
An Algorithm for Computing Jordan Chains and

Inverting Analytic Matrix Functions

Jon Wilkening ∗

May 6, 2007

Abstract

We present an efficient algorithm for obtaining a canonical system of Jor-
dan chains for an n×n regular analytic matrix function A(λ) that is singular
at the origin. For any analytic vector function b(λ), we show that each term
in the Laurent expansion of A(λ)−1b(λ) may be obtained from the previous
terms by solving an (n+d)× (n+d) linear system, where d is the order of the
zero of det A(λ) at λ = 0. The matrix representing this linear system contains
A(0) as a principal submatrix, which can be useful if A(0) is sparse. The last
several iterations can be eliminated if left Jordan chains are computed in ad-
dition to right Jordan chains. The performance of the algorithm in floating
point and exact (rational) arithmetic is reported for several test cases. The
method is shown to be forward stable in floating point arithmetic.

Key words. Matrix valued function, Jordan chain, Keldysh chain, analytic
perturbation, matrix inversion, Laurent series

AMS subject classifications. 47A56, 47A46, 15A09, 41A58

1 Introduction

Analytic matrix functions arise frequently in mathematics. The most common
application [7, 10] involves solving the ordinary differential equation

Al
dlx

dtl
+ · · ·+ A0x = 0 (1.1)

using the ansatz x(t) = [tk

k!x0 + · · ·+ txk−1 + xk]eλ0t, (x0 6= 0), which is a solution
if and only if

k∑
m=0

tk−meλ0t

(k −m)!

 m∑
j=0

1
j!

A(j)(λ0)xm−j

 ≡ 0, (1.2)

∗University of California, Berkeley, CA 94720 (wilken@math.berkeley.edu). The research of
the author was supported in part by the Applied Mathematical Sciences subprogram of the Office
of Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098,
and by the National Science Foundation through grant DMS-0101439.

2 J. WILKENING

where A(λ) = A0+· · ·+λlAl. Vectors x0, . . . , xk satisfying the bracketed expression
in (1.2) for m = 0, . . . , k are said to form a (right) Jordan chain of length k +1 for
A(λ) at λ0. This condition is equivalent to requiring that the vector polynomial

x(λ) = x0 + (λ− λ0)x1 + · · ·+ (λ− λ0)kxk (1.3)

is a root function of A(λ) at λ0 of order k + 1, i.e. A(λ)x(λ) = O(λ− λ0)k+1.
Analytic matrices also arise in contour integral representations of solutions of

various boundary value problems. For example, a solution of the Poisson equation
∆u = 1 in the first quadrant with Dirichlet boundary conditions is given by the
formula u(r, θ) = r2/4 + uS(r, θ), where

uS(r, θ) =
∫

γ
rλF (λ, θ)A(λ)−1b(λ) dλ, (1.4)

γ is a contour surrounding λ0 = 2 in the complex plane, b(λ) =
1

λ− 2

(
−1/4

−1/4

)
,

F (λ, θ) =
(
cos λθ, sin λθ

λ

)
, and

A(λ) =
(

1 0
cos λπ

2
1
λ sin λπ

2

)
, (1.5)

Note that at λ = 2, A(λ) is singular and b(λ) has a pole. The function uS(λ, θ)
may be computed by expanding A(λ)−1b(λ) in a Laurent expansion and applying
the residue theorem, which yields

uS(r, θ) = r2
[(

θ
π −

1
4

)
cos 2θ + 1

π ln r sin 2θ
]
. (1.6)

Jordan chains for A(λ) are important in this problem because the root functions
defined in (1.3) appear as poles of A(λ)−1b(λ), and may be used to recursively
compute an arbitrary number of terms in the Laurent expansion; see Section 4.
Singularities of general elliptic systems in the plane near corners and interface
junctions have representations analogous to (1.4); see [4].

Other applications of analytic matrix functions include stochastic matrices and
Markov chains [11], linear vibrations [13], singular differential equations [3], dy-
namical systems [16], and control theory [3, 7].

The local behavior of a matrix or operator A(λ) that depends analytically on λ
has been studied extensively [2, 9, 12], especially in the case that A(λ) is a matrix
pencil A0 + λA1 [7, 8, 14, 17] or a matrix polynomial A0 + · · · + λlAl [10, 15].
Monic (Al = I) matrix polynomials are often reduced to the matrix pencil case
via a standard linearization procedure [7, 10]. However, for analytic matrices such
as (1.5) above, the expansion of A(λ) does not terminate, and any truncation may
have a singular term Al of highest order; hence, an approach based on linearization
seems inappropriate in this context. Truncating the expansion and computing the
Smith form [10] is also an option, but this is very expensive; see Section 4.2.

ANALYTIC MATRIX FUNCTIONS 3

In [1], Avrachenkov et. al. present an algorithm for expanding the inverse of
an analytic matrix function in a Laurent series. More specifically, they show how
to reduce a system of matrix equations (involving n× n matrices) of the form

A0X0 = B0

. . .

A0Xs−1 + · · ·+ As−1X0 = Bs−1

(
Ak, Bk given
Xk unknown

)
(1.7)

to another system of this form involving p × p matrices, where p = dim kerA0 is
the geometric multiplicity of the origin. Let d be its algebraic multiplicity. Our
approach employs a different type of reduction based on adding d rows and columns
to A0 to construct an invertible matrix that can be used to recursively solve for
successive terms in the Laurent expansion of A(λ)−1. It also provides complete
Jordan chain information, which is often important in applications.

Canonical systems of Jordan chains depend discontinuously on the leading
coefficients A0, . . . , As−1 of A(λ), where Ak = 1

k!A
(k)(0) and s is the order of

the pole of A(λ)−1 at λ = 0. Nevertheless, there are many applications (e.g. in
algebraic geometry or partial differential equations) where these coefficients are
known exactly. In such cases our algorithm can be run using rational arithmetic
to solve the problem analytically. In finite precision arithmetic, the method is
forward stable when nullspaces are computed using a threshold on the smallest
singular values. The condition number depends on how close A(λ) is to an analytic
matrix function that is even more singular at the origin; see Appendix A.

Numerical stability is possible because we have specified the location of the
eigenvalue of interest (e.g. the origin) as part of the problem statement. The eigen-
value itself cannot be computed in floating point arithmetic (unless it is simple)
as roundoff error is likely to split the eigenvalue like O(ε1/d), where ε is machine
precision and d is the algebraic multiplicity of the eigenvalue. Even using extra
precision, it is impossible to determine affirmatively that a tight cluster of eigenval-
ues should exactly coalesce unless their multiplicities (or locations) are determined
algebraically. The stability of this algorithm is useful in applications with a sim-
ple, parasitic eigenvalue λ1 close to a known eigenvalue λ0. For example, integer
values of λ0 occur frequently in the corner singularities problem described above.
By computing a canonical system of Jordan chains at λ0, we learn the algebraic
multiplicity of λ0 and can use this information to compute λ1 by a contour integral
technique without corruption from λ0.

2 Canonical systems of root functions

In this section we establish notation and summarize the local spectral theory of
analytic matrix functions; the presentation roughly follows [9].

Suppose A(λ) is an n × n matrix whose entries depend analytically on λ in a
neighborhood of the origin. Suppose ∆(λ) := det A(λ) has a zero of order d ≥ 1 at
the origin. In particular, we assume that A(λ) is regular, i.e. ∆(λ) is not identically

4 J. WILKENING

zero. A vector polynomial

x(λ) = x0 + λx1 + · · ·+ λκ−1xκ−1, (xk ∈ Cn, κ ≥ 1) (2.1)

is called a root function of A(λ) of order κ at λ = 0 if

A(λ)x(λ) = O(λκ) and x0 6= 0. (2.2)

This is equivalent to requiring that (x0; . . . ;xκ−1) ∈ ker Aκ−1, where (x; y) =
(xT , yT)T and the matrices Ak are defined via

Ak =


A0 0 · · · 0
A1 A0 · · · 0
· · · · · · · · · · · ·
Ak Ak−1 · · · A0

 , Aj =
1
j!

