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Abstract

In this note we prove several analytical results about generalized Kimura dif-
fusion operators, L, defined on compact manifolds with corners, P. It is shown
that the C0(P)-graph closure of L acting on C2(P) always has a compact resol-
vent. In the 1d-case, where P = [0, 1], we also establish a gradient estimate
‖∂x f ‖C0([0,1]) ≤ C‖L f ‖C0([0,1]), provided that L has strictly positive weights at
∂[0, 1] = {0, 1}. This in turn leads to a precise characterization of the domain of
the C0-graph closure in this case.

1 Introduction

The Kimura diffusion operator is used to defined the standard “forward time model”
in Population Genetics and other fields in evolutionary Biology. The classical Kimura
diffusion operator is defined on the simplex, ΣN ⊂ RN , by the second order differen-
tial operator

LKimu = ∑
1≤i,j≤N

xi(δij − xj)∂xi ∂xj + ∑
1≤i≤N

bi(x)∂xi , (1.1)

where ΣN = {(x1, . . . , xN) : 0 ≤ xi, i = 1, . . . , N and x1 + · · · + xN ≤ 1}. The first
order part

∑
1≤i≤N

bi(x)∂xi , (1.2)

is required to be inward pointing along the boundary of ΣN . In most applications
to Biology the coefficients bi(x) are polynomials. The linear terms in {bi(x)} model
mutation, and the higher order terms model effects like selection and migration. In
a recent monograph [2] this class of operators on simplices has been generalized to a
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broad class of second order operators, called “generalized Kimura diffusions,” which
are defined on manifolds-with-corners. These are briefly defined below; we refer the
reader to the cited monograph for complete definitions.

A topological space, P, is an N-dimensional manifold with corners if every point,
p, has a coordinate chart isomorphic to [0, 1)n × (−1, 1)m, where n + m = N. Clearly
the ∂P is not usually a smooth manifold, but is a stratified space. We denote these
coordinates by (x; y). If p corresponds to (0; y), then we say that p lies on a boundary
stratum of codimension n.

A second order partial differential operator, L, defined on P, is a generalized Kimura
diffusion operator, if, in such a coordinate chart, L is given by

Lu =
n

∑
i=1

[xiai(x; y)∂2
xi
+ bi(x; y)∂xi ]u +

n

∑
i,j=1

+xixjaij(x; y)∂xi ∂xj u+

n

∑
i=1

m

∑
l=1

xicil∂xi ∂yl u +
m

∑
k,l=1

dkl(x; y)∂yk ∂yl u +
m

∑
l=1

dl(x; y)∂yl u, (1.3)

where the second order part is strictly elliptic in the interior, and the coefficients satisfy

ai(0; y) > 0,
m

∑
l,m=1

dkl(0; y)ξkξl ≥ C|ξ|2, (1.4)

for some C > 0, and bi(x; y) ≥ 0 where xi = 0. More detailed definitions can be found
in [2]. The principal symbol, σ2(L), defines an incomplete Riemannian metric on P.
The WF-Hölder spaces are defined with respect to the distance function defined by
this metric.

If P is a compact manifold with corners and L is a generalized Kimura diffusion
on P, then it is shown that the initial value problem,

∂tu− Lu = 0 with u(x, 0) = f (x), (1.5)

has a unique solution that is in C∞(P × (0, ∞)) ∩ C0(P × [0, ∞)) provided that f be-
longs to a WF-Hölder space. This is called the regular solution. Optimal results in these
spaces are also obtained for the inhomogeneous problem ∂tu− Lu = g. These results
have been extended to data in C0(P) in [5] and [3]. At least as regards initial data
in C0(P) there are several points that have not yet been satisfactorily understood: 1.
Estimates on∇u, for the solution to (1.5), in terms of the initial data do not seem to be
optimal. 2. It has not been shown that the C0(P)-graph closure of L acting on C2(P)
has a compact resolvent. This short note is directed towards improving our state of
knowledge on these points.

