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Abstract. The stress-driven grain boundary diffusion problem is a continuum model of mass
transport phenomena in microelectronic circuits due to high current densities (electromigration) and
gradients in normal stress along grain boundaries. The model involves coupling many different equa-
tions and phenomena, and difficulties such as nonlocality, complex geometry, and singularities in the
stress tensor have left open such mathematical questions as existence of solutions and compatibility
of boundary conditions. In this paper and its companion, we address these issues and establish a
firm mathematical foundation for this problem.

We study the properties of a type of Dirichlet-to-Neumann map that involves solving the Lamé
equations with interesting interface boundary conditions. We identify a new class of degenerate grain
boundary networks that lead to unsuppressed linear growth modes that are suggestive of continental
drift in plate tectonics. We use techniques from semigroup theory to prove that the problem is well
posed and that the stress field relaxes to a steady state distribution which may or may not completely
balance the electromigration force. In the latter (degenerate) case, the displacements continue to
grow without bound along stress-free modes.
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1. Introduction. Electromigration is a diffusion process in which high current
densities act as a driving force to transport ions in a metallic lattice in the direction
of electron flow by transferring momentum through scattering [10]. As microelec-
tronic circuits become smaller and current densities become higher, failure due to
electromigration damage in interconnect lines becomes an everincreasing problem in
the design of circuits. Grain boundaries, void surfaces, and passivation interfaces
are fast diffusion paths along which the diffusion constant typically is seven to eight
orders of magnitude higher than in the grains; therefore, most of the mass transport
occurs at these locations. The inhomogeneous redistribution of atoms leads to the
development of stresses in the line. Stress gradients along grain boundaries and sur-
face tension at void surfaces both contribute to the flux of atoms, usually suppressing
electromigration and increasing the lifetime of the line.

Many experimental, theoretical, and numerical studies have been done to inves-
tigate the role of various combinations of electromigration, stress gradients, surface
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diffusion, temperature, and anisotropy on the transport of atoms in the bulk grains,
along void surfaces, along grain boundaries, and at passivation interfaces. We refer
the reader to the companion paper [13] for a discussion of this literature.

The goal of this paper and its companion [13] is to provide a rigorous treatment
of a modest subset of the mass transport phenomena that occur in microelectronic
circuits. In particular, our model is two dimensional and neglects void evolution,
curvature-driven grain boundary motion, plastic deformation, and thermal effects.
Instead, we focus on the coupling of electromigration to stress generation, which is
difficult due to nonlocality, stiffness, complex geometry, and stress singularities at
junctions where boundary conditions involving normal stress are imposed.

In [13], we describe the problem physically, state the equations and boundary
conditions, find an exact solution for an infinite interconnect line, recast the problem
for a finite geometry as an ordinary differential equation on a Hilbert space involv-
ing two unbounded operators L and S, analyze the operator L, and prove that the
problem is well posed (using techniques from semigroup theory) under the simplifying
assumption that the grain boundary network is nondegenerate. We summarize many
of these results in section 2.

In section 3, we prove that S (a type of Dirichlet-to-Neumann map) is self-adjoint,
negative, closed, and densely defined. These properties are stated (omitting proofs) in
[13] and play an essential role in our analysis of the nondegenerate and general cases.
To define S, we study weak solutions to the grain boundary normal stress problem.
This leads us to identify a new class of degenerate grain boundary networks for which
S has a nontrivial (but always finite dimensional) kernel. We use an energy argument
to prove self-adjointness and negativity, and we present a counting argument that is
useful for characterizing degeneracy.

In section 4, we prove that the equation governing the evolution of normal stress
on the grain boundary network Γ generates an analytic semigroup of bounded linear
operators on H1(Γ). We also show how to use this semigroup to determine the
evolution of displacement and stress inside each grain, which is a nontrivial task since
the grain boundary normal stress problem is not uniquely solvable in the degenerate
case without additional information about the jump in displacement across Γ. We
show that the stress field relaxes to a steady state distribution which may or may not
completely balance the electromigration force along grain boundaries. In the latter
(degenerate) case, the displacement field describing the motion of the grains continues
to grow without bound along stress-free modes, leading to behavior that resembles
continental drift in plate tectonics.

We remark that such growth modes are quite harmless to an interconnect line.
They correspond to a gradual transport of material from one side of each participating
grain to the other, causing it to continually drift to avoid misfit with its neighbors,
but not leading to stress generation or voiding.

2. Preliminaries. We model the interconnect line as a union Ω =
⋃M

k=1 Ωk of
disjoint polygonal grains, as shown in Figure 2.1. We denote the outer boundary
(the “walls”) of the domain by Γ0, and we denote the grain boundary network by

Γ =
⋃N

j=1 Γj . Each line segment Γj is given an arbitrary orientation (a unit tangent
vector tj) and an arc length parameter s which increases in the tj direction. The unit
normal nj points from right (−) to left (+) facing along tj . The net grain growth
g is defined on Γ as the jump in normal component of displacement across the grain
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Fig. 2.1. Left: geometry of an interconnect line. Right: g(x) is the jump in normal component
of displacement across Γ at x.

boundary:

g(x) := [u(x+) − u(x−)] · nj (x ∈ Γj).(2.1)

It represents the distance the original grains have separated to accommodate the
new material that occupies that space; see Figure 2.1. Note that g evolves as a
function defined on Γ as u evolves on Ω; both Γ and Ω remain fixed in the reference
configuration. The sign of g is independent of the orientation chosen for the segment.

The electric potential ψ is found by solving the Laplace equation subject to the
boundary conditions ψ = 0 and ψ = ψ0 at the two ends of the interconnect line and
∂nψ = 0 on all other walls. We assume the grain boundaries do not significantly affect
the flow of electrons in the line, so boundary conditions are specified along Γ0 only;
Γ is invisible to ψ.

Each grain is assumed to deform elastically (assuming plane strain) and to satisfy
the Lamé equations of linearized elasticity, µ∆u + (λ + µ)∇(∇ · u) = 0. The outer
walls are assumed to be perfectly rigid, giving the two boundary conditions

u(x) = 0 (x ∈ Γ0).(2.2)

Along grain boundaries, four interface boundary conditions are specified:

u(x+) − u(x−) = g(x)nj (x ∈ Γj),(2.3)

σ(x+)nj = σ(x−)nj (x ∈ Γj).(2.4)

In other words, grains are not allowed to slide tangentially, the jump in normal com-
ponent of displacement is specified to be g(x), and both components of traction bal-
ance across the grain boundary. The traction condition is justified because we have
adopted an Eulerian viewpoint for the meaning of displacement; see [13]. For a given
deformation ϕ, u(x) is defined to be x − ϕ−1(x) rather than ϕ(x) − x. As a result,
g(x)nj = ϕ−1(x−)−ϕ−1(x+) rather than ϕ(x+)−ϕ(x−) (the latter is shown in Figure
2.1). The material and Eulerian viewpoints have the same linearization.

After nondimensionalizing [13], the flux J of atoms along the grain boundary is
given by J = ∂s(η+ψ). Here η = n ·σn is the normal stress along the grain boundary,
ψ = ψ

∣∣
Γ

is the restriction of the electric potential to the grain boundary, and ∂s is
the derivative with respect to arc length along the grain boundary. The continuity
equation expressing mass conservation is ∂tg + ∂sJ = 0; hence the evolution of net
grain growth is governed by

∂tg = −∂2
s (η + ψ) = L(Sg + ψ).(2.5)
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Here L = − ∂2

∂s2 is the negative of the second derivative operator with respect to arc
length on each grain boundary segment, and S maps a displacement jump g defined
on Γ to the corresponding normal stress η on Γ by solving the Lamé equations, as
discussed above. If we apply the operator S to both sides of (2.5), we obtain a
differential equation for η:

∂tη = SL(η + ψ).(2.6)

The solution to this equation is given by η(t) = Et(η + ψ) − ψ, where {Et : t ≥ 0} is
the strongly continuous semigroup of linear operators generated by SL; see section 4.
The solution to (2.5) is more complicated; it will be discussed in section 4.3.

Boundary conditions for chemical potential continuity and flux balance at junc-
tions are enforced by requiring that η + ψ belongs to the domain D(L) for t > 0;
see [13]. Similarly, to ensure that g is actually a displacement jump, i.e., that there
exists a displacement field u on Ω satisfying (2.3), we require that g ∈ D(S) for t > 0.

