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Abstract

The stress driven grain boundary diffusion problem is a continuum model of mass
transport phenomena in microelectronic circuits due to high current densities (elec-
tromigration) and gradients in normal stress along grain boundaries. The model
involves coupling many different equations and phenomena, and difficulties such as
non-locality, stiffness, complex geometry, and singularities in the stress tensor near
corners and junctions make the problem difficult to analyze rigorously and simulate
numerically. We present a new numerical approach to this problem using techniques
from semigroup theory to represent the solution. The generator of this semigroup
is the composition of a type of Dirichlet to Neumann map on the grain boundary
network with the Laplace operator on the network. To compute the former, we
solve the equations of linear elasticity several times, once for each basis function
on the grain boundary. We resolve singularities in the stress field near corners and
junctions by adjoining special singular basis functions to both finite element spaces
(2d for elasticity, 1d for grain boundary functions). We develop data structures to
handle jump discontinuities in displacement across grain boundaries, singularities
in the stress field, complicated boundary conditions at junctions and interfaces, and
the lack of a natural ordering for the nodes on a branching grain boundary network.
The method is used to study grain boundary diffusion for several geometries.
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1 Introduction

Mass transport phenomena play a significant role in the failure of microelec-
tronic circuits. Current densities as high as 106A/cm2 are typical in the inter-
connect lines of these circuits. Electromigration is a diffusion process in which
high current densities act as a driving force to transport ions in a metallic
lattice in the direction of electron flow by transferring momentum through
scattering. Grain boundaries, void surfaces, and passivation interfaces are fast
diffusion paths along which the diffusion constant is typically 7-8 orders of
magnitude higher than in the grains; therefore, most of the mass transport
occurs at these locations. The inhomogeneous redistribution of atoms leads to
the development of stresses in the line. Stress gradients along grain bound-
aries and surface tension at void surfaces both contribute to the flux of atoms,
usually suppressing electromigration and increasing the lifetime of the line.

Many theoretical models have been proposed to explain the role of vari-
ous combinations of electromigration, stress gradients, diffusion, temperature,
anisotropy, surface tension, and hillock formation on the mass transport of
atoms in the bulk grains, along void surfaces, along grain boundaries, and at
passivation interfaces. The survey article by Ho and Kwok [1] and the book
by Tu, Mayer and Feldman [2] describe the physics underlying many of these
models from the engineering perspective, with current and historical refer-
ences. See also Mullins [3], which provides a nice overview of mass transport
along surfaces and interfaces.

Several numerical methods have recently been developed to study grain growth
and void evolution. Schimschak and Krug [4] use a boundary element method
to follow the evolution of a void in an infinite domain with a boundary con-
dition on current at infinity. They investigate the stability of the void shape
and speed of propagation as a function of void size. Li et. al. [5] and Averbuch
et. al. [6] employ level set methods to track void evolution due to electromi-
gration and surface diffusion for a finite geometry. Power dissipation models
of curvature driven grain boundary motion have led to several deterministic
and stochastic methods for simulating the evolution of microstructure; see
e.g. Cocks and Gill [7] and Moldovan et. al. [8]. Haslam et. al. [9] use molec-
ular dynamics simulations to study grain growth and grain rotation. Demirel
et. al. [10] have shown that anisotropic effects of grain boundary mobility
on misorientation must be taken into account to obtain predictive annealing
simulations. None of these models include the effect of stress.

Kirchheim [11] and Korhonen et. al. [12] study the role of stress in the electro-
migration process. Kirchheim develops a model of stress generation based on
vacancy formation in the bulk grains, while Korhonen et. al. make a statistical
argument about the distribution of grain boundaries to study the influence of
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stress on grain boundary diffusion. Both papers use a scalar “effective” stress
field rather than actually solving the elasticity equations for the stress tensor.
This yields qualitative insight, but ignores the fact that for any particular
sample, the geometry of the grain boundaries will greatly affect the stress
field, and can lead to large stress concentrations near corners and junctions
which can significantly influence the diffusion process.

Bower, Craft, Fridline and collaborators use an advancing front algorithm to
generate a sequence of adaptive, evolving finite element meshes to solve the two
dimensional linear elasticity equations repeatedly as the geometry changes.
They have studied grain growth, void evolution, hillock formation, and grain
boundary sliding for possibly anisotropic materials responding to stress, sur-
face tension, thermal expansion, and electromigration; see e.g. [13,14]. They
use interesting semi-implicit techniques to overcome timestep limitations due
to the stiffness of the equations, and Lagrange multipliers to determine the
normal stress along grain boundaries.

This paper is the numerical counterpart to [15], which provides a mathemati-
cal framework in which a modest subset of the physical phenomena mentioned
above can be studied rigorously. Notably absent from our model are void mi-
gration and curvature driven grain boundary motion. These phenomena have
been studied many times elsewhere, neglecting stress. Our goal is to present
a careful study of the role of stress in the diffusion process, which poses many
challenges by itself. The equations are stiff and non-local: growth rates depend
on taking two derivatives of normal stress along grain boundaries, while the
normal stress is obtained from the net grain growth by solving the equations
of linear elasticity with non-standard interface boundary conditions. The ge-
ometry of the problem involves the complicated branching structure of a grain
boundary network which does not have a natural ordering or orientation of
its segments. Boundary conditions specify the gradient of the normal stress
at junctions where the stress field is singular. Both displacement and flux
boundary conditions are specified at junctions where grain boundaries meet
the outer walls; analogy with the heat equation leads to the erroneous conclu-
sion that they have been over-specified, while brute force numerical methods
are inconclusive at these junctions due to singularities in the stress field.

Our model is identical to that used in [13], except that they model each side
of the grain boundary as a moving interface, whereas we have formulated the
problem as an evolution of the jump in displacement g = (u+−u−) ·n across
the grain boundary Γ, treating g as a function defined on the fixed set Γ. Here
n is the unit normal to Γ and u± are the limiting values of displacement on
either side of the grain boundary, labeled so that n points into the (+) grain.
This viewpoint allows us to recast the problem as an ordinary differential
equation on a Hilbert space and apply techniques from semigroup theory to
prove that the problem is well-posed. The difficulties due to non-locality, the
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existence of singularities, and the complicated nature of the boundary con-
ditions are all absorbed into two unbounded operators L and S, which turn
out to possess many nice properties such as self-adjointness, discrete spectra,
and positivity (or negativity); see [15]. Our numerical method is also based on
this reformulation as an ODE on a Hilbert space. We compute the decay rates
and eigenmodes of the dynamics using special techniques to accurately resolve
stress singularities. These provide physical insight about the evolution process,
elucidate the theory developed in [15], and may be used to quickly compute
the state of the system at any time without time-stepping. The overhead of
computing the generator of the semigroup is computationally equivalent to
taking a few hundred timesteps.

In Sec. 2, we exhibit the equations in dimensionless form and briefly describe
the physical considerations which lead to these equations. In Sec. 3, we sum-
marize those aspects of the theory of stress driven grain boundary diffusion
developed in [15,16] which are necessary for developing our numerical method.
In particular, we define the operators L and S mentioned above, show how to
represent the semigroup governing the evolution of normal stress in terms of
the eigenvalues and eigenfunctions of a compact operator, and explain why it
is possible to impose boundary conditions on the derivative of normal stress
at junctions where the stress tensor is singular.

In Sec. 4, we describe our numerical algorithm, which involves computing a
type of Neumann to Dirichlet map on the grain boundary, explicitly capturing
singular asymptotic behavior in the stress field, solving the Poisson problem
on a network geometry with junctions, and symmetrizing an almost symmetric
matrix. We maintain two levels of finite element structures which can readily
communicate with each other: the first is a large finite element space on which
the two dimensional Laplace and Lamé equations are solved, and the second is
a small finite element space on which the normal stress η = n·σn and displace-
ment jump g = (u+−u−)·n evolve as functions defined on Γ. Data structures
are developed which can cope with the complications of jump discontinuities
across grain boundaries, singularities in the stress field, non-trivial boundary
conditions at junctions and interfaces, and the lack of a natural ordering for
the nodes on a branching grain boundary network.

In Sec. 5, we present a numerical study of three interconnect geometries. The
first is rectangular with a single horizontal grain boundary running through
its center. This geometry is simple enough that it is easy to visualize the eigen-
functions and interpret the evolution physically. The second geometry has a
more complicated shape as well as a branching grain boundary structure. The
evolution is more difficult to visualize, but exhibits very interesting behavior,
including a change in sign of the flux of atoms into one of the grain boundary
segments midway through the evolution. The third geometry is again rect-
angular, but has a complicated grain boundary network with two connected
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components. The break in the network acts as a flux barrier to limit the ef-
fective length of the line, inhibiting the development of stress. For all three
geometries, we present contour plots of the steady state displacement and
stress fields, showing that the largest stress concentrations occur at the ends
of each connected component of the grain boundary network, and at corners
and junctions where the stress field is singular. We also present a mesh refine-
ment study which indicates third order accuracy in the mesh parameter, and
provide numerical evidence that the semigroup operator governing the evolu-
tion of normal stress is well defined for initial data in L2(Γ), which slightly
strengthens the rigorous result in [15] for initial data in H1(Γ).

