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Relative-Periodic Elastic Collisions of Water Waves
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Abstract. We compute time-periodic and relative-periodic solutions of the

free-surface Euler equations that take the form of overtaking collisions of uni-
directional solitary waves of different amplitude on a periodic domain. As a

starting guess, we superpose two Stokes waves offset by half the spatial period.

Using an overdetermined shooting method, the background radiation gener-
ated by collisions of the Stokes waves is tuned to be identical before and after

each collision. In some cases, the radiation is effectively eliminated in this pro-

cedure, yielding smooth soliton-like solutions that interact elastically forever.
We find examples in which the larger wave subsumes the smaller wave each

time they collide, and others in which the trailing wave bumps into the leading
wave, transferring energy without fully merging. Similarities notwithstanding,

these solutions are found quantitatively to lie outside of the Korteweg-de Vries

regime. We conclude that quasi-periodic elastic collisions are not unique to
integrable model water wave equations when the domain is periodic.

1. Introduction

A striking feature of multiple-soliton solutions of integrable model equations
such as the Korteweg-deVries equation, the Benjamin-Ono equation, and the non-
linear Schrödinger equation is that they interact elastically, leading to time-periodic,
relative-periodic, or quasi-periodic dynamics. By contrast, the interaction of soli-
tary waves for the free-surface Euler equations is inelastic. However, it has been
observed many times in the literature [10, 13, 35, 44, 38, 53, 15, 37] that the
residual radiation after a collision of such solitary waves can be remarkably small.
In the present paper we explore the possibility of finding nearby time-periodic and
relative-periodic solutions of the Euler equations using a collision of unidirectional
Stokes waves as a starting guess. Such solutions demonstrate that recurrent elastic
collisions of solitary waves in the spatially periodic case do not necessarily indicate
that the underlying system is integrable.

A relative-periodic solution is one that returns to a spatial phase shift of its
initial condition at a later time. This only makes sense on a periodic domain, where
the waves collide repeatedly at regular intervals in both time and space, with the
locations of the collisions drifting steadily in time. They are special cases (with
N = 2) of quasi-periodic solutions, which have the form u(x, t) = U(~κx + ~ωt + ~α)
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2 J. WILKENING

with U an N -periodic continuous function, i.e. U ∈ C
(
TN
)
, and ~κ, ~ω, ~α ∈ RN .

Throughout the manuscript, we will use the phrase “solitary waves” in a broad sense
to describe waves that, most of the time, remain well-separated from one another
and propagate with nearly constant speed and shape. “Stokes waves” will refer
to periodic progressive solutions of the free-surface Euler equations of permanent
form, or waves that began at t = 0 as a linear superposition of such traveling waves.
They comprise a special class of solitary waves. “Solitons” will refer specifically to
superpositions of sech2 solutions of the KdV equation on the whole line, while
“cnoidal solutions” will refer to their spatially periodic, multi-phase counterparts;
see §5 for elaboration.

It was found in [49] that decreasing the fluid depth causes standing waves to
transition from large-scale symmetric sloshing behavior in deep water to pairs of
counter-propagating solitary waves that collide repeatedly in shallow water. In the
present work, we consider unidirectional waves of different amplitude that collide
due to taller waves moving faster than shorter ones. We present two examples of
solutions of this type: one where the resulting dynamics is fully time-periodic; and
one where it is relative-periodic, returning to a spatial phase shift of the initial
condition at a later time. Both examples exhibit behavior typical of collisions
of KdV solitons. In the first, one wave is significantly larger than the other, and
completely subsumes it during the interaction. In the second, the waves have similar
amplitude, with the trailing wave bumping into the leading wave and transferring
energy without fully merging.

Despite these similarities, the amplitude of the waves in our examples are too
large for the assumptions in the derivation of the KdV equation to hold. In par-
ticular, the larger wave in the first example is more than half the fluid depth in
height, and there is significant vertical motion of the fluid when the waves pass
by. A detailed comparison of the Euler and KdV equations for waves with these
properties is carried out in §5. A review of the literature on water wave collisions
and the accuracy of the KdV model of water waves is also given in that section.

Rather than compute such solutions by increasing the amplitude from the lin-
earized regime via numerical continuation, as was done for counter-propagating
waves in [49], we use collisions of right-moving Stokes waves as starting guesses.
The goal is to minimally “tune” the background radiation generated by the Stokes
collisions so that the amount coming out of each collision is identical to what went
into it. In the first example of §4, we find that the tuned background radiation takes
the form of a train of traveling waves of smaller wavelength moving to the right
more slowly than either solitary wave. By contrast, in the counter-propagating
case studied in [49], it consists of an array of smaller-wavelength standing waves
oscillating rapidly relative to the time between collisions of the primary waves. In
the second example of §4, the background radiation is essentially absent, which
is to say that the optimized solution is free from high-frequency, low-amplitude
disturbances in the trough, and closely resembles a relative-periodic cnoidal solu-
tion of KdV. We call the collisions in this solution “elastic” as they repeat forever,
unchanged up to spatial translation, and there are no features to distinguish radia-
tion from the waves themselves. This process of tuning parameters to minimize or
eliminate small-amplitude oscillations in the wave troughs is reminiscent of Vanden-
Broeck’s work [45] in which oscillations at infinity could be eliminated from solitary
capillary-gravity waves by choosing the amplitude appropriately.
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To search for relative periodic solutions, we use a variant of the overdeter-
mined shooting method developed by the author and collaborators in previous work
to study several related problems: time-periodic solutions of the Benjamin-Ono
equation [5, 3] and the vortex sheet with surface tension [4, 6]; Hopf bifurcation
and stability transitions in mode-locked lasers [50]; cyclic steady-states in rolling
treaded tires [21]; self-similarity (or lack thereof) at the crests of large-amplitude
standing water waves [47]; harmonic resonance and spontaneous nucleation of new
branches of standing water waves at critical depths [49]; and three-dimensional
standing water waves [42]. The three approaches developed in these papers are the
adjoint continuation method [5, 50], a Newton-Krylov shooting method [21], and
a trust region shooting method [49] based on the Levenberg-Marquardt algorithm
[39]. We adopt the latter method here to exploit an opportunity to consolidate
the work in computing the Dirichlet-Neumann operator for many columns of the
Jacobian simultaneously, in parallel.