The domain D(S) is difficult to characterize; see section 3.3. To describe the
domain D(L), it is useful to establish further notation. Let C(Γ) denote the space of

continuous functions on Γ, and let C̃(Γ) denote the space of functions f continuous
on the interiors of the Γj with well-defined limits f(xj

i ) at the endpoints xi of Γj but
with possibly different limiting values at xi when approached from different segments.
Differentiation is defined segment by segment, where we recall that each segment is
given an arbitrary orientation along which the arc length parameter increases. We
define

C̃r(Γ) = {f : f (k) ∈ C̃(Γ), 0 ≤ k ≤ r}.(2.7)

Then the domain D(L) satisfies

{f ∈ C̃2(Γ) : f satisfies (∗)} ⊂ D(L) ⊂ {f ∈ C̃1(Γ) : f satisfies (∗)},(2.8)

where (∗) refers to continuity and flux boundary conditions at all junctions. In other

words, f ∈ C̃r(Γ) satisfies (∗) if f ∈ C(Γ) and at each junction xi,
∑

j ±f ′(xj
i ) = 0,

where the sum is over segments incident to xi and the sign depends on whether the
segment is parameterized toward or away from the junction.

Other key properties of L (all proved in [13]) are as follows. L is self-adjoint and
positive. Its kernel consists of the functions

ek(x) =

{
|ΓJk

|− 1
2 , x ∈ ΓJk

,

0 otherwise.
(2.9)

Here Jk is the set of indices such that ΓJk
:= ∪j∈Jk

Γj is the kth connected component
of Γ (treated as a point set in R

2), and |ΓJk
| =

∑
j∈Jk

|Γj | is the sum of the lengths
of the segments making up component k. Let d = dim ker(L), and define

P = I −
d∑

k=1

(·, ek)ek, A = L +

d∑
k=1

(·, ek)ek, G = A−1 −
d∑

n=1

(·, ek)ek,(2.10)

where (·, ·) is the L2 inner product on Γ. Then P is the orthogonal projection onto
the subspace

ran(L) = ker(L)⊥ =

{
f ∈ L2(Γ) :

∫
ΓJk

f ds = 0, 1 ≤ k ≤ d

}
,(2.11)



1868 JON WILKENING, LEN BORUCKI, AND J. A. SETHIAN

and we have L = AP = PA, LG = P , and GL = P
∣∣
D(L)

. A
1
2 is an isomorphism

from H1(Γ) to L2(Γ), where H1(Γ) consists of all f ∈ C(Γ) which are absolutely

continuous with (weak) derivative f ′ ∈ L2(Γ). Finally, D(L
1
2 ) = H1(Γ).

3. Elasticity with interface boundary conditions. In this section we give
rigorous definitions of the operators S and B, define weak solutions to the Lamé
equations with appropriate interface boundary conditions along grain boundaries,
and introduce the notion of degeneracy of a grain boundary network. We prove that
S and B are self-adjoint and negative on L2(Γ), that the former is closed and densely
defined, and that the latter is compact. We also provide a precise characterization of
grain boundary degeneracy that is easy to check numerically.

In the previous section, we described S as a type of Dirichlet-to-Neumann operator
that takes a displacement jump g on the grain boundary, solves the Lamé equations
subject to the boundary conditions (2.2)–(2.4), and returns the normal stress η on Γ.
For technical reasons, it is preferable to define S as the pseudoinverse of B, where B
takes a specified normal stress η on the grain boundary, solves the Lamé equations
subject to the boundary conditions

u(x) = 0 (x ∈ Γ0),(3.1)

[u(x+) − u(x−)] · tj = 0 (x ∈ Γj),(3.2)

[σ(x+) − σ(x−)]nj = 0 (x ∈ Γj),(3.3)

nj · σ(x)nj = η(x) (x ∈ Γj),(3.4)

and returns the jump in the normal component of displacement

(Bη)(x) = [u(x+) − u(x−)] · nj (x ∈ Γj).(3.5)

The primary obstacle to this approach is that in the case of degeneracy, η must satisfy
further conditions for a solution u to exist, and these solutions are not unique. In
this case, we define B using appropriate projections so that its pseudoinverse S has
the physical meaning described previously.

3.1. Boundary conditions. To impose Dirichlet boundary conditions at walls
and no-slip boundary conditions across grain boundaries, we employ a Hilbert sub-
space H of H1(Ω)2 defined as the kernel of appropriate trace operators. Recall that
the inner product of the Sobolev space H1(Ω)2 is given by

(u,v) =

∫
Ω

(u · v + ∇u : ∇v)dx,(3.6)

where (∇u)ij = ∂jui and A : B =
∑

ij AijBij . Note that the values of u in this space
do not communicate across grain boundaries—the restriction of u to each Ωk can
be any function in H1(Ωk)

2. The trace operators defined below map, respectively, a
vector field u ∈ H1(Ω)2 to its value at the walls, to its jump in tangential component
across grain boundaries, and to its jump in normal component across grain boundaries.
We use γ0 and γt to define the Hilbert space H given by

H =
{
u ∈ H1(Ω)2

∣∣ γ0u = 0, γtu = 0
}
.(3.7)

We will need γn in section 3.3 to define weak solutions and also to define the oper-
ator B. Recall that N and M are the number of grain boundary segments and the
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number of regions, respectively:

Ω =

M⋃
k=1

Ωk, Γ =

N⋃
j=1

Γj , Γ0 = outer walls.(3.8)

Theorem 3.1. The following trace operators are compact:

γ0 : H1(Ω)2 → L2(Γ0)
2 : u 	→ u

∣∣
Γ0
,(3.9)

γt : H1(Ω)2 → L2(Γ) : u 	→
(
[u
∣∣
Γ+

1
− u

∣∣
Γ−

1
] · t1 , . . . , [u

∣∣
Γ+
N

− u
∣∣
Γ−
N

] · tN
)
,(3.10)

γn : H1(Ω)2 → L2(Γ) : u 	→
(
[u
∣∣
Γ+

1
− u

∣∣
Γ−

1
] · n1 , . . . , [u

∣∣
Γ+
N

− u
∣∣
Γ−
N

] · nN

)
.(3.11)

Here u
∣∣
Γ+
j

is the trace of u on Γj from the left (i.e., the trace of u
∣∣
Ωk

on Γj, where

Ωk lies to the left of Γj), u
∣∣
Γ−
j

is the trace of u on Γj from the right, and we have

identified L2(Γ) with L2(Γ1) × · · · × L2(ΓN ).
Proof. Since Γ0 is also a union of line segments, it suffices to show that for any

region Ωk and boundary segment X ⊂ ∂Ωk, the composite map

u 	→ u
∣∣
Ωk

	→
(
u
∣∣
Ωk

) ∣∣
∂Ωk

	→
(
u
∣∣
Ωk

) ∣∣
X

(3.12)

is compact. The first and last maps are just restriction operators from H1(Ω)2 to
H1(Ωk)

2 and L2(∂Ωk)
2 to L2(X)2, so they are bounded. Since Ωk is a polygon, it

has a Lipschitz boundary, and hence [1, 4, 5] the trace operator

γk : H1(Ωk)
2 → H

1
2 (∂Ωk)

2(3.13)

is bounded. But H
1
2 (∂Ωk)

2 is compactly embedded in L2(∂Ωk)
2, so the middle map

in (3.12) is compact, as required.

3.2. Degenerate grain boundary networks. In this section we define the
notion of grain boundary degeneracy, which characterizes the existence of unsup-
pressed growth modes consisting of stress-free infinitesimal rigid body motions in
each grain. We also describe an algorithm for determining whether a given grain
boundary network is degenerate and, if it is, for finding these modes. We present a
counting argument that strongly suggests that grain geometries with convex grains
and very few quadruple or higher order junctions will be nondegenerate. We verify
numerically that randomly generated grain boundary networks with convex grains are
indeed nondegenerate.

Definition 3.2. A grain boundary network Γ is said to be degenerate if H
contains a nonzero function u consisting of infinitesimal rigid body motions (defined
below) on each grain.

