they consist of a superposition of local Smith forms, whose initial columns X−1 are a
subset of the columns of the identity matrix). Sparsity is not used explicitly in our code,
but it does reduce the work required to compute the Bézout coefficients of a column.

A detailed breakdown of the running time of each step of our algorithm is given
in Figure 6. For each test in Section 4, we show only the case where columns of the
test matrices are permuted; the other case is similar. The step labeled “prime factors of
det(A)” shows the time of computing the determinant and factoring it into prime factors.
The step labeled “local Smith forms” could be made faster in tests 4–6 by working over
R/pR (using Algorithm 2 rather than the variant in the appendix) as the irreducible
factors pj(λ) have degree sj > 1 in these tests. Also, although it is not implemented
in this paper, this local Smith form construction would be easy to parallelize. The step
labeled “matrix V ” reports the time of computing V (λ) from Bn(λ). The cost of this
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step is zero when there is only one irreducible factor in det[A(λ)] as Bn(λ) is already
unimodular in that case. This happens when l = 1 in the second test, in all cases in the
third test, and when n = 3 in the last test. Finally, the step labeled “matrix E” reports
the time of computing E(λ) = A(λ)V (λ)D(λ)−1.

The obvious drawback of our algorithm is that we have to compute a local Smith
form for each irreducible factor of ∆(λ) separately, while much of the work in deciding
whether to accept a column in Algorithm 1 can be done for all the irreducible factors
simultaneously by using extended GCDs. In our numerical experiments, it appears that
in most cases, the benefit of computing local Smith forms outweighs the fact that there
are several of them to compute.

A. Alternative Version of Algorithm 2

In this section we present an algebraic framework for local Smith forms of matrix
polynomials that shows the connection between Algorithm 2 and the construction of
canonical systems of Jordan chains presented in [25]. This leads to a variant of the
algorithm in which row-reduction is done in the field K rather than in R/pR.

Suppose R is a principal ideal domain and p is a prime in R. M defined via M = Rn

is a free R-module with a free basis {(1, 0, . . . , 0), . . . , (0, . . . , 1)}. Suppose A : M → M
is a R-module morphism. We define submodules

Nk =
{
x ∈ M : Ax is divisible by pk

}
, (k ≥ 0). (A.1)

Then Nk is a free submodule of M by the structure theorem [9] for finitely generated
modules over a principal ideal domain. (The structure theorem states that if M is a free
module over a principal ideal domain R, then every submodule of M is free.) The rank
of Nk is also n, as pkM ⊂ Nk ⊂ M . Note that N0 = M and

Nk+1 ⊂ Nk, (k ≥ 0), (A.2)

Nk+1 ∩ pM = pNk, (k ≥ 0). (A.3)

Next we define the spaces Wk via

Wk = Nk+1/pNk, (k ≥ −1), (A.4)

where N−1 := M so that W−1 = M/pM . By (A.3), the action of R/pR on Wk is well-
defined, i.e. Wk is a vector space over this field. Let us denote the canonical projection
M → M/pM by π. Note that π(pNk) = 0, so π is well-defined from Wk to M/pM for
k ≥ −1. It is also injective as xp ∈ Nk+1 ⇒ x ∈ Nk, by (A.3). Thus, cosets {ẋ1, . . . , ẋm}
are linearly independent in Wk iff {π(x1), . . . , π(xm)} are linearly independent in M/pM .
We define the integers

rk = dimension of Wk over R/pR, (k ≥ −1) (A.5)

and note that r−1 = n and rk > 0 iff there exists x ∈ M such that p ∤ x and pk+1 | Ax.
We also observe that the truncation operator

id : Wk+1 → Wk : (x+ pNk+1) 7→ (x+ pNk), (k ≥ −1) (A.6)

is well-defined (pNk+1 ⊂ pNk) and injective (x ∈ Nk+2 and x ∈ pNk ⇒ x ∈ pNk+1, due
to (A.3)). We may therefore consider Wk+1 to be a subspace of Wk for k ≥ −1, and have
the inequalities

rk+1 ≤ rk, (k ≥ −1). (A.7)
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The case r0 = 0 is not interesting (as Nk = pkM for k ≥ 0), so we assume that r0 > 0.
Lemma 8 shows that when R = K[λ], which we assume from now on, r0 > 0 is equivalent
to the condition that det[A(λ)] is divisible by p(λ). We also assume that rk eventually
decreases to zero, say

rk = 0 ⇔ k ≥ β, β := maximal Jordan chain length. (A.8)

This follows from the assumption that det[A(λ)] is not identically zero. It will be useful
to define the index sets Ik = {i : n− rk−1 + 1 ≤ i ≤ n− rk} for k = 0, . . . , β.