A(j)(0). (2.3)

Here we think of Cnκ as representing the space P
/
λκP, where P is the space of

formal power series in λ with coefficients in Cn and we identify two power series
with the same leading terms x0 + λx1 + · · · + λκ−1xκ−1. In this representation,
the action of A(λ) on such a power series becomes a matrix-vector multiplication
Aκ−1 · (x0; . . . ;xκ−1).

The vectors xk in (2.1) are said to form a Jordan chain (or Keldysh chain) of
length κ. Several vector polynomials xj(λ) form a system of root functions if

xj(λ) = xj,0 + λxj,1 + · · ·+ λκj−1xj,κj−1, (1 ≤ j ≤ p) (2.4)
A(λ)xj(λ) = O(λκj), (2.5)
the set {xj,0}p

j=1 is linearly independent in Cn. (2.6)

Such a system is said to be canonical if p = dim ker A0, x1(λ) is a root function
of maximal order κ1, and for j > 1, xj(λ) has maximal order κj among all root
functions x(λ) such that x(0) is linearly independent of x1(0), . . . , xj−1(0) in Cn.
The resulting sequence of numbers κ1 ≥ · · · ≥ κp is uniquely determined by A(λ);
see [9] and Section 3.

As a simple example, suppose A(λ) = A0 − λI. Then x0, . . . , xκ−1 form a
Jordan chain of length κ at λ = 0 iff x0 6= 0 and

A0x0 = 0, A0xk = xk−1 (1 ≤ k ≤ κ− 1) (2.7)

In this case x0, . . . , xκ−1 are linearly independent and can be extended to a basis
matrix U = [x0, . . . , xn−1] that puts A in Jordan canonical form: U−1AU = J .
(This requires knowing all the eigenvalues of A and finding a canonical system of
Jordan chains at each). But in general the xk need not be linearly independent
(some can even be zero) and it is more useful to reduce A to local Smith form
A(λ) = C(λ)D(λ)E(λ)−1 as we now explain.

For any system of root functions xj(λ) (not necessarily canonical), we may
choose constant vectors xp+1, . . . , xn that extend x1(0), . . . , xp(0) to a basis for

ANALYTIC MATRIX FUNCTIONS 5

Cn. We call the system x1(λ), . . . , xp(λ), xp+1, . . . , xn an extended system of root
functions, and set κp+1 = · · · = κn = 0. Next we define the matrices

E(λ) =
[
x1(λ), . . . , xn(λ)

]
, (2.8)

D(λ) = diag(λκ1 , . . . , λκn), (2.9)

C(λ) = A(λ)E(λ)D(λ)−1. (2.10)

By (2.5), all singularities of C(λ) at the origin are removable. Since E(0) is invert-
ible, det C(λ) has a zero of order d −

∑n
j=1 κj at the origin, where d is the order

of the zero of ∆(λ) at the origin. The following theorem is proved in [9]:

Theorem 2.1 The following three conditions are equivalent:

(1) the columns xj(λ) of E(λ) form an extended canonical system of root func-
tions for A(λ) at λ = 0 with orders κ1 ≥ · · · ≥ κn ≥ 0.

(2) C(0) is invertible.

(3)
∑n

j=1 κj = d, where d is the algebraic multiplicity of λ = 0

Canonical systems of root functions are useful due to the fact that they com-
pletely characterize the meromorphic behavior of A(λ)−1. Observe that

A(λ)−1 = E(λ)D(λ)−1C(λ)−1, (2.11)

where E(λ) and C(λ) are invertible at λ = 0. Thus for any holomorphic vector
function b(λ), all poles of A(λ)−1b(λ) at the origin are linear combinations of the
functions λ−1−kxj(λ) with 1 ≤ j ≤ p and 0 ≤ k ≤ κj − 1. Moreover, each of these
functions actually occurs as a pole. For example, if we define bjk(λ) as the unique
vector polynomial of degree κ1 − 1 such that

bjk(λ) = λ−1−kA(λ)[xj,0 + · · ·+ λkxj,k] + O(λκ1), (2.12)

then

A(λ)−1bjk(λ) = λ−1−kxj(λ) + O(1), (1 ≤ j ≤ p, 0 ≤ k ≤ κj − 1). (2.13)

Other shifted and truncated versions of the residual A(λ)xj(λ) can also be used
for bjk(λ), but the choice in (2.12) is relevant to Algorithm 4.6 below.

3 An algorithm for computing Jordan chains

In the previous section, we described the standard theoretical (as opposed to al-
gorithmic) construction of canonical systems of root functions for A(λ) at λ = 0.
This approach can be thought of as a depth-first approach: x1(λ) is chosen to be
any root function of maximal order κ1, and the remaining root functions xj(λ) are
chosen to be of maximal order κj such that xj(0) is linearly independent of the
previously accepted vectors x0(0), . . . , xj−1(0).

6 J. WILKENING

Our algorithm uses a breadth-first approach. Instead of starting with a single
root function of maximal order, we start with the space of all root functions of
order at least 1 (namely ker A0). We then use this space to find all root functions
of order at least 2, then 3, etc., until there are no root functions of higher order.
At the kth stage of this process (starting at k = 0), we extract the Jordan chains
of length exactly k + 1, thereby obtaining a canonical system xj(λ) in reverse j
order (from p to 1).

In more detail, let us define the subspaces Wk and the canonical injections
ι : Cnk → Cn(k+1) via

Wk = ker Ak ⊂ Cn(k+1), ι(x0; . . . ;xk−1) = (0; x0; . . . ;xk−1). (3.1)

The block structure of the augmented matrices Ak defined in (2.3) implies that
ι(Wk−1) ⊂ Wk for k ≥ 1. A Jordan chain of length k + 1 may be thought of as a
non-zero element of the space

Wk = Wk

/
ι(Wk−1), (3.2)

where we take ι(W−1) to mean {0} ⊂ Cn. Evidently, the projection π0 : Cn(k+1) →
Cn given by

π0(x0; . . . ;xk) = x0 (3.3)

is injective from Wk to Cn, so several vectors in Wk are linearly independent iff
their zeroth terms are linearly independent in Cn. To count Jordan chains, it is
useful to define

Rk = dim(Wk), rk = dim(Wk), k ≥ 0 (3.4)

so that Rk = rk + · · · + r0 and rk ≤ · · · ≤ r0. These last inequalities follow from
the fact that the truncation operator τ : Cn(k+2) → Cn(k+1) given by

τ(x0; . . . ;xk+1) = (x0; . . . ;xk) (3.5)

injectively maps Wk+1 into Wk, i.e. shortening a Jordan chain gives another valid
Jordan chain. Finally, to extract all Jordan chains of length k + 1, we choose
vectors

x̃j,· = (x̃j,0; . . . ; x̃j,k) ∈ Wk, (j = rk+1 + 1, . . . , rk) (3.6)

such that the equivalence classes [x̃j,·] ∈ Wk are linearly independent and com-
plement the subspace τ(Wk+1) ⊂ Wk consisting of truncations of longer chains.
We also set κj = k + 1 for each j in (3.6). When rk+1 = rk, the range of indices
in (3.6) is empty and there are no partial multiplicities κj equal to k + 1. The
algorithm terminates as soon as rk = 0, which happens when k = s := κ1, the
maximal Jordan chain length. Since rk − rk+1 = #{j : κj = k + 1} and rs = 0, we
find that

κ1 + · · ·+ κp = s(rs−1 − rs) + (s− 1)(rs−2 − rs−1) + · · ·+ 1(r0 − r1)
= rs−1 + · · ·+ r0 = Rs−1 = d,

(3.7)

ANALYTIC MATRIX FUNCTIONS 7

Algorithm 3.1 (Jordan chains)

k = 0
X0 = X0 = kerA0 (i.e. columns form a basis for the kernel)
while rk > 0 (rk, Rk = # of columns in Xk, Xk)

[Vk;Uk] = kerAk+1 (Uk is Rk × rk+1, Vk is n× rk+1)
Xk+1 = [XkUk;Vk]
Xk+1 = [ι(Xk), Xk+1] (ι acts on matrices column by column)
U ′

k = last rk rows of Uk (U ′
k is rk × rk+1)

Ũk = any extension of the columns of U ′
k to a basis for Crk

X̃k = XkŨk (cols of X̃k are J-chains of length k + 1)
k = k + 1

s = k (s = κ1 = maximal Jordan chain length)
return X̃s−1, . . . , X̃0

where p = r0 is the geometric multiplicity of the origin, d is the algebraic multi-
plicity, and the final equality follows from Theorem 2.1.