To gain geometric insight, we construct a procedure for testing the degeneracy of
a given grain boundary network. An infinitesimal rigid body motion is a displacement
field of the form

u1(x, y) = a− cy, u2(x, y) = b + cx,(3.14)

where a, b, c are arbitrary real numbers. Let (xk, yk) be some fixed point in Ωk, and
let rk be a characteristic length scale for the kth grain. For any u ∈ H(Ω)2 consisting
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of infinitesimal rigid body motions, there are parameters ak, bk, and ck for each region
such that

u
∣∣
Ωk

=

(
ak − ck

y − yk
rk

, bk + ck
x− xk

rk

)
.(3.15)

We wish to determine if there is a nontrivial choice of these parameters such that the
corresponding u belongs to H. We define the vector w by

w = (a1, b1, c1, . . . , aM , bM , cM )T(3.16)

and construct a matrix A with 3M columns such that

Aw = 0 ⇔ uw ∈ H.(3.17)

Clearly, if Ωk touches an outer wall, then the condition that γ0u = 0 requires that
ak = bk = ck = 0. We assume that the M0 outer grains appear first in the list, and
we let

Aij = δij (1 ≤ i ≤ 3M0, 1 ≤ j ≤ 3M)(3.18)

so that A has the block structure

A =

(
I 0
∗ A′

)
.(3.19)

Note that A is injective iff A′ is injective. For each edge that borders a grain with
index k > M0, we add a row to A to impose the condition that γtu = 0. Explicitly,
letting (x, y) be any point on edge j and denoting the left and right grains by l and
k, the row added to A enforces the equation

(3.20)

(
al − cl

y − yl
rl

− ak + ck
y − yk
rk

, bl + cl
x− xl

rl
− bk − ck

x− xk

rk

)
· tj = 0,

which is clearly linear in the components of w. Note that adding αtj to (x, y) does
not affect the validity of this equation, so if it holds for one point on the edge, it holds
at all points on the edge.

The number of edges that contribute an equation to A can be computed as follows.
Let Ω′ = ∪M

k=M0+1Ωk, and consider the planar graph Γ′ = ∂Ω′. For example, in
Figure 3.1(a), Γ′ consists of the eight segments bordering unshaded regions. The
Euler relation

n + f − e = 1 (Γ′ connected)(3.21)

gives the relationship between the number of vertices, regions, and edges of this graph,
where we use 1 instead of 2 since we do not count the unbounded region. If Ω′ is
multiply connected, this formula holds for each of the c connected subgraphs of Γ′,
so (3.21) should be modified to read

n + f − e = c (Γ′ has c connected components).(3.22)

Let np be the number of vertices with p incident edges. Then since each edge has two
endpoints, we have

∞∑
p=2

pnp = 2e.(3.23)
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Fig. 3.1. Examples of degenerate grain boundary networks. (a) Ω′ has four regions and eight
edges, so A′ has 12−8 = 4 more columns than rows. This also could have been obtained using (3.24)
with n3 = 4, n4 = 1. The arrows represent one of the functions u in the four dimensional space Hd,
namely, u

∣
∣
shaded

= u
∣
∣
Ω1

= 0, u
∣
∣
Ω2

= (1 − y, x), u
∣
∣
Ω3

= (y,−1 − x), u
∣
∣
Ω4

= (1,−1). (b) A′ has six

rows and nine columns. Note that nonconvexity in the outer grains allows all nodes of Ω′ to have
p = 3, whereas normally n2 ≥ 3. (c) This time A′ has the same number of rows and columns, yet it
still has a one dimensional kernel since the sign pattern +−+− is periodic at a quadruple junction.

(a) (b)

(c)

Fig. 3.2. Typical examples of the geometries generated while computing the condition numbers
in Table 3.1. Each • marks a corner with p = 2 incident edges. All other junctions of Γ′ have p = 3.
Triple junctions often occur clustered together in random Voronoi diagrams, giving the appearance
of higher order junctions; this does not give rise to poorly conditioned matrices A′. Large shear
forces may develop across short edges in such cases if there is not enough redundancy in the other
equations (e.g., in case (a) here), but that is not a relevant issue when deciding whether a grain
boundary network is degenerate. Since at least three corners with p = 2 are needed to traverse the
outer boundary of each connected component of Γ′, e− 3f in (3.24) is guaranteed to be nonnegative.
(a) Same number of equations as unknowns (e = 3f). (b) n2 = 38, so there are n2 − 3 = 35 more
equations than unknowns. (c) n2 = 51 and c = 3, so e− 3f = 42. Nonconvexity of grains at outer
walls due to reentrant corners clearly will not lead to the difficulties that arose in Figure 3.1(b).
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Table 3.1

Condition number of A′ for randomly generated Voronoi diagrams. The geometry labels cor-
respond to Figure 3.2, which shows examples of (a)-50, (b)-100, and (c)-100. In case (a), we add
three outer regions to the Voronoi diagram so that the number of equations is equal to the number
of unknowns (a worst-case scenario). Geometries (b) and (c) are more realistic, although they tend
to have more pathologies (such as clustered triple points and short edges) than would likely be found
in a real grain boundary network. All the matrices tested were extremely well conditioned, which
supports our conjecture that if each grain is convex and no quadruple or higher order junctions occur
in the grain boundary network, then Γ is nondegenerate.

Geometry Regions Trials max min mean std dev
(a) 200 10000 172.6 31.7 37.8 3.2
(a) 100 10000 48.4 21.6 26.2 2.1
(a) 50 10000 35.0 14.4 18.2 1.6
(b) 200 10000 31.8 13.0 16.8 1.3
(b) 100 10000 31.5 8.2 11.1 1.1
(c) 200 10000 26.8 7.4 9.9 1.1
(c) 100 10000 21.4 4.5 6.9 1.1

Multiplying (3.22) by 3 and subtracting (3.23), we obtain

e− 3f =
∑

(3 − p)np − 3c (A′ is an e× 3f matrix).(3.24)

Since each region of Ω′ contributes three unknowns and each edge contributes one
equation, we see that a necessary condition for the grain boundary network to be
nondegenerate is that the right-hand side be nonnegative—otherwise A′ will have
more columns than rows, and hence a nontrivial kernel. This necessary condition is
automatically satisfied if each grain is convex and np = 0 for p > 3, i.e., if we require
that all grain boundary junctions be gb-wall or triple junctions: traversing the outer
boundary of each of the c components of Ω′, we will encounter at least three changes
in direction of more than 180 degrees; each of these angles contributes to n2 since the
third segment must prevent nonconvex outer grains (the grains touching walls), and
thus n2 ≥ 3c. Some examples of degenerate grain boundary networks are shown in
Figure 3.1.

Conjecture 3.3. If each Ωk is convex and no quadruple or higher order junc-
tions occur in the grain boundary network, then Γ is nondegenerate.

To test this conjecture, we wrote a PERL program to choose M points at random
in a polygonal domain U , compute the Voronoi diagram of these points, chop Voronoi
regions that cross ∂U , set up the matrix A′, and call Matlab to compute its condition
number as the ratio of largest to smallest singular value. The points (xk, yk) are
taken to be the average of the vertices of grain k, and rk is taken to be

√
areak/π.

The purpose of xk, yk, and rk is to improve the condition number of A′ by scaling
the effect of ck to be commensurate with ak and bk. The PERL program repeats
the above procedure many times (opening a pipe to Matlab at the beginning) and
computes the minimum, maximum, mean, and standard deviation of the condition
numbers. The results are summarized in Table 3.1. Typical examples of the resulting
grain boundary structures are shown in Figure 3.2. Although convex grains do not
necessarily arise from Voronoi diagrams, we see no reason that these would not be a
good representative sample, especially in light of the fact that all the matrices A′ that
we generated in this way were extremely well conditioned even for grain boundary
networks where several triple points had almost coalesced into higher order junctions.

Even if the conjecture is false, this numerical experiment shows that “typical”
grain boundary networks are nondegenerate, and we have provided a method for



STRESS-DRIVEN GRAIN BOUNDARY DIFFUSION: PART II 1873

finding all degeneracies of any grain boundary network (possibly containing nonconvex
grains and higher order junctions):

Procedure 3.4 (finding all degeneracies). Construct the matrix A, find a basis
w1, . . . , wq for its kernel, and record the corresponding displacements u1, . . . ,uq using
(3.15) and (3.16). These are a basis for the subspace Hd of stress-free (grain by grain)
infinitesimal rigid body motions in H.

Definition 3.5. A degenerate grain growth mode is a function h ∈ L2(Γ) of the
form h = γn(u) for some u ∈ Hd. We denote the space of such functions by γn(Hd).