We show below that the C0(P)-graph closure of L acting on C2(P) always has a
compact resolvent. We also consider the gradient estimate in 1-dimension for the
elliptic problem Lu = h on [0, 1]. Under the additional assumption that the first order
part of L is strictly inward pointing at 0 and 1, we show that the C0-norm of ∂xu is
bounded by a constant times ‖Lu‖C0([0,1]). We also show that this is false if the first
order term vanishes at one or both of the boundary points.

2 The Graph Closure in the C0-topology

One of the goals in this paper is to describe the domain of the C0-graph closure of
a Kimura diffusion in 1d. The key to this result is a gradient estimate for the elliptic
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problem. This is also a step towards proving sharp estimates on the gradient for the
solution of the parabolic problem as well as proving estimates in higher dimensional
cases. These analytic results are also useful in the development of spectrally accurate
numerical methods for solving variants of the Kimura diffusion equation, see [4].

In 1d we work on the unit interval, [0, 1], where the simplest Kimura diffusions are
given by

Lα,βu =
x(1− x)

2ρ
∂2

xu + α(1− x)∂xu− βx∂xu, (0 < x < 1), (2.1)

with ρ > 0, α ≥ 0 and β ≥ 0. For the parabolic problem ut = Lα,βu, the operator Lα,β
can be generalized by allowing ρ, α, β to depend on time; by imposing singular, pos-
sibly time-dependent boundary conditions (when α < 1 or β < 1); or by adding ad-
ditional terms that vanish at the boundary, such as γ(x, t)x(1− x)∂xu. In this section
we assume that α, β, ρ are constant. Scaling time and adjusting α and β accordingly,
we may assume 2ρ = 1. The rescaled coefficients α, β are called the weights of L at the
boundary of [0, 1].

In this section we consider the C0-graph closure of a Kimura diffusion operator in
1-dimension. The main result here is a precise characterization of the domain of the
graph closure of a Kimura operator with respect to the C0-norm, which is a conse-
quence of an estimate of ∂xu in terms of Lu.

2.1 The definition of WF-Hölder-spaces

In this section we collect some basic definitions and review some analytical results.
We begin with the definitions of the 1d WF-Hölder spaces. A complete discussion can
be found in [2], which contains a thorough treatment of the analysis of generalized
Kimura diffusions in these specially adapted Hölder spaces.

We define the WF-distance on the interval to be

ρWF(x1, x2) =
∫ x2

x1

dx√
x(1− x)

. (2.2)

For 0 ≤ x1, x2 ≤ 1
2 this behaves like ρWF(x1, x2) ∝ |√x1 −

√
x2|, and if 1

2 ≤ x1, x2 ≤
1, then ρWF(x1, x2) ∝ |

√
1− x1 −

√
1− x2|. For 0 < γ ≤ 1, the WF-Hölder space,

C0,γ
WF([0, 1]), consists of functions f ∈ C0([0, 1]) for which the semi-norm

[ f ]WF,γ = sup
x1 6=x2∈[0,1]

| f (x1)− f (x2)|
ρ

γ
WF(x1, x2)

(2.3)

is finite. The norm on C0,γ
WF([0, 1]) is defined by

‖ f ‖WF,0,γ = ‖ f ‖∞ + [ f ]WF,γ. (2.4)

We also define another, ladder of spaces, denoted by C0,2+γ
WF ([0, 1]), with 0 < γ ≤ 1.

A function f ∈ C1([0, 1]) ∩ C2((0, 1)), belongs to this space if the norm

‖ f ‖WF,0,2+γ = ‖ f ‖WF,0,γ + ‖∂x f ‖WF,0,γ + ‖x(1− x)∂2
x f ‖WF,0,γ (2.5)

is finite. These spaces play a central role in the analysis of Kimura diffusion operators,
as the maps (Lα,β − λ Id)−1 : C0,γ

WF([0, 1])→ C0,2+γ
WF ([0, 1]), are bounded for all 0 < γ <
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1, and λ ∈ (0, ∞), see [2]. This provides a precise characterization of the domain of
a Kimura operator acting on a WF-Hölder space. Missing from this treatment is the
classical case of data in C0, which we consider below.