In Algorithm 3.1, we represent Wk = ker Ak and Wk = Wk

/
ι(Wk−1) using

matrices whose columns span these spaces:

colspan Xk = Wk, colspan Xk = {(x0;x) ∈ Wk : x ⊥ Wk−1}
= ker([Ak; ι(Xk−1)∗]).

(3.8)

Here ι(Xk−1)∗ is the conjugate transpose of the matrix ι(Xk−1). Structurally, we
have

Xk = [ι(Xk−1), Xk] =
[(

0nk×r0

X0

)
,

(
0n(k−1)×r1

X1

)
, . . . ,

(
Xk

)]
. (3.9)

Rather than compute ker([Ak+1; ι(Xk)∗]) directly to obtain Xk+1, we make use
of the fact that shortening a Jordan chain gives another valid Jordan chain in
the equivalence class (but not necessarily satisfying the orthogonality condition);
hence, there are matrices Uk and Vk such that Xk+1 = (XkUk;Vk). In this repre-
sentation, the condition Xk+1 = ker([Ak+1; ι(Xk)∗]) is equivalent to

Ak+1︷ ︸︸ ︷(
Ak+1 Ak · · · A0

0 (X∗
k)

)(
0 Xk

In×n 0

)(
Vk

Uk

)
︸ ︷︷ ︸

Xk+1

=
(

0n×rk+1

0Rk×rk+1

)
. (3.10)

Thus, we need only find the kernel of the (n + Rk) × (n + Rk) matrix Ak+1 to
determine Uk, Vk and rk+1, which immediately give Xk+1. Note that A0 = A0, As

8 J. WILKENING

is invertible (with s = κ1), and these matrices are nested in the sense that Ak is a
principal submatrix of Ak+1 for k ≥ 0:

τ(Xk)
∗
Xk−1

ι(τ(Xk))
∗Xk

πk(Xk)
∗

[Ak+1, . . . , A1]Xk

= 0

Ak

rkn + Rk−1

n + Rk−1

rk

n

Rk

rkn Rk−1

=Ak+1 =

[Ak+1, . . . , A1]Xk

ι(τ(Xk))
∗
Xk

A0

πk(Xk)
∗

n

Rk

n Rk

(3.11)
Here πk(x0; . . . ;xk) = xk and R−1 is taken to be zero. This nested structure
reduces the work required to form these matrices, and allows a substantial part of
the computation of ker(Ak) to be re-used when computing ker(Ak+1). Moreover, if
A0 is sparse and d = Rs−1 is small in comparison to n, each Ak will also be sparse.
Kernels may easily be found symbolically by reducing to row-echelon form, or in
floating point arithmetic using the singular value decomposition. Re-use may be
achieved in the former case using a modified pivoting strategy, and in the latter
case using Givens rotations to quickly restore bi-diagonal form, which is the first
stage of the SVD algorithm [7]. If the algorithm used to compute kernels returns
orthonormal vectors (i.e. in the floating point case), then the matrices Xk and Xk

will have orthonormal columns for all k.
It remains to explain the final step in which Jordan chains of length k + 1

are extracted. As discussed after (3.6) above, this is equivalent to extending the
columns of τ(Xk+1) to a basis for Wk. Since the columns of Xk are already a basis
for Wk, the two bases must be related to each other by an invertible transformation.
But linear independence of cosets in Wk is equivalent to linear independence of
their zeroth terms in Cn. It follows that the columns of X̃k provide such an
extension iff they belong to Wk and there is an invertible matrix Ek such that

π0([τ(Xk+1), X̃k]) = π0(Xk)Ek, (k ≥ 0). (3.12)

The formulas Xk+1 = [XkUk;Vk] and Xk = [ι(Xk−1), Xk] ensure that

π0(τ(Xk+1)) = π0(Xk+1) = π0(Xk)Uk = π0(Xk)U ′
k, (3.13)

where U ′
k consists of the last rk rows of the Rk × rk+1 matrix Uk. As the columns

of π0(Xk+1) are linearly independent, the columns of U ′
k must also be linearly

independent, and there is an rk × (rk − rk+1) matrix Ũk such that Ek = [U ′
k, Ũk]

is invertible. The matrix X̃k = XkŨk then satisfies (3.12), as required.

Remark 3.2 If rk+1 = rk, then Ũk and X̃k are empty matrices with zero columns,
and there are no partial multiplicities κj equal to k + 1.

Remark 3.3 The process of extending U ′
k to an invertible matrix [U ′

k, Ũk] is easily
done in many ways, e.g. using the QR factorization or SVD of U ′

k, or by row
reducing the adjoint matrix (U ′

k)
∗ symbolically to find its kernel.

ANALYTIC MATRIX FUNCTIONS 9

Example 3.4 Let A(λ) =
(

λ −λ2

λ2 0

)
= A0 + λA1 + λ2A2. In this case, it is

simplest to compute Xk = ker([Ak; ι(Xk−1)∗]) directly, which yields

X0 =
(

1 0
0 1

)
, X1 =


0
1
0
0

 , X2 =


0

1

1

0

0

0

 , X3 = ∅8×0. (3.14)

Uk and Vk may be read off from Xk+1 = (XkUk;Vk): U0 = (0; 1), V0 = (0; 0),
U1 = (1; 0; 1), V1 = (0; 0), U2 = ∅4×0, V2 = ∅2×0. We then obtain X̃0 = (1; 0),
X̃1 = ∅4×0, X̃2 = X2, so a canonical system of root functions is

x1(λ) =
(

λ
1

)
, κ1 = 3, x2(λ) =

(
1
0

)
, κ2 = 1. (3.15)

This example shows (with k = 1) that although the columns of τ(Xk+1) are guar-
anteed to be linearly independent modulo ι(Wk−1), they need not satisfy the or-
thogonality condition required to belong to colspan(Xk).