Remark 3.6. We will see later that ker(S) = ker(B) = γn(Hd).
Lemma 3.7. γn is injective on Hd. Thus if {uk}qk=1 is a basis for Hd, then the

functions hk = γn(uk) form a basis for γn(Hd).
Proof. Suppose u ∈ Hd and γn(u) = 0. Then, since Hd ⊂ H, we also have

γt(u) = 0 and γ0(u) = 0. Thus u is continuous across grain boundaries, is zero on the
outer walls, and consists of infinitesimal rigid body motions on each grain. Continuity
across grain boundaries implies that the rigid body parameters are the same in each
grain, for if l and r index the parameters on either side of a grain boundary segment,
then

al − ar − (cl − cr)y = 0,

bl − br + (cl − cr)x = 0
(3.25)

for each (x, y) on the segment. Using two points on the grain boundary, we find
cl = cr, so (3.25) implies al = ar and bl = br. Dirichlet conditions at the walls then
give that a = b = c = 0 in all grains, as required.

Remark 3.8. We may assume the hk are orthonormal in L2(Γ) (using a Gram–
Schmidt procedure, if necessary).

Theorem 3.9. Each h ∈ γn(Hd) has zero mass on every connected component
of the grain boundary network:∫

ΓJi

h ds = 0 (i = 1, . . . , d).(3.26)

Proof. Let u ∈ Hd, h = γnu, and i ∈ {1, . . . , d}. Define

Ki = {k : Ωk does not touch Γ0 but does touch ΓJi
},(3.27)

J ′
i = {j ∈ Ji : Γj borders an Ωk which doesn’t touch Γ0}.(3.28)

In Figure 3.3, J ′
1 contains 12 segment indices, K1 contains 4 region indices, J ′

2 contains
6 indices, K2 contains 3 indices, and J ′

3 and K3 are empty. Since u is an infinitesimal
rigid body motion on each grain, it is divergence free, so for 1 ≤ k ≤ M we have∫

∂Ωk

u · n ds =

∫∫
Ωk

∇ · u dx = 0 (n = outward unit normal).(3.29)

Summing (3.29) over k ∈ Ki (with an empty sum meaning zero), we obtain

0 =
∑
k∈Ki

∫
∂Ωk

u · n ds =
∑
j∈J′

i

∫
Γj

[u(x−) − u(x+)] · nj ds =

∫
ΓJi

−h ds.(3.30)

Here we have used the following facts: nj is the unit inward normal on the left
(+) grain and the unit outward normal on the right (−) grain; the condition γ0u = 0
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Fig. 3.3. Shown here, Γ consists of three connected components ΓJi
, so dim ker(L) = 3. The

space Hd (and hence ker(S)) is four dimensional (one degree of freedom in the unshaded structure
on the left, three in the middle; see Figure 3.1). Each u ∈ Hd is zero on the shaded grains.

implies that u is zero on any Ωk touching an outer wall since u consists of infinitesimal
rigid body motions; if j ∈ J ′

i , then Γj borders either one or two Ωk with k ∈ Ki—in
the former case, u(x±) is zero on the other side because that region touches a wall;
if k ∈ Ki, all boundary segments Γj of Ωk have j ∈ J ′

i ; finally, h = γnu is zero on
the segments Γj with j ∈ Ji \ J ′

i since both adjacent regions touch a wall. Figure 3.4
illustrates a similar argument in the next section.

3.3. Weak solutions. In this section, we define weak solutions of the grain
boundary normal stress and displacement jump problems, and we give rigorous defi-
nitions of the operators B and S. Many complications arise in the case of degenerate
grain boundaries that make the analysis difficult. We prove that B is compact, self-
adjoint, and negative, and we show that ker(B) = γn(Hd). The operator S is defined
as the pseudoinverse of B, inheriting self-adjointness and negativity.

We will need to make use of the bilinear form

a(u,v) :=

∫
Ω

σ(u) : ε(v) dx =

∫
Ω

[λ (∇ · u)(∇ · v) + 2µ ε(u) : ε(v)] dx,(3.31)

which induces the seminorm ‖u‖a =
√
a(u,u) on H1(Ω)2. Here

ε(u)ij =
1

2
(∂iuj + ∂jui), σ(u) = λ tr ε(u)I + 2µε(u),(3.32)

and there is clearly a constant C such that

‖u‖a ≤ C‖u‖H1(Ω)2
(
u ∈ H1(Ω)2

)
.(3.33)

For any η ∈ L2(Γ), we define the linear functional lη ∈ H ′ by

lη(v) = −(η, γnv)L2(Γ) = −
∫

Γ

(η)(γnv) ds (v ∈ H).(3.34)

Note that

‖lη‖H′ ≤ ‖γn‖L(H1(Ω)2,L2(Γ))‖η‖L2(Γ).(3.35)

Definition 3.10. A weak solution to the grain boundary normal stress problem
for a given normal stress η ∈ L2(Γ) is a function u ∈ H which satisfies

a(u,v) = −
∫

Γ

(η)(γnv) ds (v ∈ H).(3.36)
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Fig. 3.4. The contribution of a particular grain boundary segment to
∑

k

∫
∂Ωk

v
∣
∣
Ωk

· σn contains

precisely one term from the left grain and one term from the right grain. Segments on the outer
walls do not contribute since γ0v = 0.

Proposition 3.11. Any classical solution is a weak solution.
Proof. Suppose u is a classical solution with corresponding stress tensor σ and

v ∈ H. Then on Ωk we have

(3.37)

∫
∂Ωk

v
∣∣
Ωk

· (σn) ds =

∫
Ωk

∂j (viσij) dx =

∫
Ωk

0︷ ︸︸ ︷
(∂jσij) vi + σij (∂jvi) dx

=

∫
Ωk

σij

(
∂jvi + ∂ivj

2

)
dx =

∫
Ωk

σ : ε(v) dx = ak(u
∣∣
Ωk

, v
∣∣
Ωk

).

When we sum over all regions, the right-hand side becomes a(u,v), and the left-hand
side becomes a sum over all segments of Γ with one term coming from the left grain
and one term coming from the right grain; see Figure 3.4. Since γtv = 0 and σ is
continuous across each segment, the sum of these two terms for the jth segment is∫

Γj

(v+ · σ(−nj)) ds +

∫
Γj

(v− · σnj) ds = −
∫

Γj

(γnv)nj · σnj ds.(3.38)

Summing over all segments and using the boundary condition σnn = η, we obtain
(3.36) as desired.

Proposition 3.12. If the grain boundary network is degenerate, then a necessary
condition for a weak solution to exist is that η ⊥ γn(Hd). If a solution does exist, it
is only defined modulo Hd.

Proof. Fix η, and suppose a solution u exists. For any w ∈ Hd, we use (3.36) to
conclude that

−
∫

Γ

(η)(γnw) ds = a(u,w) =

∫
Ω

σ(u) :

0︷ ︸︸ ︷
ε(w) dx = 0.(3.39)

Thus η is orthogonal to γnw. For any v ∈ H we have a(w,v) = 0, so

a(u + w,v) = a(u,v) = −
∫

Γ

(η)(γnv) ds,(3.40)

and u + w is also a weak solution.
Definition 3.13. We define the space H̃ by the relation γn(H̃) ⊂ γn(Hd)

⊥:

H̃ = {u ∈ H
∣∣ lh(u) = 0 whenever h ∈ γn(Hd)}.(3.41)

Remark 3.14. Since γn is injective on Hd, u ≡ 0 is the only (grain by grain)
infinitesimal rigid body motion in H̃, i.e., H̃ ∩Hd = {0}. Since the codimension of H̃
is at most q := dimHd by (3.41), the decomposition H = H̃ ⊕Hd holds.
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Theorem 3.15. The bilinear form a(·, ·) is coercive on H̃, and therefore ‖ · ‖a is
a norm on H̃ equivalent to the one inherited from H1(Ω)2.

