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CONVERGENCE OF A MASS-LUMPED FINITE ELEMENT

METHOD FOR THE LANDAU-LIFSHITZ EQUATION

EUGENIA KIM AND JON WILKENING

Abstract. The dynamics of the magnetic distribution in a ferromagnetic ma-
terial is governed by the Landau-Lifshitz equation, which is a nonlinear geo-
metric dispersive equation with a nonconvex constraint that requires the mag-
netization to remain of unit length throughout the domain. In this article, we
present a mass-lumped finite element method for the Landau-Lifshitz equation.
This method preserves the nonconvex constraint at each node of the finite ele-
ment mesh, and is energy nonincreasing. We show that the numerical solution
of our method for the Landau-Lifshitz equation converges to a weak solution
of the Landau-Lifshitz-Gilbert equation using a simple proof technique that
cancels out the product of weakly convergent sequences. Numerical tests for
both explicit and implicit versions of the method on a unit square with periodic
boundary conditions are provided for structured and unstructured meshes.

Micromagnetics is the study of the behavior of ferromagnetic materials at sub-
micron length scales, including magnetization reversal and hysteresis effects [22].
The dynamics of the magnetic distribution of a ferromagnetic material occupying a
region Ω ⊂ R

2 or R3 is governed by the Landau-Lifshitz (LL) equation [22, 25, 36].
The magnetization m(x, t) : Ω× [0, T ] → S

2 ⊂ R
3 satisfies

(0.1)











∂tm = −m× h− αm× (m× h) in Ω
∂m
∂ν = 0 on ∂Ω

m(x, 0) = m0(x)

where α is a dimensionless damping parameter and h is an effective field given by

(0.2) h(m) := − δE
δm

(m) = η∆m−Q(m2e2 +m3e3) + hs(m) + he.

Here η is the exchange constant, Q is an anisotropy constant, hs is the stray field,
he is an external field, and δE

δm is the functional derivative of the Landau-Lifshitz
energy, defined by

(0.3) E(m) =
η

2

∫

Ω

|∇m|2 + Q

2

∫

Ω

m2
2 +m2

3 −
1

2

∫

Ω

hs(m) ·m−
∫

Ω

he ·m.
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The first term is the exchange energy, which tries to align the magnetization locally;
the second term is the anisotropy energy, which tries to orient the magnetization in
certain easy direction taken to be e1; the third term is the stray field energy, which
is induced by the magnetization distribution inside the material; and the last term
is the external field energy, which tries to align the magnetization with an external
field. We denote the lower order terms in (0.2) by

(0.4) h̄(m) := −Q(m2e2 +m3e3) + hs(m) + he.

When considering mathematical properties such as existence and regularity of the
solution, these terms can be considered lower order compared to the exchange term
[6]. They also have fewer derivatives than the exchange term, and can be treated
as lower order when developing numerical methods.

The stray field hs depends on m via hs = −∇φ, where the potential φ satisfies

(0.5)

∆φ =

{

∇ ·m in Ω

0 on ∂Ω

[φ]∂Ω = 0,

[

∂φ

∂ν

]

∂Ω

= −m · ν.

Here [v]∂Ω(x) = v(x+)−v(x−) is the jump in v across the boundary ∂Ω from inside
(−) to outside (+); see [25].

There are several equivalent forms of the Landau-Lifshitz (LL) equation. The
following is the Landau-Lifshitz-Gilbert (LLG) equation :

(0.6) ∂tm− αm× ∂tm = −(1 + α2)(m× h).

Also, the equation

(0.7) α∂tm+m× ∂tm = (1 + α2)(h− (h ·m)m)

is equivalent to LL and LLG; see [6]. If only the gyromagnetic term is present in
equation (0.1), i.e. if ∂tm = −m×∆m, it is called a Schrödinger map into S

2 [29].
This is a geometric generalization of the linear Schrödinger equation. If only the
damping term is present, i.e. if ∂tm = −m× (m×∆m), it is called a harmonic map
heat flow into S

2 [29].
In 1935, Landau and Lifshitz [37] calculated the structure of the domain walls

between antiparallel domains, which started the theory of micromagnetics. The
theory was further developed by W. F. Brown Jr in [15]. Applications of micro-
magnetics include magnetic sensor technology, magnetic recording, and magnetic
storage devices such as hard drives and magnetic memory (MRAM) [22].

Finite difference methods for micromagnetics can be derived in two different ways
[41]. The first is a field-based approach in which the effective field h is discretized
directly, and the other is an energy-based approach in which the effective field is
derived from the discretized energy. Finite element methods can also be derived
in a number of ways. In [44], the Landau-Lifshitz-Gilbert equation (0.6) is used to
obtain a discrete system by approximating the magnetization by piecewise linear
function on a finite element mesh and then applying time integration in the resulting
system of ODEs. In [22], the effective field h is calculated by taking a functional
derivative of the discretized energy, where the magnetization in the energy formula
is approximated by piecewise linear functions. Extensive work has also been done
developing time stepping schemes for micromagnetics [18,25]. In [31], semi-analytic
integration in time was introduced, which is explicit and first order in time and
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allows stepsize control. In [34, 38], geometric integration methods were applied
to the Landau-Lifshitz equation. In [26, 47], a Gauss-Seidel projection method
was developed that treats the gyromagnetic term and damping term separately to
overcome the difficulty of the stiffness and the nonlinearity of the equation.

However, relatively little work has been done deriving error estimates or es-
tablishing rigorous convergence results for weak solutions. In a series of papers
[4, 6, 8], Alouges and various co-authors introduced a convergent finite element
method based on equation (0.7), an equivalent form of the Landau-Lifshitz equa-
tion, that is first order in time. The idea is to use a tangent plane formulation at
each timestep, where the velocity vector lies in the finite element space perpendicu-
lar to the magnetization at each node. One advantage of this method is that at each
step, only a linear system has to be solved, although the Landau-Lifshitz-Gilbert
equation is nonlinear. More recently, they developed a formally second order in
time scheme [7, 35] that performs better than first order in practice, though not
fully at second order. Another finite element scheme was introduced by Bartels
and Prohl in [11] based on the Landau-Lifshitz-Gilbert equation, which is an im-
plicit, unconditionally stable method, but involves solving nonlinear equations at
each timestep. This method is second order in time; however, there is still a time
step constraint, namely that k/h2 remain bounded, to guarantee the existence of the
solutions of the nonlinear systems. Cimrák [19] introduced a finite element method
based on the Landau-Lifshitz equation, which is an implicit, unconditionally stable
method, but also has nonlinear inner iterations. We note that the Backward Euler
method and higher-order diagonally implicit Runge-Kutta (DIRK) methods [30]
generally involve solving nonlinear equations at each internal Runge-Kutta stage
when applied to nonlinear PDEs.