The most difficult numerical aspect of this problem involves solving the Lamé
equations with interface boundary conditions along grain boundaries. Because
the grain growth rate depends on taking two derivatives of the normal stress, it
is extremely important that singularities in the stress field near grain boundary
junctions be properly resolved. The extended first order system least squares
finite element method (X-Fosls) was developed for this purpose, which is de-
scribed in [17]. Some of the features which make X-Fosls well suited for this
problem are as follows: (1) Singularities in the stress field are captured ex-
plicitly, and the accuracy of the solution does not degrade near corners and
triple junctions. (2) The supports of the singular functions may overlap, and
nearly linearly dependent (or fully degenerate, generalized) power solutions
corresponding to critical exponents clustered together in the complex plane
are stabilized before using them in the finite element space. (3) Very compli-
cated interface boundary conditions can be implemented. (4) The stress and
displacement variables may both be modeled using C0 quadratic elements
(plus singular functions) without having to satisfy a Babus̆ka-Brezzi inf-sup
condition. (5) There is an a-posteriori measure of the error which indicates
where the finite element space has difficulty resolving the solution. See [18]
for the use of singular basis functions in FOSLS to solve the steady state dif-
fusion equation with discontinuous coefficients, and [19,20] for analysis of the
FOSLS method (without singular functions) for second order elliptic equations
and the Stokes system. See [21] for a description of the X-FEM method for
branched and intersecting cracks in two-dimensional elasticity.

2 Problem Statement

In this section, we describe a two-dimensional continuum model of electro-
migration and stress driven grain boundary diffusion in the linear regime of
small strain, small grain growth elasticity.

A grain is a region where the atoms are aligned in a regular lattice. A grain
boundary is an interface between two grains where the lattice structure be-
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Fig. 1. Left: geometry of an interconnect line. Right: g(x) is the jump in normal
component of displacement across Γ at x.

comes disorganized as the lattice alignment changes from one side to the other.
In our (continuum) model, we ignore details of lattice alignment and assume
all grain boundaries have equivalent properties. In reality, it is likely that the
diffusion coefficient for atoms diffusing in the grain boundary will decrease as
the grain boundary misorientation approaches zero. This effect can be incor-
porated into the framework of this paper without difficulty (notably altering
L and Fi in Sec. 3.2), but has been omitted for the sake of clarity.

The grain boundaries are assumed to be fast diffusion paths along which the
atoms are much more easily transported by electromigration and chemical
potential gradients than in the bulk grains. At each point on the grain bound-
ary, we have a flux J of atoms traveling along the grain boundary. J has units
of surface flux (cm−1s−1), where we consider our two dimensional domain to
have a thickness δ in the third dimension. If a portion of the grain boundary
has more atoms flowing into it than out, the atoms incorporate themselves
into the lattice of the adjacent grains and cause the grains to move apart to
make room for the new atoms. At the same time there will be a net flux of
atoms out of other regions of the grain boundary, where the adjacent grains
move together so as not to leave a gap. Since curvature driven grain boundary
motion is not part of our model, we assume that the appropriate fraction of
atoms attaches to each side of the grain boundary so that Γ remains fixed in
the spatial (stressed) configuration. We do not impose the Young condition
requiring that grain boundaries meet at 120◦ angles since it is not required for
well-posedness unless curvature is included as a driving force.

From the point of view of elasticity [22,23], this problem is unusual in that
the natural configuration of each grain changes in time as atoms are added to
its boundaries while the stressed configuration remains fixed. It is therefore
appropriate to adopt an Eulerian picture in which the stress and displacement
fields are defined in the spatial configuration and u(x) = x − ϕ−1(x) instead
of ϕ(x) − x for a given deformation ϕ. The linearized equations of elasticity
are the same in the material and Eulerian viewpoints.

We model the interconnect line as a union Ω =
⋃

k Ωk of disjoint polygonal
grains as shown in Fig. 1. We denote the outer boundary (the “walls”) of the
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domain by Γ0, and the grain boundary network by Γ =
⋃NΓ

j=1 Γj. Each line
segment Γj is given an arbitrary orientation (a unit tangent vector tj) and
an arclength parameter s which increases in the tj direction. The unit normal
nj points from right (−) to left (+) facing along tj. The net grain growth g
is defined on Γ as the jump in normal component of displacement across the
grain boundary:

g(x) := [u(x+)− u(x−)] · nj, (x ∈ Γj). (1)

It represents the distance the original grains have separated to accommodate
the new material that occupies that space; see Fig. 1. In the Eulerian picture,
g(x) = [ϕ−1(x−)−ϕ−1(x+)] ·n is the amount that opposite sides of the grain
boundary at x would overlap if the grains were allowed to interpenetrate each
other to achieve their stress free shapes. This overlap corresponds to new
material added during the diffusion process. Note that g evolves as a function
defined on Γ as u evolves on Ω; both Γ and Ω remain fixed in time. The sign
of g is independent of the orientation chosen for the segment.

In Figure 2, we provide a summary of the equations and boundary conditions
in non-dimensional form; see [16,15]. A unit of dimensionless length (x, s, g, u)
corresponds to an arbitrarily chosen length scale L (∼ 1µm). Time (t), stress
(σ, η), electrostatic potential (ψ), and flux (J) are respectively measured in
multiples of t0 = kTL3

νbDbΩ2
aµ

, µ, Ωaµ
|Z∗|e and L2

Ωat0
, where k is Boltzmann’s constant,

Db is the diffusion constant for grain boundary diffusion at temperature T ,
νb is the number of participating atoms per unit of grain boundary area, Ωa is
the volume of an atom in the atomic lattice, µ is the shear modulus, Z∗e is a
phenomenological effective charge for an ion in the lattice and e = |e| is the
elementary electric charge. See [3] for typical values of these parameters.

Equation (2a) of Fig. 2 enforces the requirement that the displacement is zero
at the outer walls (passivation). In (3a), we assume the grains do not slide
tangentially relative to each other, and define the displacement jump g. In (3b),
we enforce the local balance of forces (tractions) across the grain boundary,
which together with the no sliding assumption implies that all components of
the stress tensor are continuous across grain boundaries. In (3c), we define the
normal stress η on the grain boundary, which is well-defined by (3b). Equation
(3d) is the main evolution equation, which gives the rate of grain growth in
terms of the normal stress and the electrostatic potential. This equation is
a consequence of the continuity equation expressing mass conservation, the
Einstein-Nernst equation expressing the flux J in terms of the gradient of the
chemical potential, the Blech–Herring model of the chemical potential of an
atom on a grain boundary [24,16], and the electromigration force. Note that
qualitatively, atoms are transported from regions of compression to regions of
tension, and travel against the electric field E = −∇ψ in the same direction
that electrons flow.
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3c. n · σ(x)n = η(x)
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Fig. 2. Summary of equations and boundary conditions. Segments are parametrized
away from the triple junction in this figure to avoid minus signs.

Equation (4a) follows from (2a) and (3a), but is worth recording as a boundary
condition on g. Equation (4b) enforces zero flux at gb–wall junctions: atoms
are not allowed to flow in or out of the network where the grain boundary
meets passivation, and global mass conservation should hold. Equation (5a) is
a compatibility requirement following from (3a): if we start in one grain and
follow the jump in displacement around a triple junction, we have to end up
with the original displacement when we return. (The point xi is infinitesimally
close to the triple junction on segment i). Equation (5b) enforces chemical
potential continuity at triple junctions. Equation (5c) enforces a balance of
flux entering and leaving the triple junction.

It will be useful to define the fields α, β, γ, τ in terms of the stress tensor σ
and displacement field u = (u, v, 0)T :

α =
σ11 + σ22

2µ
, γ =

σ22 − σ11

2µ
, τ =

σ12

µ
, β =

2

κ + 1
(vx − uy), (2)

where κ = 3 − 4ν in plane strain and 0 ≤ ν ≤ 1/2 is the Poisson ratio. The

energy density is given by E = σijεij = µ
(

κ−1
2
α2 + γ2 + τ 2

)
.
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3 Theory

In this section, we summarize those aspects of the theory of electromigration
and stress driven grain boundary diffusion necessary for developing our nu-
merical method; see [15,16] for further details. Key challenges include: finding
a way to organize the equations and boundary conditions so that mathemati-
cal questions such as well-posedness can be addressed; determining the role of
singularities in the stress field near corners and junctions where derivatives of
the stress field enter as boundary conditions; and dealing with the non-local
nature of expressions which relate the displacement jump g to the normal
stress η — placing local constraints on one imposes (rather awkward) global
constraints on the other via the Lamé equations. Our approach is to recast
the problem as an ordinary differential equation on a Hilbert space, writing
the equation in terms of the normal stress η and absorbing all the boundary
conditions into the operators. The equation takes the form ηt = SL(η + ψ),
so we begin by defining S, L, and several related operators.