Proof. Since λ ≥ 0 and µ > 0, it suffices to show that there is a c > 0 such that

‖u‖2
ε :=

∫
Ω

ε(u) : ε(u) dx ≥ c

∫
Ω

[u · u + ∇u : ∇u] dx = c‖u‖2
H̃

(
u ∈ H̃

)
.(3.42)

Suppose not. Then there is a sequence of unit vectors un ∈ H̃ such that

‖un‖2
ε → 0.(3.43)

Since the unit ball of H1(Ω)2 is compact in L2(Ω)2, there is a subsequence which
converges in L2(Ω)2. Replacing the original sequence with the subsequence, we may
assume

‖um − un‖2
L2(Ω)2 → 0 (m,n → ∞).(3.44)

Since each Ωk is polygonal, Korn’s inequality [4, 3] guarantees the existence of positive
constants ck such that∫

Ωk

ε(u) : ε(u) dx + ‖u‖2
L2(Ωk)2 ≥ ck‖u‖2

H1(Ωk)2

(
u ∈ H1(Ωk)

2
)
.(3.45)

Letting c = mink ck and summing over all regions, we obtain

‖u‖2
ε + ‖u‖2

L2(Ω)2 ≥ c‖u‖2
H1(Ω)2

(
u ∈ H1(Ω)2

)
.(3.46)

Replacing u by um −un in (3.46) and using (3.43) and (3.44), we find that {un} is a
Cauchy sequence in H̃. We let u∗ = limn un and note that because ‖·‖ε is continuous
in H1(Ω)2, ‖u∗‖ε = limn ‖un‖ε = 0. Thus ε(u∗) ≡ 0. It is straightforward to show [3]
that the only solutions to ε(u) ≡ 0 on a domain U are infinitesimal rigid body motions.
Thus u∗∣∣

Ωk
is an infinitesimal rigid body motion for each k, and by Remark 3.14,

u∗ ≡ 0. But this is impossible since we must also have ‖u∗‖H̃ = limn ‖un‖H̃ = 1.

Therefore a(·, ·) is coercive on H̃ as claimed.
Proposition 3.16. If η ∈ L2(Γ) is nonzero, then lη ∈ H ′ is nonzero.
Proof. We define

C = {η ∈ C̃1(Γ) ∩ C(Γ)
∣∣ η = 0 at all junctions},(3.47)

where C̃r(Γ) was defined in (2.7), and we claim that

C ⊂ {η ∈ L2(Γ)
∣∣ ∃ v ∈ H s.t. η = γnv}.(3.48)

To see this, let η ∈ C, and extend η to C(Γ ∪ Γ0) by setting η = 0 on the outer walls.
Decompose η into a sum

η =
∑
k

ηk, ηk =
1

2
η
∣∣
∂Ωk

.(3.49)

Since each restriction ηk is C1 on the (closed) segments of ∂Ωk and zero at the corners,
the x- and y-components ξ1

k, ξ
2
k of −ηkn also have this property (n is the outward unit

normal). This is sufficient to ensure that each ξik belongs to H1(∂Ωk) ⊂ H
1
2 (∂Ωk),

which implies [5] that there are functions vik ∈ H1(Ωk) whose trace is equal to ξik
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on the boundary. Defining v ∈ H grain by grain to have components v1
k, v

2
k proves

(3.48). Since C is dense in L2(Γ) and (3.48) holds, we have

lη = 0 ⇒ η ⊥ C ⇒ η = 0 a.e.(3.50)

as desired.
Corollary 3.17. If η ∈ γn(Hd)

⊥ is nonzero, then lη is nonzero in H̃ ′.
Proof. Such an lη is nonzero when acting on H and is zero on Hd, so it must be

nonzero on H̃ due to H = H̃ ⊕Hd.
Definition 3.18. The projection R is defined as the orthogonal projection in

L2(Γ) onto γn(Hd)
⊥. Explicitly, we have

R = I −
q∑

k=1

(·, hk)hk,(3.51)

where the hk form an L2-orthonormal basis for γn(Hd), as discussed in Remark 3.8.
Theorem 3.19 (weak solutions). For any η ∈ L2(Γ), there exists a unique weak

solution u[η] ∈ H̃ to the grain boundary normal stress problem with normal stress Rη
on Γ. There is a constant C independent of η such that

‖u[η]‖H1(Ω)2 ≤ C‖η‖L2(Γ).(3.52)

Moreover, if u ≡ 0, then η ∈ γn(Hd).
Proof. We produce a candidate solution u ∈ H̃ using the Lax–Milgram theorem

and the fact that a(·, ·) is bounded and coercive on H̃ while lRη is a bounded linear

functional on H̃. The solution u is the unique function in H̃ satisfying

a(u,v) = lRη(v) (v ∈ H̃),(3.53)

which we must show holds for all v ∈ H. Since H = H̃ ⊕ Hd, it suffices to check
the result for v ∈ Hd: we have a(u,v) = 0 since v is a rigid body motion on each
grain, and lRη(v) = −(Rη, γnv) = 0 since R projects onto γn(Hd)

⊥. Equation (3.52)
follows from coercivity, (3.53), and (3.35):

c‖u‖2 ≤ a(u,u) ≤ ‖lRη‖ ‖u‖ ≤ ‖γn‖ ‖R‖ ‖u‖ ‖η‖.(3.54)

If η �∈ γn(Hd), then Rη satisfies the hypothesis of Corollary 3.17, so lRη is nonzero in

H̃ ′. By (3.53), the solution u cannot be identically zero.
Definition 3.20. The operator B : L2(Γ) → L2(Γ) is defined via

Bη := γnu[η].(3.55)

Note that in the case of grain boundary degeneracy, u[η] involves a projection of η
and a selection criterion for choosing among the nonunique solutions in H.

Theorem 3.21. B is compact, self-adjoint, and negative and satisfies

ker(B) = γn(Hd).(3.56)

Proof. B is compact because η 	→ u[η] is bounded and γn is compact. Using
(3.36) and the fact that (η, w)L2 = (Rη,w)L2 for w ∈ γn(H̃), we have∫

Γ

η0Bη1 ds =

∫
Γ

η0γnu[η1] ds =

∫
Γ

(Rη0)(γnu[η1]) ds = −a(u[η0],u[η1]).(3.57)
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Since a(·, ·) is symmetric and coercive on H̃, B is self-adjoint and negative:

(η0, Bη1)L2 = (η1, Bη0)L2 , (η0, Bη0)L2 ≤ 0
(
η0, η1 ∈ L2(Γ)

)
.(3.58)

Note that (η,Bη)L2 is related to the elastic energy stored in the grains:

E =
1

2
a (u[η],u[η]) = −1

2

∫
Γ

ηBη ds
(
η ∈ L2(Γ)

)
.(3.59)

Since E = 0 iff u ≡ 0, and u[η] ≡ 0 precisely when η ∈ γn(Hd), we find that
ker(B) = γn(Hd) as claimed.

Definition 3.22. The operator S is defined to be the pseudoinverse of B.
Remark 3.23. Since B is self-adjoint and compact, it has an orthonormal eigen-

decomposition B =
∑∞

1 βk(·, χk)χk with (β1 = · · · = βq = 0) and the remaining βk

forming an increasing sequence of negative numbers converging to zero. S is defined
as S =

∑∞
1 αk(·, χk)χk, where αk = 0 for k ≤ q and αk = 1/βk for k > q. Since

S is defined with respect to an orthonormal basis, we know it is self-adjoint, densely
defined, and negative, and its range is γn(Hd)

⊥. Note that the operators S and B
satisfy SB = R, BS = R

∣∣
D(S)

.

Definition 3.24. A solution of the grain boundary displacement jump problem
for a given g ∈ D(S) is a solution u of the normal stress problem with η = Sg, subject
to the additional requirement that γnu = g.

Theorem 3.25. For any g ∈ D(S) there is a unique solution u(g) of the grain
boundary displacement jump problem.

Proof. Suppose g ∈ D(S). Since γn is injective on Hd and range(I−R) = γn(Hd),
there is a unique ud[g] ∈ Hd such that γn(ud[g]) = (I −R)g. Clearly

u(g) = ud[g] + u[Sg](3.60)

is the desired solution, where u[Sg] is the unique solution in H̃ with normal stress
Sg specified on Γ; see Proposition 3.12 and note that γn(u(g)) = (I − R)g + BSg
= g.

Remark 3.26. In the degenerate case, the condition γnu = g removes the indeter-
minacy of the solution to the normal stress problem. As a result, the operator S truly
maps g to the corresponding normal stress η, whereas B has nonphysical projections
built into it for the convenience of being defined on all of L2(Γ).