In this article, we introduce a family of mass-lumped finite element methods
for the Landau-Lifshitz equation. The implicit version is similar in computational
complexity to the algorithms in [4,6,8] in that each timestep involves solving a large
sparse linear system. The explicit method is more efficient than the explicit version
of [4,6,8] as it is completely explicit — it does not even require that a linear system
involving a mass matrix be solved as the effective mass matrix is diagonal. The
method involves finding the velocity vector in the tangent plane of the magnetiza-
tion by discretizing the Landau-Lifshitz equation instead of the Landau-Lifshitz-
Gilbert equation, as was done in [4,6–8,35]. By building a numerical scheme based
on the Landau-Lifshitz equation instead of the Landau-Lifshitz-Gilbert equation,
we can naturally apply the scheme to limiting cases such as the Schrödinger map
or harmonic map heat flow [12, 20, 29, 32, 33]. The main result of the paper is a
proof that the numerical solution of our scheme for the Landau-Lifshitz equation
converges to a weak solution of the Landau-Lifshitz-Gilbert equation, using a sim-
ple technique that cancels out the product of two weakly convergent sequences.
Our proof builds on tools developed in [8]. For simplicity, we defer the treat-
ment of the stray field to future work. This term poses computational challenges
[1, 2, 13, 16, 21, 23, 27, 39, 40, 43, 46, 48], but does not affect the convergence results
since it is a lower order term in comparison to the exchange term; see [8].

The paper is organized as follows. In section 1, we introduce a finite element
mesh and review the weak formulation of the Landau-Lifshitz-Gilbert equation. In
section 2, the main algorithm and the main theorem will be introduced. In section
3, we conduct a numerical test for the equation h = ∆m on the unit square with
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periodic boundary conditions, where an exact analytical solution is known from
[24]. In section 4, the proof of the main theorem will be presented.

1. Weak solutions, meshes and the finite element space

Let us denote ΩT = Ω× (0, T ). The definition of a weak solution of the Landau-
Lifshitz-Gilbert equation is given by

Definition 1.1. Let m0(x) ∈ H1(Ω)3 with |m0(x)| = 1 a.e. Then m is a weak
solution of (0.6) if for all T > 0,

(i) m(x, t) ∈ H1(ΩT )
3, |m(x, t)| = 1 a.e.,

(ii) m(x, 0) = m0(x) in the trace sense,
(iii) m satisfies

∫

ΩT

∂tm · φ− α

∫

ΩT

(m× ∂tm) · φ

(1.1)

= (1 + α2)η

d
∑

l=1

∫

ΩT

(m× ∂xl
m) · ∂xl

φ− (1 + α2)

d
∑

l=1

∫

ΩT

(m× h̄(m)) · φ.

for all φ ∈ H1(ΩT )
3.

(iv) m satisfies an energy inequality

(1.2) C

∫

ΩT

|∂tm|2 + E(m(x, T )) ≤ E(m(x, 0)).

for some constant C > 0, where the energy E(m) is defined in equation
(0.3).

In [6, 11], the value of C in (iv) is taken to be C = α
1+α2 . The existence of global

weak solution of the Landau-Lifshitz equation in Ω ⊂ R
3 into S

2 was proved in
[9, 28]. The nonuniqueness of weak solution was proved in [9].

Let the domain Ω ⊂ R
d where d = 2 or 3 be discretized into triangular or

tetrahedral elements {Th}h of mesh size at most h with vertices (xi)
N
i=1. Let the

family of partitions T = {Th}h be admissible, shape regular and uniform [14]. Let
{φi}1≤i≤N be piecewise linear nodal basis functions for T , such that φi(xj) = δij ,
where δij is a Kronecker delta function. We will consider a vector-valued finite

element space Fh defined by Fh = {wh | wh(x) =
∑N

i=1 w
h
i φi(x), wh

i ∈ R
3}.

The discrete magnetization mh is required to belong to the submanifold Mh of Fh

defined by Mh = {mh ∈ Fh | mh(x) =
∑N

i=1 m
h
i φi(x), |mh

i | = 1}. We define the
interpolation operator Ih : C0(Ω,R3) → Fh by

(1.3) Ih(m) =

N
∑

i=1

m(xi)φi(x).
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We need the following additional conditions for our finite element method: There
exist some constants C1, C2, C3, C4 > 0 such that

(1.4)

C1h
d ≤ bi =

∫

Ω

φi ≤ C2h
d,

|Mij | =
∣

∣

∣

∣

∫

Ω

φiφj

∣

∣

∣

∣

≤ C3h
d,

|∂xl
φi| ≤

C4

h
∫

Ω

∇φi · ∇φj ≤ 0, for i 6= j,

for all h > 0, i, j = 1, . . . , N and l = 1, . . . , d.

2. The finite element scheme, the algorithm, and the main theorem

To illustrate how we obtain Algorithm 1 below, consider the simple case in
which only the exchange energy term is present in the effective field, i.e. h = η△m
from (0.2). Let’s first consider the weak form of the Landau-Lifshitz equation with
h = η△m,

(2.1)

∫

ΩT

∂tm · w = η

d
∑

l=1

∫

ΩT

(m× ∂xl
m) · ∂xl

w

− αη

d
∑

l=1

∫

ΩT

∂xl
m · ∂xl

w + αη

d
∑

l=1

∫

ΩT

(∂xl
m · ∂xl

m)(m · w).

Taking this weak form as a hint, we would like to find v =
∑N

j=1 vjφj ∈ Fh such
that
(2.2)
∫

Ω

N
∑

j=1

vjφj · wiφi = η

d
∑

l=1

N
∑

j=1

∫

Ω

(mi ×mj∂xl
φj) · ∂xl

φi wi

− αη
d

∑

l=1

N
∑

j=1

∫

Ω

mj∂xl
φj · ∂xl

φiwi + αη
d

∑

l=1

N
∑

j=1

∫

Ω

(∂xl
φjmj ·mi)(mi · wi∂xl

φi)

for i = 1, . . . , N , where m =
∑N

j=1 mjφj(x) ∈ Mh, w ∈ (C∞(Ω))3 and wi =

Ih(w)(xi) = w(xi). Then, with wi as (1, 0, 0), (0, 1, 0) or (0, 0, 1) in equation (2.2),
we obtain

(2.3) (Mv)i = η mi × (Am)i + αη mi × (mi × (Am)i)

for i = 1, . . . , N , where M =





M 0 0
0 M 0
0 0 M



 and A =





A 0 0
0 A 0
0 0 A



 are 3N ×

3N block diagonal matrices with each block M and A a mass or stiffness matrix,

i.e. Mij =
∫

Ω
φiφj , and Aij =

∑d
l=1

∫

Ω
∂xl

φi∂xl
φj . Note that mi · (Mv)i = 0, so

approximating v by v̂ = Mv
b yields a tangent vector to the constraint manifold Mh,

where bi =
∫

Ω
φi. The left hand side of (2.3) is then biv̂i which is a mass-lumping

approximation. This suggests the following algorithm.

Algorithm 1. For a given time T̄ > 0, set J = [ T̄k ].
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(1) Set an initial discrete magnetization m0 at the nodes of the finite element
mesh described in § 1 above.

(2) For j = 0, . . . , J ,

a. compute a velocity vector v̂ji at each node by

(2.4)

v̂ji =
(Mvj)i

bi
=

η mj
i × (Am+ θkAv̂)ji + αη mj

i × (mj
i × (Am+ θkAv̂)ji )

bi

−mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))ji )

bi
.

for θ ∈ [0, 1] and for i = 1, . . . , N .

b. Compute mj+1
i =

mj

i
+kv̂j

i

|mj

i
+kv̂j

i
| for i = 1, . . . , N .

We define the time-interpolated magnetization and velocity as in [8]:

Definition 2.1. For (x, t) ∈ Ω× [jk, (j + 1)k) ⊂ Ω× [0, T ), where T = Jk, define

mh,k(x, t) = mj(x),

m̄h,k(x, t) =
t− jk

k
mj+1(x) +

(j + 1)k − t

k
mj(x),

v̂h,k(x, t) = v̂j(x),

vh,k(x, t) = vj(x).

