Math 228 B Tues 1/16/07 Week 1
Lee 1
Numerical solutions of PDE
what is a PDE? abstractly it's an equation of the form

$$
F\left(u, D u, D^{2} u, \ldots\right)=0 \quad D u=\left(\begin{array}{c}
\frac{\partial u}{\partial x_{1}} \\
\vdots \\
\frac{\partial u}{\partial x_{n}}
\end{array}\right)=\text { gradient }
$$

unlike ODE's, there is no general theory of PDE

Each equation has it, own

$$
\begin{aligned}
D^{2} u & =\binom{\frac{\partial^{2} u}{\partial x_{1}^{2}} \cdots \frac{\partial^{2} u}{\partial x_{1} \partial x_{n}}}{\frac{\partial^{2} u}{\partial x_{n} x_{1}} \cdots \frac{\partial^{2} u}{\partial x_{n}^{2}}} \\
& =\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)_{i_{n}^{\prime}=1.1}=\text { Hessian matrix }
\end{aligned}
$$

special properties, and the
behavior of solutions varies wildly from one PDE to the next.

Ind order, scalar, constant coefficients:

$$
a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u=g
$$

This equation may be written

$$
P\left(\partial_{x}, \partial_{y}\right) u=g \quad \text { or } \quad L u=g
$$

where $P(\xi, \eta)=a \xi^{2}+2 b \xi \eta+c \eta^{2}+d \xi+e \eta+f$ is the symbol of the differential operator L. polynomial with the coefficients of the operator
the behavior of solutions of $L u=g$ is largely determined by the algebras properties of the polynomial $P(\xi, \eta)$, in fact by the discriminant:

$$
\begin{array}{ll}
b^{2}-a c<0 & \text { hyperbolic } \\
b^{2}-a c=0 & \text { parabolic } \\
b^{2}-a c>0 & \text { elliptic }
\end{array}
$$

note that only the principal terms (those of highest order) matter in this classification
what's special about $b^{2}-a c$?
write $P(\xi, \eta)=\left(\begin{array}{ll}\xi \eta\end{array}\right) \underbrace{\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)}_{A}\binom{\xi}{\eta}+(d e)\binom{\xi}{\eta}+f$
the eigenvalues of A are:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
b & c-\lambda
\end{array}\right)=(a-\lambda)(c-\lambda)-b^{2} \\
&=\lambda^{2}-(a+c) \lambda+a c-b^{2}=0 \\
& \lambda=\frac{a+c \pm \sqrt{(a+c)^{2}+4\left(b^{2}-a c\right)}}{2} \leftarrow \begin{array}{l}
\text { sign of discriminant } \\
\text { determines whether } \\
\text { evals have same or } \\
\text { opposite sign }
\end{array} \\
& \quad \begin{array}{l}
\text { they're always real }
\end{array} \\
&=\frac{a+c \pm \sqrt{(a-c)^{2}+4 b^{2}}}{2} \leftarrow \text { (since A is symmetric) }
\end{aligned}
$$

when $b^{2}-a c=0$, at least one eigenvalue is zero (parabolic care)

Change of variables
Since A is symmetric, we can diagonalize it:

$$
\begin{aligned}
& A=U \Lambda U^{-1}, \quad \Lambda=\binom{\lambda_{1}}{\lambda_{2}}, U \text { orthogonal }\left(U^{-1}=U^{\top}\right) \\
& U=\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right), \quad c=\cos \theta, \text { different } c
\end{aligned}
$$

now let's try rotating the coordinate system by θ :

$$
\left.\tilde{y}{\underset{\theta}{\theta}}_{\tilde{x}}^{\tilde{x}} \begin{array}{c}
\tilde{x}=c x+s y \\
\tilde{y}=-s x+c y
\end{array}\right\}=u^{-1}\binom{x}{y}
$$

By the chain rule, we have

$$
\left.\begin{array}{l}
\frac{\partial}{\partial x}=\frac{\partial \hat{x}}{\partial x} \frac{\partial}{\partial \tilde{x}}+\frac{\partial \tilde{y}}{\partial x} \frac{\partial}{\partial \tilde{y}}=c \frac{\partial}{\partial \tilde{x}}-s \frac{\partial}{\partial \tilde{y}} \\
\frac{\partial}{\partial y}=\frac{\partial \tilde{x}}{\partial y} \frac{\partial}{\partial \tilde{x}}+\frac{\partial \tilde{y}}{\partial y} \frac{\partial}{\partial \tilde{y}}=s \frac{\partial}{\partial \tilde{x}}+c \frac{\partial}{\partial \tilde{y}}
\end{array}\right\}=U\binom{\frac{\partial}{\partial \tilde{x}}}{\frac{\partial}{\partial \tilde{y}}}
$$

so our differential operator looks like

$$
\begin{aligned}
& P\left(\binom{\partial_{x}}{\partial_{y}}\right)=P\left(U\binom{\partial_{\tilde{x}}}{\partial_{\tilde{y}}}\right)
\end{aligned}
$$

or $P\left(\partial_{x}, \partial_{y}\right)=\lambda_{1} \partial_{\tilde{x}}^{2}+\lambda_{2} \partial_{\tilde{y}}^{2}+\tilde{d}_{\tilde{x}}+\tilde{e} \partial_{\tilde{y}}+f$

$$
=\tilde{p}\left(\partial \tilde{x}, \partial_{\tilde{y}}\right)
$$

so we might as well assume that $b=0, a=\lambda_{1}, c=\lambda_{2}$ in the first place...

The words hyperbole, parabolic, elliptic come from the graphs of the equation $p(\xi, \eta)=0$
it's really all about the egatralues of $A \ldots$ prototypes:

Wave equation: $u_{t t}-u_{x x}=0 \quad$ telegraph equation: $\left.\quad u_{t t}+u_{t}-u_{x x}=0\right\}$ hyperbole
on way wave en: $\quad u_{t}+a u_{x}=0 \quad$ also called
inviscid Burgers: $\quad u_{t}+u u_{x}=0 \quad$ (nonlinear-) $\left.\left.)\right\} \begin{array}{c}\text { hyperbolic } \\ \text { solutions are } \\ \text { Wavelike }\end{array}\right)$
also called transport equation
heat equation, diffulion equation: $u_{t}=u_{x x}$ parabolic
Schrodinger equation: $\quad-i u_{t}=u_{x x}<\frac{\text { totally different }}{\text { properties }}$
Laplace equation

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u_{x x}+u_{y y}=f(x, y)
\end{aligned}
$$

systems $\left\{\begin{array}{c}\text { linear -elasticity } \\ \text { stoles }\end{array}\right.$
stoles
elliptic equations can be made parabolic or hyperbolic
by adding time dependime
unsteady stokes:
(parabolic) $\left\{\begin{aligned} u_{t}-\mu \Delta u+\nabla p & =f \\ \nabla \cdot u & =0\end{aligned}\right.$
$3 d$ wave: $\quad u_{t t}-\Delta u=0$
(hyperbole)
beam equation: $\quad u_{t}+u_{x x x x}=0$
(parabolic)
vibrations in elastic medium: $\quad \rho u_{t t}=\mu \Delta u+(\lambda+\mu) \nabla(\nabla \cdot u)$ (hyperbolic)

There ar many interesting non-linear PDE incompressible Naver. Stokes: $\left\{\begin{aligned} u_{t}+u \cdot \nabla u & =-\nabla p+\mu \Delta u \\ \nabla \cdot u & =0\end{aligned}\right.$
sometimes behaves like elliptic, parole or hyperbolic
Eikonal: ∇ Pul $=1$ (first arrival time of a signal)
Burgers eqn: $u_{t}+u u_{x}=u_{x x} \leftarrow a$ Id version of navies
Korteweg -deVries $(K d V)$: $\quad u_{t}+u u_{x}+u_{x x x}=0$ a has soliton solutions traffic equation: $c U_{t}-\left[\sigma(x) u_{x}\right]_{x}=0 \leftarrow$ has shocks
each type of equation has special features that must be understood and incorporated into the numerical method.
if the solution has shocks, the numerical method must handle discontinuities.
boundary conditions are often the most difficult part of solving numerical TDE

Next time: finite difference methods for the heat equation.
in class exerare:
heat equation $u_{t}=u_{x x}$
(i) solve the bacleward heap eqn $u_{t}=-u_{x x}$
with initial condition $u(x, 0)=\sin (k x), k \in \mathbb{R}$ using separation of variables.
(2) how long does the solution of the backward heat equation

$$
\text { with }\left\{\begin{array}{l}
b / c^{\prime} s: u(0, t)=u(\pi, t)=0 \\
i / c^{\prime} s: u(x, 0)=(x)(\pi-x)=\pi x-x^{2}
\end{array}\right.
$$

exist? hint: $\int_{0}^{\pi} x(\pi-x) \sin (n x) d x= \begin{cases}0 & n \text { even } \\ 4 / n^{3} & n \text { odd }\end{cases}$

Last time:
classification of PDE (hyperbolic, parabolic, elliptic)
change of variables
zoo of famous PDE's $\left(\begin{array}{l}\text { no general theory } \\ \text { numerical methods must be } \\ \text { tailored to the PDE yours solving }\end{array}\right)$
Today: $u_{t}=u_{x x}$ id heat equation setup (2 options)

1. rod of finite length $0 \leq x \leq L$
2. infinite domain $\quad-\infty \leq x \leq \infty$
case 1:

If you incluch the heat source, equation is $u_{t}-u_{x x}=f$ Let's assume $f=0$.
initial conditions: $u(x, 0)=g(x)$
boundary conditions: $\quad u(0)=u(L)=0$
g is the initial temperature distribution (given). we want to find $u(x, t)$ for $t>0,0 \leq x \leq L$

To solve this equation analytically, use separation of variables:
first look for special solutions of the form

$$
\begin{aligned}
& u(x, t)=X(x) T(t) \\
& u_{t}=u_{x x} \Rightarrow X(x) T^{\prime}(t)=X^{\prime \prime}(x) T(t) \\
& \Rightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=C
\end{aligned}
$$

must be a constant

$$
\left.\begin{array}{l}
X^{\prime \prime}=C X \\
X(0)=X(L)=0
\end{array}\right\} \Rightarrow X(x)=\sin \frac{k \pi x}{L}, C=-\left(\frac{k \pi}{L}\right)^{2}
$$

result: $u(x, t)=e^{-\left(\frac{k \pi}{L}\right)^{2} t} \sin \frac{k \pi x}{L}$ satisfies $u_{t}=u_{x x}$
Now use a Fourier sine series to represent the initial condition:

$$
g(x)=\sum_{k=1}^{\infty} c_{k} \sin \frac{k \pi x}{L}, \quad c_{k}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{k \pi x}{L} d x
$$