Example 3.5 Let A(λ) =

 2λ −λ iλ
−2iλ 1 2λ
−2i i− λ 1

 = A0 +λA1. We find that r0 = 1,

r1 = 1, r2 = 1 and r3 = 0 so that s = 3. We also obtain

A3 =



0 0 0 0 0 98i

0 1 0 −2 −12i 180

−2i i 1 0 −10 −52i

−i 0 −2 0 0 0

4 10 2i 25 0 0

−60i −52i 30 164i 2401 0

 , X2 =



0 0 49i

0 0 0

0 0 −98

0 5i 72

0 0 98

0 −10 46i

i 4 60i

0 10 52i

−2 −2i 30


, (3.16)

U0 = (5), V0 = (4; 10;−2i), U1 =
(
−164

5 i; 49
5

)
, V1 = (60i; 52i; 30), U2 = ∅3×0,

V2 = ∅3×0, X3 = ∅12×0. Note that (Vk;Uk) are the null vectors for the matrices
Ak+1. Since X̃2 = X2 is the only non-empty Jordan chain matrix,

x1(λ) =

 49i + 72λ + 60iλ2

98λ + 52iλ2

−98 + 46iλ + 30λ2

 , κ1 = 3 (3.17)

is a canonical system of root functions. A simpler result can be obtained using
X1 = (i; 0;−2; 1; 2; 0) and X2 = (i; 0;−2; 1; 2; 0; 2i; 2i; 0), but these do not satisfy
the orthogonality condition ι(Xk−1)∗Xk = 0. Nevertheless, the algorithm remains
correct if arbitrary vectors in ι(Wk−1) are added to the columns of Xk. This can

10 J. WILKENING

be useful when the algorithm is run in exact arithmetic to reduce the size of the
rational entries in Ak and Xk by setting certain components of Xk to zero rather
than requiring orthogonality; see Section 4.1. Different choices of the Xk lead to
different matrices Ak and to different root functions xj(λ), but to the same terms
in the Laurent expansion of A(λ)−1 in Section 4. In floating point arithmetic,
requiring orthogonality seems most natural (and stable: see Appendix A).

4 Laurent expansion of A(λ)−1

As discussed in Section 2, the meromorphic behavior of A(λ)−1 is completely
characterized by any canonical system of Jordan chains. In this section, we show
how to use the output of Algorithm 3.1 to efficiently compute an arbitrary number
of terms in the Laurent expansion of A(λ)−1b(λ) for any analytic (or meromorphic)
vector function b(λ).

Let s = κ1 denote the maximal Jordan chain length. This is the first index for
which Xs has no columns, Xs = ι(Xs−1), and the linear system

As

(
v
u

)
=
(

As As−1 · · · A0

0d×n (X∗
s−1)

)(
0sn×n Xs−1

In×n 0n×d

)(
v
u

)
︸ ︷︷ ︸

(x0; . . . ;xs)

=
(

b
0

)
(4.1)

is uniquely solvable and provides a linear mapping b 7→ (v;u) 7→ (x0; . . . ;xs). Here
d = Rs−1 is the algebraic multiplicity of the origin, xk, b, v ∈ Cn and 0, u ∈ Cd.
We will denote this mapping by

(x0; . . . ;xs) = solve(b) :=
(

0 Xs−1

I 0

)
A−1

s

(
b
0

)
. (4.2)

Suppose we wish to compute the first q + 1 terms in the Laurent expansion of
A(λ)−1b(λ), where b(λ) = b0 + λb1 + λ2b2 + · · · . Equation (2.11) shows that
the most singular term in the expansion of A(λ)−1 is λ−s. If we can find any
x(λ) = x0 + λx1 + · · ·+ λq+sxq+s such that

A(λ)[λ−sx0 + · · ·+ λqxq+s] = b0 + · · ·+ λqbq + O(λq+1), (4.3)

then
A(λ)−1b(λ) = λ−s[x(λ) + O(λq+1)], (4.4)

so the terms x0, . . . , xq are correctly determined by solving (4.3). Matching like
powers of λ in (4.3), the xk should satisfy

Aq+s(x0; . . . ;xq+s) = (0; . . . ; 0; b0; . . . ; bq). (4.5)

To verify that this equation has a solution, observe that for q ≥ 0 we have
dim ker A∗

q+s = dim ker A∗
s−1; hence, the block structure of A∗

q+s ensures that

(x0; . . . ;xq+s) ∈ ker A∗
q+s ⇒ xs = · · · = xq+s = 0, (q ≥ 0, xk ∈ Cn).

(4.6)

ANALYTIC MATRIX FUNCTIONS 11

As a result, the right-hand side of (4.5) belongs to ker(A∗
q+s)

⊥, as required. Note
that any two solutions of (4.5) differ by at most a vector (0; . . . ; 0; ξ0; . . . ; ξs−1) ∈
C(q+1+s)n with (ξ0; . . . ; ξs−1) ∈ colspan(Xs−1). This shows to what extent the
terms xq+1, . . . , xq+s are left undetermined in (4.3).

Next we show how to bootstrap a solution to (4.5) by repeatedly solving the
linear system (4.1). Suppose k ≥ 1 and we have found vectors xi satisfying

Ak+s−1(x0; . . . ;xk+s−1) = (0; . . . ; 0; b0; . . . ; bk−1). (4.7)

For example, if k = 1 then such a solution is given by (x0; . . . ;xs) = solve(b0). We
wish to find corrections ξi such that


A0 0 · · · 0
A1 A0 · · · 0
· · · · · · · · · · · ·

Ak+s Ak+s−1 · · · A0




x0

· · ·
xk−1

xk + ξ0

· · ·
xk+s−1 + ξs−1

ξs


=



0
...
0
b0
...
bk


. (4.8)

Moving the known vectors xi to the right hand side, this is equivalent to solving

Ak+s(0; . . . ; 0; ξ0; . . . ; ξs) = (0; . . . ; 0; bk −Ak+sx0 − · · · −A1xk+s−1). (4.9)

A solution of this equation is given by (ξ0; . . . ; ξs) = solve
(
bk −

∑k+s
j=1 Ajxk+s−j

)
,

which we use to correct the xi in (4.8):

Algorithm 4.1 (Laurent expansion of A(λ)−1b(λ), first q + 1 terms)

determine s, As, Xs−1 using Algorithm 3.1
x0 = · · · = xq+s = 0
for k = 0, . . . , q

(ξ0; . . . ; ξs) = solve
[
bk −

∑k+s
j=1 Ajxk+s−j

]
, (omit sum if k = 0)

for i = 0, . . . , s
xk+i = xk+i + ξi

return (x0; . . . ;xq)

Remark 4.2 If A0 is invertible (so that s = d = 0), this algorithm reduces to the
well-known recursion xk = A−1

0

[
bk −

∑k
j=1 Ajxk−j

]
, k = 0, . . . , q.

Remark 4.3 After the final iteration, the minimum norm solution of (4.5) has
been found:

(x0, . . . , xq+s) = pinv(Aq+s)(0; . . . ; 0; b0; . . . ; bq). (4.10)

12 J. WILKENING

To see this, note that each time through the loop, (ξ1; . . . ; ξs) ⊥ Ws−1 due to the
last d equations of (4.1). By (3.9), we conclude that

ξs ⊥ W0 , (ξs−1; ξs) ⊥ W1 , . . . , (ξ1; . . . ; ξs) ⊥ Ws−1. (4.11)

But any (w0; . . . ;ws−1) ∈ Ws−1 also satisfies w0 ∈ W0, (w0;w1) ∈ W1, etc. Thus
we have 

ξs

0
...
0

 ,


ξs−1

ξs

0
...

 , . . . ,


ξ1

ξ2
...
ξs

 ∈ (Ws−1)⊥. (4.12)

Since (xq+1; . . . ;xq+s) is a sum of such vectors, it belongs to (Ws−1)⊥, as claimed.

Remark 4.4 Several solutions may be found simultaneously by adding additional
columns to the vectors b(λ) and x(λ) above. In particular, replacing b(λ) by In×n

and x(λ) by Q(λ), we obtain A(λ)−1 = λ−s[Q0 + λQ1 + λ2Q2 + · · ·]. However, in
practice one often wishes to apply A(λ)−1 to a single vector function b(λ), in which
case it is more efficient to carry out the procedure directly rather than compute
the Laurent expansion of A(λ)−1 first. See Section 4.2 below.