One computational novelty of this work is that we search directly for large-
amplitude solutions of a nonlinear two-point boundary value problem, without using
numerical continuation to get there. This is generally difficult. However, in the
present case, numerical continuation is also difficult due to non-smooth bifurcation
“curves” riddled with Cantor-like gaps [41], and the long simulation times that
occur between collisions in the unidirectional case. Our shooting method has proven
robust enough to succeed in finding time-periodic solutions, when they exist, with a
poor starting guess. False positives are avoided by resolving the solutions spectrally
to machine accuracy and overconstraining the minimization problem. Much of
the challenge is in determining the form of the initial condition and the objective
function to avoid wandering off in the wrong direction and falling into a nonzero
local minimum before locking onto a nearby relative-periodic solution.

2. Equations of motion

The equations of motion of a free surface η(x, t) evolving over an ideal fluid
with velocity potential φ(x, y, t) may be written [46, 27, 17, 18]

ηt = φy − ηxφx,(2.1)

ϕt = P

[
φyηt −

1

2
φ2x −

1

2
φ2y − gη

]
,

where subscripts denote partial derivatives, ϕ(x, t) = φ(x, η(x, t), t) is the restriction
of φ to the free surface, g = 1 is the acceleration of gravity, ρ = 1 is the fluid density,
and P is the projection

(2.2) Pf = f − 1

2π

∫ 2π

0

f(x) dx,

where we assume a 2π-periodic domain. The velocity components u = φx and
v = φy at the free surface can be computed from ϕ via

(2.3)

(
φx
φy

)
=

1

1 + η′(x)2

(
1 −η′(x)

η′(x) 1

)(
ϕ′(x)
Gϕ(x)

)
,

where a prime denotes a derivative and G is the Dirichlet-Neumann operator [16]

(2.4) Gϕ(x) =
√

1 + η′(x)2
∂φ

∂n
(x+ iη(x)) = φy − ηxφx
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for the Laplace equation, with periodic boundary conditions in x, Dirichlet condi-
tions (φ = ϕ) on the upper boundary, and Neumann conditions (φy = 0) on the
lower boundary, assumed flat. We have suppressed t in the notation since time is
frozen in the Laplace equation. We compute Gϕ using a boundary integral collo-
cation method [34, 7, 30, 36, 8] and advance the solution in time using an 8th
order Runge-Kutta scheme [23] with 36th order filtering [25]. See [49] for details.

3. Computation of relative-periodic solutions

Traveling waves have the symmetry that

(3.1) η(x, 0) is even, ϕ(x, 0) is odd.

This remains true if x is replaced by x − π. As a starting guess for a new class
of time-periodic and relative-periodic solutions, we have in mind superposing two
traveling waves, one centered at x = 0 and the other at x = π. Doing so will
preserve the property (3.1), but the waves will now interact rather than remain
pure traveling waves. A solution will be called relative periodic if there exists a
time T and phase shift θ such that

(3.2) η(x, t+ T ) = η(x− θ, t), ϕ(x, t+ T ) = ϕ(x− θ, t)

for all t and x. Time-periodicity is obtained as a special case, with θ ∈ 2πZ. We
can save a factor of 2 in computational work by imposing the alternative condition

(3.3) η(x+ θ/2, T/2) is even, ϕ(x+ θ/2, T/2) is odd.

From this, it follows that

η(x+ θ/2, T/2) = η(−x+ θ/2, T/2) = η(x− θ/2,−T/2),

ϕ(x+ θ/2, T/2) = −ϕ(−x+ θ/2, T/2) = ϕ(x− θ/2,−T/2).

But then both sides of each equation in (3.2) agree at time t = −T/2. Thus, (3.2)
holds for all time.

In the context of traveling-standing waves in deep water [48], it is natural to
define T as twice the value above, replacing all factors of T/2 by T/4. That way a
pure standing wave returns to its original configuration in time T instead of shifting
in space by π in time T . In the present work, we consider pairs of solitary waves
moving to the right at different speeds, so it is more natural to define T as the first
(rather than the second) time there exists a θ such that (3.2) holds.

3.1. Objective function. We adapt the overdetermined shooting method of
[47, 49] to compute solutions of (3.1)–(3.3). This method employs the Levenberg-
Marquardt method [39] with delayed Jacobian updates [49] to solve the nonlinear
least squares problem described below.

For (3.1), we build the symmetry into the initial conditions over which the
shooting method is allowed to search: we choose an integer n and consider initial
conditions of the form

(3.4) η̂k(0) = c2|k|−1, ϕ̂k(0) = ±ic2|k|,

where k ∈ {±1,±2, . . . ,±n2 } and η̂k(t), ϕ̂k(t) are the Fourier modes of η(x, t),
ϕ(x, t). The numbers c1, . . . , cn are assumed real and all other Fourier modes
(except η̂0) are zero. We set η̂0 to the fluid depth so that y = 0 is a symmetry line
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corresponding to the bottom wall. This is convenient for computing the Dirichlet-
Neumann operator [49]. In the formula for ϕ̂k, the minus sign is taken if k < 0 so
that ϕ̂−k = ϕ̂k. We also solve for the period,

(3.5) T = cn+1.

