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Abstract

We apply the adjoint continuation method to construct highly-accurate, periodic
solutions that are observed to play a critical role in the multi-pulsing transition
of mode-locked laser cavities. The method allows for the construction of solu-
tion branches and the identification of their bifurcation structure. Supplementing
the adjoint continuation method with a computation of the Floquet multipliers
allows for explicit determination of the stability of each branch. This method
reveals that, when gain is increased, the multi-pulsing transition starts with a
Hopf bifurcation, followed by a period-doubling bifurcation, and a saddle-node
bifurcation for limit cycles. Finally, the system exhibits chaotic dynamics and
transitions to the double-pulse solutions. Although this method is applied specif-
ically to the waveguide array mode-locking model, the multi-pulsing transition
is conjectured to be ubiquitous and these results agree with experimental and
computational results from other models.

Keywords:

1. Introduction

High-power pulsed lasers are an increasingly important technological inno-
vation. Their conjectured and envisioned applications, ranging from military de-
vices and precision medical surgery to optical interconnection networks [1], have
grown significantly over the past two decades. Such lasers are one of the few ex-
amples of a commercially viable photonics technology that are based fundamen-
tally on nonlinear processes. As a result, mode-locking technologies have placed
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Figure 1: Two possible laser cavity configurations that include nonlinear mode-coupling from the
waveguide array as the mode-locking element. The fiber coupling in and out of the waveguide
array occurs at the central waveguide as illustrated. Any electromagnetic field that is propagated
into the neighboring waveguides is ejected (attenuated) from the laser cavity. In addition to the
basic setup, polarization controllers, isolators, and other stabilization mechanisms may be useful
or required for successful operation.

a premium on the engineering and optimization of laser cavities that are aimed at
producing output pulses of tens to hundreds of femtoseconds with maximal peak
powers in the kilowatt range and energies exceeding 10 nanojoules. Such techno-
logical demand has pushed mode-locked lasers to the forefront of commercially
viable, nonlinear photonic devices. One of the most recently envisioned meth-
ods for generating stable mode-locking incorporates the intensity discrimination
induced by the nonlinear mode-coupling properties in a waveguide array [2–6].
The waveguide array mode-locking produces robust mode-locking and displays
the ubiquitous multi-pulsing transition instability [7, 8] whereby an increase in
the laser cavity energy above a given threshold causes a single pulse per round
trip to bifurcate to two pulses per round trip. This multi-pulsing transition dy-
namics is the primary focus of this manuscript.

Figure 1 illustrates two possible mode-locking configurations in which the
waveguide array provides the critical effect of intensity discrimination (saturable
absorption) [1, 9]. In Fig. 1(a) a linear cavity configuration is considered whereas
in Fig. 1(b) a ring cavity geometry is considered. In either case, the waveguide
array provides an intensity dependent pulse shaping by coupling out low intensity
wings to the neighboring waveguides through a process called nonlinear mode-
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coupling.
Optical nonlinear mode-coupling (NLMC) is a well-established phenomenon

that has been both experimentally verified [10–14] and theoretically character-
ized [15–17]. NLMC has been an area of active research in all-optical switching
and signal processing applications using waveguide arrays [11–14], dual-core
fibers [10, 15, 16], and fiber arrays [18, 19]. It is only recently that the tem-
poral pulse shaping associated with NLMC has been theoretically proposed for
the passive intensity-discrimination element in a mode-locked fiber laser [2, 3].
The models derived to characterize the mode-locking consist of two governing
equations: one for the fiber cavity and a second for the NLMC element [2, 3]
(See Fig. 1). Although the two discrete components provide accurate physi-
cal models for the laser cavity, characterizing the underlying laser stability and
dynamics is often analytically intractable. Thus, it is helpful to construct an av-
eraged approximation to the discrete components model in order to approximate
and better understand the mode-locking behavior. Indeed, the essence of Haus’
master mode-locking theory [1] is approximating discrete elements with a con-
tinuous model. The same approach is used here to generate a continuous system
of governing equations from a system that would, due to the inclusion of the
waveguide array and Erbium fiber, include discrete effects [4, 5].

Even with these continuous models, such as the waveguide array mode-
locking model (WGAML) [2–5] used in this manuscript, an accurate charac-
terization of the bifurcation structure had not been performed. Specifically, little
was known about the branch of observed z-periodic breather solutions. What
work has been done involves approximating the bifurcation sequence qualita-
tively using principal components in a low-dimensional reduction [6].

In this work, we use a hybrid numerical method, called the adjoint continu-
ation method (ACM), that is able to calculate arbitrarily accurate solutions and
perform a PDE bifurcation study. In particular, the method reveals the key as-
pects about and the complexity of the bifurcation structure of the multi-pulsing
instability, an overview of which is shown in Figure 2. The branches of solu-
tions believed to be involved in the multi-pulsing transition can be separated into
four qualitatively different types: stationary one-pulse (single-pulse) solutions,
period-one breather solutions, period-two breather solutions, and stationary two-
pulse (double-pulse) solutions with an example of each shown in the bottom of
Figure 2. The stationary one- and two- pulse solutions posses a constant ampli-
tude but a linearly increasing phase. The period-one breather solutions have a z
periodic amplitude but are even functions over the entire period up to a transla-
tion in t. The period-two breather solutions are also z periodic in amplitude, but
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Figure 2: (Color online, two columns) (Top) Bifurcation diagram including the branches of sta-
tionary one-pulse, stationary two-pulse, period-one breather, and period-two breather solutions.
Branches in blue or green are linearly stable while branches in red are linearly unstable. Branches
in solid lines are from stationary (constant amplitude) solutions while branches in dashed lines
are z-periodic solutions. The green dashed lines represent period-two breathers and the blue
lines period-one. Hopf, saddle-node, and period-doubling bifurcations are denoted by H, S N,
and PD respectively. A fourth unknown bifurcation is indicated by B. (Bottom) Examples of
the four qualitatively different solution behaviors – stationary one-pulse (single-pulse) solutions,
period-one breathers, period-two breathers, and stationary two-pulse (double-pulse) solutions –
observed during the multi-pulsing transition. The stationary two-pulse solutions can be treated
as two non-interacting stationary one-pulse solutions.

they are neither even nor odd functions for the entire period.
By studying the stability of solution branches, we find that a subcritical Hopf

bifurcation occurs on the one pulse solution branch, at the point labeled H in Fig-
ure 2. This generates a branch of period-one breather solutions. This period-one
(breather) branch first undergoes a saddle-node bifurcation (SN1) which is fol-
lowed by a period-doubling bifurcation (PD). This period-doubling bifurcation
creates the branch of period-two breather solutions. This period-two solution
branch also undergoes three bifurcations, labeled SN2, B, and SN3, and even-
tually leads to complex spatio-temporal (chaotic-like) behavior. Coexisting with
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these solution branches is a stationary two-pulse solution branch. This bifur-
cation diagram represents the underlying nonlinear phenomenon of the multi-
pulsing transition dynamics. A detailed account of each solution branch and its
complex transitions is developed herein. These results extend and justify the re-
sults of previous qualitative efforts in [6] and also have revealed new information
about the source of symmetry breaking. Further our results hint at the mecha-
nism for the onset of spatial-temporal disorder in the WGAML. Furthermore,
they are also consistent with recent experimental observations of the transition
dynamics in laser cavities [20, 21].

The paper is arranged as follows: Sec. 2 gives a brief overview of the govern-
ing averaged equations in the laser cavity. Section 3 develops the algorithm nec-
essary for computing solution branches and following bifurcations to new paths
of solutions. The bifurcation structure of the waveguide array mode-locked laser
is given in Sec. 4. A brief summary and outlook for the method and the laser
system is given in Sec. 5.

2. Governing Equations

When placed within an optical fiber cavity, the pulse shaping mechanism
of the waveguide array leads to stable and robust mode-locking [2, 3]. In its
simplest form, the nonlinear mode-coupling is averaged into the laser cavity dy-
namics [5]. Numerical simulations have shown that the fundamental behavior
in the laser cavity does not change when considering more than five waveg-
uides [5]. Further simplifications to the five waveguide model can be achieved
by making use of the symmetric nature of the coupling and lower intensities in
the neighboring waveguides [4]. The resulting approximate evolution dynamics
describing the waveguide array mode-locking model (WGAML) is given by

i
∂u
∂z

+
D
2
∂2u
∂t2 + β|u|2u + Cv + iγ0u − ig(z)

(
1 + τ

∂2

∂t2

)
u = 0. (1a)

i
∂v
∂z

+ C (w + u) + iγ1v = 0, (1b)

i
∂w
∂z

+ Cv + iγ2w = 0, (1c)

with
g =

2g0

1 + ||u||2/e0
. (2)

Here u(z, t) is the electric field in the 0th waveguide while the v(z, t) and w(z, t)
fields model the electromagnetic energy in the neighboring channels of the waveg-
uide array. Note that the equations are posed on the infinite domain so that
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Figure 2: FIXME: GET RID OF (a) AND (b) BELOW THE FIGURES. THE COLUMNS ARE
REFERRED TO AS (left) AND (right) IN THE TEXT/CAPTION. Typical (a) time and (b) spec-
tral mode-locking dynamics of the waveguide array mode-locking model Eq. (1) in the anomalous
(left) and normal (right) dispersion regime from initial white-noise. For anomalous dispersion, the
steady state solution is a short, nearly transform-limited pulse that acts as an attractor to the
mode-locked system. For normal dispersion, the steady state solution is a broad, highly-chirped
pulse that acts as an attractor to the mode-locked system.

and g0 = 1.5. Stable and robust mode-locking is achieved from initial white-noise after z ∼ 100
units. The steady state pulse solution has a short pulse duration and is nearly transform-limited,
which is in agreement with experiments performed in the anomalous dispersion regime [1].