2.2 Domain of L acting on C0([0, 1])

We now analyze the precise domain of the C0-graph closure of a Kimura operator, L.
It is defined using C2([0, 1]) as a core and taking the closure with respect to the graph
norm

‖ f ‖∞ + ‖L f ‖∞. (2.6)

We denote the domain of the closure by D. It depends only on the weights, (α, β)
in (2.1). The easiest case to treat is when both α and β are positive. Since it is no more
difficult, we treat the case of

L = Lα,β + x(1− x)s(x)∂x,

for s(x) a continuous function on [0, 1].

Theorem 2.1. Suppose that α and β are positive. The domain, D of the C0-graph closure of
the operator L = Lα,β + x(1− x)s(x)∂x is given by

D = { f ∈ C2((0, 1)) ∩ C1([0, 1]) : lim
x→0+,1−

x(1− x)∂2
x f (x) = 0}. (2.7)

Proof. We first show that D ⊂ C1([0, 1]), which will imply that D ⊂ C2((0, 1)). To that
end, suppose that f ∈ C2([0, 1]) and L f = h. This can be expressed as an equation for
g(x) = ∂x f (x) :

x(1− x)∂xg + (α(1− x)− βx + x(1− x)s(x))g(x) = h(x). (2.8)

An elementary calculation shows that this equation can be rewritten as

∂x(σ(x)g(x)) =
σ(x)h(x)
x(1− x)

, (2.9)

where σ(x) = xα(1− x)βS(x), with

S(x) = exp
[∫ x

0
s(y)dy

]
. (2.10)

As α and β are both positive, integrating this relation gives two Volterra operators
expressing g in terms of h :

g(x) =
∫ x

0

σ(y)h(y)dy
σ(x)y(1− y)

d
= K0h(x) and g(x) = −

∫ 1

x

σ(y)h(y)dy
σ(x)y(1− y)

d
= K1h(x).

(2.11)

Lemma 2.2. If α and β are positive, then K0 : C0([0, 1
2 ])→ C0([0, 1

2 ]), and K1 : C0([ 1
2 , 1])→

C0([ 1
2 , 1]) are bounded operators.
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Proof. The proof follows easily from the facts that

max
x∈[0, 1

2 ]

∫ x

0

σ(y)dy
σ(x)y(1− y)

< ∞. (2.12)

and

max
x∈[ 1

2 ,1]

∫ 1

x

σ(y)dy
σ(x)y(1− y)

< ∞. (2.13)

Remark 2.3. It is interesting to note that

lim
x→0+

K0h(x) =
h(0)

α
and lim

x→1−
K1h(x) =

h(1)
β

. (2.14)

Since K0h = K1h for h in the range of L, it follows that∫ 1

0

σ(y)h(y)dy
y(1− y)

= 0, (2.15)

which also follows from the fact that L1 = 0, and the Fredholm alternative. A simple
calculation shows that the function η0(x) = K01 is real analytic in [0, 1) and η1(x) =
K11 is real analytic in (0, 1].

From these observations it follows easily thatD ⊂ C1([0, 1]) : let < fn >⊂ C2([0, 1])
be a sequence converging in the C0-norm to f , for which hn = L fn converges in the
C0-norm to h. From the continuity of K0 (or K1) on C0 it follows that

∂x fn(x) =

{
K0hn(x) for x ∈ [0, 1

2 ] and
K1hn(x) for x ∈ [ 1

2 , 1]
(2.16)

converge uniformly to some g ∈ C0([0, 1]). Since

fn(x)− fn(0) =
∫ x

0
∂x fn(y)dy, (2.17)

it therefore follows that
f (x)− f (0) =

∫ x

0
g(y)dy, (2.18)

from which it is immediate that ∂x f = g, and therefore f ∈ C1([0, 1]).
For any function f ∈ C2([0, 1]) the limx→0+,1− x(1− x)∂2

x f (x) = 0. Under the limit
considered in the previous paragraph we know that the pair (∂x fn(0), ∂x fn(1)) con-
verges to the pair (∂x f (0), ∂x f (1)); as (L fn(0), L fn(1)) also converges to (L f (0), L f (1)),
and L f (x) ∈ C0([0, 1]), it is clear that

lim
x→0+,1−

x(1− x)∂2
x f (x) = 0.