Finally, use superposition to obtain the exact sol:

$$
u(x, t)=\sum_{h=1}^{\infty} c_{h} e^{-\left(\frac{k \pi}{L}\right)^{2} t} \sin \frac{h \pi x}{L}
$$

For the backward heat equation, the Fourier modes grow exponentially in time rather than de cay
example: $L=\pi, \quad g(x)=\pi x-x^{2}$

$$
\begin{aligned}
& c_{h}=\frac{2}{\pi} \int_{0}^{\pi} g(x) \sin k x d x= \begin{cases}0 & k \text { even } \\
\frac{8}{\pi h^{3}} & k \text { odd }\end{cases} \\
& u_{t}=-u_{x x} \Rightarrow u(x, t)=\sum_{k \text { odd }} \frac{8}{\pi h^{3}} e^{h^{2} t} \sin h x
\end{aligned}
$$

but for any $t>0, \frac{8}{\pi h^{3}} e^{k^{2} t} \rightarrow \infty$ as $k \rightarrow \infty$ so the formula for u diverges for all $t>0$ (backward heat eqn. has no sols with this initial condition)
case 2: infinite domain
the boundary conditions $u(0)=u(L)=0$ are now replaced by the requirement that u remains bounded as $x \rightarrow \pm \infty$
this problem may be solved using the Fourier Transform instead of the Fowler sine series alove. (see Fritz John's PDE book)
exact solution: $u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi$
requirements on g : continuous and bounded
Not: $\frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-\xi)^{2}}{4 t}}$ is a gaussian centered at x which approaches a δ-function as $t \rightarrow 0$.

observations: (1) the exact solution is a smoothed out version of the initial conditions (larger $t=$ more smoothing)
(2) the value of x at x depends on all of $g(\xi)$ - information travels infinitely fast.
numerics: why use finite differences when we know the exact solution?

1. have to compute the integrals some low (probably numerically)
2. these exact soln's dint generalize to mare complicated problems
discretization

notation
numerical solution

What is u_{j}^{0} ? (there are many ways to do IC C_{s}^{\prime})
we could set $u_{j}^{0}=g(i j h, 0)$
or we could average 9 over some interval.
what is $u_{t} ? \quad u_{t} \approx \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}$

$$
=\frac{1}{h}\left[u_{j}^{n+1}-u_{j}^{n}\right]
$$

what is $u_{x x}$. $u_{x} \approx \frac{u\left(x+\frac{h}{2}, t\right)-u\left(x-\frac{h}{2}, t\right)}{h}$

$$
\begin{aligned}
u_{x x} & \approx \frac{\left[\frac{u(x+h, t)-u(x, t)}{h}\right]-\left[\frac{u(x, t)-u(x-h, t)}{h}\right]}{h} \\
& \approx \frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}
\end{aligned}
$$

scheme for $u_{t}=u_{x x}$:

$$
\begin{aligned}
& \frac{1}{k}\left[u_{j}^{n+1}-u_{j}^{n}\right]=\frac{1}{h^{2}}\left[u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right] \\
& u_{j}^{n+1}=u_{j}^{n}+\frac{k}{h^{2}}\left[u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right] \\
& u_{j}^{n+1}=\nu u_{j+1}^{n}+(1-2 \nu) u_{j}^{n}+\nu u_{j-1}^{n} v=\frac{k}{h^{2}}
\end{aligned}
$$

This is a recipe. given the values $\left\{u_{j}^{n}\right\}_{j=-\infty}^{\infty}$
we use it to find $\left\{u_{j}^{n+1}\right\}_{j=-\infty}^{\infty}$
but remember the exact soth. It depends on all of $g(x)$!
let's try it:
t solution becomes oscillatory and blows up
try again:
$1 t$ solution decays and

$$
\begin{aligned}
& k=1 / 64 \\
& h=1 / 4 \\
& \nu=1 / 4
\end{aligned}
$$

the breakpoint for stability happens at $\nu=\frac{1}{2}$

$$
u_{j}^{n+1}=\nu u_{j+1}^{n}+\underbrace{(1-2 \nu) u_{j}^{n}}_{\text {becomes negative for } \nu>\frac{1}{2}}+\nu u_{j-1}^{n}
$$

analysis in the max norm $\|u\|_{\infty}=\max _{-\infty<j<\infty}\left|u_{j}\right|$
when $v \leq \frac{1}{2}$ we have

$$
\begin{aligned}
\left|u_{j}^{n+1}\right| & \sum_{\substack{\text { triangle } \\
\text { ineqnining }}}|v|\left|u_{j+1}^{n}\right|+|1-2 \nu|\left|u_{j}^{n}\right|+|v|\left|u_{j-1}^{n}\right| \\
& \leq \underbrace{(|v|+|1-2 \nu|+|v|)}_{1 \text { since each is positive }}\left\|u^{n}\right\|_{\infty} \\
\therefore\left\|u^{n+1}\right\|_{\infty} & =\max _{j}\left|u_{j}^{n+1}\right| \leq\left\|u^{n}\right\|_{\infty}
\end{aligned}
$$

but when $\nu>\frac{1}{2}$ this argument doein't work as

$$
|\nu|+|1-2 \nu|+|\nu|=\gamma+(2 \nu-1)+\nu=4 \nu-1>1
$$

and indeed the initial condition $u^{0}=\cdots 1-11-1$ leads to exponential growth:

$$
u_{j}^{0}=(-1)^{j}, \quad u_{j}^{\prime}=-(4 v-1)(-1)^{j}, \quad u_{j}^{n}=(-1)^{n+j}(4 v-1)^{n}
$$

so for this initial condition, if $v>\frac{1}{2}$, we have

$$
\left\|u^{n}\right\|_{\infty}=(4 v-1)^{n} \underbrace{\left\|u^{0}\right\|_{\infty}}_{1} \quad \underset{\text { growth }}{\operatorname{exponential}}
$$

def: A method is stable if the solution at a fixed time $T=n k$ (1.e. n increases as k decreases) has norm bounded in terms of its norm at time 0 independent of the increments h and k
our scheme is stable iff h and k satisfy the additional requirement

$$
\frac{h}{h^{2}} \leq \frac{1}{2}
$$

(timestyp goes to zero faster than the space step. In the limit you actually see all the initial conditions just as the exact solution does)

cut space step in half and

Math 228 B Lee 3

Last time

- Id heat equation on finite domain (separator of variables)
- Id " "" infinite domain (exact solution)
- formal in time, contend in pace finite difference r method
- preliminary definition of stability of a scheme

Today: error analysis of this scheme.
step 1: show scheme is consistent
Step 2: show scheme 1) stable (do Letter job of defining stalin)
step 3: show that these together imply convergence
Finite difference notation:
consider a function f defined on an evenly spaced grid $x_{j} z j h$

$$
f_{j}=f\left(x_{j}\right)
$$

define

$$
\begin{aligned}
& D^{+} f_{j}=\frac{f_{j+1}-f_{j}}{h} \quad D-f_{j}=\frac{f_{j}-f_{j-1}}{h} \\
& D^{\circ} f_{j}=\frac{f_{j+1}-f_{j-1}}{2 h} \quad D^{+} D f_{j}=\frac{f_{j+1}-2 f_{j}+f_{j-1}}{h^{2}}
\end{aligned}
$$

note that $f=\left\{f_{j}\right\}_{j=-\infty}^{\infty}$ is a sequence and so are D^{+f}, ∇^{-f}, etc. (1.e. D^{+f}; means $\left(D^{+f}\right) ;$)
our scheme for $u_{t}=u_{x x}$ is $D_{t}^{+} u_{j}^{n}=\underbrace{D_{x}^{+} D_{x}^{-} u_{j}^{n}}$

In ODE's, the solution of $y^{\prime}=f(t, y)$ is guaranteed to exist for $0 \leq t \leq T$ and be k times continuously differentiable on this interval if

1. f is Lipchitz continuous on $[0, T] \times \mathbb{R}^{d}$

$$
\text { (i.e. } \left.\exists L \text { s.t. }\|f(t, x)-f(t, y)\| \leq L\|x-y\| \text { for } \begin{array}{c}
0 \leq t \leq T \\
x, y \in \mathbb{R}^{d}
\end{array}\right)
$$

2. f is h times continuously differential.

But for PDE's this is not automatic
\rightarrow high frequency modes can decay too rapidly for $u(x, t)$ to le differentiable at $t=0$. example: if $g(x)=$.
 the solution $u(x, t)$ will have $u_{t}(0, t)$ blow up as $t \searrow 0$.

We will assume the initial condition $g(x)$ is nice enough that the exact solution $u(x, t)$ and a few of it, derivatives (say $u_{t}, u_{t t,}, u_{x}, u_{x x}, u_{x x x,}, u_{x x x x}$) are bounded and continuous on the strop

$$
-\infty<x<\infty, \quad 0 \leqslant t \leqslant T
$$

Taylor's theorem with remainder:
if $f \in C^{r}[a, x]$ and $f \in C^{r+1}(a, x)$ then

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(r)}(a)}{r!}(x-a)^{r}+R_{r}(x)
$$

where $R_{r}(x)=\int_{a}^{x} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r} d t \leftarrow$ Cauchy form

$$
\begin{aligned}
=\frac{f^{(r+1)}(\xi)}{(r+1)!}(x-a)^{r+1} \leftarrow & \text { Lagrange form } \\
& (\text { for some } \xi \in(a, x))
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\text { mi s we have } \\
\begin{aligned}
D^{+} f_{j} & =\frac{f\left(x_{j}+h\right)-f\left(x_{j}\right)}{h} \quad \text { assume } f \in C^{2}\left[x_{j} x_{j}+h\right] \\
& =\frac{f\left(x_{j}\right)+h f^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{j}+\theta h\right)-f\left(x_{j}\right)}{h} \\
& =f^{\prime}\left(x_{j}\right)+\frac{h}{2} f^{\prime \prime}\left(x_{j}+\theta h\right) \quad \text { for some } \theta \in(0,1)
\end{aligned}
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
D^{+}+f_{j} & =\frac{f\left(x_{j}+h\right)-2 f\left(x_{j}\right)+f\left(x_{j}-h\right)}{h^{2}}{ }^{\text {assume }} f \in C^{4}\left[x_{j}-h-x_{j}+h\right] \\
& =\frac{1}{h^{2}}\left\{\begin{array}{l}
(1-2+1) f\left(x_{j}\right)+[h+(-h)] f^{\prime}\left(x_{j}\right)+\left[\frac{h^{2}}{2}+\frac{(-h)^{2}}{2}\right] f^{\prime \prime}\left(x_{j}\right) \\
+\left[\frac{h^{3}}{6}+\frac{(-h)^{3}}{6}\right] f^{\prime \prime \prime}\left(x_{j}\right)+\frac{h^{4}}{24} f^{(4)}\left(x_{j}+\theta_{1} h\right)+\frac{h^{4}}{24} f^{(4)}\left(x_{j}-\theta_{2} h\right)
\end{array}\right\} \\
=f^{\prime \prime}\left(x_{j}\right)+\frac{h^{2}}{12}\left[\frac{f^{(4)}\left(x_{j}+\theta_{1} h\right)+f^{(4)}\left(x_{j}-\theta_{2} h\right)}{2}\right] & \text { for some } \\
\theta_{1}, \theta_{2} \in(0,1)
\end{array}\right\}
$$