3.1 The operators S and B

The operator S is a type of Dirichlet to Neumann map which takes a specified
grain growth function g and returns the corresponding normal stress η on the
grain boundary. S is defined rigorously in [15] as the inverse of the operator

B : L2(Γ) → L2(Γ), (normal stress to grain growth map). (3)

If u solves the grain boundary normal stress problem (defined below) for a
given normal stress η (see Fig. 3), then Bη is the jump in normal component
of displacement across the grain boundary:

(Bη)(x) = [u(x+)− u(x−)] · nj, (x ∈ Γj). (4)

This definition is independent of the orientation chosen for each segment. It
is shown in [15], that B is self-adjoint, negative and compact, while S is self-
adjoint, negative, unbounded, closed and densely defined.

Definition 1 (grain boundary normal stress problem) Given a function η ∈
L2(Γ), find the displacement field u ∈ H1(Ω)2 satisfying the Lamé equations
µ∆u+(λ+µ)∇(∇·u) = 0 in the interior of each grain subject to the boundary
conditions

u(x) = 0, (x ∈ Γ0),

[u(x+)− u(x−)] · tj = 0, (x ∈ Γj),

[σ(x+)− σ(x−)]nj = 0, (x ∈ Γj),

nj · σ(x)nj = η(x), (x ∈ Γj).

(5)
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Fig. 3. Displacement and stress components u, v, σ22, σ12 corresponding to the
normal stress η(x) = (1 − x)/2 along the grain boundary (0 ≤ x ≤ 2, y = 0);
g = Bη is given by g(x) = v(x, 0+)− v(x, 0−). (Poisson ratio 0.35, plane strain).
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To make sense of the boundary conditions (5) for an arbitrary η ∈ L2(Γ), a
suitable notion of weak solution to the grain boundary normal stress problem
must be defined; see [15]. There it is shown that for certain “degenerate” grain
boundary networks, additional compatibility conditions must be satisfied by
η for a solution u to exist, and when it does exist, it is not unique. In the
degenerate case, the operator B (defined appropriately to deal with existence
and uniqueness) is not injective, and S andB are pseudo-inverses of each other,
sharing a finite dimensional kernel. Degeneracy occurs when stress free (grain
by grain) infinitesimal rigid body motions exist which satisfy (5) with η ≡ 0,
i.e. which are zero at the outer walls and satisfy a “no sliding” condition across
grain boundaries. In all cases, grain boundary diffusion causes the stress field to
evolve to a steady state distribution which balances the electromigration force
along grain boundaries; however, in the degenerate case, the diffusion process
continues to transfer material around the grains so that the displacements
grow steadily without bound along stress free modes. The picture is suggestive
of continental drift in plate tectonics, although the physical mechanism is
completely different. An algorithm for finding the degeneracies of any grain
boundary network is presented in [15], where it is shown that degeneracy is
a consequence of pathologies such as junction angles greater than 180◦ or a
large number of quadruple (or higher) order junctions. Physically, such angles
would not occur at a triple junction due to curvature driven grain boundary
motion [7]. In this paper, we explicitly assume we are working in the non-
degenerate case, so that B is injective, S is surjective, and the grain boundary
normal stress problem is uniquely solvable for any η ∈ L2(Γ).

3.2 The operators L and A

The operator L is the negative of the second derivative operator with respect
to arclength on each grain boundary segment. If η is twice continuously dif-
ferentiable and satisfies the boundary conditions

η is continuous at xi

Fiη = 0
(i any junction label), (6)

then the restriction of Lη to the interior of Γj is given by

Lη(x) = −∂
2η

∂s2
, (x ∈ Γo

j). (7)

Here Fiη is given by

Fiη = (−1)ki∂sη(xi), (xi a gb–wall junction), (8)

Fiη =
3∑

j=1

(−1)kj
i ∂sη(x

j
i ), (xi a triple gb junction), (9)
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Fig. 4. Fiη is a sum over segments incident to junction i of slopes ±∂sη.

where xj
i is infinitesimally close to junction xi on segment j and kj

i is 0 or 1
depending on whether segment j is parameterized toward or away from xi;
see Figure 4. We recall from Section 2 that if η is the normal stress and ψ is
the electrostatic potential then the flux of atoms along the grain boundary is
given by J = ∂s(η + ψ); thus the flux into junction i is given by Fi(η + ψ).

It is shown in [15] that L is a self-adjoint, positive operator with d dimen-
sional kernel, where d is the number of connected components ΓJk

of the grain
boundary network. Here J1, . . . , Jd are sets of segment indices corresponding
to each connected component. An orthonormal basis for ker(L) consists of
functions ek(x) which are constant on ΓJk

and zero on all other components.
Since the connected components are separated from each other, the ek are
continuous functions on Γ. We define the operator A and the projection P by

A = L+
d∑
1

(·, ek)ek, P = I −
d∑
1

(·, ek)ek. (10)

P is the orthogonal projection onto the subspace

ker(L)⊥ =
{
f ∈ L2(Γ) :

∫
ΓJk

f ds = 0, 1 ≤ k ≤ d
}
. (11)

L and A are related via

L = AP = PA. (12)

A1/2 is an isomorphism from H1(Γ) onto L2(Γ), where H1(Γ) consists of all
absolutely continuous functions on the grain boundary such that the (segment
by segment) derivative with respect to arclength belongs to L2(Γ); see [15].

3.3 The semigroup {Et : t ≥ 0}

Referring back to Figure 2, the evolution of the jump in displacement g is
governed by the equation

gt = L(η + ψ) = L(Sg + ψ). (13)
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Applying S, we obtain an equation for the evolution of the normal stress:

ηt = SL(η + ψ). (14)

The solution to this equation with initial condition η0 (usually 0) is given by

η(t) = Et(η0 + ψ)− ψ, (t ≥ 0) (15)

where Et is the analytic semigroup [25,26] on H1(Γ) generated by SL. We
define the (non-orthogonal) projection Q via

Qw =

w w ∈ range(SL),

0 w ∈ ker(SL).
(16)

It is shown in [15] that Et → I − Q in the H1(Γ) norm as t → ∞. Thus the
steady state stress distribution is given by

ηsteady = (I −Q)η0 −Qψ. (17)

The fact that [η(t) + ψ] ∈ range(Et) ⊂ D(SL) for t > 0 ensures that bound-
ary conditions (4b), (5b) and (5c) from Figure 2 hold for t > 0. Boundary
conditions (4a) and (5a) follow from the fact that we obtain g from u via
(4). The remaining equations are built into the grain boundary normal stress
problem implicit in the definition of S and B. Since we are working in the
non-degenerate case, the displacement jump may be obtained from (15) via

g(t) = Bη(t), (t ≥ 0). (18)

It is proved in [15] that there is a Riesz basis {φk}∞k=1 for H1(Γ) and a non-
increasing, unbounded sequence of numbers λk ≤ 0 such that SLφk = λkφk.
(A Riesz basis is a basis equivalent to an orthonormal basis [27]). We may take
φk = ek for (1 ≤ k ≤ d) since these span ker(SL) in the non-degenerate case.
There also exist φ∗k ∈ L2(Γ) such that LSφ∗k = λkφ

∗
k and (φi, φ

∗
j)L2(Γ) = δij.

The φ∗k need not belong to H1(Γ) due to discontinuities and infinite slopes at
junctions. For η ∈ H1(Γ) the expansions

η =
∞∑

k=1

akφk, Etη =
∞∑

k=1

ake
λktφk, ak = (η, φ∗k)L2(Γ) (19)

hold in H1(Γ). Although the L2(Γ) norm of φ∗k diverges as k →∞, the inner
products ak in (19) do not; they are square summable when η belongs to
H1(Γ). For computational convenience, we re-normalize the φk so that they
are unit vectors in L2(Γ) instead of in H1(Γ):

‖φk‖L2(Γ) = 1, (φi, φ
∗
j)L2(Γ) = δij. (20)
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Although the φk cease to be a basis for H1(Γ), this choice of normalization
does not affect the H1(Γ) convergence of the expansions (19) since the φ∗k (and
hence the ak) have been correspondingly rescaled.

3.4 A compact pseudo-inverse for computing eigenfunctions

The expansions (19) are the basis of our numerical method. In order to use
them, we need a method of computing the φk, φ

∗
k and λk. In [15], it is shown

that the following pseudo-inverse relationship holds:

K := pinv(SL) = QA−1BQ. (21)

Here Q is defined as above as the projection along ker(SL) onto range(SL),
and the meaning of (21) is

SLK = KSL = Q. (22)

Thus K and SL have the same kernel, range, and eigenfunctions with recip-
rocal (or zero) eigenvalues:

Kφk = µkφk, µk =

0 1 ≤ k ≤ d,

λ−1
k k > d.

(23)

We remark that the pseudo-inverse is normally obtained from the SVD by in-
verting non-zero singular values and exchanging left and right singular vectors.
Since we are interested in finding eigenfunction expansions rather than solving
least squares problems, we invert non-zero eigenvalues in the diagonalization
of SL instead. If SL were self-adjoint, the two definitions would coincide.