The main theorem in this article is the following theorem, which is proved in
section 4.

Theorem 2.2. Let m0 ∈ H1(Ω, S2) and suppose mh
0 → m0 in H1(Ω) as h → 0.

Let θ ∈ [0, 1], and for 0 ≤ θ < 1
2 , assume that k

h2 ≤ C0, for some C0 > 0. If

the triangulation T = {Th}h satisfies condition (1.4), then the sequence {mh,k},
constructed by Algorithm 1 and definition 2.1, has a subsequence that converges
weakly to a weak solution of the Landau-Lifshitz equation.

3. Numerical Results

Before proving Theorem 2.2, we demonstrate the effectiveness of the scheme
on a test problem. We conduct a numerical experiment for the Landau-Lifshitz
equation (0.1) with effective field involving only the exchange energy term, with
h = ∆m in equation (0.2), on the unit square with periodic boundary conditions.
This corresponds to setting η = 1 and h̄ = 0 in equation (2.4) in Algorithm 1. For
the convergence study, we used an explicit method (θ = 0) and an implicit method
(θ = 0.5) on a structured and unstructured mesh. The unstructured mesh with
point and line sources, which is an arbitrary mesh, was generated using DistMesh
[42], with an example shown in figure 1.

The L∞ and L2 errors were measured relative to an exact solution for the
Landau-Lifshitz equation with h = ∆m from [24], namely

(3.1)

mx(x1, x2, t) =
1

d(t)
sinβ cos(k(x1 + x2) + g(t)),

my(x1, x2, t) =
1

d(t)
sinβ sin(k(x1 + x2) + g(t)),

mz(x1, x2, t) =
1

d(t)
e2k

2αt cosβ.
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1

Figure 1. Unstructured mesh with point and line sources, with
h = 1/32.

Here β = π
24 , k = 2π, d(t) =

√

sin2 β + e4k2αt cos2 β and g(t) = 1
α log(d(t)+e2k

2αt cos β
1+cos β ).

The numerical results are summarized in the tables 1 and 2. Figure 2 shows the
convergence rate of the methods, which is first order in the time step k and second
order in the mesh size h.

10-3 10-2 10-1

spatial step h

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

At time 0.001

1

2

structured - L  error

structured - L2 error
unstructured - L  error
unstructured - L2 error

10-3 10-2 10-1

spatial step h

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

At time 0.001

1

2

structured - L  error

structured - L2 error
unstructured - L  error
unstructured - L2 error

Figure 2. Convergence plot, Left : Explicit method, Right: Im-
plicit method.

3.1. Going beyond first order in time. In this section, we propose a method
which is second order in time, by replacing the nonlinear projection step 2 (b)
in Algorithm 1 by a linear projection step, and test the convergence order. In
Algorithm 1, step 2 (a) can be viewed as the predictor step and 2 (b) as the corrector
step. The corrector step was used to conserve the length of the magnetization at
each node. By replacing this nonlinear projection by a linear projection step, it not
only preserves the length of the magnetization, but also makes the method higher
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Structured mesh Unstructured mesh
1
h ||m−mh||L∞ rate ||m−mh||L2 rate ||m−mh||L∞ rate ||m−mh||L2 rate
32 8.22e-05 2.00 7.40e-04 2.00 5.61e-03 1.28 3.83e-03 1.65
64 2.06e-05 2.00 1.85e-04 2.00 2.32e-03 1.56 1.22e-03 1.97
128 5.15e-06 2.00 4.63e-05 2.00 7.87e-04 1.81 3.13e-04 2.01
256 1.29e-06 1.16e-05 2.25e-04 7.77e-05

Table 1. Explicit method (θ = 0) : L∞ and L2 error and con-
vergence rates on a structured and unstructured mesh with spatial
step h, time step k = 8 · 10−5h2 and time 0.001.

Structured mesh Unstructured mesh
1
h ||m−mh||L∞ rate ||m−mh||L2 rate ||m−mh||L∞ rate ||m−mh||L2 rate
32 8.26e-05 2.00 7.40e-04 2.00 5.61e-03 1.28 3.83e-03 1.65
64 2.07e-05 2.00 1.85e-04 2.00 2.32e-03 1.56 1.22e-03 1.97
128 5.17e-06 2.00 4.63e-05 2.00 7.87e-04 1.81 3.13e-04 2.01
256 1.29e-06 1.16e-05 2.25e-04 7.77e-05

Table 2. Implicit method (θ = 1
2 ) : L∞ and L2 error and

convergence rates on a structured and unstructured mesh , with
spatial step h, time step k = 0.00256h2 and time 0.001.

order. Moreover, it has a similar complexity as the nonlinear projection step in
that you only need to solve a 3 × 3 matrix equation for each node. We defer a
rigorous analysis to future work and present here the modified algorithm and some
convergence test results.

Algorithm 2. For a given time T̄ > 0, set J = [ T̄k ].

(1) Set an initial discrete magnetization m0 at the nodes of the finite element
mesh described in § 1 above.

(2) For j = 0, . . . , J ,
a. compute an intermediate magnetization vector m∗

i at each node by

m∗
i −mj

i

k
= v̂ji =

(Mvj)i
bi

=
η mj

i × (Am+ θkAv̂)ji + αη mj
i × (mj

i × (Am+ θkAv̂)i)
j

bi

− mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))i)

j

bi
.

for θ ∈ [0, 1] and for i = 1, . . . , N .
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b. Compute mj+1
i for i = 1, . . . , N .

mj+1
i −mj

i

k
=

=
η

mj+1

i
+mj

i

2 × (Am
j+1/2
i ) + αη

mj+1

i
+mj

i

2 × (m
j+1/2
i × (Amj+1/2)

bi

−
mj+1

i
+mj

i

2 ×Mh̄(mj+1/2)i + α
mj+1

i
+mj

i

2 × (m
j+1/2
i × (Mh̄(m

j+1/2
i ))

bi
.

where mj+1/2 = mj+m∗

2 for i = 1, . . . , N .

As before, we conduct a numerical test for the Landau-Lifshitz equation (0.1)
with effective field involving only the exchange energy term, with h = ∆m in
equation (0.2), on the unit square with periodic boundary conditions, to compare
the two algorithms. For the convergence study, we used an implicit method (θ =
0.5) on a structured and unstructured mesh. One of the unstructured meshes was
shown in figure 1. The L2 errors were measured relative to an analytical solution
(3.1) for the Landau-Lifshitz equation with h = ∆m. The numerical results are
summarized in the tables 3. Figure 3 shows the convergence rates of the methods,
which shows first order in k for Algorithm 1 and second order convergence for
Algorithm 2.

10-2

spatial step h

10-6

10-5

10-4

10-3

E
rr

o
r

At time 0.01

1

2

1

Algorithm 1
Algorithm 2

10-2

spatial step h

10-5

10-4

10-3

10-2

E
rr

o
r

At time 0.01

1

2
1

Algorithm 1
Algorithm 2

Figure 3. Convergence plot, Left : Structured mesh, Right : Un-
structured mesh.