Remark 3.27. The domain D(S) is quite complicated due to the variety of ways
self-similar solutions of the Lamé equations can behave near grain boundary junctions;
see [9, 12]. In particular, even for smooth functions η that are continuous at junc-
tions, g = Bη generally will be discontinuous at junctions and exhibit infinite slopes.
As a result, it would be very difficult to define weak solutions to the grain bound-
ary displacement jump problem directly (without using the grain boundary normal
stress problem) and to characterize those g for which the resulting normal stress η is
meaningful in the trace sense. The above approach allows us to define S and derive
its properties via the compact operator B, which avoids these complications.

4. Dynamics. In this section we show that the equation

ηt = SLη, η(0) = η0,(4.1)

generates an analytic semigroup {Et : t ≥ 0} of bounded linear operators on H1(Γ).
As mentioned previously, the solution η(t) when the electromigration force is present
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is then given by

η(t) = Et(η0 + ψ) − ψ.(4.2)

The boundary conditions on η(t) + ψ at junctions hold for t > 0 as a consequence
of the analyticity of Et and the properties of D(SL). We will also show that the
evolution of grain growth is given by

g(t) = R1Bη(t) + (I −R1)g0 + [(I −R1)Lψ]t,(4.3)

where R1 is a projection with kernel of dimension q = dim kerS (the degree of degener-
acy of the grain boundary network). The term that grows linearly in time corresponds
to a continual transport of material around the grains, leading to stress-free rigid body
motions in each grain suggestive of continental drift in plate tectonics.

4.1. Semigroup theory. We briefly review the elements of semigroup theory
we will need in what follows. A family {Et : t ≥ 0} of bounded linear operators on a
Banach space X is called a strongly continuous semigroup if

(i) Et+s = EtEs (t, s ≥ 0),
(ii) E0 = idX ,
(iii) t 	→ Etx is continuous on [0,∞) for each fixed x ∈ X.

(4.4)

If ‖Et‖ ≤ 1 for all t ≥ 0, {Et} is called a contraction semigroup. The infinitesimal
generator A of a strongly continuous semigroup {Et} is given by

Ax = lim
h→0+

[Ehx− x]/h (x ∈ D(A)) ,(4.5)

where D(A) is the set of all x ∈ X for which the limit exists. It can be proved [2]
that D(A) is dense in X, that A on D(A) is a closed operator, and that for x ∈ D(A),
t 	→ Etx is continuously differentiable and satisfies

d

dt
Etx = AEtx = EtAx (0 ≤ t < ∞).(4.6)

The semigroup {Et} is said to be differentiable if EtX ⊂ D(A) for t > 0, in which

case [2] it is infinitely differentiable and for each t > 0 the operators E
(n)
t given by

E
(n)
t x :=

dn

dtn
Etx = AnEtx(4.7)

are bounded and satisfy

E
(n)
t x = (E′

t/n)nx (t > 0).(4.8)

A differentiable semigroup is said to be analytic if

lim sup
t→0

t‖E′
t‖ = α < ∞,(4.9)

which is equivalent [11] to having a holomorphic extension Eλ given locally by

Eλx =

∞∑
n=0

(λ− t)n

n!
E

(n)
t x

(
t > 0, |λ− t| < t

αe
, x ∈ X

)
.(4.10)

Theorem 4.1. If X is a Hilbert space and A is a closed, densely defined, negative,
self-adjoint operator on X, then A is the infinitesimal generator of a contraction
semigroup {Et} with holomorphic extension {Eλ : Reλ > 0}, and α ≤ e−1 in (4.9).

Proof. See [7, 14].
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4.2. The semigroup generated by SL. The main obstacle to solving (4.1) is
that although S and L are each self-adjoint, they do not commute, and hence SL is
not self-adjoint. If L were invertible, the obvious thing to do in this situation (see,

e.g., [8]) would be to define a new variable y = L
1
2 η, use Theorem 4.1 to obtain the

solution y(t) of the equation

yt = L
1
2SL

1
2 y, y(0) = y0,(4.11)

with y0 = L
1
2 η0, and check that η = L− 1

2 y satisfies (4.1). Since L has a d dimensional
kernel, we cannot directly obtain η from y in this way, and we will instead rely on the
knowledge that y(t) − y0 ∈ ran(L

1
2SL

1
2 ) for all time while η(t) − η0 ∈ ran(SL).

Convention 4.2. Generic elements of ker(L) and ker(S) will be denoted e and h
so that the notation {e,Gh}, for example, represents the space ker(L) ⊕G ker(S).

Recall from (2.10) and (3.51) that we have defined d = dim{e}, q = dim{h}, and
P and R as the orthogonal projections onto {e}⊥ and {h}⊥, respectively:

P = I −
d∑

k=1

(·, ek)ek, R = I −
q∑

k=1

(·, hk)hk.(4.12)

By Theorem 3.9, we know {e} ⊥ {h}; hence P and R commute. Moreover, B is
injective on {e} (and G on {h}) since {e} ∩ ker(B) = {e} ∩ {h} = {0}.

Lemma 4.3. The following identities hold:

ker(SL) = {e,Gh},
ran(SL) = {Be, h}⊥,

ker(LS) = {Be, h},
ran(LS) = {e,Gh}⊥,

ker(L
1
2SL

1
2 ) = {e,G 1

2h},
ran(L

1
2SL

1
2 ) = {e,G 1

2h}⊥.
(4.13)

Proof. SL is densely defined in L2(Γ) since D(S) is dense, G is bounded with
range dense in {e}⊥, and D(SL) = {e} ⊕ GD(S). Likewise D(LS) = {h} ⊕ BD(L)

and D(L
1
2SL

1
2 ) = {e} ⊕ G

1
2 [{h} ⊕ BD(L

1
2 )] are dense in L2(Γ). Clearly, ker(SL) ⊃

{e,Gh}. Since {h} ⊂ {e}⊥ and LG is the identity on {e}⊥, the only vectors mapped
to {h} by L belong to {e,Gh}, so the reverse inclusion also holds. A similar argument

establishes ker(LS) = {Be, h}. For ker(L
1
2SL

1
2 ), we use

(x, L
1
2SL

1
2x) = 0 ⇔ −(|S| 12L 1

2x, |S| 12L 1
2x) = 0 ⇔ |S| 12L 1

2x = 0(4.14)

and argue as in the other two cases. The result ran(SL) ⊂ ker(LS)⊥ follows from
the fact that (SL)∗ = LS, and ran(SL) ⊃ {Be, h}⊥ is a consequence of Lemma 4.9

below. Similar arguments give ran(LS) and ran(L
1
2SL

1
2 ).

Remark 4.4. Since {e} ⊥ {Gh}, {Be} ⊥ {h} and {e} ⊥ {G 1
2h}, the kernels in

(4.13) all have dimension d + q = dim{e} + dim{h}.
Definition 4.5. We define the (nonorthogonal) projections P1, R1, and Q on

L2(Γ) via

P1 projects along {e} onto {Be}⊥,(4.15)

R1 projects along {h} onto {Gh}⊥,(4.16)

Q projects along {e,Gh} = ker(SL) onto {Be, h}⊥ = ran(SL).(4.17)

Remark 4.6. In general, if X and Y are finite dimensional subspaces of the same
dimension such that X ∩ Y ⊥ = {0}, the projection along X onto Y ⊥ exists and is
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given by I − (·, wk)xk (summation is implied). Here {xk} is a basis for X, {yk} is a
basis for Y , wk = yjαjk, and (xi, yj)αjk = δik. To verify that P1, R1, and Q are well
defined, we must check the condition X ∩ Y ⊥ = {0}.

Suppose x ∈ {e} ∩ {Be}⊥. Then (x,Bx) = −(|B| 12x, |B| 12x) = 0, which implies
x ∈ {h}. Since {e} ⊥ {h}, x = 0 as required. An identical argument works for R1.

Suppose x ∈ {e,Gh} ∩ {Be, h}⊥. Then there is e0 ∈ {e} and h0 ∈ {h} such that
x = e0 + Gh0. Since x ⊥ {h} and e0 ⊥ h0, we have (x, h0) = (Gh0, h0) = 0. Since
G is self-adjoint and positive, this implies h0 ∈ {e} so that x = e0 + 0. But now we
have x ∈ {e} ∩ {Be}⊥, which implies x = 0 from the above argument.