3.5 Singularities and well-posedness

The singularities which arise in the components of the stress tensor near cor-
ners and grain boundary junctions are asymptotically sums of power solutions
(of the form rλφ(θ) in local polar coordinates on each grain touching the junc-
tion), and satisfy homogeneous interface boundary conditions to the Lamé
system; see [16,28]. In the current case, the boundary conditions for the elas-
ticity problem along the grain boundary are that the normal stress n · σn is
prescribed independently on each side to be equal to η, and the tangential
displacement u · t and shear stress t · σn is continuous across the interface.
As a result, the singular part of the solution near a given junction satisfies
η = 0 along the grain boundaries entering the junction. Although a different
combination of the components of the stress tensor will generally diverge along
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Γ, n · σn will remain finite and well-behaved, and the various flux boundary
conditions in Fig. 2 describe quantities which remain finite in spite of the
singularities. The corresponding displacement jump g will also remain finite,
although it will generally exhibit infinite slopes at the endpoints of the grain
boundary segments.

4 Numerical Algorithm for Grain Boundary Diffusion

Because A−1, B and K are compact operators on L2(Γ), they are well ap-
proximated by finite rank operators, making it possible to compute them
numerically. Once these have been found, we use standard numerical linear
algebra methods to approximate λk, φk, and φ∗k in the expansion (19), which
immediately gives the evolution at any time t ≥ 0.

To compute B, we must repeatedly solve the grain boundary normal stress
problem; see Sec. 4.1. This is computationally equivalent to taking a few hun-
dred timesteps using an explicit scheme. The computations presented in this
paper range from taking a few seconds to several minutes on a typical 1 GHz
single processor workstation. We choose a mesh parameter h and divide each
grain boundary segment Γj into equal subsegments (line elements) of length
hj ≤ h. The segments of the outer boundary Γ0 are similarly subdivided,
and each grain is triangulated using the endpoints of the line elements as the
exterior vertices of the triangulation. See Fig. 5.

We will make use of two subspaces of L2(Γ) on the grain boundary. The first
consists of all continuous functions which are quadratic on any line element.

Fig. 5. Each grain is triangulated separately, leading to an unstructured mesh with
duplicate nodes along grain boundaries and triple nodes at triple junctions.

15



0 1 2

3 4 5
6

7

8 9
10 11

12
13 14

15

16
17 18

19 20
21 22 23

24 25

26 27 28 29

Fig. 6. Corners and grain boundary junctions are numbered arbitrarily.

The standard basis functions for one dimensional quadratic C0 finite elements
are used. Enumerating the nodes xi (at endpoints and midpoints of grain
boundary line elements) in some way, we obtain a basis {εi}m

i=1 for this space
such that εi(xj) = δij. Note that if xi is a triple junction, then the support of
εi consists of the three line elements incident on xi; double and triple nodes
are not used in the one dimensional network described here, even though they
are used in the ambient two dimensional triangulation. The normal stress η
will be modeled in this space.

The second space of functions is largely the same as the first, with two excep-
tions: several special basis functions are added to capture singular behavior,
and the εi corresponding to junctions are removed from the basis set. We de-
note the basis functions for this space by {qj}n

j=1. For each non-singular qj
there is an i such that qj(x) = εi(x) on Γ, and for each non-junction xi there
is a j such that qj(x) = εi(x) on Γ. The discontinuities in g at triple (or higher
order) junctions are special cases of power solutions with exponent 0; they
are modeled as singular functions as well. Normally n ≥ m since we adjoin at
least one singular function to each junction. The displacement jump g will be
modeled in this space.

In Fig. 7, we show the basis functions qj for the geometry of Fig. 6 which are
non-zero on the segment from junction 24 to 27. There are 12 line elements
on this segment. Each of the eight special basis functions shown is defined
piecewise: near the junction it is a power solution of the form Re{crλ}; far
from the junction it is zero; and between the two regions it is quadratic. The
exponents involved are λ = 0, .7830, .9018, 2.140 ± .567i at junction 24 and
λ = .6564, 2.017± .466i at junction 27 (computed to machine precision in the
code). The λ = 0 singular function is discontinuous at junction 24 to enforce
rigid body separation of the three grains with no grain boundary sliding; see
Eq. (5a) of Fig. 2. There are two remaining displacement degrees of freedom
in the two dimensional finite element space which allow lock-step rigid body
motion of the three grains here, but they do not affect the displacement jump g.
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Fig. 7. The basis functions qj are continuous and piecewise quadratic/self-similar.

There are several reasons we have chosen to use different spaces for η and g.
The main objection to doing so is that B and A−1 are each self-adjoint, neg-
ative or positive definite operators on L2(Γ), so it would be nice to require
that their numerical approximations also have these properties. This would
guarantee that various matrices which arise in the algorithm are invertible,
and would ensure the correct qualitative behavior of the semigroup operator
Et in (19). However, to faithfully approximate B as a self-adjoint operator
on a finite dimensional subspace Hh ⊂ L2(Γ), the exact operator B must
leave Hh approximately invariant. This would require that Hh contain func-
tions which are discontinuous at junctions, and that we be able to solve the
grain boundary normal stress problem accurately for discontinuous η. But the
theory of grain boundary diffusion outlined in Sec. 3 is most naturally car-
ried out with η ∈ H1(Γ), which implies η is continuous. The eigenfunctions
of K = QA−1BQ all belong to H1(Γ) since Qf differs from f by at most a
constant on each grain boundary component and range(A−1) ⊂ H1(Γ).

The composition A−1B leaves H1(Γ) invariant even though B does not (due
to discontinuities and infinite slopes in Bη). Our choice of spaces for η and g
is the finite dimensional analog of modeling η ∈ H1(Γ) and g ∈ B(H1(Γ)) in
the continuous problem. We will see that

A−1B = (E−1M̃)(B) = (E−1M)(M−1M̃B), (24)

where E, M̃ , and M are stiffness and mass matrices defined in Section 4.3.
The first way of grouping the operators in (24) emphasizes the accuracy of the
method, where we take full advantage of the theory of asymptotic behavior
of elliptic systems near corners and interface junctions [28,29] when solving
the grain boundary normal stress problem. B and A−1 are respectively n×m
and m × n matrices, and we model η ∈ span{εi}m

i=1 and g ∈ span{qj}n
j=1.

But the second way of grouping the operators shows that we do not have to
sacrifice a-priori guarantees of algorithmic correctness which rely on the fact
that A−1B is a product of self-adjoint positive/negative definite operators:
E−1M is self-adjoint and positive definite with respect to the L2(Γ) inner
product on span{εi}, and we will show that it is possible to symmetrize B so
that M−1M̃B is self-adjoint and negative definite on this space.
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4.1 Computing B: the grain boundary normal stress problem

B was defined in equation (4) as the operator which takes a specified normal
stress η ∈ L2(Γ), solves the grain boundary normal stress problem for the
displacement field u, and returns the jump g in the normal component of
u across Γ. Given a normal stress η =

∑m
1 ηiεi, we use the X-Fosls method

described in [17] to solve for u on the entire two dimensional finite element
space. We then compute g =

∑n
1 gjqj on the grain boundary

g = [u(x+)− u(x−)] · nj (x ∈ Γj). (25)

The degrees of freedom available for discontinuity in the displacement field
across Γ in the two dimensional finite element space coincide precisely with
the basis functions qj. Extracting g from the solution w is straightforward,
and does not involve projections or any loss of information. This procedure
produces an approximation to B as a mapping from Rm → Rn corresponding
to the bases {εi}, {qj} for normal stress and displacement jump.

In X-Fosls [17], the first several terms in the asymptotic expansion of the
behavior of the Lamé equations near corners and junctions are computed using
semi-analytic methods [30], and are adjoined to the finite element space; see
Fig. 8. Near the corner or junction, the singular basis functions are self-similar
power solutions, with components of the form

wj(r, θ) = rλ+tjφj(θ), (26)

where w = (u, v, α, β, γ, τ)T and (tj) = (0, 0,−1,−1,−1,−1); see Eq. (2) and
Fig. 9. Each singular basis function has a “fringe region” consisting of a layer
of triangles (straddling the fringe radius) on which it transitions to zero. The
fringe radii of different singular basis functions may be different, and their
supports may overlap one another, as long as they do not extend out so far as

n
11.0
10.0

9.0
8.0
7.0
6.0
5.0
4.0
3.0

Fig. 8. Number of degrees of freedom that affect w = (u, v, α, β, γ, τ)T at each node.
101 extra basis functions are used here to capture asymptotic behavior.
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Fig. 9. Left: Radial and angular dependence of one of the power solutions
wj(r, θ) = rλ+tjφj(θ) near jcn. 16 of Fig. 6 (λ = 0.7474). Right: 3d plot of α = w3.

to intersect distant walls or grain boundaries. The key property that makes
it easier to augment the finite element space with singular functions in least
squares finite elements over Galerkin finite elements is that inner products
involving a singular function only involve integration in the fringe region,
where it is well-behaved; thus sophisticated quadrature schemes dealing with
the singularity are unnecessary. See [17,16,18] and Eq. (29) below.