Mode-locking in the normal dispersion regime (D = −1 < 0) relies on non-soliton processes and
has been shown experimentally to have stable high-chirped, high-energy pulse solutions. Figure 2
(right panel) shows the typical time and spectral mode-locking dynamics of the waveguide array
model (1) in the normal dispersion regime. Here the equation parameters are β = 1, C = 3, γ0 = 0,
γ1 = 1, γ2 = 10, g0 = 10, and e0 = 1. In contrast to mode-locking in the anomalous dispersion
regime, the mode-locked solution is quickly formed from initial white-noise after z ∼ 10 units. The
mode-locked pulse is broad in the time domain and has the squared-off spectral profile charac-
teristic of a highly chirped pulse (A � 1). These characteristics are in agreement with observed
experimental pulse solutions in the normal dispersion regime. FIXME: I DON’T UNDERSTAND
WHAT PROPERTIES ARE MAKING THE PUSLE SOLUTIONS IMPRACTICAL: Although
these properties make the pulse solutions impractical for photonic applications, the potential for
high-energy pulses from normal dispersion mode-locked lasers has generated a great deal of interest.

5

Figure 3: Typical (a) time and (b) spectral mode-locking dynamics of the waveguide array mode-
locking model Eq. (1) in the anomalous (left) and normal (right) dispersion regime from initial
white-noise. For anomalous dispersion, the steady state solution is a short, nearly transform-
limited pulse that acts as an attractor to the mode-locked system. For normal dispersion, the
steady state solution is a broad, highly-chirped pulse that acts as an attractor to the mode-locked
system.

u, v,w → 0 as x → ±∞. Further, since the gain g(t) saturates with the L2 norm
of the field, spatially (t) periodic solutions (e.g. wavetrains) are not allowed due
to physical considerations, i.e. they would have infinite energy. The equations
governing the neighboring fields are ordinary differential equations. All fiber
propagation and gain effects occur in the central waveguide. It is this approx-
imate system that will be the basis for our numerical study. Additionally, the
simplified system in (1) provides a great deal of analytic insight due to its hyper-
bolic secant solutions

u(z, t) = η sech(ωt)1+iAeiθz, (3)

where the solution amplitude η, width ω, chirp parameter A, and phase θ satisfy
a set of nonlinear equations [4]. This limiting solution forms from low amplitude
white-noise initial conditions and appears to have a large basin of attraction. This
is in contrast to the master mode-locked equation [1] for which initial conditions
must be carefully prepared to observe stable mode-locking.

In the anomalous dispersion regime (D = 1 > 0), soliton-like pulses can be
formed as a result of the balance of anomalous dispersion and positive (i.e. self-
focusing) nonlinearity. Typically, mode-locked fiber lasers operating in the anoma-
lous dispersion regime are limited in pulse energy by restrictions among the soli-
ton parameters; this is often referred to as the soliton area theorem. However,
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ultra-short, nearly transform-limited output pulses are desired for many applica-
tions. This encourages exploration of possible laser cavity configurations that
could potentially maximize pulse energy in the anomalous dispersion regime.
Figure 3 (left panel) shows the typical time- and spectral-domain mode-locking
dynamics of the waveguide array model (1) in the anomalous dispersion regime.
The equation parameters used throughout the text are:

(β,C, γ0, γ1, γ2, e0) = (8, 5, 0, 0, 10, 1). (4)

The gain, g0, will be altered throughout the text, but is 1.5 for the purposes of
Figure 3. Stable and robust mode-locking is achieved from initial white-noise
after z ∼ 100 units. The steady state pulse solution has a short pulse duration and
is nearly transform-limited, which is in agreement with experiments performed
in the anomalous dispersion regime [1].

Mode-locking in the normal dispersion regime (D = −1 < 0) relies on
non-soliton processes and has been shown experimentally to have stable high-
chirped, high-energy pulse solutions. Figure 3 (right panel) shows the typical
time and spectral mode-locking dynamics of the waveguide array model (1) in
the normal dispersion regime. Here the equation parameters are β = 1, C = 3,
γ0 = 0, γ1 = 1, γ2 = 10, g0 = 10, and e0 = 1. In contrast to mode-locking
in the anomalous dispersion regime, the mode-locked solution is quickly formed
from initial white-noise after z ∼ 10 units. The mode-locked pulse is broad in
the time domain and has the squared-off spectral profile characteristic of a highly
chirped pulse (A � 1). These characteristics are in agreement with observed ex-
perimental pulse solutions in the normal dispersion regime. Although the large
pulse-width and high chirp make the pulse solutions impractical for many pho-
tonic applications, the potential for high-energy pulses from normal dispersion
mode-locked lasers has generated a great deal of interest.

3. The Adjoint Continuation Method (ACM)

In this section we describe the ACM for tracking families of time-periodic
(or in this case, z-periodic) solutions by numerical continuation. Starting with
mode-locked solutions of the form of Eq. (3), which are trivially z-periodic (up
to a phase), we will use the method to follow these paths through a sequence
of bifurcations leading to more and more complicated, ultimately chaotic, dy-
namics. Tracking chaotic solutions is beyond the capabilities of the ACM, but
it has been observed by Kutz and Standstede [4] that the chaotic solutions, upon
further increase of the gain, lead to the formation of the double-pulse solutions.
This bifurcation sequence is described in Section 4.

7



General methods [22–25] for the solution of nonlinear two-point boundary
value problems tend to be geared toward ordinary differential equations, and
can be prohibitively expensive for partial differential equations. Recently [26–
28], Wilkening and Ambrose introduced an efficient method of computing time-
periodic solutions of nonlinear PDEs. We will refer to this method as the Ad-
joint Continuation Method (ACM). The idea is to develop a variant of a shooting
method [29, 30] in which a nonlinear functional of the initial condition is mini-
mized using adjoint-based optimal control methods [31–33] to obtain a solution
of the boundary value problem. Key challenges in adapting this method to the
system in Eq. (1) include finding solutions that are only periodic up to a phase;
incorporating the gain, g0, in the adjoint system to allow other variables (such
as the period) to be used as bifurcation parameters; and adapting high order,
semi-implicit Runge-Kutta methods [34, 35] to handle the case when the terms
responsible for stiffness (those involving ∂2u/∂t2 in (1)) depend non-linearly on
u through a gain g that depends on ‖u‖.

Recall that z is the time-like variable in (1) while t is the space-like variable.
To facilitate the use of spectral methods, we adopt periodic boundary conditions
over an interval t ∈ [−L, L) where L = 20. L is chosen large enough that the
solution, which decays exponentially, is of order 10−10 near t = ±L. Once L
is large enough, the solution is insensitive to further changes in L, and may be
regarded as a solution over R without periodic boundary conditions. In what
follows, we take L = π and absorb the appropriate factors from the change of
variables into D, τ and e0 in (1) and (2). However, for the plots in Section 4, we
transform back to the original domain.

Following the basic approach in [26–28], we define a nonlinear functional G
of the initial conditions and supposed period that is zero if and only if the solution
is z-periodic. As we wish to determine the dependence of G on the parameter g0

in (2), we add to (1) the equation ∂g0/∂z = 0. This will be explained in more
detail below. We also wish to find solutions that are only z-periodic up to a phase.
An easy way to do this is to include extra terms on the right hand side of (1a)-
(1c) that affect the solution by multiplying u(z, t), v(z, t) and w(z, t) by e−iθz; we
then search for θ such that the new problem has fully z-periodic solutions. The
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new set of equations is

i
∂u
∂z

+
D
2
∂2u
∂t2 + β|u|2u + Cv + iγ0u −

2ig0

1 + ‖u‖2/e0

(
1 + τ

∂2

∂t2

)
u = θu, (1d)

i
∂v
∂z

+ C (w + u) + iγ1v = θv, (1e)

i
∂w
∂z

+ Cv + iγ2w = θw, (1f)

∂g0

∂z
= 0. (1g)

Although u, v and w in (1) are complex valued, we represent the state of the
system (with z frozen) as an element of the real Hilbert space

X = {(u, v,w, g0) : u, v,w ∈ L2((−π, π],C), g0 ∈ R}

with inner product

〈q1, q2〉 =

∫ π

−π

<
{
u1(t)∗u2(t) + v1(t)∗v2(t) + w1(t)∗w2(t)

}
dt + g0,1g0,2,

where, qi(t) = (ui(t), vi(t),wi(t), g0,i) ∈ X. Next we define

G(q0,Z, θ) =
1
2
‖q(Z, ·) − q0(·)‖2 , ‖q‖2 = 〈q, q〉, (5)

where q(z, t) solves the initial value problem (1d)–(1g) with initial conditions
q(0, t) = q0(t). We note that G(q0,Z, θ) = 0 if and only if q(z, t) is z-periodic,
with period Z.