4. Proof of Theorem 2.2

In this section, we present the proof of the theorem, which states that the se-
quence {mh,k}, constructed by Algorithm 1 and Definition 2.1, has a subsequence
that converges weakly to a weak solution m of the Landau-Lifshitz-Gilbert equation
under some conditions. That is, we show that the limit m satisfies Definition 1.1.
In section 4.1, we derive a discretization of the weak form of the Landau-Lifshitz-
Gilbert equation satisfied by the {mh,k}, namely (4.3). In section 4.2, we derive
energy estimates to show that the sequences mh,k, m̄h,k and v̂h,k converge to m in a
certain sense made precise in section 4.3. In section 4.4, we show that each term of
the discretization of the weak form converges to the appropriate limit, so that the
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Structured mesh Unstructured mesh
1
h Alg. 1 rate Alg. 2 rate Alg. 1 rate Alg. 2 rate
32 5.14e-04 1.32 1.87e-04 2.01 2.10e-03 1.61 1.91e-03 1.72
64 2.06e-04 1.18 4.66e-05 2.00 6.87e-04 1.75 5.81e-04 2.01
128 9.12e-05 1.10 1.16e-05 2.00 2.04e-04 1.57 1.44e-04 2.03
256 4.27e-05 2.91e-06 6.84e-05 3.53e-05

Table 3. Implicit method (θ = 1
2 ) : L

2 error and convergence
rates on a structured and unstructured mesh , with spatial step h,
time step k = 0.04h and time 0.01.

limit m satisfies the weak form of the Landau-Lifshitz-Gilbert equation. In section
4.5, we show that the limit m satisfies the energy inequality (1.2) in Definition 1.1
(iv). Finally, in section 4.6, we establish that the magnitude of m is 1 a.e. in ΩT .

4.1. Equations that mh,k and vh,k satisfy. In this section, we derive a discretiza-
tion of the weak form of the Landau-Lifshitz-Gilbert equation. This form is easier
to use for the proof of Theorem 2.2, since it does not involve the product of the
weakly convergent sequences. In general, a product of weakly convergent sequences
is not weakly convergent. It is convergent only in some certain cases, such as when
the sequences satisfy the hypothesis of the div-curl lemma [17, 45].

The generalized version of equation (2.2) including all the terms in the effective
field h (0.2) and with 0 ≤ θ ≤ 1 is

(4.1)

∫

Ω

vh,k · wh = η
∑

l,i

∫

Ω

(mh,k
i × ∂xl

(mh,k + θkv̂h,k)) · ∂xl
φi w

h
i

− αη
∑

l,i

∫

Ω

∂xl
(mh,k + θkv̂h,k) · ∂xl

φiw
h
i

+ αη
∑

l,i

∫

Ω

(∂xl
(mh,k + θkv̂h,k) ·mh,k

i )(mh,k
i · wh

i )∂xl
φi

−
∑

i

∫

Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · φiw

h
i

+ α
∑

i

∫

Ω

h̄(mh,k + θkv̂h,k) · φiw
h
i

− α
∑

i

∫

Ω

(h̄(mh,k + θkv̂h,k) ·mi)(mi · wh
i φi).
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In fact, by taking wh
i as (1, 0, 0), (0, 1, 0) and (0, 0, 1) in (4.1), we get (2.4) in Algo-

rithm 1. Setting wh =
∑N

j=1(m
h,k
j × uh

j )φj in (4.1), we have

(4.2)

−
∑

i

∫

Ω

(mh,k
i × vh,k) · uh

i φi = η
∑

l

∫

Ω

∂xl
(mh,k + θkv̂h,k) · ∂xl

uh

− η
∑

l,i

∫

Ω

(∂xl
(mh,k + θkv̂h,k) ·mh,k

i ) (mh,k
i · uh

i )∂xl
φi

+ αη
∑

l,i

∫

Ω

(mh,k
i × ∂xl

(mh,k + θkv̂h,k)) · ∂xl
φiu

h
i

−
∑

i

∫

Ω

(h̄(mh,k + θkv̂h,k)) · φiu
h
i

+
∑

i

∫

Ω

(h̄(mh,k + θkv̂h,k) ·mh,k
i ) (mh,k

i · uh
i )φi

− α
∑

i

∫

Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · uh

i φi.

Equations (4.1) and (4.2) have terms that contain the product of weakly convergent
sequences, namely the third term of the right hand side of (4.1), and the second term

of the right hand side of (4.2), αη
∑

l,i

∫

Ω(∂xl
(mh,k+θkv̂h,k) ·mh,k

i )(mh,k
i ·wh

i )∂xl
φi.

By adding α times equation (4.2) to equation (4.1), we eliminate the terms that
contain the product of weakly convergent sequences :
(4.3)
∫

Ω

[

vh,k · wh − α
∑

i

(mh,k
i × vh,k) · wh

i φi

]

= (1 + α2)

[

η
∑

l,i

∫

Ω

[

(mh,k
i × ∂xl

mh,k) · ∂xl
φiw

h
i + θk(mh,k

i × ∂xl
v̂h,k) · ∂xl

φiw
h
i

]

−
∑

i

∫

Ω

[

(mh,k
i × h̄(mh,k)) · wh

i φi + θk(mh,k
i × h̄(v̂h,k)) · wh

i φi

]

]

.

This is a similar procedure to subtracting α times the following equation

(4.4) m× ∂tm = −m× (m× h) + αm× h

from the Landau-Lifshitz equation (0.1) to get the Landau-Lifshitz-Gilbert equation
(0.6). Here, equation (4.4) is obtained by taking m× the Landau-Lifshitz equation
(0.1).

4.2. Energy inequality. In this section, we derive the energy inequalities we will
need to prove Theorem 2.2, namely (4.17) for 0 ≤ θ < 1

2 and (4.18) for 1
2 ≤ θ ≤ 1.

We will use Theorem 1 from [8], which states that the exchange energy is decreased
after renormalization. This result goes back to [5, 10] :

Theorem 4.1. For the P 1 approximation in Ω ⊂ R
2, if

(4.5)

∫

Ω

∇φi · ∇φj ≤ 0, for i 6= j,
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then for all w =
∑N

i=1 wiφi ∈ Fh such that |wi| ≥ 1 for i = 1, . . . , N , we have

(4.6)

∫

Ω

∣

∣

∣

∣

∇Ih(
w

|w| )
∣

∣

∣

∣

2

≤
∫

Ω

|∇w|2 .

In 3D, we have (4.6), if an additional condition that all dihedral angles of the
tetrahedra of the mesh are smaller than π

2 is satisfied, along with (4.5). Also, we
will use inequality (14) of [8],

(4.7)
∥

∥h̄(m)
∥

∥

L2 ≤ C5 ‖m‖L2 + C5

and equation (25) from [7],

(4.8) ‖hs(m)‖L2 ≤ C5 ‖m‖L2

where C5 are positive constants, depending only on Ω. Furthermore, we will use
an inequality (20) of [8] in the proof, which states there exists C6 > 0 such that for
all 1 ≤ p < ∞ and all φh ∈ Fh, we have

(4.9)
1

C6
‖φh‖pLp ≤ hd

N
∑

i=1

|φh(xi)|p ≤ C6 ‖φh‖pLp .