Example 4.5 Let A(λ) be defined as in Example 3.5. Then s = 3 and A3, X2

were given in (3.16) above. For any q ≥ 2, Algorithm 4.1 gives

Q0 =

1
2 0 0
0 0 0
i 0 0

 , Q1 =

−i 0 − i
2

−i 0 0
1 0 1

 , Q2 =

1 − i
2 −1

0 0 −1
i 1 −i

 , (4.13)

and Q3≤k≤q = 03×3, i.e. the Laurent expansion A(λ)−1 = λ−3[Q0 + λQ1 + · · ·]
terminates at Q2.

4.1 Exact arithmetic and left Jordan chains

When Algorithm 4.1 is performed in infinite precision using rational numbers, the
cost of each operation also grows with the problem size, so a straightforward O(n3)
operation count will underestimate the running time. We have found that two
modifications can significantly reduce the size of the rational numbers that arise
in the computation. The first modification involves the last Rk rows of Ak+1. We
define the first n rows as before, set vj = Ak+1(1:n, j) and define j1, . . . , jRk

to be
the first Rk indices encountered for which vj is linearly dependent on v1, . . . , vj−1.
Then we define row n+ i of Ak+1 to have a one in column ji and zeros in all other

ANALYTIC MATRIX FUNCTIONS 13

columns. In Example 3.5, the resulting matrices As and Xs−1 are

A3 =



0 0 0 0 0 2i

0 1 0 −2 −2i 4

−2i i 1 0 −2 −2i

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 , X2 =



0 0 i

0 0 0

0 0 −2

0 i 1

0 0 2

0 −2 0

i 1 2i

0 2 2i

−2 0 0


. (4.14)

This change sacrifices the minimum norm property of the solution of (4.5) found
by Algorithm 4.1 in favor of setting certain components to zero.

The second modification is to compute left Jordan chains as well as right Jordan
chains, and use them together to eliminate the last s iterations of Algorithm 4.1.
Suppose b0, . . . , bs−1 ∈ Cn are given and we wish to find vectors ξ0, . . . , ξs−1 such
that there exist ξs, . . . , ξ2s−1 for which

(
As−1 0
Bs−1 As−1

)
︸ ︷︷ ︸

A2s−1

 ξ0

· · ·
ξ2s−1

 =
(

0; . . . ; 0
b0; . . . ; bs−1

)
, Bs−1 =

 As · · · A1

· · · · · · · · ·
A2s−1 · · · As

 .

(4.15)
The first ns equations in (4.15) ensure there is a w ∈ Cd such that (ξ0; . . . ; ξs−1) =
Xs−1w. Let Ys−1 be any d×ns matrix whose rows form a basis for the left nullspace
of As−1. Then applying Ys−1 to the last ns equations in (4.15) gives

Ys−1Bs−1Xs−1w = Ys−1(b0; . . . ; bs−1). (4.16)

The d × d matrix Ys−1Bs−1Xs−1 is invertible since ker(Ys−1) = range(As−1) and
W2s−1 = ιs(Ws−1) implies that range(Bs−1Xs−1) ∩ range(As−1) = {0}. Thus w
and (ξ0; . . . ; ξs−1) can be determined without computing the other ξi. We denote
the mapping (b0; . . . ; bs−1) 7→ (ξ0; . . . ; ξs−1) by

solve2(·) := Xs−1(Ys−1Bs−1Xs−1)−1Ys−1(·). (4.17)

The matrix Ys−1 can be obtained by applying Algorithm 3.1 to A(λ)T since

(yT
k , . . . , yT

0)


A0 0 ··· 0

A1 A0 ··· 0

··· ··· ··· ···
Ak Ak−1 ··· A0

 = 0 ⇔


AT

0 0 ··· 0

AT
1 AT

0 ··· 0

··· ··· ··· ···
AT

k AT
k−1 ··· AT

0


y0

...
yk

 = 0.

(4.18)
Such vectors y0, . . . , yk are said to form a left Jordan chain for A(λ) of length k+1
at the origin. Equivalently, the corresponding root function y(λ) = y0 + · · ·+λkyk

must satisfy y(λ)T A(λ) = O(λk+1).

14 J. WILKENING

Algorithm 4.6 (Laurent expansion of A(λ)−1b(λ), first q + 1 terms)

determine s, As, Xs−1, Ys−1 using Algorithm 3.1
if q < s− 1, increase it to q = s− 1
x0 = · · · = xq = 0
for k = 0, . . . , q − s (possibly empty loop)

(ξ0; . . . ; ξs) = solve
[
bk −

∑k+s
j=1 Ajxk+s−j

]
, (omit sum if k = 0)

for i = 0, . . . , s
xk+i = xk+i + ξi

(ξ0; . . . ; ξs−1) = solve2
[bq−s+1

· · ·
bq

−
Aq+1 · · · A1

· · · · · · · · ·
Aq+s · · · As

x0

· · ·
xq

]
for i = 1, . . . , s

xq−s+i = xq−s+i + ξi−1

return (x0; . . . ;xq)

Example 4.7 In Example 4.5 with X2 as in (4.14), we obtain the matrices

1
2

−i −1 i −1 0 −1 −i 0 0
−1 0 −1 −i 0 0 0 0 0
−i 0 0 0 0 0 0 0 0

 ,

Q0 0 0
Q1 Q0 0
Q2 Q1 Q0

 (4.19)

for (Y2B2X2)−1Y2 and X2(Y2B2X2)−1Y2, respectively, with Qi as in (4.13).

Remark 4.8 Each column of Xs−1 has the form (0; . . . ; 0; x0; . . . ;xk) for some
0 ≤ k ≤ s− 1. The corresponding column of Bs−1Xs−1 contains the coefficients of
the truncated residual

b(λ) = λ−sA(λ)[λs−1−k(x0 + · · ·+ λkxk)] + O(λs), (4.20)

which satisfies A(λ)−1b(λ) = λ−1−k(x0 + · · ·+ λkxk) + O(1). See (2.12) above.

4.2 Performance comparison

To evaluate the performance of these algorithms, we generated random matrices
A0 and A1 with integer entries ranging from 0 to 1000, and random vectors y1,
y2, y3 with entries ranging from 0 to 10. For i = 1, 2, 3, we zeroed out the last
4 entries of yi, replaced row n − i of A0 by yT

i A0, and set yi,n−i = −1, so that
yT

i A0 = 0. We then replaced row n of A0 by yT
1 A1 to make y1 − λ(0; . . . ; 0; 1) into

a left Jordan chain of length 2 for A(λ) = A0 + λA1. The right Jordan chains
(which appear as poles in A(λ)−1) are quite complicated in this construction.

We repeated this process 5 times for each matrix size reported in Figure 1, and
recorded the median running time of each algorithm using a 900 MHz Sunblade
2000 with 2GB RAM to compute the first 3 terms (q = 2) in the Laurent expan-
sion of A(λ)−1b(λ), where b(λ) = In×n or b(λ) = e1, as indicated. In all cases
encountered, s = 2, p = 3 and d = 4, as expected in the above construction.

ANALYTIC MATRIX FUNCTIONS 15

101 102 103

10−2

10−1

100

101

102

103

104

Comparison of various algorithms

matrix size (n)

ru
nn

in
g

tim
e

(in
 s

ec
on

ds
)

Smith
form

symbolic
linear solve

Alg.
 4.

6 (
ex

ac
t a

rith
meti

c)

Alg.
4.1

 (fl
oa

ting
 po

int)

b(λ)=I

b(λ)=e 1

b(λ)=e1

b(λ)=I

with truncation

pin
v(

A 4
) (f

loa
ting

 po
int)

slopes of lines (from left to right):
10.4, 3.8, 3.7, 3.8, 3.4, 3.1, 2.9, 2.9

Figure 1: Comparison of various algorithms for computing the Laurent expansion
of (A0 + λA1)−1b(λ) for randomly generated matrix pencils (q = s = 2, d = 4).