The phase shift θ is taken as a prescribed parameter here. Alternatively, in a study
of traveling-standing waves [48], the author defines a traveling parameter β and
varies θ = cn+2 as part of the algorithm to obtain the desired value of β. This
parameter β is less meaningful for solitary wave collisions in shallow water, so we
use θ itself as the traveling parameter in the present study. We also need to specify
the amplitude of the wave. This can be done in various ways, e.g. by specifying the
value of the energy,

E =
1

2π

∫ 2π

0

1
2ϕGϕ+ 1

2gη
2 dx,

by constraining a Fourier mode such as η̂1(0), or by specifying the initial height of
the wave at x = 0:

η(0, 0) = η̂0 +

n/2∑
k=1

2c2k−1.

Thus, to enforce (3.3), we can minimize the objective function

(3.6) f(c) =
1

2
r(c)T r(c),

where

r1 =
(

choose one: E − a , η̂1(0)− a , η(0, 0)− a
)
,(3.7)

r2j = Im{eijθ/2η̂j(T/2)}, r2j+1 = Re{eijθ/2ϕ̂j(T/2)}, (1 ≤ j ≤M/2).

Here a is the desired value of the chosen amplitude parameter. Alternatively, we
can impose (3.2) directly by minimizing

(3.8) f̃ =
1

2
r21 +

1

4π

∫ 2π

0

([
η(x, T )− η(x− θ, 0)

]2
+
[
ϕ(x, T )− ϕ(x− θ, 0)

]2)
dx,

which also takes the form 1
2r
T r if we define r1 as above and

(3.9)
r4j−2 + ir4j−1 =

√
2
[
η̂j(T )− e−ijθη̂j(0)

]
,

r4j + ir4j+1 =
√

2
[
ϕ̂j(T )− e−ijθϕ̂j(0)

]
,

(1 ≤ j ≤M/2).

Note that f measures deviation from evenness and oddness of η(x + θ/2, T/2)

and ϕ(x + θ/2, T/2), respectively, while f̃ measures deviation of η(x + θ, T ) and

ϕ(x + θ, T ) from their initial states. In the first example of §4, we minimize f̃

directly, while in the second we minimize f and check that f̃ is also small, as a
means of validation. The number of equations, m = M + 1 for f and m = 2M + 1
for f̃ , is generally larger than the number of unknowns, n+ 1, due to zero-padding
of the initial conditions. This adds robustness to the shooting method and causes
all Fourier modes varied by the algorithm, namely those in (3.4), to be well-resolved
on the mesh.



6 J. WILKENING

3.2. Computation of the Jacobian. To compute the kth column of the
Jacobian J = ∇cr, which is needed by the Levenberg-Marquardt method, we solve
the linearized equations along with the nonlinear ones:

(3.10)
∂

∂t

(
q
q̇

)
=

(
F (q)

DF (q)q̇

)
,

q(0) = q0 = (η0, ϕ0),

q̇(0) = q̇0 = ∂q0/∂ck.

Here q = (η, ϕ), q̇ = (η̇, ϕ̇), F (q) is given in (2.1), DF is its derivative (see [49]
for explicit formulas), and a dot represents a variational derivative with respect to
perturbation of the initial conditions, not a time derivative. To compute ∂ri/∂ck
for i ≥ 2 and k ≤ n, one simply puts a dot over each Fourier mode on the right-hand
side of (3.7) or (3.9), including η̂j(0) and ϕ̂j(0) in (3.9). If k = n+ 1, then ck = T
and

∂r2j
∂T

= Im{eijθ/2(1/2)∂tη̂j(T/2)}, ∂(r4j + ir4j+1)

∂T
=
√

2
[
∂tϕ̂j(T )

]
in (3.7) and (3.9), respectively, with similar formulas for ∂(r4j−2 + ir4j−1)/∂T and
∂r2j+1/∂T . The three possibilities for r1 are handled as follows:

case 1:
∂r1
∂ck

= Ė =
1

2π

∫ 2π

0

[ϕ̇ηt − η̇ϕt]t=0 dx, (k ≤ n),
∂r1
∂cn+1

= 0,

case 2:
∂r1
∂ck

= η̇∧
1 (0) = δk,1, (k ≤ n+ 1),

case 3:
∂r1
∂ck

= η̇(0, 0) = 2δk,odd, (k ≤ n),
∂r1
∂cn+1

= 0,

where δk,j and δk,odd equal 1 if k = j or k is odd, respectively, and equal zero
otherwise. The vectors q̇ in (3.10) are computed in batches, each initialized with a
different initial perturbation, to consolidate the work in computing the Dirichlet-
Neumann operator during each timestep. See [49, 48] for details.

4. Numerical results

As mentioned in the introduction, our idea is to use collisions of unidirectional
Stokes (i.e. traveling) waves as starting guesses to find time-periodic and relative
periodic solutions of the Euler equations. We begin by computing traveling waves of
varying wave height and record their periods. This is easily done in the framework
of §3. We set θ = π/64 (or any other small number) and minimize f̃ in (3.8).
The resulting “period” T will give the wave speed via c = θ/T . Below we report
T = 2πc, i.e. T is rescaled as if θ were 2π. We control the amplitude by specifying
η̂1(0), which is the second option listed in §3 for defining the first component r1
of the residual. A more conventional approach for computing traveling waves is to
substitute η(x− ct), ϕ(x− ct) into (2.1) and solve the resulting stationary problem
(or an equivalent integral equation) by Newton’s method [12, 11, 37]. Note that
the wave speed c here is unrelated to the vector c of unknowns in (3.4).