Moreover, we will assume that there exists C7 > 0 such that

(4.10)

∫

Ω

|∇vh|2 ≤ C7

h2

∫

Ω

|vh|2

for all vh ∈ Fh.
Taking wh =

∑N
j=1(m

h,k
j × uh

j )φj in (4.3), and setting uh = v̂h,k, we have

(4.11)

− α
∑

i

∫

Ω

vh,ki · v̂iφi = (1 + α2)

[

η
∑

l,i

∫

Ω

[

(∂xl
mh,k · ∂xl

φiv̂i) + θk(∂xl
v̂h,k · ∂xl

φiv̂i)
]

−
∑

i

∫

Ω

[

(h̄(mh,k) · v̂i)φi + θk(h̄(v̂h,k) · v̂i)φi

]

]

where we have used the fact mh,k
i · v̂h,ki = 0 for i = 1, . . . , N . This equation can be

written as
(4.12)

(∇m,∇v̂) = −θk ‖∇v̂‖2L2 −
α

1 + α2

1

η

∑

i

|(Mv)j |2
bj

+
1

η
(h̄(m), v̂) +

θk

η
(h̄(v̂), v̂).

We now derive an energy estimate. We have
(4.13)
1

2

∥

∥∇mj+1
∥

∥

2

L2 ≤ 1

2

∥

∥∇mj + k∇v̂j
∥

∥

2

L2 =
1

2

∥

∥∇mj
∥

∥

2

L2 + k(∇mj ,∇v̂j) +
1

2
k2

∥

∥∇v̂j
∥

∥

2

L2

≤ 1

2

∥

∥∇mj
∥

∥

2

L2 − k(
α

1 + α2
)
1

η

∑

i

|(Mv)ji |2
b2i

bi +
1

2
k2

∥

∥∇v̂j
∥

∥

2

L2 − θk2
∥

∥∇v̂j
∥

∥

2

L2

+
k

η
(h̄(mj), v̂j) + θ

k2

η
(h̄(v̂j), v̂j)

≤ 1

2

∥

∥∇mj
∥

∥

2

L2 − k(
α

1 + α2
)
1

η

C1

C6

∥

∥v̂j
∥

∥

2

L2 − (θ − 1

2
)k2

∥

∥∇v̂j
∥

∥

2

L2 +
k

η
(h̄(mj), v̂j)

+ θ
k2

η
(h̄e, v̂

j)
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where the first inequality is obtained by Theorem 4.1, the second inequality by
equation (4.12), and the last inequality by the fact (hs(v̂

j), v̂j) < 0. We have the
estimate for the last two terms of the above inequality :
(4.14)
∣

∣(h̄(mj) + θkh̄e, v̂
j)
∣

∣ ≤
∥

∥h̄(mj) + θkh̄e

∥

∥

L2

∥

∥v̂j
∥

∥

L2 ≤ C8

∥

∥v̂j
∥

∥

L2 ≤ ǫ
∥

∥v̂j
∥

∥

2

L2 +
1

4ǫ
C2

8

for some C8 > 0, where the second inequality is obtained by equation (4.7) and the
last inequality by Young’s inequality with ǫ = 1

2
α

1+α2

C1

C6
. Summing the inequality

(4.13) from j = 0, . . . , J − 1 and using (4.14), we get
(4.15)

1

2

∥

∥∇mJ
∥

∥

2

L2 + k(
1

2η
(

α

1 + α2
)
C1

C6
− C7(

1

2
− θ)

k

h2
)
J−1
∑

j=0

∥

∥v̂j
∥

∥

2

L2 ≤ 1

2

∥

∥∇m0
∥

∥

2

L2 + C9T

with k
h2 ≤ C0 < 1

2
α

1+α2

C1

C6

1
C7η

, for 0 ≤ θ < 1
2 , and

(4.16)

1

2

∥

∥∇mJ
∥

∥

2

L2 + k(
1

2η

α

1 + α2
)
C1

C6

J−1
∑

j=0

∥

∥v̂j
∥

∥

2

L2 + (θ − 1

2
)k2

J−1
∑

j=0

∥

∥∇v̂j
∥

∥

2

L2 ≤ 1

2

∥

∥∇m0
∥

∥

2

L2 + C9T

for 1
2 ≤ θ ≤ 1, and for some C9 > 0.
In summary, we have the energy inequalities

(4.17)

1

2

∫

Ω

|∇mh,k(·, T )|2 + (
1

2η
(

α

1 + α2
)
C1

C6
− C7C0)

∫

ΩT

|v̂h,k|2

≤ 1

2

∫

Ω

|∇mh,k(·, 0)|2 + C9T

with C0 < 1
2

α
1+α2

C1

C6

1
C7η

, for 0 ≤ θ < 1
2 and

(4.18)

1

2

∫

Ω

∣

∣∇mh,k(·, T )
∣

∣

2
+ (

1

2η

α

1 + α2
)
C1

C6

∫

ΩT

∣

∣v̂h,k
∣

∣

2

+ (θ − 1

2
)k

∫

ΩT

∣

∣∇v̂h,k
∣

∣

2 ≤ 1

2

∫

Ω

∣

∣∇mh,k(·, 0)
∣

∣

2
+ C9T.

for 1
2 ≤ θ ≤ 1.

4.3. Weak convergence of mh,k, m̄h,k and v̂h,k. In this section, we show the
weak convergence of m̄h,k and v̂h,k and strong convergence of mh,k in some sense,
based on the energy estimates (4.17) and (4.18). We follow similar arguments from
section 6 of [7].

Since we have

(4.19)

∣

∣

∣

∣

∣

mj+1
i −mj

i

k

∣

∣

∣

∣

∣

≤
∣

∣

∣
v̂ji

∣

∣

∣

for i = 1, . . . , N and j = 0, . . . , J − 1, we have

(4.20)
∥

∥∂tm̄
h,k

∥

∥

L2(Ω)
=

∥

∥

∥

∥

mj+1 −mj

k

∥

∥

∥

∥

L2(Ω)

≤ C6

∥

∥v̂h,k
∥

∥

L2(Ω)
.

Thus, we have

(4.21)
∥

∥∂tm̄
h,k

∥

∥

L2(ΩT )
=

∥

∥

∥

∥

mj+1 −mj

k

∥

∥

∥

∥

L2(ΩT )

≤ C6

∥

∥v̂h,k
∥

∥

L2(ΩT )
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which is bounded by the energy inequalities, (4.17) for 0 ≤ θ < 1
2 and (4.18) for

1
2 ≤ θ ≤ 1. Hence, m̄h,k is bounded in H1(ΩT ) and v̂h,k is bounded in L2(ΩT ) by

(4.21) and by the energy inequalities, (4.17) for 0 ≤ θ < 1
2 and (4.18) for 1

2 ≤ θ ≤ 1.

Thus, by passing to subsequences, there exist m ∈ H1(ΩT ) and v̂ ∈ L2(ΩT ) such
that

(4.22)

m̄h,k → m weakly in H1(ΩT ),

m̄h,k → m strongly in L2(ΩT ),

v̂h,k → v̂ weakly in L2(ΩT ).

Moreover, we have
(4.23)
∣

∣

∣
mj+1

i −mj
i − kv̂ji

∣

∣

∣
=

∣

∣

∣

∣

∣

mj
i + kv̂ji

|mj
i + kv̂ji |

−mj
i − kv̂ji

∣

∣

∣

∣

∣

=
∣

∣

∣
1− |mj

i + kv̂ji |
∣

∣

∣
≤ 1

2
k2

∣

∣

∣
v̂ji

∣

∣

∣

2

,

since |mj
i+kv̂ji | =

√

1 + k2|v̂ji |2 ≤ 1+ 1
2k

2|v̂ji |2, for i = 1, . . . , N and j = 0, . . . , J−1.