This shows that the set on the right hand side of (2.7) contains D. To prove the
opposite inclusion we need to show that for a function f satisfying the conditions on
the right hand side of (2.7), there is a sequence < fn >⊂ C2([0, 1]), so that ( fn, L fn)
converges uniformly to ( f , L f ). It is left to the reader to show that the sequence

fn(x) = f
(

1 + (n− 2)x
n

)
(2.19)

has the desired properties. This completes the proof of the proposition.
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Remark 2.4. The precise characterization of the domain of the C0-graph closure in
higher dimensions remains an open problem.

As a corollary of the proof we see that, if α and β are both positive, then the
operator f 7→ ∂x f is relatively bounded with respect to f 7→ L f .

Corollary 2.5. If α and β are positive, then there exists a constant CL so that, for all f ∈ D,

‖∂x f ‖C0([0,1]) ≤ CL‖L f ‖C0([0,1]). (2.20)

If α is positive, but β = 0, then such an estimate holds on [0, x] for any 0 < x < 1, and
if α = 0, but β is positive then such an estimate holds on [x, 1] for 0 < x < 1.

Remark 2.6. This result is very useful if α and β depend continuously on time. In this
case we can write

Lα(t),β(t) − λ =[
Id+[(α(t)− α(0))(1− x)∂x − (β(t)− β(0))x∂x](Lα(0),β(0) − λ)−1

]
· (Lα(0),β(0)−λ).

(2.21)

From the corollary it follows that, as an operator from C0([0, 1]) to itself, the term

[(α(t)− α(0))(1− x)∂x − (β(t)− β(0))x∂x](Lα(0),β(0) − λ)−1 (2.22)

has norm bounded by C(|α(t)− α(0)|+ |β(t)− β(0)|), suggesting a simple perturba-
tive approach to solve the Kimura equation with time dependent coefficients. Such a
method is detailed in [4].

Remark 2.7. By analogy with Euclidean potential theory one might expect that if L f =
h, then some WF-Hölder norm of ∂x f would be bounded by the C0-norm of h. This, in
fact cannot be the case. If there were a γ > 0 and a C for which ‖∂x f ‖WF,0,γ ≤ C‖L f ‖C0 ,
then, using the observations in Remark 2.3, we could show that K0 : C0([0, 1

2 ]) →
C0,γ

WF([0, 1
2 ]) is a bounded operator. This would imply that K0 is compact as a map from

C0([0, 1
2 ]) to itself. Assuming that α and β are positive and s(x) = 0, it is not difficult

to show that, for λ ∈ [0, 1
α ], we have

K0

[
x

1−λα
λ (1− x)

1+λβ
λ

]
= λx

1−λα
λ (1− x)

1+λβ
λ . (2.23)

For λ in this range these functions belong to C0([0, 1]), hence K0 does not have a dis-
crete spectrum, and is therefore not compact. A similar argument applies using K1 for
x ∈ [ 1

2 , 1].

This analysis leaves open the cases where one or both of the weights α, β vanish.
We let Dα,β denote the domain of the C0-graph norm closure of Lα,β. From the proof
of this proposition it is clear that the estimates for the first derivative at 0 or 1 only
depends on the coefficient of the first order term at the respective endpoint. The re-
maining question is whether or not the first derivative of f ∈ Dα,β remains bounded
even if the relevant coefficient is zero. This, in fact, is not the case. We demonstrate
this for the simpler model operator L0 = x∂2

x, acting on C0([0, ∞)). We let D0 denote
the C0-graph closure starting with the core C2

c ([0, ∞)).
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Choosing ϕ(x) ∈ C∞
c ([0, 1)), with ϕ(x) = 1 for x ∈ [0, 1

2 ], and 0 < ν < 1, we define
the function:

lν(x) = x[− log x]1−ν ϕ(x). (2.24)

Applying ∂x and L0 to lν for x the interval [0, 1
2 ] gives:

∂xlν(x) = [− log x]1−ν − (1− ν)[− log x]−ν,

L0lν(x) = −(1− ν)[− log x]−ν(1 + ν[− log x]−1).
(2.25)

This shows that ∂xlν(x) diverges as x → 0+,

L0lν(x) ∈ C0([0, ∞)), and lim
x→0+

L0lν(x) = 0. (2.26)