With traveling waves in hand, out next goal is to collide two of them and search
for a nearby time-periodic solution, with θ = 0. As shown in Figure 1, varying η̂1(0)
from 0 to 7.4×10−4 causes the period of a Stokes wave with wavelength λ = 2π and
mean fluid depth h = 0.05 to decrease from TO = 28.1110 to TA = 22.9739, and
the wave height (vertical crest-to-trough distance) to increase from 0 to 0.02892.
Solution C is the closest among the Stokes waves we computed to satisfying 5TC =
6TA, where p = 5 is the smallest integer satisfying p+1

p TA < TO. We then combine
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Figure 1. Plots of wave height and first Fourier mode versus
period for Stokes waves with wavelength 2π and fluid depth h =
0.05. The temporal periods are 6TA = 137.843 ≈ 137.738 = 5TC .
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Figure 2. Wave profile and velocity potential of Stokes waves
labeled A and C in Fig. 1, plotted over one spatial period at t = 0.

solution A with a spatial phase shift of solution C at t = 0. The resulting initial
conditions are

(4.1)
ηA+C
0 (x) = h+

[
ηA0 (x)− h

]
+
[
ηC0 (x− π)− h

]
,

ϕA+C
0 (x) = ϕA0 (x) + ϕC0 (x− π),

where h = 0.05 is the mean fluid depth. Plots of ηA0 (x), ηC0 (x − π), ϕA0 (x) and
ϕC0 (x−π) are shown in Figure 2. If the waves did not interact, the combined solution
would be time-periodic (to the extent that 5TC = 6TA, i.e. to about 0.076%). But
the waves do interact. In addition to the complicated interaction that occurs when
they collide, each slows the other down between collisions by introducing a negative
gradient in the velocity potential between its own wave crests. Indeed, as shown in
the right panel of Figure 2, the velocity potential increases rapidly across a right-
moving solitary wave and decreases elsewhere to achieve spatial periodicity. The
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Figure 3. Collision of two right-moving Stokes waves that nearly
return to their initial configuration after the interaction. (left) So-
lutions A and C were combined via (4.1) and evolved through one
collision to t = 137.738. (right) Through trial and error, we ad-
justed the amplitude of the smaller Stokes wave and the simulation
time to obtain a nearly time-periodic solution.

decreasing velocity potential induces a background flow opposite to the direction
of travel of the other wave. In the left panel of Figure 3, we see that the net effect
is that neither of the superposed waves has returned to its starting position at
t = 5TC , and the smaller wave has experienced a greater net decrease in speed.
However, as shown in the right panel, by adjusting the amplitude of the smaller
wave (replacing solution C by B) and increasing T slightly to 138.399, we are able

to hand-tune the Stokes waves to achieve f̃ ≈ 5.5× 10−8, where θ is set to zero in
(3.8). Note that as t varies from 0 to T/10 in the left panel of Figure 4, the small
wave advances by π units to the right while the large wave advances by 1.2π units.
The waves collide at t = T/2. This generates a small amount of radiation, which
can be seen at t = T in the right panel of Figure 3. Some radiation behind the
large wave is present for all t > 0, as shown in Figure 5.

Before minimizing f̃ , we advance the two Stokes waves to the time of the first
collision, t = T/2. At this time, the larger solitary wave has traversed the domain 3
times and the smaller one 2.5 times, so their peaks lie on top of each other at x = 0.
The reason to do this is that when the waves merge, the combined wave is shorter,
wider, and smoother than at any other time during the evolution. Quantitatively,
the Fourier modes of η̂k(t) and ϕ̂k(t) decay below 10−15 for k ≥ 600 at t = 0,
and k ≥ 200 when t = T/2. Thus, the number of columns needed in the Jacobian
is reduced by a factor of 3, and the problem becomes more overdetermined, hence
more robust. For the calculation of a time-periodic solution, we let t = 0 correspond
to this merged state, which affects the time labels when comparing Figures 4 and 6.
As a final initialization step, we project onto the space of initial conditions satisfying
(3.4) by zeroing out the imaginary parts of η̂k(0) and the real parts of ϕ̂k(0), which
are already small. Surprisingly, this improves the time-periodicity of the initial
guess in (3.8) to f̃ = 2.3× 10−8.

We emphasize that our goal is to find any nearby time-periodic solution by
adjusting the initial conditions to drive f̃ to zero. Energy will be conserved as the
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Stokes Stokes

Figure 4. Evolution of two Stokes waves that collide repeatedly,
at times t ≈ T/2+kT , k ≥ 0. (left) Traveling solutions A and B in
Figure 1 were initialized with wave crests at x = 0 and x = π, re-
spectively. The combined solution is approximately time-periodic,
with period T = 138.399. (right) The same solution, at later times,
starting with the second collision (t = 3T/2).