Any matrix V = [x1, . . . , xn] will yield a local Smith form AV = ED provided that
xi ∈ Nk for i ∈ Ik (0 ≤ k ≤ β) and the vectors

{xi + pNk−1}i∈Ik (A.9)

form a basis for any complement W̃k−1 of Wk in Wk−1. To see that p ∤ detE, we use
induction on k to show that the vectors

{quo(Axi, p
αi) + pM}n−rk

i=1 (A.10)

are linearly independent in M/pM , where

αi = k, (i ∈ Ik). (A.11)

Otherwise, a linear combination of the form ⋆ in Algorithm 1 would exist that belongs to
W̃k−1 ∩Wk, a contradiction. The result that p ∤ detE follows from Lemma 8. The while
loop in Algorithm 1 is a systematic procedure for computing such a collection {xi}i∈Ik ,
and has the added benefit of yielding a unimodular multiplier V .

We now wish to find a convenient representation for these spaces suitable for compu-
tation. Since pk+1M ⊂ pNk, we have the R-module isomorphism

Nk+1/pNk
∼= (Nk+1/p

k+1M)/(pNk/p
k+1M), (A.12)

i.e.

Wk
∼= Wk/pWk−1, (k ≥ 0), Wk := Nk+1/p

k+1M, (k ≥ −1). (A.13)

Although the quotient Wk/pWk−1 is a vector space over R/pR, the spaces Wk and
M/pk+1M are not. They are, however, modules over R/pk+1R and vector spaces over
K. Note that A(λ) induces a linear operator Ak on M/pk+1M with kernel

Wk = kerAk, (k ≥ −1). (A.14)

We also define

Rk =
dimension of Wk over K

s
, (k ≥ −1, s = deg p) (A.15)

so that R−1 = 0 and
Rk = r0 + · · ·+ rk, (k ≥ 0), (A.16)

where we used W0 = W0 together with (A.13) and the fact that as a vector space over
K, dimWk = srk. By (A.11), rk−1 − rk = #{i : αi = k}, so

Rβ−1 = r0 + · · ·+ rβ−1 = (r−1 − r0)0 + (r0 − r1)1 + · · ·+ (rβ−1 − rβ)β

= α1 + · · ·+ αn = µ = algebraic multiplicity of p,
(A.17)

where we used Theorem 7 in the last step. We also note that ν := R0 = s−1 dimker(A0)
can be interpreted as the geometric multiplicity of p.

23



Equations (A.13) and (A.14) reduce the problem of computing Jordan chains to that of

finding kernels of the linear operators Ak overK. If we represent elements x ∈ M/pk+1M

as lists of coefficients x(j,l,m) ∈ K such that the components of x involve the terms

x(j,l,m)pjλm, 0 ≤ j ≤ k, 1 ≤ l ≤ n, 0 ≤ m ≤ s− 1, (A.18)

then multiplication by λ inM/pk+1M becomes the following linear operator onKsn(k+1):

Sk =




I ⊗ S 0 0 0

I ⊗ Z I ⊗ S 0 0

0
. . .

. . . 0

0 0 I ⊗ Z I ⊗ S



, S as in (10), Z =




0 0 1
. . . 0

0 0


. (A.19)

Here Sk is a (k + 1) × (k + 1) block matrix, I ⊗ S is a Kronecker product of matrices,

S and Z are s× s matrices, and I is n× n. Multiplication by λm is represented by Smk ,

which has a similar block-Toeplitz structure to Sk for 2 ≤ m ≤ s−1, but with S replaced

by Sm and Z replaced by

Zm =

{
0 m = 0∑m−1

l=0 SlZSm−1−l, 1 ≤ m ≤ s− 1.
(A.20)

The matrix p(Sk)
j is a shift operator with identity blocks In⊗Is on the jth sub-diagonal.