To evaluate G numerically, we evolve q(z, t) using a spectral collocation
method in t and a 5th order semi-implicit Runge-Kutta method in z, that is de-
scribed in detail in Appendix C. A prescribed fraction of the Fourier modes
(around 40%) are allowed to be non-zero in q0(t). The remaining (high fre-
quency) modes of the initial condition are set to zero to avoid aliasing errors in
the computation of G. To minimize G, we use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [36] to vary Z, θ, g0 and the non-zero Fourier modes
of the initial condition. One of these variables (usually g0 or Z) is taken as a
bifurcation parameter in the continuation algorithm and removed from the list of
variables that BFGS is allowed to vary in search of a minimum. Alternatively, a
penalty function [26] can be used to enforce the value of the bifurcation parame-
ter. In either approach, it is useful to be able to use any variable as a bifurcation
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parameter and switch between them as necessary to traverse turning points and
avoid ill-conditioned minimization problems.

BFGS is a quasi-Newton gradient descent method that builds up an approxi-
mate inverse Hessian matrix based on the sequence of gradient vectors it encoun-
ters in the course of the line searches. Thus, to use the algorithm, we must be able
to accurately and efficiently compute the gradient, ∇G. Some of the components
of ∇G can be computed immediately, e.g.

∂G
∂Z

=

〈
∂q
∂z

(Z, ·) , q(Z, ·) − q0(·)
〉
,

∂G
∂θ

=

〈 
iZu(Z, ·)
iZv(Z, ·)
iZw(Z, ·)

0

 , q0(·)
〉
.

These inner products are evaluated using the trapezoidal rule at the collocation
points of the spectral method. In the formula for ∂G

∂θ
, we used the fact that

∂u
∂θ

(z, t) = −izu(z, t),
∫ π

−π

<{(−iZu(Z, t))∗u(Z, t)} dt = 0,

with similar formulas for v and w. It remains to determine ∂G
∂g0

and

∂G
∂<(ûk)

,
∂G

∂=(ûk)
,

∂G
∂<(v̂k)

,
∂G

∂=(v̂k)
,

∂G
∂<(ŵk)

,
∂G

∂=(ŵk)
, (−kmax ≤ k ≤ kmax),

(6)
where kmax is the cutoff beyond which Fourier modes of the initial condition are
set to zero. These can all be computed simultaneously by solving a single adjoint
PDE as described in Appendix B.

In summary, the ACM uses adjoint methods to compute G and ∇G in just two
PDE solves: the nonlinear evolution equations (1d)–(1g) are solved to compute
G and two components of the gradient, ∂G

∂Z and ∂G
∂θ

; then the non-autonomous (but
linear) adjoint system (B.5) is solved to obtain the remaining components of the
gradient, namely ∂G

∂g0
and those listed in (6). These are the ingredients needed to

use the BFGS method to minimize G and obtain a time-periodic solution. We
do this repeatedly for different values of the bifurcation parameter to sweep out
families of solutions. When performing numerical continuation, the approximate
inverse Hessian matrix from the final iteration of the previous BFGS solve is
used to initialize the inverse Hessian matrix for the next solve. As long as the
continuation steps are not too large, this dramatically reduces the number of line
searches required to minimize G due to superlinear convergence in the BFGS
algorithm when the Hessian is well approximated.
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4. Bifurcation Sequence

In this section, we apply the ACM to track branches of z-periodic solutions
in the WGAML and study the sequence of bifurcations responsible for the tran-
sition from a one-pulse solution to a two-pulse solution. If g0 is increased adi-
abatically, the system will transition from a stationary single-pulse solution to
the period-one breather solutions, the period-two breather solutions, the chaotic
solutions, and finally the two-pulse solutions.

The one- and two-pulse stationary solutions have been previously computed
in the work by Kutz and Sandstede [4] and the stability of these solutions has
been computed to high accuracy by Jones and Kutz [37] using the Floquet-
Fourier-Hill method. At g0 = 2.404, the single-pulse solution undergoes Hopf
bifurcation. In Section 4.1, we track the branch of period-one breathers from
the Hopf to the first period-doubling bifurcation. In Section 4.2, we track the
period-one breathers beyond the first period doubling bifurcation to reveal an
additional bifurcation that occurs at higher values of g0. This bifurcation will
not appear physically because the system is already unstable, but it reveals the
existence of additional branches of solutions in the WGAML. In Section 4.3, the
branch of period-two breather solutions is tracked and the loss of stability estab-
lished. Finally, in Section 4.4 we discuss potential mechanisms for completing
the transition to the double-pulse solution.

4.1. Period-one breather solutions
The first non-trivial z-periodic solutions are the period-one breather solu-

tions. These solutions are created by a Hopf bifurcation of a single-pulse sta-
tionary solution at g0 = 2.404. In order to apply the ACM of Section 3, an initial
approximation of the limit cycle is required. From previous numerical experi-
ments with the parameter values in (4), it was found that at g0 = 2.5 a periodic
solution exists and forms from noise [3]. Starting with u(0, t) = sech(t) and
v(0, t) = w(0, t) = 0 and evolving until z = 2000, the system approaches that
limit cycle. From this orbit, the period and phase offset were estimated and an
approximation of the limit cycle with G ∼ 10−1 was obtained. The application of
the ACM to this starting point reduced the error to G ∼ 10−25 and produced the
solution shown in Figure 4.

Figure 4 shows the intensity of the fields in all three waveguides as a function
of z and t for g0 = 2.5. The black solid and black dashed lines show the solution
at the start of the period and after half of the period has elapsed. Fifty-six inter-
mediate values, evenly spaced in z, are also plotted in light-gray (green). This
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Figure 4: (Color online, two column) From top to bottom, plots of the amplitude of the 0th, 1st,
and 2nd waveguides over one period at g0 = 2.5. The solid black line shows the initial condition,
and the dashed black line shows the solution after a half-period has elapsed. The light-gray
(green) lines show the solutions at evenly-spaced intermediate values of z. Note that the actual
domain is from t ∈ [−20, 20) and only t ∈ [−1, 1] was plotted to highlight the region of interest.

sample solution highlights the non-trivial nature of the breather solutions. Al-
though the 0th waveguide retains a vaguely hyperbolic-secant shape throughout
the period, the 1st and 2nd waveguides have at least two local maxima. However,
despite the more complicated physical representation, the period-one breather
solutions are even functions up to a translation in t. The source of the periodic
oscillation in z can be explained by the interchange of pulse energy (||u||2, ||v||2,
or ||w||2) between the 0th and the outer two waveguides. For the majority of the
period, the 0th waveguide has a low intensity. During this time, the gain remains
unsaturated and the 0th waveguide couples energy into the outer waveguides. At
a certain point, this process is reversed and the outer waveguides couple energy
into the 0th waveguide. This causes the 0th waveguide to attain a large peak
intensity but simultaneously saturates the gain. With the gain saturated, the large
amount of energy in the 0th waveguide cannot be maintained. As a result, the
energy in the 0th waveguide decreases and the process repeats.

Figure 5 shows the branch of period-one breather solutions. To obtain this
branch of solutions, we used a simple continuation method. From the solution
at g0 = 2.5, we change the period, Z, by a small amount and repeat the mini-
mization process as discussed in Section 3. Linearly stable regions are shown in
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Figure 5: (Color online, two column)(Left) A two-dimensional version of the bifurcation diagram
showing the maximum L2-norm over a period vs the gain. Stable solutions are plotted in blue
and unstable solutions in red. The labeled bifurcation points are shared between the 2D and 3D
plots as well as Fig. 2. (Right) The bifurcation diagram of the period-one breather solutions with
individual orbits are plotted in the (g0, L2,H1) coordinate system. The plotted orbits represent
one out of every forty periodic orbits computed on the branch. Linearly stable orbits are shown
is black (blue) and linearly unstable orbits are shown in gray (red). The solutions at points (1)
and (2) are shown in Figure 7 while the solution at (3) is shown in Figure 4.

black (blue) while linearly unstable regions are shown in gray (red). In order to
visualize the branch, the branch has been plotted in (g0, L2,H1) space where

L2(z) =

∫ ∞

−∞

(
|u(t, z)|2 + |v(t, z)|2 + |w(t, z)|2

)
dt (7a)

H1(z) =

∫ ∞

−∞

(
|∂tu(t, z)|2 + |∂tv(t, z)|2 + |∂tw(t, z)|2

)
dt. (7b)

The bifurcation diagram is composed from roughly 2000 individual computa-
tions starting from g0 = 2.5, which is labeled as (3). Each PDE computation was
performed using 1024 Fourier modes to represent the solution in t with a domain
size of 20 and 500 steps in z. With this level of discretization, G < 10−24 for all
points on the bifurcation diagram, but most solutions had G ∼ 10−25 or better.