Remark 4.7. Note that there are wk ∈ {Be} and zk ∈ {Gh} such that

P1 = I −
d∑

k=1

(·, wk)ek, R1 = I −
q∑

k=1

(·, zk)hk.(4.18)

As a result, in addition to being bounded in L2(Γ), P1 is also bounded as an operator
on H1(Γ) since the ek belong to this space. On the other hand, the L2 adjoint P ∗

1 =
I − (·, ek)wk is not necessarily defined on H1(Γ) due to the possibility of singularities
in the derivative of wk near junctions. Similarly, R∗

1 is a projection in H1(Γ) while
R1 generally is not due to discontinuities in the hk at junctions.

Remark 4.8. Q may be written Q = P1R
∗
1 since {e} ⊥ {Gh} and {e} ⊥ {h}.

Lemma 4.9. The following diagrams are commutative in the sense that for each

block X
f ��

Y
g

�� we have f ◦ g = idY and g ◦ f = idD(f):

{e,G 1
2h}⊥

L
1
2 �� {e,Gh}⊥

G
1
2

��
R �� {e, h}⊥
R1

��
S �� {Be, h}⊥
B

��
P �� {e, h}⊥
P1

��
L

1
2 �� {e,G 1

2h}⊥,
G

1
2

��

(4.19)

{Be, h}⊥
P �� {e, h}⊥
P1

��
L �� {e,Gh}⊥
G

��
R �� {e, h}⊥
R1

��
S �� {Be, h}⊥.
B

��(4.20)

Proof. P and P1 both project along {e}, so PP1 = P and P1P = P1. Since
{e} ⊥ {h}, both projections leave {h}⊥ invariant. Since ran(P ) = {e}⊥ and ran(P1) =
{Be}⊥, the blocks involving P and P1 are commutative. Identical arguments may be
used for the blocks involving R and R1.

Note that if (x,Gh) = 0, then (Gx, h) = 0; i.e., G maps {Gh}⊥ into {h}⊥. Since
LG is the identity on {e}⊥ (recall D(L) = ran(G) ⊕ {e}) and GL is the identity on
{e}⊥ ∩ D(L), the blocks involving L and G are commutative. Identical arguments
may be used for the remaining blocks.

Definition 4.10. We say that T is the pseudoinverse of the bounded operator
K on the Hilbert space H if there are closed subspaces X and Y (not necessarily
orthogonal) such that H = X ⊕ Y , ker(T ) = X = ker(K), and

TKy = y (y ∈ Y ), KTy = y (y ∈ Y ∩ D(T )).(4.21)

In particular, we require ran(K) ⊂ D(T ).
Lemma 4.11. Such a T is closed.
Proof. First we claim that ran(T ) = Y . Clearly, (4.21) implies ran(T ) ⊃ Y . To

prove the reverse inclusion, suppose x1 + y1 = T (x2 + y2) with xi ∈ X, yi ∈ Y . Then
Ky1 = KTy2 = y2, so y1 = TKy1 = Ty2 = x1 + y1, which implies x1 = 0 as required.
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Now suppose ak → a, Tak → b. We must show Ta = b. Note that b ∈ Y
since each Tak ∈ Y and Y is closed. Decompose ak = xk + yk and a = x + y using
H = X ⊕ Y . Then yk → y since the projection along X onto Y is continuous. We
also know yk = KTyk = KTak → Kb since K is continuous. Thus y = Kb and
a = x + y ∈ D(T ). Finally, Ta = Ty = TKb = b since b ∈ Y .

Remark 4.12. If there is an eigenbasis for K, then it is an eigenbasis for both
operators, and the eigenvalues are reciprocal or zero. When K is not self-adjoint, this
definition differs from the usual definition in linear algebra that T and K should have
the same SVD bases (exchanging left and right singular vectors) with reciprocal (or
zero) singular values. The current definition is more useful for eigenvalue problems
while the usual one is more useful for least squares problems. The definitions coincide
when T and K are self-adjoint.

Theorem 4.13. The following pseudoinverse relationships hold:

L
1
2SL

1
2 = pinv(G

1
2Q∗BQG

1
2 ),(4.22)

SL = pinv(QGBQ),(4.23)

LS = pinv(Q∗BGQ∗).(4.24)

Proof. Since SR = S and LP = L, the left-to-right compositions in (4.19) and

(4.20) are L
1
2SL

1
2 and SL, respectively. Because P1 leaves {h}⊥ invariant, Q and P1

agree on {h}⊥. Likewise Q∗ and R1 agree on {e}⊥, so the right-to-left compositions

are G
1
2Q∗BQG

1
2 and QGQ∗B, respectively.

Clearly, K := G
1
2Q∗BQG

1
2 annihilates X := {e,G 1

2h} = ker(L
1
2SL

1
2 ), and (4.19)

ensures that (4.21) holds with T := L
1
2SL

1
2 , Y := {e,G 1

2h}⊥ as required.
The operator QGQ∗B does not have the same kernel as T := SL; however, this

is easily corrected using K := QGQ∗BQ instead. We then have ker(K) = ker(T ) =
{e,Gh} =: X by (4.13) and (4.17). Equation (4.20) implies that (4.21) holds with
Y := {Be, h}⊥, which complements X in L2(Γ) since Q is a well-defined projection.
Finally, by Remark 4.8 and the identities R∗

1GR1 = R∗
1G = GR1, P

∗
1 BP1 = P ∗

1 B =
BP1, it follows that QGQ∗BQ = QGBQ. The proof for LS is similar.

Lemma 4.14. Equation (4.11) generates an analytic contraction semigroup {Ẽt :
t ≥ 0} of bounded linear operators on L2(Γ). For each t ≥ 0, PẼtP = ẼtP .

Proof. We showed that L
1
2SL

1
2 has dense domain in the proof of Lemma 4.3. It is

closed by Lemma 4.11 and Theorem 4.13, self-adjoint since L and S are self-adjoint,
and negative since S is negative:

(x, L
1
2SL

1
2x) = (L

1
2x, SL

1
2x) ≤ 0.(4.25)

Theorem 4.1 may therefore be applied to conclude that L
1
2SL

1
2 is the generator of

an analytic contraction semigroup {Ẽt : t ≥ 0} of bounded linear operators. Since

ran(L
1
2SL

1
2 ) ⊂ {e}⊥, for y0 ∈ L2(Γ) we have

(Ẽty0, ek) = (Ẽ0y0, ek) +

∫ t

0

(L
1
2SL

1
2 Ẽsy0, ek) ds = (y0, ek).(4.26)

Hence Ẽt leaves {e}⊥ invariant, and PẼtP = ẼtP as claimed.
Theorem 4.15. The family {Et : t ≥ 0} given by

Et = (I − P1) + P1G
1
2 ẼtL

1
2(4.27)
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is an analytic semigroup in H1(Γ). Its infinitesimal generator is SL.

Proof. Since G
1
2 is bounded from L2 to H1, L

1
2 is bounded from H1 to L2, and P1

is bounded in H1, there is a C > 0 such that ‖P1G
1
2 ẼtL

1
2 ‖H1 ≤ C‖Ẽt‖L2 ; therefore,

each Et is bounded in H1(Γ). Property (4.4)(iii) follows similarly: pick x ∈ H1, and

let y = L
1
2x; then we have

‖(Et − Es)x‖H1 = ‖P1G
1
2 (Ẽt − Ẽs)y‖H1 ≤ C‖(Ẽt − Ẽs)y‖L2 −→

t→s
0.(4.28)

Properties (4.4)(i) and (4.4)(ii) follow immediately from (4.27) and the corresponding
properties of Ẽ, using the relations

P1P = P1, PP1 = P, L
1
2 = L

1
2P, G

1
2L

1
2 = P = L

1
2G

1
2 , P ẼsP = ẼsP.

(4.29)

The analyticity may be seen by computing

lim sup
t→0

t‖E′
t‖H1 ≤ C lim sup

t→0
t‖Ẽ′

t‖L2 < ∞.(4.30)

To prove that the generator of Et is SL, we first note that

L
1
2Et = L

1
2P1G

1
2 ẼtL

1
2 = PẼtL

1
2 = ẼtL

1
2(4.31)

and compute

E′
t = P1G

1
2

(
L

1
2SL

1
2 Ẽt

)
L

1
2 = P1PSL

1
2

(
L

1
2Et

)
= P1SLEt = SLEt.(4.32)

Proposition 4.16. There is a Riesz basis {φk} for H1(Γ) and a nonincreasing,
unbounded sequence of numbers λk ≤ 0 such that SLφk = λkφk.