It is not difficult to show that (lν(·+ 1
n ), L0lν(·+ 1

n )) converges uniformly to (lν, L0lν),
and hence lν ∈ D0. If f ∈ D0, then clearly limx→0+ x∂2

x f (x) = 0, which implies that

∂x f (x) = o(| log x|). (2.27)

From this analysis, it is clear that the domains D depend only on the weights,
(α, β), and that the descriptions at the two endpoints are entirely independent. It
is difficult to give a precise description of the domain at a boundary point where a
weight vanishes, and so we do not state a result describing D0,β,Dα,0,D0,0, beyond
the statement that for f ∈ D0,β (resp. f ∈ Dα,0)

lim
x→0+

x∂2
x f (x) = 0,

(
lim

x→1−
(1− x)∂2

x f (x) = 0 resp.
)

, (2.28)

which in turn implies that (2.27) (or its analogue for x = 1) holds for f ∈ D0,β (or
f ∈ Dα,0). The examples lν show that this estimate is essentially sharp. We leave the
details of these (elementary) arguments to the reader.

3 General Vector Fields as Perturbations

As noted above,in many applications the first order part of the Kimura operator is of
the form

α(1− x)∂xu− βx∂xu + s(x)x(1− x)∂x, (3.1)

where s(x) is a smooth function on [0, 1]. In Population Genetics the vector field
s(x)x(1− x)∂x models the effects of selection. We denote this vector field by

V = s(x)x(1− x)∂x. (3.2)

In the simplest model of selection, s is a constant, which quantifies the selective differ-
ence between the two types. An examination of the arguments that follow shows that
it suffices to treat the case that s(x) = 1, which we henceforth assume.

In the previous section we proved that any vector field is a relatively bounded op-
erator with respect to L provided that α and β are both positive. In this section we
show that a vector field with coefficient vanishing at 0 and 1 is a relatively compact
perturbation of the operator

Lα,β = x(1− x)∂2
x + α(1− x)∂x − βx∂x. (3.3)
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More precisely, for 0 < λ, the operators V(Lα,β−λ Id)−1, (Lα,β−λ Id)−1V are compact
maps from C0([0, 1]) to itself. The truth of this statement only requires that α and β are
non-negative. We begin with the easier result:

Proposition 3.1. For λ in the resolvent set of Lα,β the operator V(Lα,β − λ Id)−1 defines a
compact map from C0([0, 1]) to itself. There is a constant C so that, for λ ∈ (0, ∞) we have
the estimate:

‖V(Lα,β − λ Id)−1 f ‖∞ ≤
C√
λ
‖ f ‖∞. (3.4)

Proof. This result follows from the basic estimate for the 1d-Cauchy problem. There is
a constant C0 so that if u(x, t) is the solution of

(∂t − Lα,β)u = 0 with u(x, 0) = f (x), (3.5)

then

|∂xu(x, t)| ≤ C0‖ f ‖∞√
tx(1− x)

, (3.6)

which follows from Lemma 6.1.10 in [2], and the construction of the resolvent kernel
in [1]. By integrating this estimate in x we can easily show that there is a constant C1
so that

|u(x1, t)− u(x2, t)| ≤ C1√
t
ρWF(x1, x2)‖ f ‖∞, (3.7)

where ρWF is defined in (2.2). This estimate implies that for t > 0 the operator etLα,β :
L∞([0, 1])→ C0,1

WF([0, 1]) is bounded, with norm bounded by C/
√

t.
The resolvent operator can be expressed as the Laplace transform of the heat ker-

nel:

R(λ) = (Lα,β − λ Id)−1 =

∞∫
0

etLα,β e−tλdt. (3.8)

From this representation and the estimate in (3.6) we easily derive the estimate

|x(1− x)∂x(Lα,β − λ Id)−1 f | ≤ C0‖ f ‖∞

√
x(1− x)

∫ ∞

0

e−tλ
√

t
dt

=
C0‖ f ‖∞

√
x(1− x)√

λ

∫ ∞

0

e−s
√

s
ds.