Algorithm 4.1 was implemented in floating point arithmetic using Matlab.
Since this method computes the minimum norm solution of Aq+s(x0; . . . ;xq+s) =
(0; . . . ; 0; b0; . . . ; bq), we also plot the time it takes Matlab to find the pseudo-inverse
of A4. Algorithm 4.6 was implemented in exact arithmetic using Mathematica.
Since the Smith form of A(λ) also gives Jordan chain information, we include its
running time for comparison (using Maple, which is faster than Mathematica for
this). A more competitive benchmark is symbolic factorization with series trunca-
tion, which we implemented using Mathematica: each entry of A(λ) was given an
initial truncation error of O(λq+s+1), and each entry of b(λ) was given an initial
error of O(λq+1); Gaussian elimination with complete pivoting (on terms of lowest
leading order) was then used to solve the system, truncating series sums and prod-
ucts appropriately. Note that Algorithm 4.6 can solve for n right hand sides faster
than the symbolic approach can solve for one right hand side. Also, the symbolic
approach requires that s is known a-priori, whereas Algorithm 4.6 does not.

The best-fit lines in Figure 1 have been placed in regimes that are large enough
that lower order terms in the operation count become negligible, but small enough
that the computer hardware can operate efficiently. The slopes of the lines indicate
the scaling exponent α in t(n) = Cnα. It appears that Algorithm 4.6 scales better
when b(λ) = e1 than when b(λ) = I. This is presumably because the rational
numbers involved in the LU decomposition of A2 do not reach their full complexity

16 J. WILKENING

until the final stages of the factorization, whereas for b(λ) = I, all O(n3) operations
of the back-solve stage involve these large rational numbers. We also see that the
floating point algorithm scales as O(n3), as predicted by a straightforward floating
point operation count. In many cases where A(0) has special structure, it should
be possible to make use of the fact that As contains A(0) as a principal submatrix
to further improve this scaling.

A Numerical stability in floating point arithmetic

In this section we will show that the algorithms presented in this paper are forward
stable in floating point arithmetic with a condition number that depends on how
close A(λ) is to an even more singular analytic matrix function. This is possible
because we have specified the location of the eigenvalue of interest (e.g. the origin)
as part of the problem statement. Thus, we have to know more about the matrix
than can be determined by looking at a numerical approximation of it — we have
to know that A(0) is exactly singular. In particular, we do not claim to be able
to compute the Jordan canonical form of a matrix in a stable way unless the
eigenvalues are known a-priori, or can be determined algebraically (using exact
arithmetic for that part of the calculation). If the multiplicities can be determined
algebraically, the eigenvalues can be computed in floating point arithmetic (using
extra precision if necessary), but there is no way to determine affirmatively that a
cluster of eigenvalues should coalesce using floating point arithmetic alone.

Finding the Jordan chains of an analytic matrix function at the origin is a
generalization of the familiar problem of finding the kernel of an n× n matrix A,
which is solved numerically as follows. The user supplies a numerical approxima-
tion Ã of A and a tolerance σthresh. The singular value decomposition Ã = UΣV ∗

is then computed and the right singular vectors corresponding to singular values
σj < σthresh are returned as a basis for the kernel. This procedure is forward stable
due to the backward stability of the SVD algorithm:

Theorem A.1 (Backward stability of the SVD). Let Ã be a floating point repre-
sentable n × n matrix. There is a (small) constant C independent of Ã (and n)
such that the result of computing the SVD of Ã in floating point arithmetic (us-
ing Givens rotations for the bi-diagonal reduction process) is the exact SVD of a
nearby matrix Â satisfying

Â = Û Σ̂V̂ ∗, ‖Â− Ã‖ ≤ Cn2ε‖Ã‖, (A.1)

where ε is machine precision and the matrix multiplication is in exact arithmetic.

Remark A.2 The matrices Û and V̂ are stored implicitly as compositions of
Givens rotations so they are exactly orthogonal. If Householder reflections are
used in the reduction to bidiagonal form, the bound on the right hand side of
(A.1) involves the Frobenius norm instead of the 2-norm. This would require
minor modifications of the analysis below.

ANALYTIC MATRIX FUNCTIONS 17

Theorem A.3 (Forward stability of computing nullspaces). Suppose A = UΣV ∗

is an n×n matrix with dim kerA = p ≥ 0. Let gap = σn−p be the smallest non-zero
singular value of A, and suppose a tolerance σthresh is given such that

σthresh ≤
1
3

gap . (A.2)

Let α ≥ ‖A‖, γ > 0, and Ã be any floating point representable matrix satisfying

‖Ã−A‖ ≤ γαn2ε, γn2ε ≤ 1/3. (A.3)

Let Â = Û Σ̂V̂ ∗ be the result of computing the SVD of Ã in floating point arithmetic.
Then

Â = A + E, ‖E‖ ≤
(

γ +
4
3
C

)
αn2ε, |σ̂j − σj | ≤ ‖E‖, (1 ≤ j ≤ n),

(A.4)
where C is the backward stability constant of the SVD algorithm from (A.1). In
particular, if

ε <
σthresh

(γ + 4C/3)αn2
, (A.5)

the number of singular values satisfying σ̂j < σthresh is p and there is an orthogonal
n× p nullspace matrix X for A such that

‖X̃ −X‖ ≤ 1.1‖E‖
gap

, AX = 0, X∗X = Ip×p, (A.6)

where X̃ is the numerical nullspace matrix consisting of the last p columns of V
(stored implicitly using Givens rotations). Finally, if we explicitly compute the
matrix entries of X̃ in floating point arithmetic, we obtain a matrix X̂ satisfying
‖X̂ − X̃‖ ≤ 1

2Cn2ε as well as

‖X̂ −X‖ ≤ Kε, K = (1.1γ + 2C)n2 α

gap
. (A.7)

Remark A.4 The bound (A.4) on the singular values follows from Weyl’s the-
orem [7]. The bound (A.6) on X̃ follows from the “sin 2Θ” theorem [6] on the
perturbation of invariant subspaces. The constant 1.1 in (A.6) is related to the
choice of 1/3 in (A.2), for if 0 ≤ θ ≤ π

4 and 1
2 sin 2θ ≤ 1

3 then 2 sin θ
2 ≤

1.1
2 sin 2θ.

The requirement γn2ε ≤ 1/3 is satisfied automatically if (A.2) and (A.5) hold
(since gap ≤ α). The constant α can be any convenient bound on ‖A‖ (including
‖A‖ itself). The purpose of γ is to quantify the effect of starting with a poor
approximation Ã of A when analyzing Algorithm 3.1 below.

In summary, given A and and a tolerance σthresh satisfying (A.2), the nullspace
matrix X̂ computed in floating point arithmetic is close to an exact nullspace
matrix X as long as ε satisfies (A.5), and the error can be made arbitrarily small
by taking ε → 0. Thus, computing nullspaces is forward stable in floating point

18 J. WILKENING

arithmetic with condition number K proportional to n2‖A‖/ gap. Note that any
perturbation of A that decreases the dimension of the kernel will have a much
larger condition number due to the small, non-zero singular value(s) created by
the perturbation.

Except for the last step where we explicitly compute the matrix entries of X̂,
this procedure for computing the nullspace is also backward stable as zeroing out
the p smallest singular values σ̂j will not change Â very much; however, backward
stability is less useful than forward stability when the underlying problem depends
discontinuously on the matrix entries. For example, the algorithm “return the
n × 0 empty matrix X” is also backward stable as there are invertible matrices
arbitrarily close to any singular matrix.