There are three bifurcations that are critical for describing the period-one
breather solutions: the subcritical-Hopf bifurcation that creates the branch, the
saddle-node bifurcation of a limit cycle that restores stability, and the period-
doubling bifurcation that breaks symmetry and changes the stability.
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4.1.1. Subcritical Hopf bifurcation
The subcritical-Hopf bifurcation, shown in Figure 5 at (1), is where the

single-pulse stationary solutions bifurcates and creates the branch of period-one
breather solutions. Because this is a subcritical bifurcation, for g0 < 2.404 we
have both an unstable period-one breather solution and a stable single-pulse solu-
tion. Although the existence of the Hopf bifurcation has been initially shown by
both Kutz and Standstede [3] and shown with high numerical accuracy by Jones
and Kutz [37], it was not known whether the Hopf bifurcation was super- or
sub-critical. By tracking the branch of periodic solutions back to the bifurcation
point, we have demonstrated the bifurcation is a subcritical Hopf bifurcation.

4.1.2. Saddle-node bifurcation
The next bifurcation that occurs is the saddle-node bifurcation of a limit cycle

near g0 = 2.325. This bifurcation restores the stability of the period-one branch
of solutions as can be seen in Figure 5. The segment of the branch between the
saddle-node bifurcation and the period-doubling bifurcation around g0 = 2.523
is the only region where the period-one breather solutions are stable. This seg-
ment of the branch overlaps with the stable regime of the single-pulse solutions.
Indeed, for g0 ∈ (2.325, 2.404) there are at least three potential solutions, the
stable stationary single-pulse solution, the stable high-amplitude breather solu-
tion (shown in blue), and the unstable low-amplitude breather solution (shown
in red). In simulations starting from noise, the stationary solution is most likely
to appear. This can be argued from an energy perspective. This energy argument
is based on physical principals as well as a number of numerical and experi-
mental results where it has been observed that the system generically evolves to
the lowest energy solution. However, for infinite dimensional systems, there is
no rigorous proof for this behavior, and to prove so is beyond the scope of the
present work.

Of the three solutions available, the low amplitude breather solution has the
lowest L2 norm at certain values of g0 but is unstable. Of the two stable solu-
tions, the stationary single-pulse solution has a lower L2 norm than the period-
one breather solution for all z. The single-pulse solution is more energetically
favorable than the breather solution and therefore more likely to occur. With
a similar argument, the stationary two-pulse solutions are also unlikely to form
from noise. However because the single-pulse solutions, period-one breathers,
and double-pulse solutions are all stable, there is a non-zero probability of any
of those solutions appearing when starting from white-noise initial conditions.
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Figure 6: (Color online, two column) On the left, the real and imaginary parts of the bifurcation
eigenfunctions of the 0th waveguide are shown in black (blue) and gray (red) respectively. These
modes are associated with a period doubling bifurcation indicated by a Floquet multiplier cross-
ing the unit circle at µpd = −1 in the right figure. Multipliers in or on the unit circle are indicated
with a black (blue) dot. Multipliers outside of the unit circle are indicated with a gray (red) x.

4.1.3. Period-doubling bifurcation
The final bifurcation shown in Figure 5 is the period-doubling bifurcation that

occurs at g0 = 2.523. Figure 6 shows the unstable eigenfunction at z = 0 and
the associated Floquet multipliers. The single unstable multiplier at µpd = −1
demonstrates that this is a period-doubling bifurcation [38]. Furthermore, the
unstable eigenfunction associated with this bifurcation is odd. From (B.3), it can
be shown that for any odd u̇(t, 0), v̇(t, 0), and ẇ(t, 0) with ġ0 = 0, which is exactly
what we have in computing the Floquet multipliers, u̇(t, z), v̇(t, z) and ẇ(t, z) re-
main odd for all z. Therefore, the unstable eigenfunction breaks symmetry at all
points on the orbit. We believe that the symmetry breaking due to this bifurca-
tion is responsible for the translating behavior that appears when the period-one
breather goes unstable.

4.1.4. Computing the stability of periodic solutions
In order to compute the Floquet multipliers of this system, the monodromy

matrix [38] was computed for the linearized system in (B.3) with ġ0 = 0 and
the ODE for ġ0 dropped. This term is zeroed out because for any given periodic
solution g0 is fixed. The complex solutions of (B.3) were rewritten as a real
system of twice the size by splitting the solutions into real and imaginary parts.
If the matrix X(z) is the fundamental solution matrix of this system at z, then the
monodromy matrix is

M = X(z0 + Z)X−1(z0). (8)

15



Because the linearized operator in (B.3) is non-autonomous, X(z0 + Z) must be
computed explicitly by solving (B.3) for the set of initial conditions implicitly
described by X(z0). For the multipliers computed above, X(z0) was represented
in the Fourier basis and X̂(z0) = id where the hat represents the discrete Fourier
transform acting on the columns of X(z0). In order to compute u(z, t) at interme-
diate timesteps, the same Hermite interpolation and semi-implicit time-stepper
used to solve the adjoint equation were also used to compute the monodromy
matrix. Due to the large number of degrees of freedom in the system, this is an
expensive computation. However, the majority of the time is spent computing
X(z0 + Z), and this portion of the computation is easily parallelizable. With the
monodromy matrix assembled, MATLAB was used to compute the eigenvalues.

The linearized equations in (B.3) has three multipliers where one can show
µ1 = 1, one from the phase-condition, one from phase-invariance, and one from
translational invariance in t. This approach recovers these multipliers with |µ1 −

1| < 10−4. Although this approach is too computationally intensive to be used on
all solutions, it was used to compute the stability of solutions where a bifurcation
was suspected to occur.

4.1.5. Deformation of the period-one breathers
In addition to the bifurcations, the deformations of the period-one breather

solutions as we travel along the branch of solutions result in breathers that look
qualitatively different at different values of g0. As we travel away from the Hopf
bifurcation along the branch of solutions, the L2 norm and the H1 norms of so-
lutions increase monotonically, and the solutions deform steadily from the hy-
perbolic secant solutions of (3) to the nontrivial breather solutions in Figure 4
indicated by (3) in Figure 5.

Figure 7 plots the solutions at (1) and (2) in Figure 5 with g0 = 2.398 and
2.37, respectively, and highlights the deformation of the breathers. The solution
at g0 = 2.398 is a small perturbation away from the single-pulse solution and can
be treated as the single pulse solution plus a small z-periodic perturbation; thus,
all three waveguides have intensities that resemble a hyperbolic secant. Even at
this early stage, it is apparent that when ||u|| is maximal, both ||v|| and ||w|| take
on their minimal values. Therefore, the dynamic interchange of energy between
waveguides is already occurring, if only on a relatively small scale.

Further along the branch at (2) in Figure 5, the magnitude of the oscillation
has grown in all three of the waveguides. In addition, the breathing that occurs
in the 2nd waveguide now includes the characteristic local minima at T = 0 that
was observed in both waveguides 1 and 2 at g0 = 2.5. These low-amplitude
breather solutions provide the intermediate steps between the Hopf bifurcation
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Figure 7: (Color online, two column) Plot of the breather solutions at the points labeled (1) and
(2) in Figure 5 on the left and right respectively. The solid black line shows the initial condition
and the dashed black line shows the solution after a half-period has elapsed. The gray (green)
lines show the evolution of the solution in evenly spaced intervals. The left set of plots was taken
directly after the Hopf bifurcation, and the right set of plots was taken from the unstable region
after the first fold of the limit cycle. Note that the actual domain is from t ∈ [−20, 20) and only
t ∈ [−1, 1] was plotted to highlight the region of interest.

and the breather solutions observed in previous works [3]. In both cases, these
solutions have not been previously observed because they are linearly unstable.
However, the ACM allows the tracing of these unstable solutions so it is not a
barrier in this case.

Overall, the period-one breather solutions are critical because they remove
the stability of the stationary solutions and bifurcate with an odd mode. The
odd mode breaks the even symmetry previously inherent in both the station-
ary and breather solutions. This symmetry breaking explains how the transla-
tions observed in [4] could occur even when the initial conditions are even func-
tions. Even if the initial condition is truly even, experimental noise or numerical
roundoff error will excite the odd mode, which then grows and becomes non-
negligible. Furthermore, the structure of the period-one breather branch at low
amplitudes, which is initiated by a subcritical Hopf bifurcation and later gains
stability through a saddle-node bifurcation, explains the sudden jump in energy
that occurs when g0 is adiabatically increased through g0 = 2.404. Therefore al-
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Figure 8: (Color online, two column) On the left is the plot of the amplitude of the breather
solution at g0 = 2.85 in waveguide 0, and on the right are the Floquet multipliers. Floquet
multipliers outside the unit circle are denoted with a grey (red) x, and multipliers inside or on
the unit circle are denoted with a black (blue) dot. There are multipliers outside the unit circle:
µpd = −5.825 and µns = 0.1217 ± 0.9984i. µpd is associated with an odd eigenfunction and has
remained outside the unit circle since the period-doubling bifurcation. The additional pair, µns
corresponds to a torus (Neimark-Sacker) bifurcation that occurs near g0 = 2.8.

though the unstable limit cycles revealed by the adjoint method will never appear
in direct numerical simulation from noise, they are necessary to fully explain the
dynamics that appear in such simulations.