Now define the truncation error to be what's left over when you plug the exact solution into the scheme:

$$
\begin{aligned}
\tau_{j}^{n}= & D_{t}^{+} u\left(x_{j}, t_{n}\right)-D^{+} D^{-} u\left(x_{j}, t_{n}\right) \\
= & u_{t}\left(x_{j}, t_{n}\right)+\frac{k}{2} u_{t+}\left(x_{j}, t_{n}+\theta h\right) \\
& -u_{x x}\left(x_{j}, t_{n}\right)-\frac{h^{2}}{12}\left[\frac{u_{x x x}\left(x_{j}+\theta_{i}, t_{n}\right)+u_{x x x x}\left(x_{j}-\theta_{2}, t_{n}\right)}{2}\right]
\end{aligned}
$$

so if M is a bound on $U_{t t}, U_{x \times x x}$ on the $\operatorname{strp} \begin{gathered}-\infty<x<\infty \\ 0 \leq t \leq T\end{gathered}$ we have

$$
\left|\tau_{j}^{n}\right| \leqslant\left(\frac{k}{2}+\frac{h^{2}}{12}\right) M
$$

If we carry the expansions one step further and take M to be a bound on $u_{t t t,} u_{x x x x x x}$ we get

$$
\tau_{j}^{n}=\frac{h}{2} u_{t t}\left(x_{j}, t_{n}\right)-\frac{h^{2}}{12} u_{x+x}\left(x_{j}, t_{n}\right)+\varepsilon_{j}^{n}
$$

with $\left|\varepsilon_{j}^{n}\right| \leq\left(\frac{k^{2}}{6}+\frac{h^{4}}{360}\right) M$
but $u_{t}=u_{x x} \Rightarrow u_{t t}=u_{t x x}=u_{x x x x}$ so the leading term in τ_{j}^{n} is killed if $\frac{h}{2}=\frac{h^{2}}{12}$ or, recalling that $\nu=\frac{k}{h^{2}}$, if $\nu=1 / 6$ result: $\tau_{j}^{n}=\left\{\begin{array}{ll}O(k) & \nu \neq 1 / 6 \\ O\left(k^{2}\right) & \nu=1 / 6\end{array}\right\} \leftarrow$ whinge v vetting $k, h \rightarrow 0$
def: A scheme is connstent if $\tau ; \hat{j} \rightarrow$ as $k, h \rightarrow 0$
a slightly stronger statement in our case is that the stronger scheme is first order in time and second order in space ${ }^{\text {to }}$ also unless $v=1 / 6$, in which case it's $2^{\text {nd }}$ order time, $4^{\text {th }}$ order space. speenfy rate of rate of
convergence (the ordo of the method)

Said differently:
a scheme is consistent if the exact solution of the PDE is an approximate solution of the scheme
it is convergent if the exact solution of the scheme is an approximate solution of the PDE

Lac Richtimyer equrvence theorem: A consistent finite difference scheme for a well-posed initial value problem is convergent if it is stable.

The setting of the Lax-Richtmyer paper is very general:

$$
\begin{array}{lr}
u_{t}=A u \quad(0 \leq t \leq I) \quad \text { ODE in a } \underbrace{\text { Banach space }}_{\text {Complex normed linear space }} \\
u(0)=g r &
\end{array}
$$

in our case the Banach space B that $u(x, t)$ evolves in is $B C(\mathbb{R})$, the space of bounded continuous functions on \mathbb{R} with norm

$$
\|g\|=\max _{-\infty<x<\infty}|g(x)|
$$

other Banach spaces also work nicely (egg. $L^{2}(\mathbb{R})$ or $L^{\prime}(\mathbb{R})$)

here is a function of x and can be thought of as a point A in the space B on the solution curve

The operator A in our case

1) the second derivative operator $A u=u_{x x}$

A is not defined for all functions in our space B, but the assumption that the equation " $u_{t}=A u, u(0)=g$ " is well posed means the solution (1) exists, (2) is unique, and (3) depends continuous on the initial data g.
in particular, $u(t)$ belongs to the domain of A for $0 \leq t \leq T$ \uparrow extra assumption about the initial data
Next we set up a grid and define
our scheme as an operator from on discrete time she e to thin ext

$$
B_{h}
$$

$$
u^{n+1}=\underbrace{B(k, h)}_{\text {bounded } 1 \text { in }} u^{n}
$$

bounded linear operator from B_{h} to B_{h}
in our case, $B(k, h) u_{j}=v u_{j+1}+(1-2 v) u_{j}+v u_{j-1}, \quad v=\frac{k}{h^{2}}$
Finally, we choose a refinement path relating h to k. in our case we'll consider ν fixed and set $h=\sqrt{k / \nu}$. Now there is only om e parameter controlling convergence, namely the timestip k.

Lax \& Richtmyer give
scheme: $u^{n+1}=C(k) u^{n}$
or $u^{n}=C(h)^{n} u^{0} \longleftarrow$ youve applied the scheme n times stating with the initial condition U°
def: A scheme is stable if for some $\varepsilon>0$ the operators

$$
\begin{array}{ll}
C(k)^{n} & 0<k \leq \varepsilon \\
& 0 \leq n k \leq T
\end{array}
$$

are uniformly bounded.

This means there is a constant k indep- of k and n such that

$$
\left\|C(k)^{n}\right\| \leq K \quad \begin{array}{ll}
0<k \leq \varepsilon \\
& 0 \leq n k \leq T
\end{array}
$$

(I'll talk mare about norms next time. The norm of $c(h)^{n}$ is the smallest number $\left\|c(k)^{n}\right\|$ sit. $\left.\quad\left\|C(h)^{n} u\right\| \leq\left\|c(k)^{n}\right\| \cdot\|u\| \quad \forall u \in B_{h}\right)$

In our case $C(h) u_{j}=\nu u_{j+1}+(1-2 \nu) u_{j}+\nu u_{j-1}$ doisit depend on k, and we shovel last time that

$$
\|c(h)\| \leq 1 \quad \text { if } \quad v \leq \frac{1}{2}
$$

when $\|\cdot 1\|$ is the infinity norm $\|u\|=\max _{-\infty<j<\infty}\left|u_{j}\right|$ so this scheme is definitely stable.
More generally we can have $\|C(k)\| \leqslant 1+K k$
for any constant K, and the scheme will still be stale.
This is because

$$
\begin{aligned}
\left\|C(k)^{n}\right\| & \leqslant\|C(h)\|^{n} \leqslant\left(1+K_{1} k\right)^{n} \\
& \leq\left(1+K_{1} k+\frac{\left(K_{1} k\right)^{2}}{2!}+\cdots\right)^{n} \\
& =(e^{\left.k_{1} k\right)^{n}}=e^{K_{1}(k n)} \leq \underbrace{e^{K_{1} T}}_{K}
\end{aligned}
$$

Now let's prove convergence.
define the error: $\quad e_{j}^{n}=u_{j}^{n}-u(j h, k n)$
definition of truncation
scheme: $\quad u_{j}^{n+1}=u_{j}^{n}+k D_{x}^{+} D_{x}^{-} u_{j}^{n}$ error
exact: $u(j, h,(n+1) k)=u(j h, n k)+k D_{x}^{+} D_{x} u(j h, n k)+k \tau_{j}^{n}$

now iterate backwards

$$
\begin{aligned}
e_{j}^{n} & =C(k) e_{j}^{n-1}+k \tau_{j}^{n-1} \\
& =C(k)\left[C(k) e_{j}^{n-2}+k \tau_{j}^{n-2}\right]+k \tau_{j}^{n-1} \\
& \vdots \\
& =C(k)^{n} e_{j}^{0}+C(k)^{n-1} k \tau_{j}^{0}+\cdots+C(k) k \tau_{j}^{n-2}+k \tau_{j}^{n-1}
\end{aligned}
$$

take norms, use triangle inequality, use $\left\|(k)^{l}\right\| \leq K$ for $0 \leq \ell \leq n$

$$
\left\|e^{n}\right\| \leq K \underbrace{\left\|e^{0}\right\|}_{0}+K \underbrace{\left[k\left\|\tau^{0}\right\|+k\left\|\tau^{\prime}\right\|+\cdots+k \| \tau^{n-1}\right]}_{r_{n k} \max \left\|\tau^{l}\right\|}
$$

but $n k \leq T, K=1$ ard each $\left\|\tau^{2}\right\|$ is bounded by $\left(\frac{h}{2}+\frac{h^{2}}{12}\right) M$

$$
\therefore \quad\left\|e^{n}\right\| \leq\left\{\begin{array}{ll}
T M\left(\frac{h}{2}+\frac{h^{2}}{12}\right) & \nu \neq 1 / 6 \\
\text { for } \lambda
\end{array} \quad \begin{array}{ll}
& \\
\text { n satisfying }
\end{array}\right.
$$

all n satisfying

$$
0 \leq n k \leq T
$$

$$
\therefore \max _{n}\left\|e^{n}\right\|=\max _{-\infty<j<\infty} \max _{0 \leqslant n k \leq T}\left|e_{j}^{n}\right|
$$

So the maximum value of the error on the grid goes to zero as $k, h \rightarrow 0$ with $\nu=\frac{h}{h^{2}} \leq \frac{1}{2}$ held fixed-

Math 228B Lee 4

Last time
finite difference notation $D^{+}, D^{-}, D^{0}, D^{+} D^{-}$
truncation error (definition and bound for heat equation)
consistency, stability, and convergence
setup for Lax-Richtuyer paper
Today:(1) crash course in functional analysis
(2) finish convergence proof for our scheme for $u_{t}=u_{x x}$
functional analyse
core of this subject is figuring out how to do linear algebra in infinite dimensions. Once this is understood, you cango on to study non-linear problems, but we wont be so ambitious
a vector space is a collection of affects that you can add together and multiply by scalars:

$$
f_{1}, f_{2} \in V \Rightarrow \underbrace{\frac{\alpha f_{1}+\beta f_{2} \in V}{\uparrow \text { scalars }(\text { in } \mathbb{R} \text { or } C)} \text {) }}
$$

a norm is a rule that
assigns a real
number $\|f\|$ to every
etementen of the space such that $\left\{\begin{array}{l}1 .\|f\| \geq 0 \quad \forall f \in V \\ \|f\|=0 \quad \text { inf } \quad f=0 \\ 2 .\|\alpha f\|=|\alpha| \cdot\|f\| \quad \text { homogeneity } \\ 3 .\left\|f_{1}+f_{2}\right\| \leq\left\|f_{1}\right\|+\left\|f_{2}\right\| \\ \text { triangle } \\ \text { inequality }\end{array}\right.$