Stokes, h=0.05 Stokes, h=0.05

Figure 5. A different view of the solutions in Figure 4 shows
the generation of background waves. Shown here are the functions
η(x+ 8πt/T, t), which give the dynamics in a frame moving to the
right fast enough to traverse the domain four times in time T . In
a stationary frame, the smaller and larger solitary waves traverse
the domain 5 and 6 times, respectively.

solution evolves from a given initial condition, but is only imposed as a constraint (in
the form of a penalty) on the search for initial conditions when the first component
of the residual in (3.7) is set to r1 = E − a. In the present calculation, we use
r1 = η(0, 0)− a instead. In the second example, presented below, we will constrain
energy. In either case, projecting onto the space of initial conditions satisfying (3.4)

can cause r1 to increase, but it will decrease to zero in the course of minimizing f̃ .
This projection is essential for the symmetry arguments of §3.1 to work.
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periodic periodic

Figure 6. Time-periodic solutions near the Stokes waves of
Figure 4. (left) h = 0.05, η(0, 0) = 0.0707148, T = 138.387,

f̃ = 4.26 × 10−27. (right) h = 0.0503, η(0, 0) = 0.0707637,

T = 138.396, f̃ = 1.27 × 10−26. The background radiation was
minimized by hand in the right panel by varying h and η(0, 0).

periodic, h=0.05 periodic, h=0.0503

Figure 7. Same as Figure 5, but showing the time-periodic so-
lutions of Figure 6 instead of the Stokes waves of Figure 4. The
Stokes waves generate new background radiation with each colli-
sion while the time-periodic solutions are synchronized with the
background waves to avoid generating additional disturbances.

We minimize f̃ subject to the constraint η(0, 0) = 0.0707148, the third case

described in §3 for specifying the amplitude. This causes f̃ to decrease from 2.3×
10−8 to 4.26 × 10−27 using M = 1200 grid points and N = 1200 time-steps (to
t = T ). The results are shown in the left panel of Figures 6 and 7. The main
difference between the Stokes collision and this nearby time-periodic solution is that
the Stokes waves generate additional background ripples each time they collide while
the time-periodic solution contains an equilibrium background wave configuration
that does not grow in amplitude after the collision. While the background waves in
the counter-propagating case (studied in [49]) look like small-amplitude standing
waves, these background waves travel to the right, but slower than either solitary
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wave. After computing the h = 0.05 time-periodic solution, we computed 10 other
solutions with nearby values of h and η(0, 0) to try to decrease the amplitude of the
background radiation. The best solution we found (in the sense of small background
radiation) is shown in the right panel of Figures 6 and 7, with h = 0.0503 and
η(0, 0) = 0.0707637. The amplitude of the background waves of this solution are
comparable to that of the Stokes waves after two collisions.

Our second example is a relative periodic solution in which the initial Stokes
waves (the starting guess) are B and C in Figure 1 instead of A and C. As before,
solution C is shifted by π when the waves are combined initially, just as in (4.1).
Because the amplitude of the larger wave has been reduced, the difference in wave
speeds is smaller, and it takes much longer for the waves to collide. If the waves
did not interact, we would have

(4.2) cB,0 = 0.23246089, cC,0 = 0.22808499, T0 =
2π

cB,0 − cA,0
= 1435.86,

where wave B crosses the domain 53.1230 times in time T0 while wave C crosses the
domain 52.1230 times. The subscript 0 indicates that the waves are assumed not
to interact. Since the waves do interact, we have to evolve the solution numerically
to obtain useful estimates of T and θ. We arbitrarily rounded T0 to 1436 and made
plots of the solution at times ∆t = T0/1200. We found that η is nearly even (up to a
spatial phase shift) for the first time at 463∆t = 554.057. This was our initial guess
for T/2. The phase shift required to make η(x+ θ/2, T/2) approximately even and
ϕ(x+θ/2, T/2) approximately odd was found by graphically solving ϕ(x, T/2) = 0.
This gives the initial guess θ/2 = 2.54258. This choice of T and θ (with ηB+C

and ϕB+C as initial conditions) yields f = 2.0 × 10−11 and f̃ = 1.5 × 10−10.
We then minimize f holding E and θ constant, which gives f = 2.1 × 10−29 and
f̃ = 3.0× 10−26. We note that f̃ is computed over [0, T ], twice the time over which
the solution was optimized by minimizing f , and provides independent confirmation
of the accuracy of the solution and the symmetry arguments of §3.1.

The results are plotted in Figure 8. We omit a plot of the initial guess (the
collision of Stokes waves) as it is indistinguishable from the minimized solution. In
fact, the relative change in the wave profile and velocity potential is about 0.35
percent,

(4.3)

(
‖ηStokes − ηperiodic‖2 + ‖ϕStokes − ϕperiodic‖2

‖ηStokes − h‖2 + ‖ϕStokes‖2

)1/2

≤ 0.0035,

and T/2 changes even less, from 554.057 (Stokes) to 554.053 (periodic). By con-
struction, E and θ/2 do not change at all. It was not necessary to evolve the
Stokes waves to T/2, shift space by θ/2, zero out Fourier modes that violate the
symmetry condition (3.1), and reset t = 0 to correspond to this new initial state.
Doing so increases the decay rate of the Fourier modes (slope of ln |η̂k| vs k) by a
factor of 1.24 in this example, compared to 3.36 in the previous example, where it
is definitely worthwhile.

The large change from T0/2 = 717.93 to T/2 = 554.053 is due to nonlinear
interaction of the waves. There are two main factors contributing to this change in
period. The first is that the waves do not fully combine when they collide. Instead,
the trailing wave runs into the leading wave, passing on much of its amplitude
and speed. The peaks remain separated by a distance of d = 0.52462 at t = T/2,
the transition point where the waves have the same amplitude. Thus, the peak
separation changes by π − d rather than π in half a period. The second effect is
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Figure 8. A relative-periodic solution found using a superposi-
tion of the Stokes waves labeled B and C in Figure 1 as a starting
guess. Unlike the previous case, the waves do not fully merge at
t = T/2.