4.2. Torus bifurcation of period-one breathers
The branch of period-one breather solutions extends beyond the period-doubling

bifurcation for values of g0 > 3.0 and does not appear to terminate. In the
full PDE, these solutions are not stable and therefore will not appear in simula-
tions starting from noise. However, as stated in the previous section, the period-
doubling bifurcation is caused by an odd bifurcating function and does not appear
in systems constrained to be even, such as the one studied in [6]. The solutions
that appear at larger values of g0 are qualitatively similar to those in Section 4.1;
the 0th waveguide resembles an oscillating hyperbolic secant while the 1st and
2nd waveguides have multiple local maxima. In an even-constrained system, the
branch of solutions remains stable until g0 ≈ 2.8 where a torus (Neimark-Sacker)
bifurcation occurs [38].

Figure 8 shows the solution at g0 = 2.8 and the Floquet multipliers of the
solution. The solution itself is still qualitatively similar to period-one breathers at
lower values of g0. The difference is that an additional pair of Floquet multipliers
has crossed out of the unit circle. As shown on the right in Figure 8, there are
three unstable multipliers. The eigenfunction associated with the multiplier at
µpd = −5.825 has existed since the period-doubling bifurcation occurred. The
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new complex-conjugate pair of multipliers, µns = 0.1217 ± 0.9984i, signifies
the presence of a torus bifurcation. The eigenfunctions associated with these
multipliers are even at z = 0 and from (B.3) can be shown to be even for all
z. Therefore in the even-constrained system, it is the torus bifurcation that is
responsible for the loss of stability of the period-one breathers.

In an unconstrained version of the WGAML, this bifurcation does not appear
in any meaningful way. Any perturbation will grow primarily in the direction of
the eigenfunction with µ = −5.825, and the presence of this additional pair can
be neglected. It is only in even-constrained systems where the torus bifurcation
is responsible for the loss of stability of the period-one breathers. A reduced
order model of the even-constrained system was studied in [6]. In that low-
dimensional model, the torus bifurcation was responsible for eventual route to
chaos in the system. Here we have shown that the same torus bifurcation occurs
in this system. Although the adjoint method cannot track the resulting quasi-
periodic solutions, this indicates that the low dimensional model in [6] may be
correct.

4.3. Period-two solutions
The period-two branch of solutions bifurcates from the period-one solutions

at g0 = 2.523. Because the bifurcating eigenfunctions are odd, unlike the period-
one breathers the period-two breathers are neither even nor odd. Figure 9 shows a
sample solution taken at g0 = 2.527. The clearest difference between the period-
one breather and the period-two breather is that the zeroth waveguide reaches
its maximum intensity in two places, near t = −0.5 and t = 0.5. A similar
oscillation occurs in waveguides 1 and 2. This shift in t is the reason for the
doubling of the period. In Figure 9, the solid and dashed lines correspond to
z = 0 and z = Z/2, respectively. These two lines help show that the solution
at z = 0 and the solution at z = Z/2 are reflections of each other across t = 0.
Due to the reflectional symmetry in the problem, the solution spends exactly half
the period shifted towards negative values of t and the other half shifted towards
positive values of t.

From this initial point, we can track the branch of solutions using the period,
Z, as the continuation parameter again. The bifurcation diagram in Figure 10
shows the period-two solution in (g0, L2,H1) space where the L2 and H1 norms
are defined in (7). The stable orbits are shown in black (blue) while the unstable
orbits are shown in gray (red). The branch of period-two solutions begins near
the point labeled (a) in Figure 10. Immediately after this bifurcation, the period-
two solutions are stable until g0 = 2.527. Notice that the region for which the
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Figure 9: (Color online, two column) Example of a stable, period-doubled solution. The symme-
try breaking of the period-doubling bifurcation has generated a double-peak structure in all three
waveguides. The solid black line shows the initial condition and the dashed black line shows
the solution after a half period has elapsed. The solution at evenly spaced intermediate times
are denoted with gray lines. ( The first half-period is shown in blue and the second half-period
is shown in green). Note that the actual domain is from t ∈ [−20, 20) and only t ∈ [−1, 1] was
plotted to highlight the region of interest.

period-two solutions are stable is very small with ∆g0 ≈ 0.002. For this reason,
the period-two solutions rarely appear when starting from noise.

The stable branch of period-two breathers is terminated by a saddle-node bi-
furcation around g0 = 2.527. At this point a Floquet multiplier exits the unit
circle through µ = 1, and there is a fold in the branch of solutions. In a cer-
tain sense, this fold is similar to the subcritical Hopf bifurcation of the period-
one branch. The branch of period-two solutions extends below the value of g0

where the branch began, and the solutions are unstable during this time. The key
difference between the period-two branch and the period-one branch is that an
additional bifurcation occurs on this low amplitude branch. At this point, an ad-
ditional multiplier exits the unit circle through µ = 1, resulting in two multipliers
outside of the unit circle. Although the second saddle-node bifurcation occurs
at g0 = 2.251, which brings one multiplier inside the unit circle, the resulting
large-amplitude orbits are still unstable. This extra bifurcation is the cause of the
vastly different regions of stability despite the qualitative resemblance of solution
branches.
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Figure 10: (Color online, two column) (Left) A two-dimensional version of the bifurcation dia-
gram showing the maximum L2-norm over a period vs the gain. Stable solutions are plotted in
blue and unstable solutions in red. The labeled bifurcation points are shared between the 2D and
3D plots as well as Fig. 2. (Right) The bifurcation diagram of the period-two solutions to the
WGAML. Individual orbits are plotted in (g0, L2,H1) space and each plotted orbit represents one
of every thirty solutions computed on the branch. Linearly stable solutions are plotted with black
(blue) edges while unstable orbits are plotted with gray (red) edges.

It appears there are no stable branches of either period-one or period-two
breathers beyond this point in the bifurcation diagram. The branch of small-
amplitude period-two solutions could potentially be a source of additional branches
of periodic solutions. However, the resulting branch of solutions would still be
unstable since there remains an additional unstable eigenfunction. Following this
branch using the adjoint numerical continuation proved to be unsuccessful, thus
the nature of the bifurcation and its co-dimension remains an open question mer-
iting further investigation. To our knowledge, there have been no observations
of other periodic solutions that could be associated with a new unknown branch
of solutions.

Figure 11 in parts (a), (b), and (c) shows sample solutions at varying points
along the branch of solutions. Directly after the period-doubling bifurcation, at
(a), the period-two solution is only a slight perturbation away from the period-
one solution, and the peaks are indistinguishable to the eye. Further along the
branch at (b), the separation between the peaks increases. This solution is taken
just below g0 = 2.527 and represents the largest separation that could occur
while still keeping the solution stable. At point (c), the pulses are now separated
by ∆t = 1. This trend continues as g0 increases beyond point (c). In addition to
the increased separation of the points of maximum intensity, the peak intensity
decreases as we get further from the period-doubling bifurcation. Despite that,
the maximum value of the L2 norm increases monotonically the further one gets
from the period-doubling bifurcation. On the other hand, the maximum value of
the H1 norm decreases monotonically at the same time. Therefore, referring back
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Figure 11: (Color online, two column) Plots of solutions at the three selected points indicated by
(a), (b), and (c) in Figure 10. The solid-black and dashed-black lines show the intensity in the
0th waveguide at z = 0 and z = Z/2. Intermediate times are plotted in gray (the first half-period
is shown in blue and the second half-period is shown in green). Note that the actual domain is
from t ∈ [−20, 20) and only t ∈ [−1, 1] was plotted to highlight the region of interest.

to Figure 10, the period-two solutions are encircled by the period-one solutions
in the L2 − H1 plane. The period-two solutions in turn encircle the two-pulse
solutions.

The period-two solutions themselves play a relatively minor role in the tran-
sition from the single-pulse to double-pulse solutions. The region of g0 where the
solutions both exist and are stable, g0 ∈ (2.523, 2.527), is small compared to the
regions where the stationary solutions or even the period-one breather solutions
are stable. Nonetheless, tracking the branch of period-two breathers suggests
that there are no remaining period-one or period-two breathers in the WGAML
beyond g0 = 2.527.

4.4. Global Bifurcation Structure
As described in previous sections, the WGAML has a variety of solutions

and bifurcations when g0 is increased. In particular, starting on the one-pulse
branch, the solutions undergo the following sequence of bifurcations: the one-
pulse stationary solution loses stability and bifurcates to an unstable breather,
which undergoes a fold bifurcation and becomes stable. This stable periodic so-
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lution loses stability and bifurcates to a period-two breather, which eventually
becomes unstable. After this last bifurcation, additional periodic or stationary
solutions were not found. In Figure 12, we summarize our findings in a com-
bined bifurcation diagram in which the stationary and periodic solutions are pro-
jected onto the three dimensional (g0, L2,H1) space. After this projection, the
stationary solutions become one-dimensional curves and periodic solutions be-
come two-dimensional closed manifolds. The gray plane indicates the value of
gu

0 = 2.527 at which the period-two solution becomes unstable. Our study sug-
gests that from this point on, there are no local bifurcations that result in stable
stationary or periodic solutions. We conjecture that there are no stable stationary
or periodic solutions near the one-pulse solutions (other than the one-pulse solu-
tions themselves). However, outside of a neighborhood of this set, breathers and
multi-pulse solutions (such as the two-pulse solution) exist and can be stable.