A normed space is an example of a metre space where the metric (distance) is given by

$$
d(f, g)=\|f-g\|
$$

Examples

1. $\mathbb{R}, \quad\|x\|=|x|$ absolute value
2. $\mathbb{R}^{n},\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$

2-norm or
Euclidean distance (unit balls ar round $\#$)
(the absolute values are only needed in \mathbb{C}^{n})
3. $\mathbb{R}^{n},\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad 1$ norm, Manhattan norm Cunt balls are diamonds
4. $\mathbb{R}^{n},\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \infty$ norm, max norm (unit balls are cubes $\#$)
5. $L^{2}(0,1)=$ "square integrable functions on $(0,1)$ "

$$
\begin{aligned}
& \|f\|_{2}=\sqrt{\int_{0}^{1}|f(x)|^{2} d x} \leftarrow \begin{array}{c}
\text { again the atiotuto } \\
\text { value is only necessary }
\end{array} \\
& \text { If } f \text { rates on } \\
& \text { complex values } \\
& \text { 6. } C[0,1]=\text { "continuous functions on }[0,1]^{\text {" }} \text { i's important } \\
& \text { that this } \\
& \text { interval is closed } \\
& \|f\|_{\infty}=\max _{0 \leqslant x \leqslant 1}|f(x)|
\end{aligned}
$$

all of the spaces have complex versions (where the set of scalars is \mathbb{E} rather than \mathbb{R})
so $C[a, b]$ can mean $\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuous $\}$
or $\{f:[a, b] \rightarrow \mathbb{C} \mid f \cup$ continuous $\}$
depending on the context. We will usually work over \mathbb{R} for simplicity except when the Fourier transform is involved, in which case weir forced to use comply numbers,
norms allow us to measure distances between points in our space. We need them to talk about errors in our numerical solutions.
convergence: A sequence of points $f_{1}, f_{2}, \ldots \in V$ converges to $f \in V$ (written $\left.f_{n} \rightarrow f\right)$ if $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$
alternative notation:

$$
\lim _{n \rightarrow \infty} f_{n}=f \quad \text { if } \quad \lim _{n \rightarrow \infty} \underbrace{\left\|f_{n}-f\right\|}_{\begin{array}{c}
\text { a sequence of real } \\
\text { numbers }
\end{array}}=0
$$

numbers
All of these statements mean the same thing:
for any $\varepsilon>0 \quad \exists N$ s.t. if $n \geq N$ then $\left\|f_{n}-f\right\|<\varepsilon$
Think of ε as a tolerance given to you by the customer and you hare to be sure that eventually all the , terms in your sequence are within that tolerance.

A Cauchy sequence f_{1}, f_{2}, \ldots is a sequence in which the terms eventually stay arbitrarily close to each other:

$$
\forall \varepsilon>0 \quad \exists N \text { s.t. } \quad \forall n, m \geq N, \quad\left\|f_{n}-f_{m}\right\|<\varepsilon
$$

It's easy to show that every convergent sequence II Cauchy (try i !) A space is said to be complete if the reverse is also true, i.e every Cauchy sequence converges to an element of the space.

A complete space has no holes. \mathbb{R} is complete
$\mathbb{Q}=$ "Setof rational numbers" is not
A Banach space is a complete normed vector space
A Hilbert space is a Banach space where the norm comes from an inner product $\|f\|=\sqrt{(f, f)}$. examples $\left\{\begin{array}{l}\mathbb{C}^{n} \text { with the inner product }(x, y)=x^{\top} \bar{y}<\swarrow^{\text {complex }} \text { conjugation } \\ L^{2}(0,1) \text { with " } \quad(f, g)=\int_{0}^{1} f(x) \overline{g(x)} d x\end{array}\right.$

An inner product is a rule that assigns a scalar (f, g) to every pair of points in the space such that:

1. $(\alpha f+\beta g, h)=\alpha(f, h)+\beta(g, h) \quad$ bilinearity
2. $(f, g)=\overline{(g, f)} \quad$ conjugate symmetry
3. $(f, f)>0$ if $f \neq 0$ positive definiteness

- $\pi_{\text {in particular }(f, f) \text { is real }}$
it follow from 1 and 2 that $\left\{\begin{array}{l}(0, f)=0 \\ (f, \alpha, g+\beta h)=\bar{\alpha}(f, g)+\bar{\beta}(f, h)\end{array}\right.$

Banach spaces and Hilbert spaces are the basic arena in which we do numerical analysis. Typically, the elements in these spaces are functions (solutions of POE's or numerical approximations of these solutions), and we want bounds on the norms of the error.

In linear algebra, linear traniformations are very important, and can be represented by matrices. In infinite dimensions, matrices play a lesser role and we work with thu transformation directly.
linear operator-: $A: X \rightarrow Y, \quad A(x+y)=A x+A y$

$$
\uparrow \quad A(\alpha x)=a A x
$$

Banach spares
linear functional: $\quad f: x \rightarrow \mathbb{C} \quad f(x+y)=f(x)+f(y)$

$$
1 \quad f(\alpha x)=\alpha f(x)
$$

special) name for the case when the target space is \mathbb{R} or \mathbb{C} (the objects in thu space are often functions, so a functional is a "function of functions")

An operator is bounded if then is a constant C sit.

$$
\|A x\| \leqslant C\|x\| \quad \forall x \in X
$$

The smallest constant C that works is the nom of the operator.

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\|A x\|
$$

sup means supremum, least upper bound. $\left.\begin{array}{c}\text { think of it as } \\ \text { the maximum value }\end{array}\right)$

To show that $\|A\|=C \quad($ e.g. in homework),
(1) first show that $\|A x\| \leqslant C\|x\|) \forall x$.
(2) Then show (if you can) that some choice of $x_{0} \neq 0$ yields

$$
\left\|A x_{0}\right\|=C\left\|x_{0}\right\|
$$

This is always possible in finite dimensions, but in infinite dimensions there may not be a maximizer. (that's why we write sup instead of max). Instead, it suffices that
(2) If $K<C$ then $\exists x_{0}$ sit. $\left\|A x_{0}\right\|>K\left\|x_{0}\right\|$
in other words, you show that C works and no smaller choice works
space of bounded sequences with $\|u\|=\sup _{-\infty<j<\infty}\left|u_{j}\right|$
Example: consider the operator $B: l^{\infty} \rightarrow l^{\infty}$ given by

$$
B u_{j}=\nu u_{j+1}+(1-2 \nu) u_{j}+\nu u_{j-1}
$$

suppose $0 \leq \nu \leq \frac{1}{2}$. I claim $\|B\|=1$.
step 1: for any $j,\left|B u_{j}\right| \leq|\nu|\left|u_{j+1}\right|+|i-2 \nu|\left|u_{j}\right|+|\nu|\left|u_{j-1}\right|$

$$
\leq(\nu+1-2 \nu+\nu)\|u\|=\|u\|
$$

so $\|B u\| \leq\|u\| \quad$ ($C=1$ works)
step 2: The sequence $u_{j}^{0}=1$ for all j satisfies

$$
B u_{j}^{0}=\nu+(1-2 \nu)+\nu=1
$$

so $\left\|B u^{\circ}\right\|=1=\left\|u^{0}\right\| \quad$ (cant do better than $C=1$)

The norm notation for operators is used because the space of bounded operators $A: X \rightarrow Y$ is a Banach space with this norm $(A+B$ is the operator $(A+B) x=A x+B x)$
exercise: show that $\|A+B\| \leq\|A\|+\|B\|$
(2) If $Y=X$, then $\|A B\| \leq\|A\|-\|B\|$
(3) $\left\|A^{n}\right\| \leqslant\|A\|^{n}$

Let's get back to our convergence proof following Lax/Richtmyer.

$$
\begin{gathered}
u_{t}=u_{x x} \\
u(x, 0)=g(x)
\end{gathered}
$$

$$
\begin{aligned}
& \text { 5/ } D_{t}^{+} u_{j}^{n}=D_{x}^{+} D_{x}^{-} u_{j}^{n}, u_{j}^{0}=g(j h) \\
& \text { or } u_{j}^{n+1}=B u_{j}^{n}=\nu u_{j+1}^{n}+(1-2 v) u_{j}^{n}+\nu u_{j-1}^{n}
\end{aligned}
$$

the exact solution $u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi$
may be thought of as a time dependent curve through the $\begin{array}{r}\text { Banach space } \\ \beta\end{array}=B C(\mathbb{R}) \leftarrow$ bounded, continuous functions on \mathbb{R} (other spaces also work well)
the numerical solution $u_{j}^{n}=B^{n} u_{j}^{0}$
may be thought of as repeated iterations of a bounded operator B on the Banach space $B_{h}=l^{\infty}=$ "space of bounded \quad sequences"
in general B depends on k and h, bat after specifying a refinement path $(h=\sqrt{k / 2})$ it depends only on k. (for thu refinement path
it's a constant function of k)

If we chose a different refinement path, say $h=k$, we would have $B(k) u_{j}=\frac{1}{k} u_{j+1}+\left(1-\frac{2}{k}\right) u_{j}+\frac{1}{k} u_{j-1} \quad\left(v=\frac{k}{h^{2}}=\frac{1}{k}\right)$
(I cant stand using C as an operator since it's such a good letter for "a large constant", so today well use B(k) to represent what I called $((k)$ last time)

A scheme is stable if $\exists K$, ε independent of n, k s.t.

$$
\begin{array}{lll}
\left\|B(k)^{n}\right\| \leqslant k & \text { for } & 0<k \leq \varepsilon \\
& 0 \leq n k \leq T
\end{array}
$$

When $\nu \leqslant \frac{1}{2}$ is fixed, we have $\|B\|=1$ so our scheme is stable ($K=1, \varepsilon$ arbitrary $)$
proof of convergence:
define the error: $\quad e_{j}^{n}=u_{j}^{n}-u(j h, n k)$
scheme: $\quad u_{j}^{n+1}=u_{j}^{n}+k D_{x}^{+} D_{x}^{-} u_{j}^{n}$ rune. error
exact: $u(j h,(n+1) k)=u(j h, n k)+k D_{x}^{+} D_{x}^{-} u(j h, n k)+k \tau_{j}^{n}$
subtract:

$$
e_{j}^{n+1}=\underbrace{e_{j}^{n}+k D_{x}^{+} D_{x}^{\prime} e_{j}^{n}}_{B e_{j}^{n}}+k \tau_{j}^{n}
$$

now iterate backwards

$$
\begin{aligned}
e_{j}^{n} & =B e_{j}^{n-1}+k \tau_{j}^{n-1} \\
& =B\left[B e_{j}^{n-2}+k \tau_{j}^{n-2}\right]+k \tau_{j}^{n-1} \\
& ; \\
& =B^{n} e_{j}^{0}+B^{n-1} k \tau_{j}^{0}+\cdots+B k \tau_{j}^{n-2}+k \tau_{j}^{n-1}
\end{aligned}
$$

take norms, use triangle inequality, use $\left\|B^{\ell}\right\| \leq K$ for $0 \leq l \leq n$:

$$
\begin{aligned}
& \left\|e^{n}\right\| \leqslant k\left\|e^{0}\right\|+\underbrace{\left[k\|\tau\|+k\|\tau\|+\cdots+k\left\|\tau^{n-1}\right\|\right]}_{\Sigma_{n k} \max _{0 \leq l \leq n-1}\left\|\tau^{l}\right\|} \\
& \left\|e^{0}\right\|=0, K=1,
\end{aligned}
$$

and each $\left\|\tau^{\ell}\right\|$ is bounded by $\begin{cases}\left(\frac{k}{2}+\frac{h^{2}}{12}\right) M_{1} & \nu \neq 1 / 6 \\ \left(\frac{h^{2}}{6}+\frac{h^{4}}{360}\right) M_{2} & \nu=1 / 6\end{cases}$

so the maximum value of the error on the gad goes to zero as $k, h \rightarrow 0$ with $\nu=\frac{k}{h^{2}} \leq \frac{1}{2}$ held fixed.