Thus,

(4.24)
∥

∥∂tm̄
h,k − v̂h,k

∥

∥

L1(ΩT )
≤ 1

2
kC2C6

∥

∥v̂h,k
∥

∥

2

L2(ΩT )

which converges to 0 as h, k → 0, so

(4.25) ∂tm = v̂.

Furthermore, since

(4.26)
∥

∥mh,k − m̄h,k
∥

∥

L2(ΩT )
=

∥

∥

∥

∥

(t− jk)
mj+1 −mj

k

∥

∥

∥

∥

L2(ΩT )

≤ k
∥

∥∂tm̄
h,k

∥

∥

L2(ΩT )

and the right hand side goes to 0 as h, k → 0, we have

(4.27) mh,k → m strongly in L2(ΩT ).

In summary, we have shown that there exist a subsequence of {m̄h,k} that con-
verges weakly in H1(Ω× (0, T )), a subsequence of {v̄h,k} that converges weakly in
L2(Ω×(0, T )), and a subsequence of {mh,k} converges strongly in L2(ΩT ) based on
the energy estimates (4.17) and (4.18). However, in our numerical tests in section
3, it was not necessary to take subsequences and the method was in fact second
order in space and first order in time. Thus, there is still a gap in what we are able
to prove and the practical performance of the algorithm in cases where the weak
solution is unique and sufficiently smooth.

4.4. The proof that the limit m actually satisfies Landau-Lifshitz-Gilbert
equation. In this section, we show that each term of equation (4.3) converges to
the appropriate limit, so that the limit m of the sequences {m̄h,k} and {mh,k}
satisfies the weak form of the Landau-Lifshitz-Gilbert equation (1.1) in Definition
1.1.

Lemma 4.2. Let the sequences {mh,k}, {m̄h,k}, {v̂h,k}, and {vh,k} be defined
by Definition 2.1. Also, let m ∈ H1(ΩT ) be the limit as in (4.22) and (4.27).
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Moreover, let’s assume w ∈ (C∞(ΩT )
3 ∩ (H1(ΩT ))

3, and wh = Ih(w) ∈ Fh as in
equation (1.3). Then we have

(4.28) lim
h,k→0

∫

ΩT

vh,k · wh = lim
h,k→0

∫ T

0

N
∑

j=1

v̂h,kj · wh
j

∫

Ω

φj =

∫

ΩT

∂tm · w.

Proof. The difference between the last two terms is bounded by

(4.29)

∣

∣

∣

∣

∫

ΩT

Ih(v̂
h,k · wh)− v̂h,k · wh

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ΩT

v̂h,k · wh − ∂tm · w
∣

∣

∣

∣

.

The first term of (4.29) has the following estimate. For each element L, we have
v̂h,k(·, t) · wh(·, t) ∈ C∞(L) and

(4.30)

∥

∥Ih(v̂
h,k · wh)− v̂h,k · wh

∥

∥

2

L2(L)
≤ C10h

4
∥

∥∆(v̂h,k · wh)
∥

∥

2

L2(L)

≤ C10h
4(
∥

∥∆v̂h,k · wh
∥

∥

2

L2(L)
+
∥

∥∇v̂h,k · ∇wh
∥

∥

2

L2(L)
+
∥

∥v̂h,k ·∆wh
∥

∥

2

L2(L)
)

≤ C10h
4((

∥

∥∇v̂h,k · ∇wh
∥

∥

2

L2(L)
)

for some C10 > 0, where the first inequality is obtained by the Bramble-Hilbert
lemma [14], and in the last inequality we have used ∆v̂h,k = 0 and ∆wh = 0 in L,
since v̂h,k and wh are the sum of piecewise linear functions. We have the estimate

(4.31)

∥

∥∇v̂h,k
∥

∥

2

L2(Ω)
≤

∑

L

∫

L

|
∑

i

(v̂h,k)i∇φi|2 ≤ C11

h2

∑

L

|
∑

i∈IL

(v̂h,k)i|2|L|

≤ C12h
d−2

N
∑

i=1

|(v̂h,k)i|2 ≤ C13

h2

∥

∥v̂h,k
∥

∥

2

L2(Ω)
.

for some constants C11, C12, C13 > 0 and IL is the index of nodes of L, where the
second inequality is obtained by (4.10), and the last inequality by (4.9). Hence,
(4.32)
∥

∥Ih(v̂
h,k · wh)− v̂h,k · wh

∥

∥

2

L2(ΩT )
≤ C10h

4
∥

∥∇v̂h,k · ∇wh
∥

∥

2

L2(ΩT )
≤ C14h

2
∥

∥v̂h,k
∥

∥

L2(ΩT )

for some constant C14 > 0. Therefore, the first term of (4.29) goes to 0 as h, k → 0.
Moreover, the second term of (4.29) goes to 0 by the weak convergence of v̂h,k to
∂tm which are equations (4.22) and (4.25) . �

Lemma 4.3. Under the same assumptions of Lemma 4.2, we have

(4.33)

lim
h,k→0

∫

ΩT

∑

i

(mh,k
i × vh,k) · wh

i φi = lim
h,k→0

∫

ΩT

∑

i

(mh,k
i × v̂h,ki ) · wh

i φi

=

∫

ΩT

(m× ∂tm) · w

Proof. The difference between the last two terms is bounded by

(4.34)

∣

∣

∣

∣

∫

ΩT

Ih((m
h,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ΩT

(mh,k)a(v̂h,k)b(wh)c −ma(∂tm)bwc

∣

∣

∣

∣
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for some a, b, c ∈ {1, 2, 3}. The first term of (4.34), has the following estimate. For
each element L, we have (mh,k)a(v̂h,k)b(wh)c ∈ C∞(L) and
(4.35)

∥

∥Ih((m
h,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∥

∥

L1(L)

≤ C15h
2(
∥

∥∆((mh,k)a(v̂h,k)b(wh)c)
∥

∥

L1(L)
)

≤ C15h
2(
∥

∥∇(mh,k)a∇(v̂h,k)b(wh)c
∥

∥

L1(L)
+
∥

∥∇(mh,k)a(v̂h,k)b∇(wh)c
∥

∥

L1(L)

+
∥

∥(mh,k)a∇(v̂h,k)b∇(wh)c
∥

∥

L1(L)
)

for some constant C15 > 0, where the first inequality is obtained by Bramble-Hilbert
lemma, and in the last inequality we have used ∆m̂h,k = 0, ∆v̂h,k = 0 and ∆wh = 0
in L, since mh,k v̂h,k and wh are the sum of piecewise linear functions. Hence, we
have the estimate

(4.36)

∥

∥Ih((m
h,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∥

∥

L1(ΩT )

≤ C16h
∥

∥(v̂h,k)b
∥

∥

L2(ΩT )
(
∥

∥∇(mh,k)a
∥

∥

L2(ΩT )
+ h

∥

∥∇(mh,k)a
∥

∥

L2(ΩT )

+
∥

∥(mh,k)a
∥

∥

L2(ΩT )
).

for some constant C16 > 0, where we have used Hölder’s inequality for all the
terms and used (4.31) for the first and the third terms. Therefore, the first term of
(4.34) goes to 0 as h, k → 0. Moreover, the second term of (4.34) goes to 0 by the
weak convergence of (v̂h,k)b to (∂tm)b established in (4.22) and (4.25), and strong
convergence of (mh,k)a to ma. �

Lemma 4.4. Under the same assumptions of Lemma 4.2, we have

(4.37) lim
h,k→0

∑

l,i

∫

ΩT

(mh,k
i × ∂xl

mh,k) · wh
i ∂xl

φi =
∑

l

∫

ΩT

(m× ∂xl
m) · ∂xl

w .