Indeed the two-pulse solution exists and is stable for values of g0 > gu
0 and

one would expect all trajectories to be attracted to it. However, numerical sim-
ulations and experiments indicate a more subtle behavior. Solutions initiated in
the neighborhood of the two-pulse solution are attracted to it, while solutions ini-
tiated in the neighborhood of the one-pulse solution, or in the vicinity of a zero
solution (low-amplitude white noise), exhibit a typical behavior of intermittent
spatio-temporal chaos expressed as translations in t and non-periodic behavior
in z. For some trajectories, such a behavior is transient, and eventually the tra-
jectory is attracted to the two-pulse solution. As g0 is increased, we observe that
more initial conditions are attracted to the double-pulse and the transients be-
come shorter. For g0 = gu

0 + ε such transients can be very long and numerical
simulations cannot determine whether the attractor for generic white noise ini-
tial data is the two-pulse, or if there exists a trapping region in which a chaotic
attractor reigns. In the latter case the trajectory will hover indefinitely between
one-pulse, period-one and period-two unstable solutions.

In Figure 13 and Figure 14, we project a few typical trajectories, stationary
solutions, and relevant periodic orbits in terms of (g0, L2, H1) for g0 = 2.3, 2.5,
and 2.6. The trajectories are denoted in light gray and have low-amplitude white
noise initial condition. At g0 = 2.3, the solution is rapidly attracted to the stable
one-pulse solution denoted by the black (blue) dot. At g0 = 2.5, the one-pulse
solution is unstable and the trajectory is attracted to the period-one breather so-
lution, which is shown in black (blue). Lastly for g0 = 2.6 > gu

0, the trajectory
eventually is attracted to the stationary two-pulse solution. Prior to that, the solu-
tion jumps chaotically between the period-one breather solution shown in black
(green) and the period-two breather solutions shown in gray (blue).
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Figure 12: (Color online, two column) Bifurcation diagram of the stationary and breather solu-
tions of the WGAML. The stationary solutions are indicated by thick lines. Solid (blue) lines
indicate spectrally stable solutions while dotted (red) lines represent solutions that are spectrally
unstable. The period-one limit cycles are shown in light-gray (green) and the period-two in dark-
gray (light-blue). The gray plane at g0 = 2.527 represents the largest value of g0 for which any
of the limit cycles are stable. The gray shaded region indicates the interior of the limit cycle, and
it should be noted that the stable two-pulse solution remains within the interior of the limit cycle
near the transition value of g0.

By continuing the branch of period-two solutions beyond gu
0 and projecting

individual solutions onto the three dimensional bifurcation diagram can shed
light on this behavior. We detect in the bifurcation diagrams in Figures 10 and 12
a change in the shape of the period-two solution at g0 = 2.527. Specifically, it
is contracted toward the double pulse solution. Indeed the plot of its evolution
over the full period (bottom plot in Figure 11) suggests that it becomes more
like the double pulse solution by having two separated pulses. Combining our
findings, we conjecture that there are two possibilities for the source of chaotic
behavior in the multi-pulse transition. One possibility is that there is a trapping
region that includes the neighborhood of the one-pulse solution and extends to
the neighborhood of the zero solution. A global bifurcation eventually opens
that region and the change in shape of the period-two solution might reveal this
bifurcation. Another possibility is that as g0 is increased, the two-pulse solution
and its basin of attraction intersect the neighborhood of the one-pulse solution.
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Figure 13: (Color online, two column) Plot of the trajectories of the solutions (projected onto L2
and H1) for g0 = 2.3, 2.5 and 2.6 starting with low-amplitude initial conditions. The long time
behavior of the trajectories are shown in black (blue). The light gray lines show the complete
evolution of the solutions from the initial conditions. The gray (light-blue) lines show the stable
single- and double-pulse solutions, while the light-gray (red) lines show the unstable single-
pulse solutions. The dark gray lines show other limit cycles at the same value of g0, such as the
period-one breathers (green) and period-two breathers (light-blue).

As this intersection occurs, the trajectories will asymptotically be attracted to
the two pulse solution. We have observed similar multi-pulsing phenomena in
the transition from a general N-pulse solution to an N + 1-pulse solution. This
suggests that our study in this paper will be relevant to the study of the multi-
pulsing transition sequence in mode-locked laser systems. Given that the only
transitions observed experimentally [1, 7, 20, 21] and theoretically [8, 9, 20, 21]
are from N to N +1 pulses, the method developed characterizes this fundamental
behavior.

5. Conclusion and Experimental Verification

A highly accurate (G < 10−24) characterization of the bifurcation structure of
the multi-pulsing instability in a laser cavity is performed by employing the ACM
on the WGAML model. The analysis shows that a subcritical-Hopf bifurcation
on the branch of single-pulse solutions creates the branch of period-one breather
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Figure 14: (Color online, two column) Plot of the trajectory of the solution starting from low-
amplitude white noise for g0 = 2.3, 2.5, and 2.6, respectively. The solution trajectory is shown
in light gray. The dark gray (green and light-blue) lines show the period-one and period-two
limit cycles for values of g0 where they exist. The black (blue) points or curves denote the long
time behavior of the trajectory. At g0 = 2.3, the stationary single-pulse solution is the attractor.
At g0 = 2.5, the period-one breather solution is the limiting solution. At g0 = 2.6, the chaotic
translating double-pulse solution gives the long time behavior.

solutions. A period-doubling bifurcation on that branch creates the branch of
period-two breather solutions. A pair of saddle-node bifurcations and a third bi-
furcation which the authors have not yet classified are responsible for the branch
of period-two breathers becoming unstable for g0 > 2.527. Therefore, when cav-
ity gain is large, the period-two breather solutions are destabilized, which leads
to the chaotic-like behavior observed in this system.

For even initial data, the subcritical-Hopf bifurcation is instead followed by
a torus (Neimark-Sacker) bifurcation, leading to quasi-periodicity in the laser
cavity. This affirms the results of previous work using low-dimensional POD
analysis [6]. Further increase of the cavity gain results in stable, two-pulse oper-
ation in both cases. This transition behavior is generic for N to N+1 pulses in the
laser cavity, thus confirming mode-locking experiments [1, 7, 20, 21] and theory
[8, 9, 20, 21]. The demonstrated transition repeats itself for the 2- to 3-pulse
transition, the 3- to 4-pulse transition and so on as demonstrated in [4].

These numerical predictions, although specific to the WGAML model, cor-
roborate experimental and theoretical evidence for such a series of bifurcations.
Clearly the most important connection to make is with direct experimental ob-
servations of mode-locked laser cavities. Although early observations demon-
strated the multi-pulsing transition (see, for instance, Namiki et al. [7]), more
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careful experiments near the multi-pulsing transition point were not performed
for another decade [20, 21]. The recent experimental observations in 2009 by the
Wise group at Cornell University [20] and in 2004 by the Grelu group at the Uni-
versity of Bourgogne [21] both carefully considered the multi-pulsing transition
points and found all the key features of the bifurcation diagram constructed here.
These results were achieved despite the fact that the Cornell group used a carbon
nanotube for saturable absorption while the Bourgogne group used nonlinear po-
larization rotation. Thus although neither experiment used a waveguide array for
the mode-locking process, the transition sequence from a steady-state to a Hopf
state to period doubled states to quasi-periodicity to multi-pulsing was clearly
observed in both experiments. This strongly suggests that the multi-pulsing bi-
furcation sequence considered here is universal in nature for laser cavities.

In addition to experimental work, several theoretical models have been pro-
posed to explain the multi-pulsing transition. One of the earliest models was by
Namiki et al. [7] in which a clear prediction was made about the stability and
existence of multi-pulse states. However that analytical formulation did not ad-
dress the transition behavior. A recent extension of that work, where the gain and
loss dynamics involved a discrete mapping [8], has also successfully predicted
the transition phenomenon observed in the recent experiments highlighted in the
previous section, i.e. steady-state – Hopf – period doubling – torus – multi-
pulsing. Furthermore, a number of computational studies have been performed
on mode-locked lasers where evidence of the above bifurcation sequence was
observed via direct numerical simulation [4, 20, 21].