The characteristic exponents λ in (26) which arise in this problem are often
complex. Moreover, they can become clustered together or even coalesce in the
complex plane at certain critical angles. In the former case the power solutions
can be nearly linearly dependent, and in the latter case generalized power
solutions with logarithm terms may arise in the asymptotic expansion as well.
In X-Fosls, nearly degenerate (or generalized) power solutions corresponding
to such a cluster are stabilized before they are included in the finite element
basis to avoid unnecessary ill-conditioning; see [17,16].

Each triangle of the mesh in Fig. 5 has six quadratic functions defined on it
(the components of w), plus any singular functions which contain the triangle
in their “near” regions. We impose boundary conditions absolutely, minimizing
the equation residual over all functions in the affine subspace satisfying the
boundary conditions. This is why there are fewer degrees of freedom along
walls and grain boundaries in Fig. 8. More explicitly, we write the equations
of linear elasticity µ∆u+(λ+µ)∇(∇·u)+F = 0 as an equivalent first order
system

L(∂x, ∂y)w = f (27)

and seek the minimizer of the functional

J [w] =
1

2
‖Lw − f‖2 =

1

2
a(w,w)− b(w, f) +

1

2
‖f‖2 (28)

over the affine subspace of functions w satisfying the boundary conditions.
Here a(w, v) = (Lw,Lv), b(w, f) = (Lw, f), and (f, g) =

∑
i

∫
Ω figi dA. Tak-
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ing the first variation, we find that the solution w satisfies

a(w, v) = b(v, f) (29)

for all v satisfying homogeneous boundary conditions (so as not to take w
out of the affine subspace). Note that because the singular functions satisfy
Lw ≡ 0 in the near and far regions, singular components of w and v only
contribute to (29) in their fringe regions. The operator L in (27) is given by

L(∂x, ∂y) =



∂x −∂y 0 0 1 0

∂y ∂x 0 0 0 −1

−∂y ∂x 0 −κ+1
2

0 0

∂x ∂y −κ−1
2

0 0 0

0 0 ∂x 0 −∂x ∂y

0 0 ∂y 0 ∂y ∂x

0 0 ∂x −∂y 0 0

0 0 ∂y ∂x 0 0



, f = −µ−1



0

0

0

0

F1

F2

2
κ+1

F1

2
κ+1

F2



. (30)

The last two equations follow from the first six, but including them improves
the condition number of the stiffness matrix. To our knowledge, this reduction
to a first order system has not been used before; note that α and β satisfy the
Cauchy-Riemann equations, the coefficients of the operator L do not diverge
as the material becomes incompressible (κ → 1), and this system is equivalent
to the Stokes equations when κ = 1. See [17] for further details.

Since Γ is essentially one dimensional, m and n are much smaller than the
number of degrees of freedom in the two-dimensional mesh used to solve the
grain boundary normal stress problem. Thus it is not particularly expensive
to store the matrix B as a dense matrix. The X-Fosls method leads to a linear
system Aw = −Rη, where A is a sparse, symmetric, positive definite N ×N
matrix and R is a sparse N ×m matrix. Since there are no body forces, f is
zero in (29), but the non-zero boundary conditions embedded in w are moved
to the right hand side when solving for the unknown components of w. Much
work has been done in developing iterative methods such as preconditioned
conjugate gradients or multigrid to rapidly solve such equations. In our case,
however, we have to solve the linear system m times in order to compute B,
so it is actually better to do a sparse Cholesky factorization once, and then
repeatedly backsolve for each right hand side. We have used a variant of the
min-degree heuristic known as symamd [31] to re-order the matrix for our fast
sparse Cholesky solver. We typically find that the Cholesky factor L of the
re-ordered matrix A has only 4–5 times as many nonzero entries as the lower
triangle of A = LLT ; thus once L is found, it takes only 4–5 times as long to
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solve Ax = b for a given b as it takes to compute Ax for a given x. See [16] for
details of our sparse Cholesky implementation. The stiffness matrix A here is
unrelated to the grain boundary operator A outside this section.

4.2 Data structures for the branching grain boundary network

A general grain boundary network lacks a natural ordering for the nodes on
the grain boundary. As a result, it is important to develop data structures
which can be used to easily extract and manipulate grain boundary variables.
The normal stress basis functions εi are in one-to-one correspondence with
grain boundary nodes. We enumerate junctions first, and then sweep through
each grain boundary segment to obtain the interior nodes. The displacement
jump variables qj are enumerated by first listing all singular functions (such
as the eight shown in Fig. 7), and then sweeping through the grain boundary
segments as in the case above.

Omitting details, we maintain several interwoven data structures that allow
us to determine the index of the nodes in the ambient two dimensional finite
element space which coincide with a given grain boundary node, determine
which one is on the right or left, and determine which self-similar basis func-
tions contain the node in their support. We also have data structures to go back
the other way, i.e. nodes and triangles of the large finite element space carry
information about whether they are on a grain boundary, what the boundary
conditions look like there, which singular basis elements affect them, etc. The
performance overhead of such book-keeping devices is negligible, and once the
low level implementation is in place, they are straightforward to use. These
data structures are implemented using vectors and maps in C++ and arrays
and hashes in Perl. We use Perl to process the geometry, set up the bound-
ary conditions, and triangulate the mesh; we use C++ to compute singular
behavior near junctions, set up the stiffness matrix, and compute the grain
boundary operators A−1 and B; we use Matlab to compute K and the semi-
group operator Et; and we use C++ to compute the displacement and stress
fields corresponding to the normal stress at various times in the evolution.

We also need some way of visualizing functions on the grain boundary. To
visualize the displacement jump g, one convenient approach is to show the
natural (unstressed) state of each grain by plotting the two curves x−Cu(x±)
as x ranges over Γ for some scaling factor C. This is useful for obtaining a
global picture of the way g changes from segment to segment. To get more
detailed information about g, and to visualize a function such as η which is not
a jump in displacement, it is useful to look at the restriction of the function
to various grain boundary segments. This involves unscrambling the variables
by constructing a visualization matrix for each segment with columns that
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Fig. 10. Plotting a function on a segment involves unscrambling the variables and
evaluating quadratic and singular functions at closely spaced points.

correspond to the scrambled variables and rows which correspond to function
values at equally spaced points along the segment. The spacing is usually
taken to be smaller than the length of a line element in order to resolve the
quadratic and singular functions.

In Fig. 10, we show a time evolution of η and g for the geometry of Figure 6 at
(dimensionless) times t = .03, .06, .12, .24, .48, .96,∞. Segment (16–24) is ori-
ented from junction 16 to junction 24 in Fig. 6. Sixteen points are used within
each line element to view quadratic and singular behavior, which is useful, for
example, in Fig. 11. The large amplitude of the singular basis coefficients is
an artifact of their normalization in X-Fosls.

4.3 Computing A−1: the Poisson equation on the network

Multiplying Lη = g by a test function ϕ, integrating by parts on each segment,
and using the boundary conditions (6), we obtain the weak form of the Poisson
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problem on the grain boundary network:∫
Γ
(∂sϕ)(∂sη) ds =

∫
Γ
ϕg ds, (ϕ ∈ H1(Γ)). (31)

We write g =
∑n

1 gjqj, η =
∑m

1 ηiεi and let ϕ range over the εi to obtain the

system of equations Eη = M̃g, where

Eij = (∂sεi, ∂sεj)L2 , M̃ij = (εi, qj)L2 , Mij = (εi, εj)L2 . (32)

To avoid excessive notation, we have identified Rm with span{εi} ⊂ H1(Γ)
and Rn with span{qj} ⊂ L2(Γ). Note that the stiffness matrix E is m × m

while the mass matrix M̃ is m×n. All entries of M̃ are computed analytically,
including the entries that involve the integration of a power solution qj against
a piecewise quadratic εi. Except for the nodes at branching junctions, E and
M are standard stiffness and mass matrices for one dimensional C0 quadratic
finite elements. Moreover, M̃ largely agrees with M since most of the εi and
qj coincide (relabeling indices as necessary, excluding singular qj and gb–wall
εi). This is because we are able to use the same elements for both stress
and displacement in the ambient elasticity problem — there is no Babus̆ka-
Brezzi inf-sup condition [32,33] in X-Fosls to prevent the simultaneous use of
continuous spaces for both stress and displacement.