(3.9)

The estimate in (3.4) follows easily from this.
From (3.6) we see that, for any fixed λ, and finite ε > 0, there is a constant Cλ so

that ∥∥∥∥∥∥x(1− x)∂x

ε∫
0

etLα,β e−tλ f dt

∥∥∥∥∥∥
∞

≤ Cλ‖ f ‖∞
√

ε. (3.10)

From this it follows that to prove the compactness of x(1− x)∂x(Lα,β − λ Id)−1 it suf-
fices to show that, for sufficiently large positive λ, the operator

VRε(λ) f = x(1− x)∂x

∞∫
ε

etLα,β e−tλ f dt (3.11)
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is compact for any ε > 0. The operator Rε(λ) is defined by

Rε(λ) =

∞∫
ε

etLα,β e−tλdt. (3.12)

This statement follows from Theorem 11.2.1 in [2], which shows that there is a
k > 0 so that, for any 0 < γ < 1 we have

‖etLα,β f ‖WF,0,2+γ ≤ Cγ

[
1
t
+ ekt

]
‖ f ‖WF,0,γ. (3.13)

We rewrite VRε(λ) f = Ve−
λε
2 R ε

2
(λ)e

ε
2 Lα,β f . The estimate in (3.7) shows that e

ε
2 Lα,β

maps the space C0([0, 1]) into C0,γ
WF([0, 1]). Since V : C0,2+γ

WF ([0, 1]) → C0,γ
WF([0, 1]) it fol-

lows easily from the estimate in (3.13) that, for k < λ, the composition VRε(λ) =

Ve−
λε
2 R ε

2
(λ)e

ε
2 Lα,β maps C0([0, 1]) to C0,γ

WF([0, 1]), and is therefore a compact operator
from C0([0, 1]) to itself. This in turn shows that R(λ) is a compact operator if k < λ.
The resolvent identity, R(µ) = R(λ) + (µ− λ)R(µ)R(λ), then implies that this is true
throughout the resolvent set.

For the transition from VR(λ) to R(λ)V we use an identity satisfied by the opera-
tors Lα,β and x(1− x)∂x. Simple calculations show that

x(1− x)∂xL1,1 = L0,0x(1− x)∂x, (3.14)

and

x(1− x)∂x[α(1− x)∂x − βx∂x] = [α(1− x)∂x − βx∂x]x(1− x)∂x − [α(1− x)2 + βx2]∂x.
(3.15)

Combining these results, we see that

x(1− x)∂xLα+1,β+1 = Lα,βx(1− x)∂x − [α(1− x)2 + βx2]∂x. (3.16)

From this identity we easily derive that, for λ ∈ (0, ∞) we have the relation

(Lα,β − λ Id)−1x(1− x)∂x = x(1− x)∂x(Lα+1,β+1 − λ Id)−1−
(Lα,β − λ Id)−1[(α(1− x)2 + βx2)∂x](Lα+1,β+1 − λ Id)−1 (3.17)

With this formula and Proposition 3.1 we establish

Proposition 3.2. The operator (Lα,β − λ Id)−1x(1− x)∂x is compact on C0([0, 1]). There is
a constant Cα,β so that its norm, as an operator from C0 to itself, is bounded by Cα,β/

√
λ, for

λ ∈ (0, ∞).

Proof. Proposition 3.1 shows that the first term on the right hand side of (3.17) is com-
pact and satisfies the desired norm bound. From Theorem 2.1 it follows that

[α(1− x)2 + βx2]∂x(Lα+1,β+1 − λ Id)−1

is bounded from C0([0, 1]) to itself; the estimate in (3.7) implies that

(Lα,β − λ Id)−1 : C0([0, 1])→ C0,1
WF([0, 1])
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is bounded with norm bounded by C/
√

λ.
Using the operators K0, K1 defined in (2.11), with parameters α + 1, β + 1, we see

that, for x ∈ [0, 1
2 ],

[∂x(Lα+1,β+1 − λ Id)−1 f ](x) =[K0Lα+1,β+1(Lα+1,β+1 − λ Id)−1 f ](x)