Before analyzing the stability of Algorithm 3.1, it is instructive to consider the
naive algorithm employing the SVD to compute the nullspace matrices Xk directly
from Ak for k = 0, 1, 2, . . . , until Rk = dim ker Ak stops increasing. We identify
the maximal Jordan chain length s as the first k for which Rk = Rk−1 (with R−1

taken to be 0). The matrix Xs−1 then contains all the Jordan chain information
for A(λ). Setting γ = 1 and α = ‖As−1‖ in (A.7), we see that a natural candidate
for the condition number of this problem is

Knaive =
(1.1 + 2C)s2n2‖As−1‖

gapnaive
s−1

, (A.8)

where gapnaive
k is the smallest non-zero singular value of Ak. The bounds in (A.4)

above imply that given A(λ) of maximal Jordan chain length s at the origin and
a tolerance

σthresh ≤ min
0≤k≤s

(
1
3

gapnaive
k

)
, (A.9)

the naive algorithm will compute the dimensions R0, . . . , Rs correctly as long as

ε <
σthresh

(1 + 4C/3)(s + 1)2n2‖As‖
(A.10)

and as long as our numerical approximations Ãk of the coefficients of A(λ) lead
to augmented matrices that satisfy ‖Ãk − Ak‖ ≤ n2(k + 1)2ε‖Ak‖ for 0 ≤ k ≤ s.
Moreover, the computed nullspace X̂s−1 will be close to an exact nullspace matrix
Xs−1 for As−1:

‖X̂s−1 − Xs−1‖ ≤ Knaive ε. (A.11)

Thus, the naive algorithm is forward stable with condition number Knaive. How-
ever, this analysis overlooks one important detail: computing the nullspace of As−1

using the SVD will not respect the Jordan chain structure of this nullspace; hence,
there are likely to be internal inconsistencies when we try to extract Jordan chains
from Xs−1. This is illustrated in the following two examples:

Example A.5 Let A(λ) = P

1 + λ 0 0
0 a 0
3λ 0 λ2

Q∗, where P and Q are randomly

generated orthogonal matrices and a = 10−8. (The purpose of P and Q is to

ANALYTIC MATRIX FUNCTIONS 19

cause roundoff error). We find that s = 2 and gapnaive
k = a for 0 ≤ k ≤ 2. When

we compute X1 using the SVD, we obtain the kernel X̂1 of a nearby matrix Â1

with the same nullspace dimension as A1. (We ignore the errors in computing the
matrix entries of X̂1 from the Givens rotations). One possibility would be

Â1 =
(

P 0
0 P

)


1 0 0
0 a ε
0 0 0
1 0 0 1 0 0
0 0 0 0 a 0
3 0 0 0 0 0


(

Q∗ 0
0 Q∗

)
, X̂1 =

(
Q 0
0 Q

)


0 0
0 −ε/a
0 1
0 0
0 0
1 0

 .

If we denote the second column of X̂1 by (x0;x1), we see that the first column
of X̂1 deviates from the linear span of {(x0;x1), (0; x0)} by approximately ε/a,
which is of the same order as a in double precision arithmetic. Thus, if we wish to
post-process X̂1 to obtain a consistent Jordan chain structure (using e.g. the SVD
with a threshold to coalesce subspaces), we need the right hand side of (A.11) to
satisfy

Knaive ε < σthresh. (A.12)

This introduces an additional factor of gapnaive
s−1 in the requirement (A.10). In the

current example, this pushes the requirement beyond double precision arithmetic.

Example A.6 Let A(λ) = P

1 + λ 0 0
0 a + λ 0
3λ 0 λ2

Q∗, where a = 10−5. We again

find that s = 2, but this time gapnaive
0 = a, gapnaive

1 ≈ a2, and gapnaive
2 ≈ a3. If

we use double precision arithmetic, the singular vector corresponding to gapnaive
2

will likely be interpreted incorrectly as an element of the kernel of A2. Since the
next gap in the list of singular values of A2 is very large (around 0.28 � ε), the
linear span of these singular vectors will be computed very accurately and the
naive algorithm will return

X̂∗
2 = Z

0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 a2/c 0 0 −a/c 0 0 1/c 0

Q∗ 0 0
0 Q∗ 0
0 0 Q∗

+O(ε), (A.13)

where c =
√

1 + a2 + a4 and Z is an orthogonal 3 × 3 matrix. This matrix X̂2 is
incompatible with any Jordan chain structure since the chain of length 3 is not an
extension of a shorter chain. This shows the importance of the requirement (A.9)
on the success of the naive algorithm.

Algorithm 3.1 avoids internal inconsistencies in the nullspace matrices X̂k by
constructing them incrementally, with the Jordan structure built in. The price
we pay for this is that we do not look ahead at Ak+1 when computing Xk to help
guide the choice of insignificant digits (lost to roundoff error) in order to line up the

20 J. WILKENING

subspaces at the next iteration (to find chains of length k+1). Thus, Algorithm 3.1
may require more precision than the naive algorithm to find long chains, but the
naive algorithm will require additional precision to make sense of the nullspaces it
finds (and to avoid finding too many null vectors).

Examples A.5 and A.6 above are cases where the naive algorithm fails in double
precision arithmetic while Algorithm 3.1 succeeds (with typically 9 correct digits
in X̂ in the former case and 7 in the latter). If we set a = 10−8 and replace the
second column of A(λ) by (0; a;λ), then the naive algorithm will succeed in double
precision arithmetic while Algorithm 3.1 will fail to find the chain of length 2. If
we instead replace the second column by (0; a + λ;λ), then both algorithms will
fail unless extra precision is used: the naive algorithm will find a spurious chain
of length 3 while Algorithm 3.1 will fail to find the chain of length 2. In all cases,
both algorithms will succeed once ε is reduced to satisfy (A.12) or (A.28) below.

These examples can be understood by noting that the error in computing kerA0

is overwhelmingly in the direction of the second right singular vector v2 = Q(:, 2)
due to the large gap between σ1 and σ2 and the small gap between σ2 and σ3 = 0.
The requirements on ε for the success of the algorithms (and in particular the
quantities gapnaive

k) depend on where A1 maps v2. The examples above illustrate
several of the possibilities.

We now prove that Algorithm 3.1 is forward stable in floating point arithmetic.
Suppose A(λ) is exactly singular at the origin with maximal Jordan chain length s.
We define

α0 = ‖A0‖, (A.14)

αk =
(
1 + ‖A0‖2 + · · ·+ ‖Ak‖2

)1/2
, (0 ≤ k ≤ s), (A.15)

σ
(k)
j = jth singular value of Ak,

(
σ

(k)
1 ≥ · · · ≥ σ

(k)
n+Rk−1

)
(A.16)

gapk = σ
(k)
n+Rk−1−rk

= smallest non-zero singular value of Ak. (A.17)

The quantities αk are convenient upper bounds for ‖Ak‖, and, as before, R−1 = 0.
Note that σ

(k)
j and gapk are independent of which orthogonal matrices Xk and Xk

we use to represent the kernels. Also note that gaps is the smallest singular value
of As, which is invertible. The user must supply a threshold σthresh for computing
nullspaces that satisfies

σthresh ≤
1
3

(
min

0≤k≤s
gapk

)
. (A.18)

This requirement is often much less strict than (A.9). We assume that numerical
approximations of A0,. . . ,As are known to a tolerance

‖Ãk −Ak‖ ≤ n2ε ‖Ak‖, (0 ≤ k ≤ s). (A.19)

The first step of the algorithm is to compute the kernel X0 of A0 as described
above. In light of (A.19) and (A.14), Theorem A.3 implies that X̂0 satisfies

‖X̂0 − X0‖ ≤ (1.1 + 2C)n2 α0

gap0

ε,

(
ε <

σthresh

(1 + 4C/3)α0 n2

)
. (A.20)

ANALYTIC MATRIX FUNCTIONS 21

Next we choose δ > 0 (to be determined later) and formulate the induction hy-
pothesis

‖X̂k − Xk‖ ≤ Ck(n + Rk−1)2ε ≤ δ. (A.21)