Proceeding similarly, the solution of Aη = g must satisfy

(∂sη, ∂sϕ)L2 +
d∑

k=1

(η, ek)L2(ek, ϕ)L2 = (g, ϕ)L2 , (ϕ ∈ H1(Γ)). (33)

We decompose the m nodes on Γ into d disjoint sets corresponding to the
connected components ΓJk

. This is easily done using depth first search, for
example. Next we form the m× d matrix e such that

eik =

|ΓJk
|−1/2 node i belongs to ΓJk

0 otherwise.
(34)

Note that the columns of e are orthogonal unit vectors in L2(Γ), i.e. eTMe =
Id. The matrix representing A−1 with respect to the bases {εi}, {qj} is given
by

A−1 = Ẽ−1M̃, (Ẽ = E +MeeTM) (35)

where eT is the matrix transpose of e. By (33), if g ∈ span{qj}, η = A−1
matrixg,

and ηe = A−1
exactg, then η−ηe is orthogonal to every ϕ ∈ span{εi} with respect

to the inner product

(η, ξ)A = (Aη, ξ)L2 = (A1/2η, A1/2ξ)L2 , (36)

which is equivalent [15] to the H1(Γ) inner product. In this sense, the matrix
A−1 in (35) gives the “closest” vector η to the exact solution ηe in the space.
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The orthogonal projection P onto ker(L)⊥ with respect to the basis {εi} is
given by

P = Im − e eTM. (37)

The projection Q along ker(SL) onto range(SL) in the basis {εi} is given by

Q = Im − e(eTM̃Be)−1eTM̃B. (38)

Note that Q annihilates any vector w which is constant on each Γj, i.e. any
w ∈ colspan(e), and leaves invariant any vector w for which Bw ∈ range(L),
i.e. for which (ek, Bw)L2 = 0 for 1 ≤ k ≤ d.

4.4 Correcting B

As seen in Eq. (38), we require that the matrix eTM̃Be be invertible. Since
the columns of e are smooth functions on the grain boundary (being constant
on each component Γj), we expect eTM̃Be to be an accurate approximation
of the matrix with components (Bexactej, ei)L2(Γ), which is invertible. It would

be more satisfying, however, if the matrix M̃B were symmetric and negative
definite. Moreover, it would be a disaster if one of the tiny eigenvalues µk = λ−1

k

of K = QẼ−1M̃BQ turned out to be positive (or complex with positive real
part), as the corresponding eigenmode in the expansion (19) would blow up
almost immediately rather than decay rapidly to zero.

Without sacrificing accuracy, we want to alter B in order that the relation
(Bη, ξ) = (Bξ, η) holds for all η, ξ ∈ span{εi}:

ξTM̃Bη = ηTM̃Bξ, (η, ξ ∈ span{εi}). (39)

We will correct B one subspace at a time, starting with functions η for which
we can compute Bη most accurately, and proceeding until B satisfies (39) on
all of span{εi}. To avoid confusion, let us denote the uncorrected version of
B (obtained from X-Fosls) by B̃.

The eigenfunctions uk of the second derivative operator L form a nice basis
for L2(Γ) because they are automatically orthogonal and become increasingly
oscillatory as the eigenvalue increases. Let the matrix U diagonalize L with
diagonal entries appearing in increasing order:

L = UDLU
−1, (U−1 = UTM). (40)

This is easily done by diagonalizing the symmetric matrix M−1/2EM−1/2 to
obtain DL and M1/2U (which is unitary with respect to Rm instead of L2(Γ)).
The first d columns of U may be taken to be e from (34).
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Fig. 11. Symmetrizing B alters Buk significantly only if uk is highly oscillatory.
Segment (24–25) of Fig. 6 has 29 line elements.

Next we form the matrix X representing M̃B̃ in the basis U :

X = UTM̃B̃U. (41)

We now seek the unit upper triangular matrix R such that XR is symmetric.
All matrices X that we have encountered have the property that the pivots in
the LU factorization are the diagonal entries, so we decompose X = L1D1U1

and use R = U−1
1 LT

1 . We expect X to be nearly symmetric negative definite
and XR = L1D1L

T
1 to be nearly identical to X. Figure 11 shows in what sense

this is the case: the size of the correction made to Buk is extremely small
relative to Buk unless uk is highly oscillatory. But in that case, B̃uk is not
expected to be very accurate, so larger corrections are appropriate. As a result,
most of the principal submatrices of R are very close to the identity. R itself
turns out to be very well conditioned, so even the high frequency corrections
are quite small; see Table 1.

There are several reasons for preferring a matrix of the form XR to some
other symmetrized version of X such as 1

2
(X +XT ) or Xmax(i,j),min(i,j). First,

as the column index increases, the entries of X become less and less reliable
as approximations to (Bexactuj, ui)L2(Γ). As a result, we only wish to modify
a given column using information which is at least as accurate as the column
itself. This is why R should be upper triangular with ones along the diagonal.
Second, the span of the first j columns of XR is the same as that of X. If
the index j is small, the jth column of U is a smoothly varying continuous
function on the grain boundary network. As a result, X-Fosls can compute Buj

very accurately. But the solution Buj is not smooth due to discontinuities and
infinite slopes at junctions. By restricting ourselves to corrections obtained by
right multiplication, we leave the job of finding the appropriate asymptotic
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Table 1
Condition numbers of R and Φ are small.

geometry triangles unknowns ∗ m n cond(R) † cond(M1/2Φ) ‡

Fig. 3 1264 15013 81 85 2.36 1.75

Fig. 3 5136 61317 161 165 2.33 1.83

Fig. 3 20588 246421 321 325 2.37 1.89

Fig. 16 6686 79920 477 506 2.76 2.08

Fig. 20 6788 81336 550 604 2.85 2.38

∗ degrees of freedom in grain boundary normal stress problem.
†R is used to symmetrize B. Φ diagonalizes K in Sec. 4.5.
‡ cond(M1/2Φ) = ‖Φ : Rn

l2 → Rn
L2(Γ)‖ ‖Φ

−1 : Rn
L2(Γ) → Rn

l2‖.

behavior of g = Bη at junctions to X-Fosls. In Figure 12, the projectionM−1M̃
leads to larger oscillations on the right end because the angles at junction 25 in
Fig. 6 deviate more from 120◦, requiring a larger discontinuity in displacement
jump. The fact that (M−1M̃B)−1u1 is a wild function shows that u1 is not
well suited for describing functions in range(B).

Replacing X by XR and B̃ by B in Eq. (41), we obtain M−1M̃B = UXRU−1.
Note that M−1M̃ is the orthogonal projection in L2(Γ) from span{qj} onto

span{εi}, and that B is only determined modulo ker(M̃). We again leave the
problem of determining the appropriate weights of singularities to X-Fosls,
and require that range(B) = range(B̃). Let the columns of Q

B̃
be a basis for
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Fig. 12. Continuous functions are natural in the domain of B but not in the range, so
it is best to alter B by right multiplication. (Geometry and junction labels: Fig. 6).
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the kernel of B̃T in Rn. Then we define B viaM−1M̃

QT
B̃

B =

UXRU−1

0

 . (42)

Since X is non-singular, range(B̃)∩ ker(M̃) = 0. Thus the rows of the matrix
on the left are linearly independent, and the matrix is invertible.

4.5 Computing the eigenfunction expansion

The matrix representingK with respect to the basis {εi} is obtained by matrix
multiplication:

K = QA−1BQ. (43)

Note thatK and Q arem×m, A−1 ism×n, and B is n×m. Using (38), we find
that the relation M̃BQ = QTM̃B holds when M̃B is symmetric. Thus K =
(QẼ−1QT )(M̃B) is a product of two symmetric matrices, one positive semi-
definite and the other negative definite. As a result, K is diagonalizable with
real non-positive eigenvalues, and its kernel has dimension d = dim ker(Q). We
use dense linear algebra routines (from LAPACK) to solve the eigenproblem

KΦ = ΦD, D = diag(µ1, . . . , µm). (44)

The first d columns of Φ may be taken to be e from Eq. 34, and we re-order
the remaining columns so that

µ1 = · · · = µd = 0, µd+1 ≤ · · · ≤ µr < 0. (45)

The columns φk of Φ are approximations of the eigenfunctions in the expan-
sions (19). Next we wish to approximate the dual vectors φ∗k. Applying B to
both sides of SLφk = λkφk, we see that LS(Bφk) = λk(Bφk). Thus Bφk is
an eigenfunction of the adjoint of SL with eigenvalue λk, and λk 6= λj implies
that φk is orthogonal to Bφj. The same holds for the numerical approxima-

tions: applying M̃B to Kφk and arguing similarly, we conclude that φk is
orthogonal to M̃Bφj in Rm if µk 6= µj. This means that up to roundoff error,

ΦTM̃BΦ will be block diagonal, with diagonal blocks of size b corresponding
to eigenvalues of multiplicity b on the diagonal of D. Since M̃B is symmetric
negative definite, we may compute the Cholesky decomposition

RTR = −ΦTM̃BΦ, (R upper triangular). (46)