Math 228B Lee 5

Last time
norms, Banach spaces, linear operators convergence of $D_{t}^{+} u=D_{x}^{+} D_{x}^{-} u$ in max norm (a bit rushed...)

Today: analysis in the 1 norm
so far weave measured ow errors using the max norm. Today well explore alternatives to this choice.

1. The heat equation dow not lead to growth of the 1 norm:

$$
\begin{aligned}
& u_{t}=u_{x x} \\
& u(x, 0)=g(x)
\end{aligned} \rightarrow u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi
$$

so $\left.|u(x, t)| \leq \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} \lg (\xi) \right\rvert\, d \xi$ (equality if $g(x) \geqslant 0$ for all x)

$$
\therefore \int_{-\infty}^{\infty}|u(x, t)| d x \leqslant \int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}}|g(\xi)| d \xi d x
$$

always legal
$\begin{aligned} & \text { to change order when } \\ & \text { of integration wive }\end{aligned}$
integrand is positive $\int_{-\infty}^{\infty} \underbrace{\left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-\xi)^{2}}{4 t}} d x\right)}_{-\infty}|g(\xi)| d \xi$ integrand is positive
result: for all positive times,

$$
\int_{-\infty}^{\infty}|u(x, t)| d x \leqslant \int_{-\infty}^{\infty}|g(x)| d x
$$

and if $g(x) \geq 0 \quad \forall x$, this 11 an equality rather than an inequality. (if we solve on ofinite interval with Dirichlet $B \in \in \frac{1}{\prime}$, th's an meguatity again) In our "evolution in a Banach space" picture, we have

$$
\begin{aligned}
& B=L^{1}(\mathbb{R})=\text { "integrable functions on } \mathbb{R}^{\prime \prime} \\
& \|g\|=\int_{-\infty}^{\infty}|g(x)| d x \leftarrow \text { norm in } B
\end{aligned}
$$

the solution $u(x, t)$ of $\left\{\begin{array}{l}u t=u x_{x} \\ u(x, 0)=g(x)\end{array}\right\}$ satisfies

$$
\|u(\cdot, t)\| \leq\|g\| \quad(t \geq 0)
$$

the dot notation indicates that were thinking of u as a function of its first argument only (with t given and fixed) so $u(\cdot, t)$ is the timeslice of the solution at time t :

Next we want to put a norm on our grid that "looks like the 1 norm"

we choose $B_{h}=l=$ "summable sequences"

$$
\|g\|=h \sum_{j=-\infty}^{\infty}\left|g_{j}\right|
$$

In our max-norm analysis, the norms looked
the same in B and B :
(B)
(B)

$$
\|g\|_{\infty}=\sup _{-\infty \leqslant x<\infty}|g(x)|,\|g\|_{\infty, 5}=\sup _{-\infty<j<\infty}\left|g_{j}\right|
$$

But in the 1 norm analysis, we need to multiply by h:
(B)

$$
\begin{equation*}
\|g\|_{1}=\int_{-\infty}^{\infty}|g(x)| d x, \tag{Bi}
\end{equation*}
$$

trapezoidal rule
of integration
Our scheme is the same as before:

$$
u^{n+1}=B u^{n}, \quad B u_{j}=\nu u_{j+1}+(1-2 \nu) u_{j}+\nu u_{j-1}
$$

Let's pave that $\|B\|=1$ in B_{h} as long as $\nu \leq \frac{1}{2}$:
step 1: Check that $\|B u\| \leq\|u\|$ for att $u \in B_{h}$.
proof:

$$
\sum_{j}\left|u_{j+1}\right|=\sum_{j}\left|u_{j}\right|
$$

$$
\begin{aligned}
\text { prof: } \quad\left|B u_{j}\right| \leq|\nu|\left|u_{j+1}\right|+|1-2 \nu|\left|u_{j}\right|+|\nu|\left|u_{j-1}\right| \\
h \sum_{j}\left|B u_{j}\right| \leq h|v| \sum_{j}\left|u_{j+1}\right|+h|1-2 \nu| \sum_{j}\left|u_{j}\right|+h|\nu| \sum_{j}\left|u_{j-1}\right| \\
=(|\nu|+|1-2 \nu|+|\nu|) h \sum_{j}\left|u_{j}\right|=h \sum_{j}\left|u_{j}\right| \\
\quad \therefore\left|\left|B u \| _ { 1 , h } \leq \| u \left\|\|_{, h} \quad \left\lvert\, v \frac{1}{2}\right.\right.\right.\right.
\end{aligned}
$$

step 2: Check that 1 is the best possible bound.
Let $u_{j}^{0}= \begin{cases}1 & j=0 \\ 0 & j \neq 0\end{cases}$
Then $B u_{j}^{0}=\left\{\begin{array}{cc}\nu & j= \pm 1 \\ 1-2 \nu & j=0 \\ 0 & |j| \geq 2\end{array}\right.$

$$
|v| \leq \frac{1}{2}
$$

and so $\quad h \sum_{j}\left|B u_{j}^{0}\right|=h\left(|v|+\left|\left(-2 v|+|v|)=h=h \sum_{j}\left|u_{j}^{0}\right|\right.\right.\right.$
o- $\quad\left\|B u^{0}\right\|=\left\|u^{0}\right\|$ in the discrete 1 nom.

Next well assume $g(x)$ is smooth enough that

$$
\left\|^{n}\right\|_{1, h} \leq \begin{cases}c h^{2} & \nu \neq 1 / 6 \\ c h^{4} & \nu=1 / 6\end{cases}
$$

weill talk more about this in a minute... The error analysis now proceeds exactly as before.

The error $e_{j}^{n}=u_{j}^{n}-u(; h, k n)$ satisfies the recursion

$$
e_{j}^{n+1}=e_{j}^{n}+k D_{x}^{+} D_{x}^{-} e_{j}^{n}-k \tau_{j}^{n}=B e_{j}^{n}-k \tau_{j}^{n}
$$

so that

$$
\begin{aligned}
e_{j}^{n} & =B \underbrace{\left[B e_{j}^{n-2}-k \tau_{j}^{n-2}\right]}_{e_{j}^{n-1}}-k \tau_{j}^{n-1} \\
& \vdots \\
& =B^{n} e_{j}^{0}-B^{n-1} k \tau_{j}^{0}-\cdots-B k \tau_{j}^{n-2}-k \tau_{j}^{n-1}
\end{aligned}
$$

Finally, since $\left\|B^{\ell}\right\| \leq\|B\|^{l}=1$ for $0 \leq l \leq n$, we have

$$
\begin{aligned}
\left\|e^{n}\right\| & \leqslant\left\|B^{n}\right\| \cdot \underbrace{\left\|e^{0}\right\|}_{0}+k\left\|B^{n-1}\right\| \cdot\left\|\tau^{0}\right\|+\cdots+k\|B\| \cdot\left\|\tau^{n-2}\right\|+k\left\|\tau^{n-1}\right\| \\
& \leqslant k\left[\left\|\tau^{0}\right\|+\cdots+\left\|\tau^{n-1}\right\|\right] \leq k n \cdot \begin{cases}C h^{2} & \nu \neq 1 / 6 \\
C h^{4} & v=1 / 6\end{cases}
\end{aligned}
$$

But this time $\left\|e^{n}\right\|=h \sum_{j=-\infty}^{\infty}\left|e_{j}^{n}\right|$
conclusion: $\max _{0 \leq n k \leq T} h \sum_{j=-\infty}^{\infty}\left|e_{j}^{n}\right| \leq \begin{cases}C T h^{2} & \nu \neq 1 / 6 \\ C T h^{4} & \nu=1 / 6\end{cases}$

$$
\text { or } \quad k \sum_{n=0}^{T / k} h \sum_{j}\left|e_{j}^{n}\right| \leq \begin{cases}C T^{2} h^{2} & \nu \neq 1 / 6 \\ C T^{2} h^{4} & \nu=1 / 6\end{cases}
$$

p
here we summed over n and multiplied by $k=\Delta t$, which introduces another factor of T in the bound

$$
k[C+C+\cdots+C] \leq n k C \leq T C
$$

how reasonable was our assumption that $\left\|\tau^{n}\right\| \leqslant\left\{\begin{array}{ll}C C^{2} & \nu \neq 1 / 6 \\ C h^{4} & v=1 / 6\end{array}\right\}$
On a finite domain $0 \leq x \leq L$, our previous assumption that ${ }^{\prime \prime} g$ is niue enough that the exact solution $u(x, t)$ has $4($ or 6 if $\nu=6)$ continuous, derivatives $\partial_{x}^{l} u, 0 \leq l \leq 40-6$ on the rectangle T \square_{0}^{T} does the tack

This works because

$$
\frac{h}{m}
$$

$$
\frac{h \sum_{j=1}^{m-1}\left|\tau_{j}^{n}\right| \leqslant h(m-1) M}{M} \leq L M
$$

(from the max norm analyos)
$0 \leq x \leq L$
But on the whole real lime a uniform bound on $\left|\tau_{j}^{n}\right|$ by M does not give a bound on $\left\|\tau^{n}\right\|_{1, h}$ (since $L=\infty$)

Let's go back to our truncation error analysis and try to
bound $\left\|\tau^{n}\right\|_{1,2}$ directly. This time well use the Cauchy form of Taylor's theorem with remainder:

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\cdots+\frac{h^{r}}{r!} f^{(r)}(x)+R_{r}(x ; h) \\
& R_{r}(x ; h)=\int_{0}^{h} \frac{f^{(r+1)}(x+\xi)}{r!}(h-\xi)^{r} d \xi=\frac{h^{r+1}}{r!} \int_{0}^{1} f^{(r+1)}(x+\theta h)(1-\theta) d \theta
\end{aligned}
$$

plugging the exact solution into the scheme and simplifying:

$$
\begin{aligned}
& \tau_{j}^{n}= \frac{u\left(x_{j}, t_{n}+k\right)-u\left(x_{j} t_{n}\right)}{k}-\frac{u\left(x_{j}+h, t_{n}\right)-2 u\left(x_{j} t_{n}\right)+u\left(x_{j}-h, t_{n}\right)}{h^{2}} \\
&=\left(u_{t}\left(x_{j}, t_{n}\right),+k \int_{0}^{1} u_{t t}\left(x_{j}, t_{n}+\theta k\right)(1-\theta) d \theta\right. \\
&\left(-u_{x x}\left(x_{j}, t_{n}\right)\left(-\frac{h^{2}}{6} \int_{0}^{1} u_{x x x x}\left(x_{j}+\theta h, t_{n}\right)(1-\theta)^{3} d \theta\right\}\right. \\
&{ }^{\prime \prime} \cdots-\cdots-1 \\
& \\
&\text { act } \left.\quad-\frac{h^{2}}{6} \int_{0}^{1} u_{x x x x}\left(x_{j}-\theta h, t_{n}\right)(1-\theta)^{3} d \theta\right\}
\end{aligned}
$$

now we use $u_{t t}=u_{x x x x}$ and take absolute values to obtain

$$
\begin{aligned}
& k \int_{0}^{1} \int u_{x x x x}\left(x_{j}, t_{n}+\theta k\right) /(1-\theta) d \theta \\
& \left|\tau_{j}^{n}\right| \leq+\frac{h^{2}}{6} \int_{0}^{1}\left|u_{x x x x}\left(x_{j}+\theta h, t_{n}\right)\right|(1-\theta)^{3} d \theta \\
& +\frac{h^{2}}{6} \int_{0}^{1}\left|u_{x x x x}\left(x_{j}-\theta h, t_{n}\right)\right|(1-\theta)^{3} d \theta \\
& \text { an integral of } u_{x x x x} \text { over the lines }\left\{\begin{array}{ccc}
0 & 0 & 0 \\
n & \cdots & 0
\end{array}\right.
\end{aligned}
$$

Next we look at our farvalte formula $u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi$ and differentiate under the integmen sign:

$$
\begin{aligned}
d_{x x x x}(x, t) & =\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} \frac{\partial^{4}}{\partial x^{4}} e^{-\frac{(x-\xi)^{2}}{4 t}} \xi(\xi) d \xi=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}\left[\frac{\partial^{4}}{\partial \xi^{4}} e^{-\frac{(x-\xi)^{2}}{4 t}}\right] g(\xi) d \xi \\
& =\text { integat by parts } \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g_{x x x x}(\xi) d \xi
\end{aligned}
$$

so $U_{x x x x}$ is just the solution of the heat equation with intiaul conditions $g_{x x x x}$. As a result, we have the bound

$$
\left|\|_{x x x x}(x, t)\right| \leq \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}}\left|g_{x x x x}(\xi)\right| d \xi
$$

Let's write $\tilde{u}=u_{x x \times x}$ and $\tilde{g}=g_{x x x x}$ to avar all those x^{\prime} s.
can change the order of summation and integration since integrand is positive

Note that

$$
\begin{aligned}
& \left\|\tau^{n}\right\|_{1, h}=h \sum_{j}\left|\tau_{j}^{n}\right| \leq\left\{\begin{array}{l}
\left.k\right|_{0} ^{1} \sum_{j}\left(u x_{j} x_{j}+\theta k\right) \mid(1-\theta) d \theta \\
+\frac{h^{2}}{6} \int_{0}^{1}\left(h \sum_{j} \tilde{u}\left(x_{j}+\theta h, t_{n}\right)\right)(1-\theta)^{3} d \theta \\
+\frac{h^{2}}{6} \int_{0}^{1}\left(h \sum_{j} \mid \tilde{u}\left(x_{j}-\theta h, t_{n}\right)\right)(1-\theta)^{3} d \theta
\end{array}\right. \\
& \leq C\left[k \int_{0}^{1}(1-\theta) d \theta+\frac{h^{2}}{6} \int_{0}^{1}(1-\theta)^{3} d \theta+\frac{h^{2}}{6} \int_{0}^{1}(1-\theta)^{3} d \theta\right] \\
& =\left(\frac{k}{2}+\frac{h^{2}}{12}\right) C \\
& \text { worst discrete integral } \\
& \text { of }\left|u_{x x x x}\right| \text { in the strip } \\
& \text { where } C \geq \max _{0 \leq x \leq h} h \sum_{j}|\tilde{u}(x+j h, t)| \quad \tau \\
& 0 \leq t \leq T \\
& 0 \leq h \leq 1 \text { arbitrary upper limit on } h \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Finally, we note that } \\
& h \sum_{j}|\tilde{u}(x+j h, t)| \leqslant h \sum_{j} \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi+j h)^{2}}{4 t}}|\tilde{g}(\xi)| d \xi \\
& \\
& =h \sum_{j} \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{4 t}}|\widetilde{g}(x+j h+y)| d y \\
& \\
& =\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{4 t}}\left(h \sum_{j}|\tilde{g}(x+j h+y)|\right) d y \\
&
\end{aligned} \begin{aligned}
& \qquad\left(\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-y^{2} / 4 t} d y\right)=C
\end{aligned}
$$

where

$$
C=\max _{\substack{0 \leq h \leq 1 \\ 0 \leq x \leq h}} h \sum_{j}\left|g_{x x x x}(x+j h)\right|
$$ worst discrete

integral of $\left|g_{\times \times \times x}\right|$

In particular, if $g \in C^{4}(\mathbb{R})$ and $\exists M$ s.t. $\left|g^{(l)}(x)\right| \leqslant \frac{M}{1+x^{2}} \quad l=0,1,2,3,4$ then the discrete 1-norm of the truncation error- is $O\left(h^{2}\right)$ as required.

Last time: analysis of $D_{t}^{+} u=D_{x}^{+} D_{x}^{-} u$ in the 1 norm
Today: energy estimates
Fourier analysis of a scheme (analysis in the 2 -norm)

Last time we saw that the solution of $u_{t}=u_{x x}, u(x, 0)=g(x)$ satisfies

$$
\|u(, t)\|_{1} \leq\|g\|_{1} \text { for } t \geq 0 \text {, ie. } \int_{-\infty}^{\infty}|u(x, t)| d x \leq \int_{-\infty}^{\infty}|g(x)| d x
$$

it's also true that without absolute values,

$$
\int_{-\infty}^{\infty} u(x, t) d x=\int_{-\infty}^{\infty} g(x) d x \quad(t \geq 0)
$$

proof: integrate the representation formula and change order of integration -o r-differentiate the integral: $\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=\int_{-\infty}^{\infty} u_{x x} d x=0$ This remains true on a finite domain with insulating boundary conditions:

$$
\frac{d}{d t} \int_{0}^{L} u(x, t) d x=\int_{0}^{L} u_{t}(x, t) d x=\int_{0}^{L} u_{x x}(x, t) d x=\left.u_{x}(\cdot, t)\right|_{0} ^{L}=0
$$

Let's see what happens if we differentiate the 2-norm:

$$
\begin{aligned}
& \quad \frac{d}{d t} \int_{0}^{L} u^{2} d x=\int_{0}^{L} 2 u_{t} u d x=\int_{0}^{L} 2 u u_{x x} d x \\
& \lambda=\left.2 u u_{x}\right|_{0} ^{L}-2 \int_{0}^{L} u_{x}^{2} d x<0 \\
& { }^{\text {"energy" decreases }} \text { in time }
\end{aligned} \quad \underbrace{\underbrace{}_{0}=0 \text { en }}_{\text {assume either } u=0 \text { or } u_{x}=0 \text { at each end }}
$$

For the infinite domain, the same is true as long as $u(x, t) u_{x}(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$ for fixed t.
(this is guaranteed if, $g(x) \rightarrow 0$ as $x \rightarrow \pm \infty$)
(g is square integrable and)
so the exact solution satisfies

$$
\|u(\cdot, t)\|_{2} \leq\|g\|_{2} \quad(t \geq 0)
$$

where $\quad\|g\|_{2}=\sqrt{\int_{-\infty}^{\infty}|g(x)|^{2} d x} \leftarrow L^{2}$ norm
Our ODE in a Banach space picture looks like

$B=L^{2}(\mathbb{R})=$ "square integrable

$$
\begin{aligned}
& \|g\|_{2}=\sqrt{\int_{-\infty}^{-\infty}|g(x)|^{2} d x} \\
& u_{t}=u_{x x} \\
& u(\cdot, 0)=g
\end{aligned}
$$

$B_{h}=l^{2}=$ "square summat sequences"

$$
\|\tilde{g}\|_{2, h}=\sqrt{h \sum_{j=-\infty}^{\infty}\left|\tilde{g}_{j}\right|^{2}}
$$

$$
\begin{aligned}
& u^{n+1}=B u^{n} \\
& u^{0}=\tilde{g}
\end{aligned}
$$

The absolute values in the integrands are there because we are about to consider complex valued functions (due to the Fourier transform)
so what's the norm of our operator B
of amatrox A of the there
In finite dimensions, the 2 -norm of amatrx A is the harden p to compute:
1-norm: $\|A\|_{1}=$ "max absolute column sum" $=\max _{j} \sum_{i}\left|A_{i j}\right|$
∞-norm: $\|A\|_{\infty}="{ }_{\max }$ absolute row sum" $=\max _{i} \sum_{j}\left|A_{i j}\right|$
2 -norm: $\|A\|_{2}=$ largest. singular value σ_{1}
The singular value decomposition of an matrix looks like

$$
\begin{aligned}
A & =U S V
\end{aligned}, \quad u^{\top} U=I, V^{\top} V=I, S=\left(\begin{array}{ll}
\sigma_{1} & 0 \\
0 & \sigma_{n}
\end{array}\right)
$$

$$
u^{\top}\left(u u^{\top}\right)=u^{\top}
$$

$$
\text { so ulT }=I \text { as well }
$$

columns of U and V are or thogmal
The key feature of an or thogonal matrix is that it preserves norms:

$$
\|U x\|_{2}^{2}=(U x)^{\top}(U x)=x^{\top} U^{\top} U x=x^{\top} x=\|x\|_{2}^{2}
$$

So A and S have the same 2-norms:

$$
\begin{aligned}
\|A x\| & =\left\|U^{\top} A x\right\|=\left\|S V^{\top} x\right\| \leq\|S\| \cdot\left\|V^{\top} x\right\|=\|S\| \cdot\|x\| \\
& \Rightarrow\|A\| \leq\|S\| \\
\|S x\| & =\|U S x\|=\|A V x\| \leq\|A\| \cdot\|V x\|=\|A\| \cdot\|x\| \\
& \Rightarrow\|S\| \leq\|A\|
\end{aligned}
$$