Proof. Since G
1
2Q∗BQG

1
2 is self-adjoint and compact, the spectral theorem gives

an L2 orthonormal basis of eigenfunctions {ϕk}∞k=1, which by Theorem 4.13 is also

an eigenbasis of L
1
2SL

1
2 : ϕk is either in the kernel of both operators, or it is an

eigenfunction of each with reciprocal eigenvalues. Since S is negative, the eigenvalues
λk of L

1
2SL

1
2 satisfy λk ≤ 0. Since L

1
2SL

1
2 commutes with P , we may assume the ϕk

are also eigenfunctions of P (with eigenvalue 0 or 1). Define

φk =

{
ϕk, Pϕk = 0,

P1G
1
2ϕk otherwise.

(4.33)

In the first case we have SLφk = 0. In the second, we obtain

SLP1G
1
2ϕk = SL

1
2ϕk = P1SL

1
2ϕk = P1G

1
2L

1
2SL

1
2ϕk = λkP1G

1
2ϕk.(4.34)

The φk are related to the ϕk via

φk =
[
(I − P ) + P1G

1
2

]
ϕk, ϕk =

[
(I − P1) + L

1
2

]
φk.(4.35)

Since [I − P + P1G
1
2 ] is bounded from L2(Γ) to H1(Γ) and its inverse [I − P1 + L

1
2 ]

is bounded in the other direction, they are isomorphisms. Thus the φk form a Riesz
basis (a basis equivalent to an orthonormal basis [6]) for H1(Γ) as claimed.

Remark 4.17. Equation (4.27) could also have been written

Et = [I − P + P1G
1
2 ] Ẽt [I − P1 + L

1
2 ].(4.36)
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Remark 4.18. For η0 ∈ H1(Γ), the coefficients in the expansion η0 =
∑

k akφk

can be determined via

ak = ([I − P1 + L
1
2 ]η0, ϕk)L2 = (η0, φ

∗
k)L2 , φ∗

k = [I − P ∗
1 + L

1
2 ]ϕk.(4.37)

The φ∗
k are eigenfunctions of LS with eigenvalues λk since LSφ∗

k = [(SL− P1SL)∗ +

LSL
1
2 ]ϕk = λkL

1
2ϕk = λkφ

∗
k. They belong to L2(Γ) but need not belong to H1(Γ)

due to possible singularities in ∂sφ
∗
k at junctions. For η0 ∈ H1(Γ) the expansions

η0 =

∞∑
k=1

akφk, Etη0 =

∞∑
k=1

ake
λktφk, ak = (η0, φ

∗
k)L2(Γ),(4.38)

hold in H1(Γ). Note that the L2 norm of φ∗
k diverges as k → ∞, but when η0 ∈ H1(Γ),

the inner products ak in (4.38) do not; they are square summable.
Remark 4.19. The expansions (4.38) lead to a useful numerical method in which

the φk, φ∗
k, and λk are computed by approximating the pseudoinverse pinv(SL) =

QGBQ using a singularity-capturing least squares finite element method; see [12, 9].
Proposition 4.20. limt→∞ Et = I −Q in norm.
Proof. Recall that dim ker(SL) = d + q so that λ1 = · · · = λd+q = 0. Since

{φk}d+q
k=1 is a basis for range(I −Q), we have

[Et − (I −Q)]η0 =

∞∑
k=d+q+1

ake
λktφk.(4.39)

Since the mapping η0 	→ 〈ak〉∞k=1 with ak = (η0, φ
∗
k)L2 is an isomorphism from H1(Γ)

to l2, there is a constant C such that

‖(Et − I + Q)η0‖H1 ≤ Ceλ
∗t‖η‖H1 (t ≥ 0, η0 ∈ H1(Γ))(4.40)

with λ∗ = λd+q+1 < 0. Thus ‖Et − (I − Q)‖H1 ≤ Ceλ
∗t → 0 as t → ∞ as

claimed.
Remark 4.21. Since Et is an operator on H1(Γ) and the formula for the evolution

of normal stress is given by

η(t) = Et(η0 + ψ) − ψ,(4.41)

we should verify that ψ belongs to H1(Γ). This is done in the companion paper [13].
Remark 4.22. Since Et is analytic, we have ran(Et) ⊂ D(SL) for all t > 0.

Therefore η(t) in (4.41) has the property that

η(t) + ψ ∈ D(L) (t > 0).(4.42)

Thus although ψ does not necessarily satisfy zero flux boundary conditions at junc-
tions, the normal stress η immediately compensates so that for all t > 0, flux balance
holds. As long as there is a displacement jump g(t) compatible with the evolution of
η(t), we have proved that the grain boundary diffusion problem is well posed.

4.3. The evolution of g. In the nondegenerate case, the evolution of g is easily
determined from the evolution of η in (4.41) via

g(t) = Bη(t) (nondegenerate case).(4.43)
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The situation becomes much more complicated (and rather interesting) in the degen-
erate situation where the subspace {h} = ker(S) = ker(B) is nontrivial. In that case,
each function in {h} is a growth mode which is not suppressed by the grain boundary
diffusion process. If such a mode h is activated by ψ, it will grow linearly in time
without bound, as will the corresponding u ∈ Hd such that γnu = h; see Defini-
tion 3.5. The nonlinear picture in which u is replaced by a collection of genuine (as
opposed to infinitesimal) rigid body motions on each grain resembles continental drift
in plate tectonics, at least superficially. The steady state stress distribution does not
fully cancel the flux due to electromigration, and material is continually transported
around the participating grains, causing them to drift in order to avoid misfit with
their neighbors as material is removed from one side and deposited on the other.

Theorem 4.23. The evolution of g is given by

g(t) = R1Bη(t) + (I −R1)g0 + [(I −R1)Lψ]t.(4.44)

Proof. Recall that the projections R and R1 may be written

R = I −
q∑

k=1

(·, hk)hk, R1 = I −
q∑

k=1

(·, zk)hk

(
hk ∈ {h}, zk ∈ {Gh}

)
.(4.45)

Note that (I − R1)L =
∑q

k=1(·, Lzk)hk is actually a bounded operator on L2(Γ), so
its domain may be extended from D(L) to L2(Γ). Since ker(S) = {h}, we see that
S(I −R1) = 0. Therefore

Sg = SBη = Rη = η,(4.46)

where the last step follows from the fact that η0 := Sg0 ∈ ran(R) and

ηt = SL(η + ψ) ⇒ η − η0 ∈ ran(SL) ⊂ ran(R).(4.47)

We next use R1R = R1 and BS = R
∣∣
D(S)

to conclude that

g(0) = R1BSg0 + (I −R1)g0 = g0.(4.48)

Finally, we check that g solves the evolution equation gt = L(Sg + ψ):

gt = R1BSL(η + ψ) + (I −R1)Lψ

= R1L(Sg + ψ) + (I −R1)Lψ

= L(Sg + ψ) − [(I −R1)L](Sg + ψ − ψ)

= L(Sg + ψ).

(4.49)

In the last step, we used the fact that (I − R1)LSg = 0 since ran(LS) ⊂ {Gh}⊥ =
ker(I − R1) by (4.13) and (4.16). In the second-to-last step we were careful not to
break up (I −R1)L when acting on ψ since the latter may not belong to the domain
of L. In contrast, the function (Sg + ψ) belongs to D(L) for t > 0, as discussed in
Remark 4.22.

Remark 4.24. Once g(t) is known, the stress and displacement fields inside the
grains are uniquely determined as the solution to the grain boundary displacement
jump problem; see Definition 3.24 and Theorem 3.25.
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5. Conclusion. The stress-driven grain boundary diffusion problem involves
coupling many different equations and phenomena that lead to interesting behavior
due to the interplay between nonlocality, singular behavior, and complex geometry.
By posing the problem as an evolution of functions defined on the grain boundary,
we were able to use methods of semigroup theory to answer fundamental questions
of existence, uniqueness, and appropriateness of boundary conditions. In the process,
we discovered a class of degenerate grain boundaries that exhibit interesting behavior.

Placing this problem back into the larger model, which includes void and vacancy
evolution, grain boundary sliding, etc., it would be interesting to study the behavior
of the solution in the vicinity of a junction where a void meets a grain boundary. Here
again, questions of appropriate boundary conditions arise, thermodynamic arguments
are murky, and singularities in the stress tensor and electric field together with the
stiffness inherent in grain boundary diffusion and curvature-driven surface diffusion
make the problem difficult to attack theoretically and numerically.
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