that the larger wave slows down the smaller wave more than the smaller slows the
larger. Recall from Fig. 2 that each wave induces a negative potential gradient
across the other wave that generates a background flow opposing its direction of
travel. Quantitatively, when the waves are well separated, we find that the taller and
smaller waves travel at speeds cB = 0.231077 = 0.994049cB,0 and cC = 0.226153 =
0.991531cC,0, respectively. The relative speed is then (cB − cC) = 1.12526(cB,0 −
cC,0). Thus,

(4.4)
π − d
cB − cC

<
T

2
<

π − d
cB,0 − cC,0

<
T0
2

=
π

cB,0 − cC,0
,

with numerical values 531.5 < 554.1 < 598.0 < 717.9. This means that both effects
together have overestimated the correction needed to obtain T from T0. This is
because the relative speed slows down as the waves approach each other, which is
expected since the amplitude of the trailing wave decreases and the amplitude of
the leading wave increases in this interaction regime. Indeed, the average speed of
the waves is

(4.5) cB =
θ/2− d/2
T/2

= 0.993388cB,0, cC =
θ/2 + d/2− π

T/2
= 0.991737cC,0,

which are slightly smaller and larger, respectively, than their speeds when well
separated. Note that T/2 in (4.4) may be written T/2 = (π − d)/(cB − cC). We
used θ/2 = 2.54258 + 40π in (4.5) to account for the 20 times the waves cross the
domain (0, 2π) in time T/2 in addition to the offset shown in Figure 8.

5. Comparison with KdV

In the previous section, we observed two types of overtaking collisions for the
water wave: one in which the larger wave completely subsumes the smaller wave for
a time, and one where the two waves remain distinct throughout the interaction.
Similar behavior has of course been observed for the Korteweg-de Vries equation,
which was part of our motivation for looking for such solutions. Lax [32] clas-
sified overtaking collisions of two KdV solitons as bimodal, mixed, or unimodal.
Unimodal and bimodal waves are analogous to the ones we computed above, while
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mixed mode collisions have the larger wave mostly subsume the smaller wave at the
beginning and end of the interaction, but with a two-peaked structure re-emerging
midway through the interaction. Lax showed that if 1 < c1/c2 < A = (3 +

√
5)/2,

the collision is bimodal; if c1/c2 > 3, the collision is unimodal; and if A < c1/c2 < 3,
the collision is mixed. Here c1 and c2 are the wave speeds of the trailing and leading
waves, respectively, at t = −∞. Leveque [33] has studied the asymptotic dynam-
ics of the interaction of two solitons of nearly equal amplitude. Zou and Su [53]
performed a computational study of overtaking water wave collisions, compared
the results to KdV interactions, and found that the water wave collisions ceased
to be elastic at third order. Craig et. al. [15] also found that solitary water waves
collide inelastically. This does not conflict with our results since we optimize the
initial conditions to make the collision elastic. Head on collisions have been studied
numerically by Su and Mirie [44, 38], experimentally by Maxworthy [35], and by
a mixture of analysis and computation by Craig et. al. [15].

Validation of KdV as a model of water waves has also been studied extensively.
A formal derivation may be found in Ablowitz and Segur [1]. Rigorous justification
has been given by Bona, Colin and Lannes [9], building on earlier work by Craig
[14] as well as Schneider and Wayne [43]. According to [9], some gaps still exist
in the theory in the spatially periodic case. Experimental studies of the validity
of KdV for describing surface waves have been performed by Zabusky and Galvin
[52] as well as Hammack and Segur [24]. Recently, Ostrovsky and Stepanyants [40]
have compared internal solitary waves in laboratory experiments to the predictions
of various model equations, including KdV, and give a comprehensive overview of
the literature on this subject [40].

Our objective in this section is to determine quantitatively whether the solu-
tions of the water wave equations that we computed in §4 are well-approximated
by the KdV equation. Following Ablowitz and Segur [1], we introduce a small
parameter ε and dimensionless variables

ŷ =
y

h
, x̂ =

√
ε
x

h
, t̂ =

√
εg

h
t, η̂ =

η

εh
, φ̂ =

φ√
εgh3

,

where h is the fluid depth. We assume the bottom boundary is at y = −h rather
than 0 in this derivation, so that ŷ runs from −1 to εη̂. The Laplacian becomes

∆ε = h−2
(
ε∂2x̂ + ∂2ŷ

)
, which allows for φ̂ = φ̂0 + εφ̂1 + ε2φ̂2 + · · · to be computed

order by order, with leading terms satisfying

φ̂0,ŷ = 0, φ̂1 = −1

2
(1 + ŷ)2φ̂0,x̂x̂, φ̂2 =

1

24
(1 + ŷ)4φ̂0,x̂x̂x̂x̂.

Here we used ∆φ = 0 and φy(x,−h) = 0. Note that φ̂0 is independent of ŷ, and
agrees with the velocity potential φ on the bottom boundary, up to rescaling:

φ̂0(x̂, t̂) = (εgh3)−1/2φ(x,−h, t).

From the equations of motion, ηt = φy − ηxφx and φt + 1
2φ

2
x + 1

2φ
2
y + gη = 0, one

finds that

η̂t̂ + ûx̂ = ε
{

1
6 ûx̂x̂x̂ − (η̂û)x̂

}
+O(ε2),

ût̂ + η̂x̂ = ε
{

1
2 ûx̂x̂t̂ −

1
2∂x̂(û)2

}
+O(ε2),
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Figure 9. Comparison of the solutions of the KdV and Euler
equations, initialized identically with the superposition of Stokes
waves labeled A and B in Figure 1. The final time T is set to
138.399, as in Fig. 3, when the Euler solution nearly returns to its
initial configuration after a single overtaking collision.

where û(x̂, t̂) = ∂x̂φ̂0(x̂, t̂). Expanding η̂ = η̂0 + εη̂1 + · · · , û = û0 + εû1 + · · · , we
find that

η̂0 = f(x̂− t̂; τ) + g(x̂+ t̂; τ),

û0 = f(x̂− t̂; τ)− g(x̂+ t̂; τ),

2fτ + 3ffr + (1/3)frrr = 0,

−2gτ + 3ggl + (1/3)glll = 0,

where we have introduced characteristic coordinates r = x̂− t̂, l = x̂+ t̂ as well as
a slow time scale τ = εt̂ to eliminate secular growth in the solution with respect to
r and l at first order in ε; see [1] for details. The notational conflict of g(l, τ) with
the acceleration of gravity, g, is standard, and will not pose difficulty below.