The results of this manuscript agree with and extend the existing experimen-
tal and theoretical efforts. In particular, this is first time that the bifurcation
structure, including the explicit determination of the unstable solutions and of
the bifurcations that occur, has been computed in the PDE. Although this anal-
ysis is specific to the waveguide array mode-locking model, due to the ubiquity
of the multi-pulsing transition it is conjectured that a similar sequence of bi-
furcations is responsible for the multi-pulsing transition in a large number of
experimentally realizable mode-locked laser cavities.
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Appendix A. ACM Implementation Flowchart

In this appendix, we focus on the practical aspects of implementing the Ad-
joint Continuation Method (ACM) for this problem. In general terms, the ACM
operates by treating the task of finding the initial condition of a periodic orbit as
an unconstrained minimization problem. One advantage of this approach over,
say, the orthogonal collocation method implemented in AUTO [22,23] is that
there are many fewer degrees of freedom to compute (as only the initial con-
ditions are unknown). For example, in a typical simulation, we use 1024 grid
points in space and 500 timesteps, each broken into 8 Runge-Kutta stages. In the
ACM, a fraction of the highest frequency Fourier modes of the initial condition
are set to zero, leaving roughly 400 (complex) Fourier modes in each waveg-
uide to be determined by the algorithm. This yields a nonlinear optimization
problem in 2400 (real) unknowns. By contrast, to achieve the same accuracy
with AUTO, one would need at least 400 (complex) Fourier modes per collo-
cation point. With three waveguides, this yields 2400 (real) unknowns at each
collocation point within a timestep. Thus, even if the number of timesteps were
reduced to 100 and only 3 collocation points were used per timestep, we would
have to solve a nonlinear system of equations with 720,000 unknowns. While it
is certainly possible to solve systems of this size, the ACM yields a smaller scale
optimization problem that can easily be solved on a laptop computer.

Figure A.15 is a flowchart of the ACM that describes the major steps of
the algorithm. In principle, any nonlinear minimization routine could be used to
compute the initial conditions of periodic orbits. In our case, we use the BFGS al-
gorithm [36] described in Section 3. In each iteration of the minimization proce-
dure, BFGS supplies an initial condition vector X(0) = (u(0, t), v(0, t),w(0, t), g0, θ,Z)
for which we must efficiently compute the functional G and its gradient ∇XG as
discussed in Appendix B. Indeed, the majority of the time spent in the ACM
will be repeatedly computing these two quantities.

In computing a branch of periodic solutions, several thousand PDE solves
are typically required. Therefore, having an efficient time-stepping routine is
vital. The main numerical issue with operators such as the one found in this
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Obtain an initial con-
dition approximation

Evolve solution forward
until z = Z [34,35].
Store the solution, z-

derivative, and Hermite
correction data [26,27]

Evolve the adjoint
equation until ζ =
Z [34,35]. Use cubic

Hermite interpolation to
approximate X(z) [26,27]

Compute G and ∇G
from X(Z), Xz(Z),

X̃(Z) and X(0) [26,27]

BFGS update step [38]

Update initial condition
as specified by BFGS [38]

Has BFGS
converged?

Save the initial con-
dition and BFGS

Hessian approximation

Adjust bifurcation
parameter but keep
previous BFGS data

no

yes

Figure A.15: (Color online, two column) Flowchart for implementing the ACM for the WGAML
model. In this chart, z is the time-like parameter, and X(z) is a vector of the degrees of freedom
the BFGS algorithm can adjust as they are evolved by the forward equation. X̃(ζ) is a vector of
those same degrees of freedom as they are evolved by the adjoint equation. Here ζ = Z − z, and
Z is the current estimate of the period. Related references are also included.

manuscript is stiffness. Explicit methods like dopri5 require small ∆z in order
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to remain stable [40]. Fully implicit methods, on the other hand, are too com-
putationally intensive to be a viable replacement. Additive Runge-Kutta (ARK)
formulae like the one discussed in Appendix C and [41] are a good compromise.
For the WGAML model, using dopri5 with 1024 Fourier modes in t requires
approximately 5000 steps in z to have the same stability and accuracy properties
as 500 steps in z with an ARK formula. When using ARK, it is important to treat
all the sources of stiffness implicitly. As an example, if the bandwidth limited
gain term is not treated implicitly, then 2000 steps in z are required for the ARK
method to be stable.

For one particular continuation parameter value, we loop until the BFGS
algorithm has converged. At each step, the BFGS algorithm will update the ap-
proximation of the Hessian from the function and gradient information it receives
until a solution is found. Once the approximation of the Hessian is sufficiently
good, the BFGS algorithm can be shown to converge super-linearly. After a sin-
gle limit cycle is obtained, it is important to preserve the BFGS approximation of
the Hessian. If the Hessian is not saved, the subsequent step will still converge,
but a large number of the initial iterations will go towards re-estimating the Hes-
sian. By reusing the old Hessian data, fewer iterations are spent on corrections
to the Hessian and the quadratic convergence will be reestablished more quickly.

Although finding the solution branches is the most computationally intensive
part of the ACM, potentially the most time-consuming part to the user is obtain-
ing a sufficiently good approximation of the periodic solution so that BFGS con-
verges at all. This most commonly occurs when trying to find the branch of pe-
riodic solutions created by a Hopf bifurcation or when trying to switch branches
due to a bifurcation of the solution branch such as a period-doubling bifurcation.
In both cases, it is possible to have accurate information about the bifurcating
eigenfunction either by using the Floquet-Fourier-Hill method on stationary so-
lutions [37] or by computing the monodromy matrix [38] for period-one orbits.
With either technique, the stationary or period-one solution can be perturbed by
the unstable eigenfunction. The most general technique is to temporarily switch
the bifurcation parameter to the largest amplitude Fourier mode of the unstable
eigenfunction. By switching to this parameter, we are more likely to converge to
the new branch of solutions rather than back to the stationary or period-one solu-
tion branch. This technique can work even if the resulting branch of solutions is
unstable, but success is by no means guaranteed. For problems where the bifur-
cating branch is stable, it is often easier to adiabatically increase the continuation
parameter through the bifurcation point while evolving the system forward in z.
In that way, an estimate of a solution on the new branch of solutions can be ob-
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tained. This is the easiest method for getting onto a branch of solutions, but it
will not work if the resulting branch of solutions is unstable.

In this appendix, we have focused on the practical details of implementing
the ACM. However the individual components of the ACM have been studied
theoretically in previous works. For instance, details and theoretical considera-
tions of the BFGS algorithm can be found in Ref. [36], and Refs. [34, 35] contain
additional details about the ARK formulae. Although they are not mentioned in
detail here, the theoretical aspects of the ACM have not been neglected. Ulti-
mately, many of the practical benefits discussed in this appendix, such as using a
semi-implicit time stepper and reusing the BFGS Hessian, can be understood and
explained in terms of the properties of the individual components of the ACM.

Appendix B. The Adjoint PDE to the WGAML

The goal of the adjoint PDE is to find the variational derivative δG
δq0

=
(
δG
δu0
, δG
δv0
, δG
δw0
, ∂G
∂g0

)
∈

X, which satisfies

d
dε

∣∣∣∣∣
ε=0

G(q0 + εq̇0,Z, θ) =

〈
δG
δq0

, q̇0

〉
(B.1)

for every sufficiently smooth q̇0 ∈ X. Here a dot represents a directional deriva-
tive with respect to the initial conditions, and we will write Ġ for the left hand
side of (B.1). The quantities in (6) are the real and imaginary parts of the Fourier
coefficients of δG

δu0
, δG
δv0

and δG
δw0

, e.g.

∂G
∂<(ûk)

=

〈
δG
δq0

,


eikt

0
0
0


〉

= 2π<
{ ̂( δG
δu0

)
k

}
,

∂G
∂=(ûk)

=

〈
δG
δq0

,


ieikt

0
0
0


〉

= 2π=
{ ̂( δG
δu0

)
k

}
.

To find a formula for δG
δq0

, we evaluate the left hand side of (B.1) and then manip-
ulate the result to obtain the form on the right of (B.1). On the left, we have

Ġ :=
d
dε

∣∣∣∣∣
ε=0

G(q0 + εq̇0,Z, θ) =

〈
q(Z, ·) − q0(·) , q̇(Z, ·) − q̇0(·)

〉
, (B.2)
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where q̇(z, t) solves the linearization of (1d)–(1g) about q(z, t) with initial condi-
tion q̇(0, t) = q̇0(t):

i
∂u̇
∂z

+
D
2
∂2u̇
∂t2 + 2β|u|2u̇ + βu2u̇∗ + Cv̇ + iγ0u̇ −

2ig0

1 + ‖u‖2/e0

(
1 + τ

∂2

∂t2

)
u̇

+

[
4ig0〈u, u̇〉/e0

(1 + ‖u‖2/e0)2 −
2iġ0

1 + ‖u‖2/e0

] [(
1 + τ

∂2

∂t2

)
u
]

= θu̇, (B.3a)

i
∂v̇
∂z

+ C(ẇ + u̇) + iγ1v̇ = θv̇, (B.3b)

i
∂ẇ
∂z

+ Cv̇ + iγ2ẇ = θẇ, (B.3c)

∂ġ0

∂z
= 0. (B.3d)

Here 〈u, u̇〉 =
(∫ π

−π
<{u(z, t)∗u̇(z, t)} dt

)
is a real number, and depends on z. Next

we define adjoint variables q̃(ζ, t) = (ũ(ζ, t), ṽ(ζ, t), w̃(ζ, t), g̃0), where ζ = Z − z
is a reversed time-like variable. We define q̃0(t) = q(Z, t) − q0(t) so that (B.2)
becomes

Ġ =
〈
q̃0(·) , q̇(Z, ·)

〉
−

〈
q̃0, q̇0

〉
.