Next we re-define Φ = ΦR−1 to achieve the condition −ΦTM̃BΦ = I. Because
the right hand side of (46) is block diagonal up to roundoff error, this does
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not significantly intermix the eigenspaces. We define φ∗j = −Bφj to obtain

the set of dual vectors such that (φi, φ
∗
j) = δij. We then set a =

√
φT

j Mφj,

φj = a−1φj, φ
∗
j = aφ∗j to achieve the normalization in Eq. (20). The λk are

obtained via λ1 = · · · = λd = 0 and λk = µ−1
k for k > d. Finally, the numerical

operators SL and Et are given by

SLη =
m∑

k=1

(ηTM̃φ∗k)λkφk, Etη =
m∑

k=1

(ηTM̃φ∗k)e
λktφk. (47)

4.6 Efficiency considerations

The dense linear algebra being done here is quite inexpensive in comparison
to the time it takes to set up and solve the stress problem to construct the
matrix B. For the simple horizontal grain boundary geometry of Figure 3,
we need to solve a sparse system of 15013 equations 81 times to obtain the
85×81 matrix B. After that, we are working with dense matrices with around
80 rows and columns, which can be diagonalized in less than a second on
a 500 MHz single processor machine. For the more complicated geometries
of Figures 16 and 20, we must solve systems with around 80000 equations
approximately 500 times to construct B, and then do dense linear algebra on
matrices with around 500 rows and columns. Because the stress problem is
sparse, however, it scales significantly better with problem size than does the
dense linear algebra, and for these problems the time spent computing X, R,
Φ, D etc. is comparable to the time it takes to compute B (a few minutes).
For a very long, narrow geometry, the ratio of grain boundary nodes to total
nodes can be large enough that it takes longer to compute these matrices than
it takes to set up B, but we have not encountered a situation where it was
worth the effort to find alternatives to using standard dense linear algebra for
this stage of the computation.

5 Results

In this section we apply the machinery developed in previous sections to study
grain boundary diffusion for three different geometries. The first geometry con-
sists of a rectangular interconnect line with a single horizontal grain boundary
running through the center; see Fig. 3 of Sec. 3. The second geometry has a
more complicated shape and a branching grain boundary structure; see Fig. 16.
The third geometry also has a branching grain boundary structure, but with
two connected components instead of one; see Fig. 20.

In Fig. 3, we show contour plots of some of the elasticity variables for the
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Fig. 13. Evolution of normal stress η and displacement jump g along the grain
boundary for the geometry of Fig. 3 at t = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16,∞.

steady state stress distribution in which the gradient of the normal stress
perfectly balances the electromigration force. The first two plots show the
displacement variables u and v. Since atoms have migrated from left to right,
the displacement jump g = v+ − v− is negative on the left end of the grain
boundary and positive on the right. The horizontal component of displacement
u is non-zero due to the Poisson contraction effect: the right side of the line is
under compression and the left side is under tension, so the material expands
transversally on the right and contracts on the left, leading to a negative value
of u throughout. Along the grain boundary, σ22 decreases linearly; but off the
grain boundary, it behaves in a more complicated way, subject to the Lamé
equations with Dirichlet boundary conditions at the walls. The shear force τ
is strongest (in fact singular) near the ends because the Dirichlet boundary
conditions on the walls must overcome the vertical wedging forces due to the
loss or gain of material near the ends of the grain boundary.

In Fig. 13, we show the evolution of normal stress η and displacement jump g to
steady state. The tick marks on the x-axis separate line elements on which η is
quadratic and g is a linear combination of quadratic and self-similar functions.
The evolution shown (and the displacement and stress fields of Fig. 3) were
computed using the coarse mesh with 1264 triangles in Table 1. The normal
stress is solved using Eq. (15) with η0 ≡ 0

η(t) = Etψ − ψ, (t ≥ 0) (48)

and g is obtained from η by applying the operator B. Et is computed via
Eq. (47). We use a Poisson ratio for aluminum of 0.35 (so κ = 1.6), and
take ψ0 = 1 on the right wall, deferring use of the correct dimensionless value
of electric potential until (49) below. Using [3] L = 10µm, µ = 24.4 GPa,
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Fig. 14. The first five eigenfunctions φk of K (and SL) for the geometry shown in
Fig. 3, along with the dual functions φ∗k which satisfy (φi, φ

∗
j )L2(Γ) = δij .

Ωa = 1.68 × 10−23 cm3, νb = 1.5 × 1015 cm−2, Db = 10−8 cm2/s, T = 533 K,
and k = 1.38 × 10−23 J/K, we calculate the timescale t0 = kTL3

νbDbΩ2
aµ

to be
71000 s = 20 h. A more realistic geometry would be 10 times as long and 0.2
times as wide, which would increase t0 by a factor of 1000 and decrease the
dimensionless time at which steady state is achieved by a factor of about 50
due to the change in aspect ratio. To get physical values of stress, we multiply
the dimensionless stress computed using ψ0 = 1 by

σ∗ = µψcorrect dimensionless value
0 =

|Z∗|e
Ωa

ψphysical
0 . (49)

Taking the resistivity of aluminum to be 3.6µohm-cm and a current density
of 20 mA/µm2, we compute ψphysical

0 = (.72 V/cm)(20µm) = 1.44 mV. Using
Z∗ = −5.0 [3], we obtain the rough estimate σ∗ = 69 MPa.

The qualitative behavior of the evolution is physically reasonable. The flux
boundary conditions are immediately realized, causing the stress to have slope
−1/2 at x = 0 and x = 2. Small depletion and accumulation regions appear
near the ends shortly after the current is turned on. In between these regions,
there is a steady flux caused by the electromigration force, but this does not
lead to grain growth initially because atoms don’t accumulate unless the flux
is decreasing with position. These regions grow in size and move toward each
other at a progressively slower rate, approaching the S-shaped steady state
displacement jump which corresponds to a linearly decreasing normal stress
which perfectly balances the electromigration force.

In Fig. 14, we plot the first several eigenfunctions φk of SL, along with the dual
functions φ∗k. Since φk ∈ D(L), it satisfies zero flux boundary conditions; see
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Eq. (6). Likewise, since φ∗k ∈ D(S), it satisfies φ∗k(0) = φ∗k(2) = 0; see Eq. (4a)
of Fig. 2. For geometries with triple junctions, φk satisfies continuity and zero
flux boundary conditions at each junction, while φ∗k has discontinuities at each
junction compatible with Eq. (5a) of Fig. 2. The corresponding eigenvalues are
λ1 = 0, λ2 = −12.5, λ3 = −50.6, λ4 = −126, λ5 = −258, which are the decay
rates of the eigenmodes with respect to dimensionless time.

As mentioned in Sec. 3, when scaled appropriately, the eigenfunctions φk form
a Riesz basis for H1(Γ). For convenience, we have instead chosen the L2(Γ)
normalization

‖φk‖L2(Γ) = 1, (φi, φ
∗
j)L2(Γ) = δij. (50)

This choice does not affect the fact that if η ∈ H1(Γ), then the expansions

η =
∞∑

k=1

akφk, Etη =
∞∑

k=1

ake
λktφk, ak = (η, φ∗k)L2(Γ) (51)

converge in H1(Γ). Although this covers the practical case of Eq. (48) since
ψ ∈ H1(Γ) [15], it is natural to ask what happens if η belongs only to L2(Γ).
The answer depends on whether {φk}∞k=1 with the normalization of (50) is a
Riesz basis for L2(Γ), which happens if and only if the dual functions {φ∗k}
also form a Riesz basis [27]. Because the dual functions φ∗k in Fig. 14 appear
to be well scaled, and because the matrices Φ turn out to be extremely well
conditioned (see Table 1 in Sec. 4.4), we conjecture that for η ∈ L2(Γ), the
expansion Etη =

∑
ake

λktφk converges in L2(Γ) for t ≥ 0, and in H1(Γ) for
t > 0. For the network version of the heat equation (ηt = −Lη), this result
is not difficult to prove; however, for grain boundary diffusion (ηt = SLη), a
rigorous proof has not been found, and we must rely on numerical evidence.

In Fig. 15, we present a mesh refinement study for the geometry of Fig. 3.
The coarsest mesh (used to produce Figures 3, 13 and 14) has 1264 triangles,
40 line elements on the grain boundary, and 81 grain boundary nodes. The
finest has 20588 triangles, 160 line elements, and 321 grain boundary nodes.
Eigenfunctions from the coarse and intermediate meshes are embedded in the
fine mesh by interpolation without loss of information. Singular components of
the dual functions from all three meshes are converted to piecewise quadratic
functions on the fine mesh (by interpolation) to simplify the computation of
norms in the lower left plot. Eigenvalues, eigenfunctions, and dual functions of
index higher than 81 on the intermediate and fine meshes have been discarded
in this figure. The order of convergence of f(h) computed at ff = f(h),
fi = f(2h) and fc = f(4h) is approximated by

order of convergence = (log 2)−1 log
fc − fi

fi − ff

. (52)

The low order of convergence for the first few eigenfunctions is due to round-
off error in the linear algebra and the fact that these eigenfunctions are
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Fig. 15. Mesh refinement study for the geometry shown in Fig. 3. Note that the
most important quantities, those of lowest index, are computed most accurately.

computed almost exactly on all three meshes. Third order accuracy is ex-
pected for smooth eigenfunctions since X-Fosls uses quadratic elements. Since
Etη =

∑m
k=1(η

TM̃φ∗k)e
λktφk and λk = µ−1

k becomes large and negative for large
k, the most important µk, φk and φ∗k are those of lowest index. We see from
this figure that these are the quantities which are computed most accurately.