In our case, the waves travel to the right, so we may set g(l, τ) = 0 in the
formulas above. Returning to dimensional variables, we then have

η(x, t) = hεf

(√
ε

(
x

h
−
√
g

h
t

)
,

√
g

h
ε3/2t

)
,

which satisfies

(5.1) ηt + αηx +
3
√
gh

2h
ηηx +

1

6

√
gh h2ηxxx = 0,

where α =
√
gh. Note that ε drops out. For comparison with the results of

§4, we will add h to η and set α = − 1
2

√
gh instead. In Figure 9, we compare

the solution of (5.1), with initial condition η(x, 0) = ηA+B
0 (x), defined similarly to

ηA+C
0 (x) in (4.1), to the solution of the free-surface Euler equations shown in Figs. 3

and 4. Shortly after the waves are set in motion, the KdV solution develops high-
frequency oscillations behind the larger peak that travel left and quickly fill up the
computational domain with radiation. The solution of the Euler equations remains
much smoother. The large peak of the KdV solution also travels 3.4% faster, on
average, than the corresponding peak of the Euler solution, so that at t = 138.399,
when the taller Euler wave has traversed the domain 6 times, the taller KdV wave
has traversed it 6.206 times. For our purposes, these discrepancies are much too
large for KdV to be a useful model, and we conclude that the first example in §4 is
well outside of the KdV regime.
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Figure 10. Comparison of the solutions of the KdV and Euler
equations, both initialized with the superposition of Stokes waves
labeled B and C in Figure 1. T = 1108.11 here.

In this comparison, timestepping the KdV equation was done with the 8 stage,
5th order implicit/explicit Runge-Kutta method of Kennedy and Carpenter [28].
Spatial derivatives were computed spectrally using the 36th order filter of Hou and
Li [25]. We found that 2048 spatial grid points and 96000 timesteps was sufficient
to reduce the error at t = 138.399 below 5 × 10−6 near the larger peak and below
6×10−7 elsewhere, based on comparing the solution to one with 3072 grid points and
192000 timesteps. Our solutions of the Euler equations are much more accurate
since there are no second or third spatial derivative terms present to make the
equations stiff. Thus, we can use 8th or 15th order explicit timestepping rather
than 5th order implicit/explicit timestepping. Monitoring energy conservation and
performing mesh refinement studies suggests that we obtain 13–14 digits of accuracy
in the solutions of the Euler equations, at which point roundoff error prevents
further improvement in double-precision arithmetic.

In Figure 10, we repeat this computation using initial conditions corresponding
to the superposition of Stokes waves ηB+C

0 (x), which was used as a starting guess
for the second example of §4. This time the KdV solution does not develop visible
high-frequency radiation in the wave troughs, and the solutions of KdV and Euler
remain close to each other for much longer. However, the interaction time for a
collision also increases, from T = 138.399 in the first example to T = 1108.11 here.
In Fig. 10, by t = T/6, the taller KdV and Euler waves have visibly separated from
each other, and by t = T/2, when the Euler waves have reached their minimum
approach distance, the KdV solution is well ahead of the Euler solution. Thus,
while there is good qualitative agreement between the KdV and Euler solutions,
they do not agree quantitatively over the time interval of interest. From this point
of view, the second example of §4 also lies outside of the KdV regime.

An alternative measure of the agreement between KdV and Euler is to compare
the solutions from §4 with nearby relative-periodic solutions of KdV. In other words,
we wish to quantify how much the initial conditions and period have to be perturbed
to convert a relative-periodic solution of the Euler equations into one for the KdV
equations. Since we used a superposition of Stokes waves for the initial guess to
find time-periodic and relative-periodic solutions of the Euler equations, we will
use a similar superposition (of cnoidal waves) for KdV. The vertical crest-to-trough
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heights of the three Stokes waves considered in §4 are

(5.2) HA = 0.028918699, HB = 0.004973240, HC = 0.002683648.

Well-known [29, 20] periodic traveling wave solutions of (5.1) are given by

η(x, t) = h−H +
H

m

(
1− E(m)

K(m)

)
+H cn2

(
2K(m)

x− ct
λ

∣∣∣∣m) ,
λ =

√
16mh3

3H
K(m), c =

[
1− H

2h
+

H

mh

(
1− 3E(m)

2K(m)

)]√
gh,

where we added h to η to match the change in α from
√
gh to − 1

2

√
gh in (5.1).

Here K(m) and E(m) are the complete elliptic integrals of the first and second
kind, respectively, and cn(z|m) is one of the Jacobi elliptic functions [20, 22]. In
our case λ = 2π, g = 1 and h = 0.05. For each H in (5.2), we solve the λ equation
for m using Mathematica [51], and then evaluate η(x, 0) on a uniform grid that is
fine enough that its Fourier coefficients decay below machine roundoff. The values
of m′ = 1−m are

m′A = 1.81924× 10−35, m′B = 1.98689× 10−14, m′C = 1.79643× 10−10.