Proof. The difference between the last two terms is bounded by

(4.38)

∣

∣

∣

∣

∫

ΩT

(∂xl
mh,k)b∂xl

Ih((m
h,k)c(wh)a) −

∫

ΩT

(∂xl
mh,k)b((mh,k)c(∂xl

wh)a)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ΩT

(mh,k)c(∂xl
mh,k)b(∂xl

wh)a −
∫

ΩT

mc(∂xl
m)b(∂xl

w)a)

∣

∣

∣

∣

,

for some a, b, c ∈ {1, 2, 3}. The first term is bounded by

(4.39)
∥

∥(∂xl
mh,k)b

∥

∥

L2(ΩT )

∥

∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥

∥

L2(ΩT )
.

For each element L, we have mh,k(·, t)w(·, t) ∈ C∞(L), and we have the estimate,
(4.40)

∥

∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥

∥

2

L2(L)
≤ C17h

2|(mh,k)c(wh)a|2H2(L)

for some constant C17 > 0, by the Bramble-Hilbert lemma. Moreover, we have the
estimate,
(4.41)

|(mh,k)c(wh)a|2H2(L) =

∫

L

|∆((mh,k)c(wh)a)|2 ≤ C18

∫

L

|∇(mh,k)c|2|∇(wh)a|2

≤ C19

∥

∥(mh,k)c
∥

∥

2

H1(L)
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for some constants C18, C19 > 0, since ∆mh,k = 0 and ∆wh = 0 in L, since mh,k

and wh are the sum of piecewise linear functions. We get the estimate
(4.42)
∥

∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥

∥

2

L2(ΩT )
≤ C17C19h

2
∥

∥(mh,k)c
∥

∥

2

H1(ΩT )
.

Therefore, we may conclude that the first term of (4.38) goes to 0 as h, k → 0.
Moreover, the second term of (4.38) goes to 0 by the weak convergence of (∂xl

mh,k)b

to (∂xl
m)b and strong convergence of (mh,k)c to mc, which gives (4.22) and (4.27).

�

Lemma 4.5. Under the same assumptions of Lemma 4.2, we have

(4.43) lim
h,k→0

∣

∣

∣

∣

∣

k
∑

i

∫

ΩT

(mh,k
i × ∂xl

v̂h,k)a(∂xl
wh

i )
a

∣

∣

∣

∣

∣

= 0.

for 0 ≤ θ ≤ 1.

Proof. An upper bound for the sequence above is

(4.44)
√
k
∥

∥

∥

√
k ∂xl

(v̂h,k)c
∥

∥

∥

L2(ΩT )

∥

∥∇(Ih(m
h,k)b(wh)a)

∥

∥

L2(ΩT )
.

for some a, b, c ∈ {1, 2, 3}. The term
∥

∥

∥

√
k ∂xl

(v̂h,k)c
∥

∥

∥

L2(ΩT )
in (4.44) is uniformly

bounded, since
∥

∥

∥

√
k∂xl

(v̂h,k)c
∥

∥

∥

L2(Ω)
≤ C7

√
k
h

∥

∥(v̂h,k)c
∥

∥

L2(Ω)
is uniformly bounded

by (4.17) for 0 ≤ θ < 1
2 , which is obtained by (4.10), and

∥

∥

∥

√
k∂xl

(v̂h,k)c
∥

∥

∥

L2(Ω)
is

uniformly bounded by equation (4.18) for 1
2 ≤ θ ≤ 1. For each element L, we have

mh,k(·, t)w(·, t) ∈ C∞(L), so
(4.45)
∥

∥∇Ih((m
h,k)b(wh)a)−∇((mh,k)b(wh)a)

∥

∥

2

L2(L)
≤ C20h

2(
∥

∥(∇(mh,k)b)
∥

∥

2

L2(L)
),

for some constant C20 > 0, by the Bramble-Hilbert lemma, and using ∆mh,k = 0
and ∆wh = 0 in L, since mh,k and wh are the sum of piecewise linear functions.
Thus, we have

(4.46)

∥

∥∇(Ih(m
h,k)b(wh)a)

∥

∥

2

L2(ΩT )

≤
∥

∥∇(mh,k)b
∥

∥

2

L2(ΩT )
+ C20h

2(
∥

∥(∇(mh,k)b)
∥

∥

2

L2(ΩT )
),

which is uniformly bounded. Hence, (4.44) goes to 0 as h, k → 0. �

Lemma 4.6. Under the same assumptions of Lemma 4.2, we have

(4.47) lim
h,k→0

∑

i

∫

ΩT

(mh,k
i × h̄(mh,k)) · wh

i φi =

∫

ΩT

(m× h̄(m)) · w.

Proof. An upper bound for the difference between the sequence and the limit is
given by

(4.48)

∣

∣

∣

∣

∫

ΩT

(h̄(mh,k))aIh((m
h,k)b(wh)c)−

∫

ΩT

(h̄(mh,k))a(mh,k)b(wh)c)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ΩT

(h̄(mh,k))a(mh,k)b(wh)c −
∫

ΩT

(h̄(m))ambwc)

∣

∣

∣

∣
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for some a, b, c ∈ {1, 2, 3}. The first term of (4.48) is bounded by

(4.49)
∥

∥h̄(mh,k)a
∥

∥

L2(ΩT )

∥

∥Ih((m
h,k)b(wh)c)− (mh,k)b(wh)c

∥

∥

L2(ΩT )

For each element L, we have mh,k(·, t)w(·, t) ∈ C∞(L), and we get the estimate,

(4.50)
∥

∥Ih((m
h,k)bwc)− ((mh,k)bwc)

∥

∥

2

L2(L)
≤ C21h

4|(mh,k)bwc|2H2(L)

for some constant C21 > 0, by the Bramble-Hilbert lemma. Moreover,

(4.51)
|(mh,k)bwc|2H2(L) ≤ C21

∫

L

|∇(mh,k)b|2|∇(wh)c|2 + |(mh,k)b|2|∆(wh)c|2

≤ C22

∥

∥(mh,k)b
∥

∥

2

H1(L)

for some constant C22 > 0, and using the fact ∆mh,k = ∆wh = 0 in L, since mh,k

and wh are the sum of piecewise linear functions. We get the estimate

(4.52)
∥

∥Ih((m
h,k)bwc)− ((mh,k)bwc)

∥

∥

2

L2(ΩT )
≤ C23h

4
∥

∥(mh,k)b
∥

∥

2

H1(ΩT )
.

for some constant C23 > 0. Thus, the first term of (4.48) goes to 0 as h, k → 0,
and the second term of (4.48) converges to 0 as h, k → 0, because of the strong
convergence of (h̄(mh,k))a and (mh,k)b. �

Lemma 4.7. Under the same assumptions of Lemma 4.2, we have

(4.53) lim
h,k→0

∣

∣

∣

∣

∣

k
∑

i

∫

ΩT

(mh,k
i × h̄(v̂h,k)) · wh

i φi

∣

∣

∣

∣

∣

= 0.