But the 2 -norm of a diagonal matrix is the largest absolute value of its entries:
(1) $\|S \times\|_{2}^{2}=\sum_{i=1}^{n}\left(\sigma_{i} x_{i}\right)^{2} \leqslant \sigma_{1}^{2} \sum_{i=1}^{n} x_{i}^{2}=\sigma_{1}^{2}\|x\|_{2}^{2}$
(2) $\left\|\operatorname{se}_{i}\right\|=\left\|\sigma_{i} e^{2}\right\|=\sigma_{1}$

$$
\sigma_{i}^{2} \leqslant \sigma_{1}^{2} \text { for } i=1 \ldots, n
$$

So $\quad\|A\|=\|S\|=\sigma$,
If A has complex entries, we use the Hermitian trass pose instead

$$
\begin{gathered}
A=U S V^{H}, \quad U^{H} U=I, V^{H} V=I, S=\left(\sigma_{1}^{\sigma_{1}}, \sigma_{n}\right) \\
\left(U^{H}\right)_{i j}=\bar{U}_{j i} \leftarrow \underbrace{\text { colgate }}_{\text {complex }} \quad \\
\underbrace{\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0}_{\text {still real }}
\end{gathered}
$$

and westil obtain $\|\mathbb{A}\|=\|S\|=\sigma_{1}$
In general, the SVD is hard to compute (take math 221 to find out how) If $A=A^{H}$, then the singular values are the absolute values of the eigenvalues

$$
\begin{array}{ll}
A=U A U^{H}=U S V^{H}, & \sigma_{i}=\left|\lambda_{i}\right| \\
& V(:, i)=\operatorname{sign}\left(\lambda_{i}\right) U(;, i)
\end{array}
$$

so the ${ }^{2 \text {-norm }}$ of A is the magnitude of the largest eigenvalue (if $A=A^{H}$)

$$
u^{n+1}=B u^{n} .
$$

Now let's get back to our scheme A on a finite interval, B looks like

$$
B=\underbrace{}_{J-1} \begin{array}{cccc}
1-2 \nu & \nu & & 0 \\
\nu & 1-2 \nu & \nu & 0 \\
\Theta^{\nu} & 1-2 \nu & - & \nu \\
\hline & \nu & 1-2 \nu
\end{array})
$$ if $|\nu| \leq 1 / 2$ then:

$$
\begin{aligned}
& \|B\|_{1}=|\nu|+|1-z \nu|+|\nu|=1 \underbrace{\text { Sump } \operatorname{comph}_{\text {column }}} \\
& \|B\|_{o o}=\text { same }=1 \leftarrow \epsilon_{\text {atom }}^{\text {sum }} \\
& \|B\|_{2}=\text { ? }
\end{aligned}
$$

since B is symmetric, we need to find its largest eigenvalue. Note that $B=(1-2 \nu)\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0\end{array}\right)+\nu\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)=(1-2 \nu) I+\nu E$ so it suffices to find the eigenvalues of E
and ergetunctions $\quad A u=u_{x x}$
For the continuous problem $u_{t}=u_{x x}$, the eigenvalues of the operator ace $A u=\lambda u, \quad u=\sin \frac{n \pi x}{L}, \lambda=-\left(\frac{n \pi}{L}\right)^{2}, n=1,2,3, \ldots$

By blind luck, these eigenfunction also work for B and E.

$$
\begin{aligned}
& U_{j l}=\sin \frac{j l \pi}{J} \quad j=1,2, \ldots, J-1 \quad 0 \frac{1}{1}, 1,1 \\
& (E U)_{j l}=\sum_{m} E_{j m} U_{m l}=\sin \frac{(j-1) l \pi}{J}+\sin \frac{(j+1) l \pi}{J}
\end{aligned}
$$

$$
\begin{aligned}
& \text { works even when } j=1 \text { and } j=-1 \text { since } \sin (0)=0 \\
& \sin (l \pi)=0
\end{aligned}
$$

but $\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$ so

$$
\begin{aligned}
& (E U)_{j l}=2 \sin \frac{j l \pi}{J} \cos \frac{l \pi}{J}=\underbrace{2 \cos \frac{l \pi}{J}}_{\lambda_{l}} U_{j l} \\
& E U=U \Lambda
\end{aligned}
$$

$$
E U=U \Lambda \quad \lambda t
$$

\therefore The eigenvalues of B are $\underbrace{(1-2 \nu)+2 \nu \cos \frac{d \pi}{J}} \quad l=1, \ldots, J-1$

$\|B\|_{2}$ is whichever
of these is larger- in magnitude (so $\|B\|_{2} \leq 1$ if $\left.v \leq \frac{1}{2}\right)$

Above we used the usual 2 -norm in $\mathbb{R}^{J-1},\|x\|_{2}^{2}=\sum_{j=1}^{J-1} x_{j}^{2}$ we would have gotten the same answer $\|B\|_{2, h}=\max _{1 \leq t \leq J-1}\left|1-4 \nu \sin ^{2}\left(\frac{l \pi}{2 J}\right)\right|$ using $\|x\|_{2, h}^{2}=h \sum_{j=1}^{J-1} x_{j}^{2}$ instead.

Now consider the case of an infinite domain. We need to find a way to "diagonalise" our opentor B to compute its 2-norm. The fool for doing this is the Fourier series. Normally you think of Fourier series as a way to represent a function $f(x)$ defined on the interval $-\pi \leq x<\pi$ via

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Theorem: If $f \in L^{2}(-\pi, \pi)$ (1.e. f is square integrable) then the sequence of numbers $c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x, \quad-\infty<n<\infty$ belongs to $l^{2} \quad\left(1 . e-\sum_{n}\left|c_{n}\right|^{2}<\infty\right)$ and
(1) $\quad f=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} c_{n} e^{\operatorname{in} x}$
(i.e. this limit exists in the Hilbert space $L^{2}(-\pi, \pi)$)
(2) $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x \quad$ (Parseval's identity)

Were going to turn this idea around and represent sequences by the function that has that sequence as its Fourier coefficients:
Theorem: if $c \in l^{2}$, the limit in (1) exists and the resulting function $f \in t^{2}(-\pi ; \pi)$ satisfies (2).

Now let's compute the norm of $B u_{j}=\nu u_{j+1}+(1-2 \nu) u_{j}+\nu u_{j-1}$
Let $\hat{u}(\xi)=\sum_{j} u_{j} e^{i j \xi} \quad\binom{u_{j} \leftrightarrow c_{n}}{\hat{u}(\xi) \leftrightarrow f(x)}$
Then $\widehat{B u}(\xi)=\sum_{j} B u_{j} e^{i j \xi}$

$$
\begin{aligned}
& =\sum_{j}\left[\nu u_{j+1} e^{i j \xi}+(1-2 \nu) u_{j} e^{i j \xi}+\nu u_{j-1} e^{i j \xi}\right] \\
& \stackrel{\nu}{ } \sum_{j}\left[\nu u_{j} e^{i(j-1) \xi}+(1-2 \nu) u_{j} e^{i j \xi}+\nu u_{j} e^{i(j+1) \xi}\right] \\
& =\left(\nu e^{-i \xi}+(1-2 \nu)+\nu e^{i \xi}\right) \sum_{j} u_{j} e^{i j \xi} \\
& =(1-2 \nu+2 \nu \cos \xi) \hat{u}(\xi) \\
& =\underbrace{\left[1-4 \nu \sin ^{2}(\xi / 2)\right]}_{G(\xi)} \hat{u}(\xi)] \text { amplification factor }
\end{aligned}
$$

So applying B to a sequence is the same as multiplying its Fourer series by $G(\xi)$. The amplification factor plays the same role here that the singular value matrix $S=\left(\begin{array}{lll}\sigma_{1} & \cdots & \\ & \sigma_{n}\end{array}\right)$ played for matrices.

Claim: $\|B\|_{2, h}=\max _{-\pi \leq \xi \leq \pi}|G(\xi)|$
proof next time.

Last time: analysis in the 2-norm $<\begin{aligned} & \text { finite interval: SVO } \\ & \text { infinite domes: Fowse- jerks }\end{aligned}$
Today: finish stability analysis in 2-norm
more about the amplification factor
how to f ix the broken $v=\frac{1}{6}$ in the homework

Clarification: if you include the constants, the 3-d heat equation looks like

$$
\begin{aligned}
\rho C \frac{\partial u}{\partial t}-\nabla \cdot(k \nabla u) & =f \quad \leftarrow_{\text {Source }}^{\text {heat }}\left(\frac{\text { cal }}{\mathrm{cm}^{2} \cdot s}\right) \\
\left.u\right|_{t=0} & =g \quad \leftarrow \text { initial conditions }
\end{aligned}
$$

$u=$ temperature

$$
(K) \quad f l u x\left(\frac{\mathrm{cal}}{\mathrm{~cm}^{2} s}\right)
$$

$$
c=\text { specific heat } \quad\left(\frac{c a l}{g \cdot K}\right)
$$

$$
\begin{aligned}
& k=\text { thermal conductivity }\left(\frac{c a l}{\mathrm{~cm} \cdot k}\right) \\
& \left(\frac{g}{\mathrm{~cm}^{3}}\right)
\end{aligned} \text { density }^{J=-k \nabla u}
$$

so the right thing to call energy is $\iiint \rho c u d V$ or in $1 d$ without constants: $\int_{0}^{2} u d x$ we saw that insulating B.C's $\Rightarrow \frac{d}{d t} \int_{0}^{L} u d x=0$ energy

For most other equations, the energy is the integral of the square of somecting, (Poisson equation, elasticity, wave equation, Maxtarell equations, Stokes es., etc.)

Last time we saw that the 2 -norm of a matrix is the largest singular value of the matrix

$$
A=U S V^{H}, \quad\|A\|_{2}=\|S\|_{2}=\sigma_{1} \quad\left\{\begin{array}{l}
U^{H} U=I \\
V^{H} V=I \\
s=\left(\sigma_{1} . \sigma_{n}\right) \\
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}
\end{array}\right.
$$

The key dea was that the orthogonal (or unitary in the complex case) matrices U\&V do not change the 2 -norms of vectors or ofpestors matrices.