If we expand

A(λ) = A(0) + pA(1) + · · ·+ pqA(q), A(j) = A(j,0) + · · ·+ λs−1A(j,s−1), (A.21)

the matrix Ak representing A(λ) is given by

Ak =




A0 0 · · · 0

A1 A0 · · · 0

· · · · · · · · · · · ·

Ak Ak−1 · · · A0




, (A.22)

where

Aj =

{∑s−1
m=0 A

(0,m) ⊗ Sm, j = 0,∑s−1
m=0

[
A(j,m) ⊗ Sm +A(j−1,m) ⊗ Zm

]
, j ≥ 1.

(A.23)

This formula may be derived by observing that the matrix representation of the action of

p(λ)jλmA(j,m) on M/pk+1M is block Toeplitz with A(j,m)⊗Sm on the jth sub-diagonal

and A(j,m) ⊗ Zm on the (j + 1)st. Defining Aj this way avoids the need to compute

remainders and quotients in subsequent steps (such as occur in Algorithm 2).

Next we seek an efficient method of computing a basis matrix Xk for the nullspace

Wk = kerAk. Suppose k ≥ 1 and we have computed Xk−1. The first k blocks of equations

in AkXk = 0 imply there are matrices Uk and Yk such that Xk = [Xk−1Uk;Yk], while
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the last block of equations is

Ak︷ ︸︸ ︷
(
Ak . . . A0

)

 0 Xk−1

Isn×sn 0




Yk

Uk




︸ ︷︷ ︸
Xk

=
(
0sn×sRk

)
. (A.24)

The matrices Xk can be built up recursively by setting X0 = X0 = Y0 = null(A0),
defining U0 to be an empty matrix (with zero rows and sR0 columns), and computing

Ak =
(
Ak−1 , [Ak, . . . , A1]Xk−1

)
, (k ≥ 1)

[Yk;Uk] = new columns of null(Ak) beyond those of null(Ak−1),

[Yk;Uk] =


 Yk−1 Yk

[Uk−1; 0] Uk


 ,

Xk = [Xk−1Uk;Yk],

Xk = [ι(Xk−1), Xk].

Here ι : Ksnl → Ksn(l+1) represents multiplication by p from M/plM to M/pl+1M :

ι([x(0); . . . ;x(l−1)]) = [0;x(0); . . . ;x(l−1)], x(j), 0 ∈ Ksn. (A.25)

By construction, Xk = [ι(Xk−1), Xk] is a basis for Wk when k ≥ 1; it follows that
Xk + ι(Wk−1) is a basis for Wk when Wk is viewed as a vector space over K. We define
X0 = X0 and X−1 = Isn×sn to obtain bases for W0 and W−1 as well.

But we actually want a basis for Wk viewed as a vector space over R/pR rather than
K. Fortunately, all the matrices in this construction are manipulated s × s blocks, and
the desired basis over R/pR may be obtained by selecting the first column from each
supercolumn (group of s columns) of Xk. Indeed, if [x1, . . . , xs] is a supercolumn of Xk,
we are able to prove that xj − Skxj−1 ∈ ι(Wk−1) for 2 ≤ j ≤ s. Since Sk represents
multiplication by λ, these columns are all equivalent over R/pR. We are also able to
prove that constructing Xk in this way (using the first column of each supercolumn) is
equivalent to Algorithm 2, i.e. it yields the same unimodular matrix V (λ) that puts A(λ)

in local Smith form. We omit the proof as it is long and technical, involving a careful
comparison of nullspace calculations via row-reduction in the two algorithms.

In practice, this version of the algorithm (over K) is easier to implement, but the
other version (over R/pR) should be about s times faster as the cost of multiplying two
elements of R/pR is O(s2) while the cost of multiplying two s× s matrices is O(s3). The
results in Section 4 were computed as described in this appendix (over K = Q).
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