Proof. An upper bound for the sequence above is

(4.54) k
∥

∥h̄(v̂h,k))
∥

∥

L2(ΩT )

∥

∥wh
∥

∥

L2(ΩT )
.

Since,
∥

∥h̄(v̂h,k))
∥

∥

L2(ΩT )
≤ (C5

∥

∥v̂h,k
∥

∥

L2(ΩT )
+C5) by (4.7), the term

∥

∥h̄(v̂h,k))
∥

∥

L2(ΩT )

in (4.54) is uniformly bounded. Therefore, (4.54) goes to 0 as h, k → 0.
�

4.5. Energy of m. Recall the definition of the energy E(m) in (0.3). We follow
the same arguments in section 6 of [7]. We have an energy estimate of mh,k as
(4.55)

E(mj+1)− E(mj) ≤− k(
α

1 + α2
)
C1

C6
||v̂j ||2L2 − (θ − 1

2
)k2η||∇v̂j ||2L2 + k(h̄(mj), v̂j)

+ θk2(h̄e, v̂
j)− 1

2

∫

Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj).

by (4.13) from section 4.2. For 0 ≤ θ < 1
2 , the second term on the right has an

upper bound
(4.56)

(θ−1

2
)k2η

∥

∥∇v̂j
∥

∥

2

L2(Ω)
≤ k2η

∥

∥∇v̂j
∥

∥

2

L2(Ω)
≤ C7kη

k

h2

∥

∥v̂j
∥

∥

2

L2(Ω)
≤ C7C0ηk

∥

∥v̂j
∥

∥

2

L2(Ω)

and by choosing C0 ≤ 1
2

α
1+α2

C1

C6

1
C7η

, this term and the first term on the right hand

side of (4.55) can be combined to be less than equal to

(4.57) − k

2
(

α

1 + α2
)
C1

C6
||v̂j ||2L2(Ω)
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The second term on the right of equation(4.55) can be disregarded for 1
2 ≤ θ ≤ 1.

We will derive the upper bound for the rest of the terms of right hand side of (4.55).
The third and the last terms on the right can be combined to be written as

(4.58)

∣

∣

∣

∣

k(h̄(mj), v̂j)− 1

2

∫

Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj)

∣

∣

∣

∣

.

and has an upper bound
(4.59)

∣

∣

∣

∣

∫

Ω

h̄(mj) · (mj+1 −mj − kv̂j)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2

∫

Ω

(h̄(mj+1)− h̄(mj)) · (mj+1 −mj)

∣

∣

∣

∣

.

The first term of (4.59) is bounded by

(4.60) C24k
2
(

∥

∥v̂j
∥

∥

L2(Ω)

∥

∥v̂j
∥

∥

L4(Ω)

)

≤ C24
k2

2

(

∥

∥v̂j
∥

∥

2

L2(Ω)
+
∥

∥v̂j
∥

∥

2

L4(Ω)

)

for some constant C24 > 0, by (4.23), and (4.9). The second term of (4.59) is

bounded by C25k
2
∥

∥v̂j
∥

∥

2

L2(Ω)
for some constant C25 > 0, by (4.19) and (4.9).

The fourth term on the right has the upper bound |θk2(h̄e, v̂
j)| ≤ C26k

2
∥

∥v̂j
∥

∥

L2(Ω)

for some constant C26 > 0. Then (4.55) has an upper bound
(4.61)

E(mj+1)− E(mj) +
k

2

(

α

1 + α2

)

C1

C6
||v̂j ||2L2(Ω) ≤C27k

2
(

∥

∥v̂j
∥

∥

2

L4(Ω)
+
∥

∥v̂j
∥

∥

2

L2(Ω)

)

≤C28k
2
(

∥

∥∇v̂j
∥

∥

2

L2(Ω)
+
∥

∥v̂j
∥

∥

2

L2(Ω)

)

for some constants C27, C28 > 0, by using Sobolev embedding theorem [3],
∥

∥v̂j
∥

∥

L4(Ω)
≤

C29

∥

∥∇v̂j
∥

∥

L2(Ω)
for some constant C29 > 0. Summing from j = 0, . . . , J − 1, we get

(4.62)
E(mJ )− E(m0) +

1

2

(

α

1 + α2

)

C1

C6

∫

ΩT

|v̂h,k|2

≤ C28 k
(

∥

∥∇v̂h,k
∥

∥

2

L2(ΩT )
+
∥

∥v̂h,k
∥

∥

2

L2(ΩT )

)

Therefore, taking h, k → 0, we get the energy inequality (1.2).

4.6. Magnitude of m. By the same argument in [8], we have |m(x, t)| = 1 a.e.
for (x, t) ∈ ΩT ( See equation (28) and (29) on page 1347 of [8] ).

5. Conclusion

We have presented a mass-lumped finite element method for the Landau-Lifshitz
equation. We showed that the numerical solution of our method has a subsequence
that converges weakly to a weak solution of the Landau-Lifshitz-Gilbert equation.
Numerical tests show that the method is second order accurate in space and first
order accurate in time when the underlying solution is smooth. A second-order in
time variant was also presented and tested numerically, but not analyzed rigorously
in the present work.
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[43] N Popović and Dirk Praetorius, Applications of H-matrix techniques in micromagnetics,

Computing 74 (2005), no. 3, 177–204.
[44] Thomas Schrefl, Finite elements in numerical micromagnetics: Part i: granular hard mag-

nets, Journal of magnetism and magnetic materials 207 (1999), no. 1, 45–65.
[45] Luc Tartar, The general theory of homogenization: a personalized introduction, Vol. 7,

Springer Science & Business Media, 2009.
[46] Igor Tsukerman, Alexander Plaks, and H Neal Bertram, Multigrid methods for computation

of magnetostatic fields in magnetic recording problems, Journal of Applied Physics 83 (1998),
no. 11, 6344–6346.

[47] Xiao-Ping Wang, Carlos J Garcıa-Cervera, and E Weinan, A Gauss–Seidel projection method

for micromagnetics simulations, Journal of Computational Physics 171 (2001), no. 1, 357–
372.

[48] Samuel W Yuan and H Neal Bertram, Fast adaptive algorithms for micromagnetics, IEEE
Transactions on Magnetics 28 (1992), no. 5, 2031–2036.



22 EUGENIA KIM AND JON WILKENING

Department of Mathematics, University of California, Berkeley, CA 94720 and MS-

B284, Los Alamos National Laboratory, Los Alamos, NM 87544

E-mail address: kim107@math.berkeley.edu

Department of Mathematics and Lawrence Berkeley National Laboratory, Univer-

sity of California, Berkeley, CA 94720

E-mail address: wilkening@berkeley.edu


	1. Weak solutions, meshes and the finite element space
	2. The finite element scheme, the algorithm, and the main theorem
	3. Numerical Results
	3.1. Going beyond first order in time

	4. Proof of Theorem 2.2
	4.1. Equations that mh,k and  vh,k satisfy
	4.2. Energy inequality
	4.3. Weak convergence of mh,k, h,k and h,k
	4.4. The proof that the limit m actually satisfies Landau-Lifshitz-Gilbert equation
	4.5. Energy of m
	4.6. Magnitude of m

	5. Conclusion
	References