This approach requires extended precision arithmetic to compute m and evaluate
η, but the running time takes only a few seconds on a typical laptop. A periodized
version of the simpler sech2 formula could be used for the first two waves, but
decays too slowly for wave C to be spatially periodic to roundoff accuracy. Once
these cnoidal waves have been computed, we superpose their initial conditions to
form ηA+B

0 and ηB+C
0 , just as in §4. It is well-known that a superposition of N

cnoidal waves retain this form when evolved via KdV, with N amplitude and N
phase parameters governed by an ODE describing pole dynamics in the complex
plane [31, 2, 19]. In the N = 2 case, the solutions are relative-periodic.

Figures 11 and 12 compare the time-periodic and relative-periodic solutions of
the Euler equations, computed in §4, to these cnoidal solutions of KdV. Since the pe-
riods are different, only the initial conditions are compared. In the larger-amplitude
example, shown in Fig. 11, the Euler solution is not as flat in the wave trough as
the cnoidal solution due to an additional oscillatory component (the “tuned” radi-
ation). From the difference plot in the right panel, we see that the crest-to-trough
amplitude of these higher frequency oscillations is roughly 6× 10−4, or 2.1% of the
wave height HA. The Euler solution is time-periodic with period TEuler = 138.387
while the cnoidal solution is relative-periodic, returning to a spatial phase shift of
its initial condition at TKdV = 113.079, which differs from TEuler by 18%. In the
smaller-amplitude example, shown in Fig. 12, both solutions have smooth, flat wave
troughs, and it is difficult to distinguish one from the other in the left panel. The
crest-to-trough amplitude of the difference in the right panel is roughly 5.5× 10−5,
or 1.1% of HB . The relative change in period is (TEuler − TKdV)/TEuler = 3.6%.
While the left panels of Figures 11 and 12 show close agreement between relative-
periodic solutions of the Euler and KdV equations at t = 0, it should be noted
that the wave amplitudes of the cnoidal solutions were chosen to minimize the dis-
crepancy in these figures. The change in period by 18% and 3.6%, respectively, is
perhaps a better measure of agreement.

A final comparison of the two equations is made in Fig. 13, where we evolve
the Euler equations with the KdV initial conditions. This requires an initial con-
dition for ϕ(x) = φ(x, η(x)), where we have suppressed t in the notation for this
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discussion since it is held fixed at 0. Based on the derivation presented above, we
first solve φx(x, 0) =

√
g/h[η(x) − h] for φ on the bottom boundary. We then use

the approximation

ϕ(x) ≈ φ(x, 0)− η(x)2

2
φxx(x, 0) +

η(x)4

24
φxxx(x, 0)

to evaluate φ on the free surface. In the left panel of Figure 13, the larger wave
grows and overturns before t = T/400 when evolved under the Euler equations,
instead of traveling to the right when evolved via KdV. To handle wave breaking,
we switched to an angle-arclength formulation of the free-surface Euler equations
[26, 4]. In the small-amplitude example in the right panel, the Euler solution
develops visible radiation and falls slightly behind the KdV solution, although the
phases are closer at T/2 than the result of evolving the Stokes waves under KdV
in Figure 10. We also tried evaluating

φ(x, y) =
√
g/h

∞∑
k=1

2k−1η̂k sin(kx) cosh(ky)

at y = η(x) to obtain the initial condition for ϕ(x), where η̂k are the Fourier modes
of η(x) at t = 0, but the results were worse for the large-amplitude example —
the wave breaks more rapidly — and were visually indistinguishable in the small-
amplitude example from the results plotted in Fig. 13.

In summary, the large-amplitude time-periodic solution of the Euler equations
found in §4 is well outside of the KdV regime by any measure, and the small-
amplitude relative-periodic solution is closer, but not close enough to achieve quan-
titative agreement over the entire time interval of interest.

6. Conclusion

We have demonstrated that the small amount of background radiation produced
when two Stokes waves interact in shallow water can often be tuned to obtain time-
periodic and relative-periodic solutions of the free-surface Euler equations. Just as
for the Korteweg-de Vries equation, the waves can fully merge when they collide or
remain well-separated. However, the comparison is only qualitative as the waves
are too large to be well-approximated by KdV theory.

In future work, we will study the stability of these solutions using Floquet
theory. Preliminary results suggest that the first example considered above is un-
stable to harmonic perturbations while the second example is stable. In the stable
case, an interesting open question is whether the Stokes waves used as a starting
guess for the minimization algorithm, which have the same energy as the relative-
periodic solution found, might remain close to it forever, executing almost-periodic
oscillations around it. Presumably θ would need to be varied slightly for this to be
true, since θ is a free parameter that we selected by hand to obtain a small value
of f̃ for the initial guess. Another open question is whether there are analogues
for the Euler equations of N -phase quasi-periodic solutions of the KdV equation
with N ≥ 3. We are confident that the methods of this paper could be used to
construct degenerate cases of N ≥ 3 solitary water waves colliding elastically in a
time-periodic or relative-periodic fashion, along the lines of what was done for the
Benjamin-Ono equation in [3]. Computing more general quasi-periodic dynamics
of the form η(x, t) = H(~κx+ ~ωt+ ~α), ϕ(x, t) = Φ(~κx+ ~ωt+ ~α) with H,Φ ∈ C(TN )
and ~κ, ~ω, ~α ∈ RN seems possible in principle using a more sophisticated shooting
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method to determine H, Φ and ~ω. Existence of such solutions for the Euler equa-
tions would show that non-integrable equations can also support recurrent elastic
collisions even if they cannot be represented as N -phase superpositions of elliptic
functions.
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