=
(

K0[Id+λ(Lα+1,β+1 − λ Id)−1] f
)
(x),

(3.18)

with a similar formula employing K1 for x ∈ [ 1
2 , 1]. Combining these observations

with the estimate (3.4), the observations at the end of the proof of Proposition 3.1, and
with the fact that (Lα+1,β+1 − λ Id)−1 as a map from C0 to itself has norm 1/λ, we
obtain the norm bound

‖(Lα,β − λ Id)−1x(1− x)∂x f ‖∞ ≤
Cα,β√

λ
‖ f ‖∞, for λ ∈ (0, ∞). (3.19)

4 Compact Resolvents in Arbitrary Dimension

The WF-Hölder theory of a Kimura diffusion, L, on arbitrary compact manifold with
corners, P, is systematically developed in [2]. A fundamental question left unan-
swered there is whether the resolvent (L − λ Id)−1 is always a compact operator on
C0(P). This is proved in [3] under the additional assumption that the weights are
strictly positive. i.e., the first order part of L is uniformly transverse to ∂P. In this
final section we see that the argument used to prove Proposition 3.1 is easily adapted
to prove this statement in general. Let P denote a compact manifold with corners, as
defined in Chapter 2.1 of [2] and L a generalized Kimura diffusion operator, as defined
in Definition 2.2.1 of [2].

As above, ρWF denotes the incomplete metric defined on P by σ2(L), the principal
symbol of L. For 0 < γ < 1 we let C0,γ

WF(P) denote the subset of C0(P) consisting of
functions for which the semi-norm

[ f ]WF,γ = sup
{x1 6=x2∈P

| f (x1)− f (x2)|
ρ

γ
WF(x1, x2)

(4.1)

is finite. It is easy to see that the unit ball in C0,γ
WF(P) is a compact subset of C0(P).

With these preliminaries we prove the following result:

Theorem 4.1. If P is a compact manifold with corners and L is a generalized Kimura diffu-
sion operator defined on P, then the resolvent (L− λ Id)−1 : C0(P) → C0(P) is a compact
operator.

Proof. For f ∈ C0,γ
WF(P) let u(x, t) denote the unique regular solution to the initial value

problem (∂t − L)u = 0 and u(p, 0) = f (p). Theorem 11.2.1 in [2] shows that there are
constants C, K so that

‖u(·, t)‖WF,0,γ ≤ CeKt‖ f ‖WF,0,γ. (4.2)

Theorem 1.5 in [5] shows that, for any 0 < γ < 1, and τ > 0, there is a constant Cτ,γ
so that

‖u(·, τ)‖WF,0,γ ≤ Cτ,γ‖ f ‖C0 . (4.3)
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As before, for ε, λ > 0, let

Rε(λ) f =

∞∫
ε

e−λteLt f dt. (4.4)

From the estimates above we see that, for K < λ, we have the estimate

‖Rε(λ) f ‖WF,0,γ ≤
C

λ− K
‖eεL f ‖WF,0,γ

≤ CCε,γ

λ− K
‖ f ‖C0 .

(4.5)

This shows that, for any ε > 0, and λ > K, the operator Rε(λ) : C0(P) → C0(P) is
compact. Since eLt is a contraction on C0 we easily derive that

‖[R(λ)− Rε(λ)] f ‖C0 ≤ ε‖ f ‖C0 . (4.6)

Hence, for K < λ, the resolvent, R(λ), is the uniform limit of a sequence of compact
operators and therefore compact. Once again, the resolvent identity implies that this
is true throughout the resolvent set.

Pop’s results in [5] easily imply that the eigenfunctions of the C0(P)-graph closure
of L are in C0,γ

WF(P), and are therefore automatically smooth. Hence the spectrum of
L acting on C0(P) is the same as its spectrum acting on C0,γ

WF(P). Theorem 11.1.1 in [2]
shows that, other than 0, this spectrum lies in a conic neighborhood of the negative
real axis, contained in the open left half plane. It is also the case that generalized
eigenfunctions (the null-space of (L− λ Id)k for k > 1) belong to C0,γ

WF(P), and hence
are smooth.

This analysis leaves open the question of characterizing the precise domain of the
C0(P)-graph closure of L acting on C2(P), when dim P > 1. The result in the 1d-case,
proved above, shows that this domain can be expected to depend on the transversality
properties of the first order part of L along ∂P.
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