From (A.20), we know C0 = (1.1 + 2C)α0/ gap0 works when k = 0. Our goal is
to derive a recursion for Ck that ensures that s is computed correctly, and that
(A.21) holds for 1 ≤ k ≤ s− 1 as well. To this end, we compute

Ãk+1 = fl
[(

Ãk+1 Ãk · · · Ã0

0 (X̂∗
k)

)(
0 X̂k

In×n 0

)]
, (A.22)

where fl(·) indicates that the calculation is done in floating point arithmetic, and
use (A.21) to conclude

‖Ãk+1 −Ak+1‖ ≤ γkαk+1(n + Rk)2ε, γk = (1 + δ)2[(k + 2) + 2Ck]. (A.23)

Next we compute [V̂k; Ûk] = fl
(
ker Ãk+1

)
and use Theorem A.3 to determine∥∥[V̂k; Ûk]− [Vk;Uk]

∥∥ ≤ (1.1γk + 2C)
αk+1

gapk+1

(n + Rk)2ε. (A.24)

Finally, we compute

X̂k+1 = fl
[(

0 X̂k

I 0

)(
V̂k

Ûk

)]
, X̂k+1 =

[(
0

Xk

)
,

(
Xk+1

)]
(A.25)

to obtain∥∥X̂k+1 − Xk+1

∥∥ ≤ ((2 + δ)Ck + (1 + δ)2 +
[
1.1γk + 2C

] αk+1

gapk+1

)
︸ ︷︷ ︸

Ck+1

(n + Rk)2ε.

We now select δ = 0.1 and use the fact that αk+1 ≥ gapk+1 to obtain a simpler
recursion (with larger terms):

Ck+1 =
(

5Ck +
4
3
(k + 3) + 2C

)
αk+1

gapk+1

, C0 = (1.1 + 2C)
α0

gap0

. (A.26)

This recursion can be solved explicitly:

Ck =
[
5k+1 − 1

2
C +

131
60

5k − 13
12
− k

3

]
αk

gapk

· · · α0

gap0

, (A.27)

which yields γk as well. In order for this analysis to be valid (and to determine
that k = s is the first index for which Ãk is invertible), we require

ε < min
(

δ

Cs−1(n + Rs−2)2
,

σthresh

(γs−1 + 4C/3)αs(n + Rs−1)2

)
. (A.28)

The bounds on ‖Ûk − Uk‖ and ‖V̂k − Vk‖ in (A.24) can now be used to derive
error estimates for the extracted Jordan chains X̃k in Algorithm 3.1. The bound
(A.23) on ‖Ãs−As‖ ensures that Algorithm 4.1 is forward stable in floating point
arithmetic once b(λ) and the number of desired terms q in the Laurent expansion
of A(λ)−1b(λ) have been specified.

22 J. WILKENING

Remark A.7 The exponential dependence of Ck on k in (A.28) is not likely to
cause difficulty as problems with Jordan chain lengths longer than s = 3 are very
rare in practice. Of more concern is the fact that the ratios αk/ gapk multiply from
one iteration to the next. Example A.6 above shows that this should be expected
from a general (i.e. worst case) analysis. In that example, the quantities gapk

are all equal to a while gapnaive
k ≈ ak+1 for 0 ≤ k ≤ 2. Example A.5 shows that

sometimes Algorithm 3.1 will perform better than predicted by this worst case
analysis — it depends how the errors in X̂k propagate through the coefficients Ãj

when Ãk+1 is formed in (A.22). However, a general analysis that keeps track of
the directions of the errors as well as their norms would be difficult.

In summary, the error in the quantities computed in Algorithms 3.1 and 4.1
using floating point arithmetic can be made arbitrarily small (relative to their
nearest counterparts in exact arithmetic) by taking ε → 0. Moreover, the con-
vergence rates are linear in ε with constants that depend on the distance to an
even more singular analytic matrix function (i.e. on the sizes of the ratios αk

gapk
,

0 ≤ k ≤ s− 1):

‖X̂s−1 − Xs−1‖ ≤ Kε, K = Cs−1(n + Rs−2)2. (A.29)

The convergence is linear because we have specified the location of the singularity
(the origin) in advance. In some problems, the zeros of ∆(λ) = det A(λ) must also
be found, in which case we recommend Davies’ method [5] for locating the zeros
of an analytic function using contour integration techniques. But if ∆(λ) has a
zero of order d at λ0, roundoff error is likely to split this zero like the dth root of
ε rather than linearly, making these zeros difficult to compute.

It is often possible to use the methods of this paper to stabilize the problem
of finding these zeros. For example, in the corner singularities problem described
in the introduction, it is very common for ∆(λ) to have zeros at the integers; the
corresponding singular functions are polynomials. If another zero λ1 of ∆(λ) is
close to such an integer λ0, Davies’ method will likely give inaccurate results as the
zeros will interfere with each other. But if we first compute a canonical system of
Jordan chains at the integer λ0, we learn the order d of the zero of ∆(λ) at λ0 using
an O(ε) method; we can then find λ1 using Davies’ method on ∆(λ)(λ − λ0)−d,
which also gives O(ε) accuracy if λ1 is a simple zero. In this way we can find
parasitic zeros near a known (possibly multiple) zero with high accuracy.

References

[1] K. E. Avrachenkov, M. Haviv, and P. G. Howlett. Inversion of analytic ma-
trix functions that are singular at the origin. SIAM J. Matrix Anal. Appl.,
22(4):1175–1189, 2001.

[2] H. Baumgärtel. Analytic Perturbation Theory for Matrices and Operators.
Birkhäuser, Basel, 1985.

ANALYTIC MATRIX FUNCTIONS 23

[3] S. L. Campbell. Singular systems of differential equations II, volume 61 of
Research Notes in Mathematics. Pitman, London, 1982.

[4] Martin Costabel and Monique Dauge. Construction of corner singularities for
Agmon-Douglis-Nirenberg elliptic systems. Math. Nachr., 162:209–237, 1993.

[5] B. Davies. Locating the zeros of an analytic function. J. Comput. Phys.,
66(1):36–49, 1986.

[6] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation.
III. SIAM J. Numer. Anal., 7(1):1–46, 1970.

[7] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[8] A. Edelman, E. Elmroth, and B. K̊agström. A geometric approach to per-
turbation theory of matrices and matrix pencils, part I: versal deformations.
SIAM J. Matrix Anal. Appl., 18(3):653–692, 1997.

[9] I. Gohberg, M. A. Kaashoek, and F. van Schagen. On the local theory of
regular analytic matrix functions. Linear Algebra Appl., 182:9–25, 1993.

[10] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic
Press, New York, 1982.

[11] M. Haviv and Y. Ritov. On series expansions and stochastic matrices. SIAM
J. Matrix Anal. Appl., 14(3):670–676, 1993.

[12] M. V. Keldysh. On the characteristic values and characteristic functions of
certain classes of non-selfadjoint equations. Dokl. Akad. Nauk USSR (Rus-
sian), 77:11–14, 1951. English transl. in [15].

[13] P. Lancaster. Inversion of lambda-matrices and application to the theory of
linear vibrations. Arch. Rational Mech. Anal., 6(2):105–114, 1960.

[14] C. E. Langenhop. The Laurent expansion for a nearly singular matrix. Linear
Algebra Appl., 4:329–340, 1971.

[15] A. S. Markus. Introduction to the Spectral Theory of Polynomial Operator
Pencils, volume 71 of Translations of Mathematical Monographs. Americal
Mathematical Society, Providence, 1988.

[16] M. K. Sain and J. L. Massey. Invertibility of linear time-invariant dynamical
systems. IEEE Trans. Automat. Control, (2):141–149, 1969.

[17] P. Schweitzer and G. W. Stewart. The Laurent expansion of pencils that are
singular at the origin. Linear Algebra Appl., 183:237–254, 1993.