This can be put in the desired form (B.1) with

δG
δq0

(t) = q̃(Z, t) − q̃0(t) (B.4)

provided that
〈
q̃(Z − z, ·) , q̇(z, ·)

〉
remains constant for 0 ≤ z ≤ Z. Differentiation

with respect to z shows that this condition will hold provided that q̃(ζ, t) satisfies〈∂q̃
∂ζ

(ζ, ·), q̇(z, ·)
〉

=
〈
q̃(ζ, ·),

∂q̇
∂z

(z, ·)
〉
, q̃(0, t) = q̃0(t), ζ = Z − z.
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Using (B.3) to evaluate
〈
q̃(ζ, ·), ∂q̇

∂z (z, ·)
〉
, we integrate by parts and collect terms

to identify the adjoint system

∂ũ
∂ζ

= −i
D
2
∂2ũ
∂t2 − 2iβ|u|2ũ + iβu2ũ∗ − γ0ũ,

+
2g0

1 + ‖u‖2/e0

(
1 + τ

∂2

∂t2

)
ũ −

4g0
〈
ũ, (1 + τ∂2

t )u
〉

e0(1 + ‖u‖2/e0)2 u + iθũ − iCṽ,

(B.5a)
∂ṽ
∂ζ

= −iC(ũ + w̃) − γ1ṽ + iθṽ, (B.5b)

∂w̃
∂ζ

= −iCṽ − γ2w̃ + iθw̃, (B.5c)

∂g̃0

∂ζ
=

2
〈
ũ, (1 + τ∂2

t )u
〉

1 + ‖u‖2/e0
,

〈
ũ, (1 + τ∂2

t )u
〉

=

∫ π

−π

<

{
ũ∗u − τ

∂ũ
∂t

∗∂u
∂t

}
dt.

(B.5d)

In this equation, as ζ runs from 0 to Z, the variables u, v and w are evaluated at
(Z − ζ, t) while ũ, ṽ and w̃ are evaluated at (ζ, t). Then using (B.1) and (B.4) in
combination with (B.5) the remaining components of the gradient can be com-
puted.

Appendix C. Semi-implicit Runge-Kutta Method

The terms involving second derivatives with respect to the space-like vari-
able, t, cause the systems (1) and (B.5) to be stiff. This means stability requires
smaller steps in an explicit scheme than is necessary for accuracy. On the other
hand, a fully implicit method would be difficult to implement due to the fact
that (1) is nonlinear and (B.5), while linear, is not diagonalized by the Fourier
transform. The idea of an implicit-explicit (IMEX) multi-step method [42], or an
additive Runge-Kutta (ARK) method [34, 35], is to write the evolution equation
as a sum

∂q
∂z

= f (z, q) + g(z, q) (C.1)

and devise a scheme in which f is treated explicitly, g is treated implicitly, the
scheme for g alone is e.g. L-stable, and the combined scheme is high order. In the
ARK framework, there are two sets of stage derivatives and two Butcher arrays
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[43], one for f and one for g:

ki = f
(
zn + cih, qn + h

∑
j ai jk j + h

∑
j âi j` j

)
,

`i = g
(
zn + ĉih, qn + h

∑
j ai jk j + h

∑
j âi j` j

)
,

qn+1 = qn + h
∑

j b jk j + h
∑

j b̂ j` j.

c A
bT

for f

ĉ Â
b̂T

for g

(C.2)
The Butcher arrays satisfy ai j = 0 if i ≤ j and âi j = 0 if i < j. This allows the
stage derivatives to be solved for in order, l1, k1, . . . , ls, ks, where s is the number
of stages of the scheme. We used a variant [41] of the 5th order ARK scheme of
Kennedy and Carpenter [35], modified so that a fourth order dense output exists.
A dense output [43] is a rule for accurately interpolating the solution between
timesteps. In our case, we must interpolate the solution of the forward problem
(1) to solve the adjoint problem. To achieve fifth order accuracy in the adjoint
system, we require a fourth order dense output formula. We use the dense output
to generate quartic corrections [44] to cubic Hermite interpolation. Details are
given in [41].

For the nonlinear system (1d)–(1f), we set q = (u, v,w) in (C.1) and define

f (q) =


−iθ + iβ|u|2 − γ0 +

2g0

1 + ‖u‖2/e0
iC 0

iC −iθ − γ1 iC
0 iC −iθ − γ2


u

v
w

 ,

g(q) =


(
i
D
2

+
2g0τ

1 + ‖u‖2/e0

)
∂2

∂t2 0 0

0 0 0
0 0 0


u

v
w

 .
(C.3)

Note that there is no need to include (1g) in the evolution equations once the
adjoint system is derived; g0 is simply treated as a parameter in (C.1) and (C.3).
The main challenge in this procedure is that g(q) in (C.3) is non-linear due to the
term ‖u‖2. The implicit equation that must be solved has the form

(U,V,W) = g[(u, v,w) + ε(U,V,W)], (C.4)

where (U,V,W) = li in (C.2), ε = âiih, and (u, v,w) = qn + h
∑i−1

j=1[ai jk j + âi jl j].
Due to the form of g(q) in (C.3), we have V = W = 0. We solve for U in Fourier
space:

Ûk + k2

i D
2

+
2g0τ

1 + (2π/e0)
∑

j |û j + εÛ j|
2

 (ûk + εÛk) = 0, (k ∈ K). (C.5)
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HereK = {−N/2+1, . . . ,N/2−1}, where N is the number of Fourier collocation
points used to discretize (−π, π], and we set the Nyquist mode to zero, ÛN/2 = 0.
In addition, at the end of each time-step, we apply a 36th order filter [45] in
which the Fourier modes are multiplied by e−36(2|k|/N)36

. This filter has proved
successful in suppressing aliasing errors while allowing high frequency modes
to contribute useful information to the solution.

It is convenient to solve for the real and imaginary parts of Ûk in (C.5) sepa-
rately. Setting

Ûk = ak + ibk, ûk = αk + iβk,

the system (C.5) becomes

Fk =

(
ak

bk

)
+ k2

(D
2

J + E(r)I
) (
αk + εak

βk + εbk

)
= 0, (k ∈ K), (C.6)

where

E(r) =
2g0τ

1 + (2π/e0)r
, r =

∑
j

[(α j+εa j)2+(β j+εb j)2], I =

(
1

1

)
, J =

(
0 −1
1 0

)
.

We solve (C.6) iteratively, using Newton’s method

Û (ν+1) = Û (ν) − [∇F(Û (ν))]−1F(Û (ν)),

where Û = (. . . , a−1, b−1, a0, b0, a1, b1, . . . ) ∈ R2N−2. As a starting guess, Û (0),
we drop εa j and εb j in the formula for r and solve (C.6), which becomes a de-
coupled set of 2 × 2 linear systems when r is frozen in this way. On subsequent
iterations of Newton’s method, we note that the Jacobian is a rank one perturba-
tion of a 2 × 2 block-diagonal matrix:

(∇F)k j =
∂Fk

∂(a j, b j)
= Ak j+Bk j,

Ak j =
{
I + εk2 [(D/2)J + E(r)I]

}
δk j,

Bk j = 2εk2E′(r)
(
αk + εak

βk + εbk

) (
α j + εa j , β j + εb j

)
.

Thus, we may use the Sherman-Morrison formula [36] to invert ∇F:

(
A + uvT )−1

= A−1 −
A−1uvT A−1

1 + vT A−1u
.

To invert the 2 × 2 diagonal blocks of A, we use (xI + yJ)−1 = 1
x2+y2 (xI − yJ).

Because ε is small in practice, the starting guess is close enough that Newton’s
method converges to machine precision in 3-5 iterations.
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For the adjoint system (B.5), we use the same fifth order additive Runge-
Kutta scheme as in the forward problem (1d)–(1f), but now the equations are
non-autonomous and linear

∂q̃
∂ζ

= f (ζ, q̃) + g(ζ, q̃), q̃ = (ũ, ṽ, w̃, g̃0).

We set

g(ζ, q̃) =



(
−i

D
2

+
2g0τ

1 + ‖u(Z − ζ, ·)‖2/e0

)
∂2ũ
∂t2

0
0
0


and define f (ζ, q̃) to be the remaining terms of (B.5). Although f (ζ, q̃) and g(ζ, q̃)
are both linear functions of q̃, f (ζ, q̃) contains terms that are difficult to invert in
a fully implicit scheme while g(ζ, q̃) is easily inverted using the FFT in a similar
way to the forward problem above, but without the need for Newton’s method.
As mentioned at the beginning of this section, we use a dense output formula
described in [41] to interpolate the solution q(z, t) between timesteps to evaluate
quantities such as ‖u(Z − ζ, ·)‖ in the adjoint problem.

38