The second geometry we study is shown in Figures 16–19. The bounding
box of the geometry is 4.25 × 2, and a mesh parameter h = .035 is used to
obtain the triangulation shown in Fig. 5 (6686 triangles, 3797 vertices, 10476
edges). The grain boundary network has 238 line elements and 477 nodes. The
normal stress problem leads to a sparse linear system with 79920 unknowns
which must be solved 477 times to compute B. A total of 101 self-similar
basis functions (Fig. 8) are used near corners and triple junctions to capture
asymptotic behavior, several of them stabilized to avoid degeneracy; see [17].

In Fig. 16, the electrostatic potential ψ satisfies Laplace’s equation with Dirich-
let boundary conditions at the ends and Neumann boundary conditions on the
side walls. We use quadratic C0 (Galerkin) finite elements on the same mesh
used for the grain boundary normal stress problem to compute ψ. Also shown
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Fig. 16. Steady state electric potential, displacement, and displacement jump.

is a contour plot of the magnitude of the displacement field u in each grain
(obtained via X-Fosls), together with streamlines tangent to u. The bottom
graph is an exaggerated view of the natural state of each grain obtained by
plotting x − Cu(x+) and x − Cu(x−) as x ranges over Γ. Material has been
transported from the left end of the interconnect line to the right; the grains
must be zipped together (g < 0) on the left and pushed apart (g > 0) on the
right in order to fit together in the stressed configuration.

In Fig. 17, we exhibit the steady state values of pressure, energy density and
maximum shear stress. Note that the left and right ends of the line are gener-
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Fig. 17. Steady state distribution of (negative) pressure α = 1
2(σ11 + σ22), energy

density E = σijεij = κ−1
2 α2 + γ2 + τ2, and maximum shear stress (γ2 + τ2)

1
2 .

ally in a state of tension and compression, respectively, due to the transport of
mass from left to right. We also observe that the stresses are largest where the
grains have separated the most, and at re-entrant corners and grain boundary
junctions where they have singularities.

In Fig. 18, we show the evolution to steady state of η(x, t) and g(x, t) along
segment (25–7) of Fig. 6. The evolution of the full set of interwoven variables
was shown in Fig. 10. Note that ψ does not vary linearly from left to right due
to the complicated geometry, so the steady state normal stress η = −Qψ is not
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Fig. 18. Evolution of η and g at t = .03, .06, .12, .24, .48, .96,∞.

as simple on each segment as it was for the rectangular geometry. The displace-
ment jump g is discontinuous at the endpoints, i.e. g has a different limiting
value at each junction when approached from a different segment. Moreover, g
develops an infinite slope at the endpoints due to singularities. Asymptotically,
g ∼ ∑

cir
λi , where r is the distance to the junction and λ

(7)
i ∈ {0, .799, .886},

λ
(25)
i ∈ {0, .725, .951}. The normal stress η remains well behaved even though

a different linear combination a = cijσij of the stress components will gener-
ally diverge at the ends (a ∼ rλ−1, λ(7) ∈ {.799, .886}, λ(25) ∈ {.725, .951}).
These exponents are known to double precision accuracy in the code.

In Fig. 19, we show the evolution to steady state of η and g along segment
(24, 27). Initially material leaves this segment, but the flux of mass at junction
24 changes sign near t = .045 and ultimately the grains accumulate material
here. There are three things that contribute to this. First, the angle of the
segment is such that ψ(x) decreases as x moves from x24 to x27; since the
generation of stress generally acts to oppose the electromigration flux, we find
that η(x27) > η(x24). Second, the segment lies to the right of the “center of
mass” of the network, so eventually η(x24) will be negative. And third, the
segment is short, so it equilibrates more quickly than the structure as a whole.
As a result, η(x27, t) increases relative to η(x24, t) on a shorter timescale than
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Fig. 19. Evolution of η and g at t = .03, .06, .12, .24, .48, .96,∞.
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α: −0.20000 −0.17500 −0.15000 −0.12500 −0.10000 −0.07500 −0.05000 −0.02500 −0.00000 0.02500 0.05000 0.07500 0.10000 0.12500 0.15000

τ: −0.12000 −0.10286 −0.08571 −0.06857 −0.05143 −0.03429 −0.01714 0.00000 0.01714 0.03429 0.05143 0.06857 0.08571 0.10286 0.12000

Energy: 0.00000 0.00214 0.00429 0.00643 0.00857 0.01071 0.01286 0.01500 0.01714 0.01929 0.02143 0.02357 0.02571 0.02786 0.03000

Fig. 20. Shapes of unstressed grains and contour plots of the steady state values of
u, α, τ , and E for a grain boundary network with two connected components.

the scale on which η(x24, t) settles into its eventual decreasing trajectory.

The third geometry we study in this section consists of a rectangular intercon-
nect line with a grain boundary network with two connected components; see
Fig. 20. The mesh used has 6788 triangles, 3856 vertices, 10632 edges and 550
grain boundary nodes, leading to a linear system with 81336 variables that is
solved 550 times to compute B. A total of 80 self-similar basis functions were
used near corners and triple junctions, stabilized when necessary.
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On each component of Γ, material has been transported from left to right until
the gradient of η balances the electromigration force. Large stress singularities
develop at the gb–wall junctions where the grains are wedged apart (or pulled
together) along grain boundaries and clamped in place by the walls. Note the
large shear forces which develop near the top and bottom walls of the center-
most grain to prevent it from sliding; it is being pushed from the left by grain
growth and pulled from the right by grain annihilation.

The break in the network acts as a flux barrier to limit the effective length of
the line by reducing the distance over which the stress gradient must balance
the electromigration force. As a result, the maximum stress is smaller than it
would be for a single component grain boundary network on an interconnect
line of this length. The idea is similar to the observation that the maximum
height of the function y = x− 1/2 on the unit interval is larger than the max-
imum height of the sawtooth y(x < 1/2) = x− 1/4, y(x > 1/2) = x− 3/4. In
real materials, mass transport occurs at passivation interfaces as well, so ma-
terial can be transported from one such structure to the next. This possibility
would lead to larger stresses at the ends of the interconnect line and smaller
stresses in the middle. It is interesting, however, that if passivation interfaces
can be made with small enough diffusion coefficients, they can effectively in-
hibit the development of stresses in an interconnect line with disconnected
grain boundaries.

6 Conclusion

We have presented an efficient numerical method for two-dimensional simula-
tions of electromigration and stress driven grain boundary diffusion in poly-
crystalline interconnect lines. The method is based on new techniques from
semigroup theory to represent the evolution and uses special basis functions
to explicitly capture the singular asymptotic behavior of the stress tensor near
grain boundary junctions to avoid loss of accuracy. The model does not include
all physical phenomena that are important in mass transport in interconnect
lines, but instead focuses on the role of stress.

Perhaps the most important insight to be gained from this work is the iden-
tification of a mechanism by which large “hidden” stress components may
develop which are not directly involved in the diffusion process, but may play
a role in void nucleation and stress induced damage. Put another way, the
normal stress η (whose gradient on Γ contributes to the flux) remains finite
for all time, behaving qualitatively as predicted by scalar “effective” stress
models; however, the stress tensor still develops singularities at junctions —
the singular components which combine to form η just happen to cancel. In
real three dimensional interconnect structures with vias and faceted grains, it
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would be difficult to compute the asymptotic form of singularities a-priori as
we have done in two dimensions. Moreover, such singularities would be mol-
lified somewhat by plastic deformation and creep. Nevertheless, the general
principle that stress components which are not directly coupled to the diffu-
sion process may also cause damage seems useful, and could not be observed
without modeling the full stress tensor.

A List of Variables

Table A.1
Important variables and operators

g net grain growth (gn = u+ − u−)

η normal stress (η = n · σn)

ψ electric potential

σ stress tensor (σ11 = µ[α− γ], σ12 = σ21 = µτ , σ22 = µ[α+ γ])

u = (u, v)T displacement field

λ, µ,κ elastic constants

Γ,Γj ,ΓJk
grain boundary, grain boundary segment, connected component

{ek}d
k=1 basis for ker(L)⊥ (constant on connected components)

L second deriv. operator on Γ (A = L+ I − P deals with kernel)

P projection on ker(L)⊥

Q non-orthogonal projection along ker(SL) onto range(SL)

S,B operators mapping g 7→ η and η 7→ g by solving elastic equations

Et semigroup governing η evolution

φk, φ
∗
k eigenfunctions and dual functions of SL

K pseudo-inverse of SL (used to compute eigenfunctions)

λk, µk eigenvalues of SL and K

λ singularity exponent of a self-similar function

{qj}n
1 , {εi}m

1 finite element basis for g, η on Γ
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