The same is true in infinite dimensions. The mapping between square integrable functions on $(-\pi, \pi)$ and their fowler coefficents preserves the 2 -norm (up to a factor of $\frac{h}{2 \pi}$):
l^{2} (square summable sequences) $L^{2}(-\pi, \pi) \quad$ (square integntbe) $\left.\begin{array}{c}\text { functor }\end{array}\right)$

$$
\begin{aligned}
& \left\{u_{j}\right\}_{j=-\infty}^{\infty} \quad \xrightarrow{f_{j}} \quad \hat{u}(\xi)=\sum_{j} u_{j} e^{-i j \xi} \\
& f_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\xi) e^{i j \xi} d \xi \stackrel{\sigma^{-1}}{\mathrm{~F}^{-1}} \quad f(\xi)
\end{aligned}
$$

nom preserving
The point is that this mapping is $1-1$, onto, and isometric (up to the $\frac{h}{2 \pi}$)

$$
\int_{-\pi}^{\pi}|\hat{u}(\xi)|^{2} d \xi=\frac{2 \pi}{h}\left(h \sum_{j}\left|u_{j}\right|^{2}\right) \quad\|F\|=\sqrt{\frac{2 \pi}{h}}
$$

and

$$
h \sum_{j}\left|f_{j}^{v}\right|^{2}=\frac{h}{2 \pi} \int_{-\pi}^{\pi}|f(\xi)|^{2} d \xi \Leftarrow\left\|\sigma_{-}^{-1}\right\|=\sqrt{\frac{h}{2 \pi}}
$$

we showed that our scheme $B u_{j}=\nu u_{j+1}+(1-2 \nu) u_{j}+\nu u_{j-1}$ maps a sequence $\left\{u_{j}\right\}_{j=-\infty}^{\infty}$ with Fourier series $\hat{u}(\xi)=\sum_{j} u_{j}^{-i} e^{i j}$
 so now we have two ways of applying B :
$B=\sigma_{j}^{-1} g \sigma^{\mu} \quad$ just like our SVD $\quad A=U S V^{H}$

$$
\therefore\|B\| \leq\left\|\mathcal{F}^{-1}\right\| \cdot\|G\| \cdot\|\sigma\|
$$ multiplying by a diagonal matrix is similar to multiplying by a function: $\left(S_{x}\right)_{i}=\sigma_{i} x_{i}$

$$
=\sqrt{\frac{h}{2 \pi}}\|g\| \sqrt{\frac{2 \pi}{h}}=\|g\|
$$

and $y=\sigma_{f} \beta \sigma^{-1}$
each component gets mult,phed by something, but there's no mixing of the components.
so $\quad\|y\| \leqslant\left\|\sigma_{f}\right\| \cdot\|B\| \cdot\left\|\sigma_{f}^{-1}\right\|=\|B\|$
conclusion: $\|B\|=\|G\| \quad\left(\right.$ just like $\left.\|A\|=\|S\|=\sigma_{1}\right)$

$$
\begin{aligned}
& B_{h} \xrightarrow{F} L^{2}(-\pi, \pi) \\
& \downarrow \begin{array}{lll}
B & f^{-1} & g f(\xi)=G(\xi) f(\xi) \\
& g \text { is the operator }
\end{array} \\
& B_{h} \stackrel{\sigma^{-1}}{\longleftarrow} L^{2}(-\pi, \pi) \\
& \text { "rake } f(5) \text { and } \\
& \text { multiply it by } G(\xi)^{\prime \prime}
\end{aligned}
$$

Our amplification factors $G(\xi)$ will always be continuous functions on the interval $-\pi \leq \xi \leq \pi$.

Claim: $\|G\|=\max _{-\pi \leq \xi \leq \pi}|G(\xi)| \quad$ call the RHS C for now.
proof: step 1: show $\|g f\| \leq C\|f\|$ for all f

$$
\begin{aligned}
\|y f\|^{2} & =\int_{-\pi}^{\pi}|g f(\xi)|^{2} d \xi=\int_{-\pi}^{\pi}|G(\xi) f(\xi)|^{2} d \xi \\
& \leq C^{2} \int_{-\pi}^{\pi}|f(\xi)|^{2} d \xi=C^{2}\|f\|^{2} \\
&
\end{aligned}
$$

key stop: $\left(\left.G(\xi)\right|^{2} \leq C^{2}\right.$ for every $\xi \in[-\pi, \pi]$
$\sigma^{\text {exists }}$
step 2: show that if $K<C$ then $\exists f$ sit. $\|g f\|>K\|f\|$ (ie. no smaller constant than C will work)
idea: $|G(\xi)|$ is a continuous function, so it

achieves its maximum value at som point $\xi_{0} \in[-\pi, \pi]$ and there's a neighborhood $[a, b]$ containing ξ_{0} so that $|\xi(\xi)|>k$ for $a \leq \xi \leq b$.
now define $f(\xi)=\left\{\begin{array}{cc}0 & \xi<a \\ 1 & a \leq \xi \leq b \\ 0 & b<\xi\end{array}\right\}$. Then

$$
\|g f\|^{2}=\int_{-\pi}^{\pi}|G(\xi) f(\xi)|^{2} d \xi=\int_{a}^{b}|G(\xi)|^{2} d \xi>\int_{a}^{b} k^{2} d \xi=K^{2}(b-a)
$$

and $\|f\|^{2}=\int_{-\pi}^{\pi}|f(\xi)|^{2} d \xi=\int_{a}^{b} 1^{2} d \xi=b-a$
so $\|g f\|>K\|f\|$ as claimed.
conclusion: the 2-norm of a finite difference scheme is the maximum value of the amplification factor $G(\xi)$. absolute
for our scheme we found that $G(\xi)=1-4 \nu \sin ^{2}(\xi / 2)$

$$
|G(\xi)|=\left|1-4 \nu \sin ^{2}(\xi / 2)\right|
$$

as expected, the transition from $\|B\|>1$ to $\|B\|=1$ happens when $v=1 / 2$.

The rest of the convergence proof is the same as before: assume g is nice enough that $\left\|\tau^{n}\right\|_{2, h} \leq \begin{cases}C h^{2} & \nu \neq 1 / 6 \\ C h^{4} & v=1 / 6\end{cases}$ the error $e_{j}^{n}=u_{j}^{n}-u(j h, n k)$ satisfies $e^{n+1}=B e^{n}-h \tau^{n}$ backward beating gives $\quad \max ^{0 \leq n k \leq T} \sqrt{h \sum_{j}\left|e_{j}^{n}\right|^{2}} \leq \begin{cases}C T h^{2} & v \neq 1 / 6 \\ C T h^{4} & v=1 / 6\end{cases}$
the condition $g \in C^{4}(\mathbb{R})$ and $\exists M$ s.t. $\left|g^{(l)}(x)\right| \leq \frac{M}{1+x^{2}} \quad \begin{aligned} & \quad l=0,1,2,3,3\end{aligned}$
is sufficient to ensure $\left\|\tau^{n}\right\|_{2, h} \leq C h^{2}$
and $\quad g^{\in} C^{6}(\mathbb{R}),\left|g^{(l)}(x)\right| \leq \frac{M}{1+x^{2}} \quad 0 \leq l \leq 6$ ensues $\left\|\tau^{n}\right\|_{2 ; h} \leq C_{h}^{4}$

In the homework, youll find that $\nu=1 / 6$ is no longer magic for the scheme

$$
D_{t}^{+} u=D_{x}^{+} D_{x}^{-} u+10 D_{x}^{0} u
$$

Let's try to figure ont why and see what we can do about it.
Taybo-expansions:

$$
\begin{aligned}
& D_{t}^{+} u=\frac{u\left(x_{j}, t_{n}+k\right)-u\left(x_{j}, t_{n}\right)}{k}=u_{t}+\frac{h}{2} u_{t t}+\cdots \\
& D_{x}^{+} D_{x}^{0} u= \\
& D_{x}^{0} u=\frac{u\left(x_{j}+h, t_{n}\right)-u\left(x_{j}-h_{1}, t_{n}\right)}{2 h}=u_{x x}+\frac{h^{2}}{12} u_{x x x x}+\cdots \\
& \tau_{j}^{n}=\frac{h^{2}}{6} u_{x x x}+\cdots \\
&
\end{aligned}
$$

exact sol satishes $u_{t}=u_{x x}+10 u_{x}$

$$
\begin{aligned}
& \text { so } u_{t t}=u_{t x x}+10 u_{t x} \\
&=u_{x x x x}+10 u_{x x x}+10\left(u_{x x x}+10 u_{x x}\right) \\
&=u_{x x x x}+20 u_{x x x}+100 u_{x x} \\
& \therefore \tau_{j}^{n}=\underbrace{\left(\frac{k}{2}-\frac{h^{2}}{12}\right) u_{x x x x}}_{0 \text { if } v=1 / 6}+\underbrace{\left(10 k-\frac{10}{6} h^{2}\right)}_{0 \text { if } v=1 / 6} u_{x x x}+\underbrace{50 k}_{\text {not zero! }} u_{x x}
\end{aligned}
$$

so actually we want

$$
\tau_{j}^{n}=\frac{h}{2} u_{t t}-\frac{h^{2}}{12} u_{x x x x}-10 \frac{h^{2}}{6} u_{x x x}-\frac{50}{6} h^{2} u_{x x}+\cdots
$$

but we know how to approximate $U_{x x}$ (just use $D_{x}^{+} D_{x}^{-} u$) So a better scheme would be

$$
D_{t}^{+} u=\left(1+\frac{50}{6} h^{2}\right) D_{x}^{+} D_{x}^{-} u+10 D_{x}^{0} u
$$

try it.. it works! (gives $O\left(h^{2}+h^{4}\right)$ errors)
\rightleftarrows
more general schemes
consider the shift operator $S u_{j}=u_{j+1}$ on l^{2} $\left[\right.$ it looks like an infinite matrix with 1 's on the supediagonal $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & \vdots \\ 0 & \vdots \\ 0 & 1\end{array}\right]$ it's inverse s^{-1} has 1^{\prime} ' on the subdiagomal $S^{-1} u_{j}=u_{j-1}$ (the finite dimensional ${ }^{\text {visor of }} S=\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ is not invertible)

$$
u^{n+1}=B u^{n} \text { has }
$$

our schema A

$$
B=\nu S^{\prime}+(1-2 \nu) \overbrace{S^{0}}^{I}+\nu S^{-1}
$$

and we can write $D_{x}^{+} u=\frac{S-I}{h} u$
A general finite difference scheme looks like $B=\sum_{m=m_{1}}^{m_{2}} c_{m} S^{m}$ constant along diagonals

Its amplification factor may be computed as

$$
\begin{aligned}
& \widehat{B u}(\xi)=\sum_{j} B u_{j} e^{-i j \xi} \\
&=\sum_{j}\left(\sum_{m} c_{m} u_{j+m}\right) \sum_{m}=\sum_{m=m_{1}}^{e^{i j} \xi} \\
&\left.=\sum_{m} \sum_{j} c_{m} u_{j}+m e^{-i j \xi} \quad\right) l=j+m \\
&=\underbrace{\sum_{m} c_{m} e^{i m \xi}}_{\left(\underset{m}{ } \sum_{l} c_{m} u_{l} e^{-i(l-m) \xi}\right.} \sum_{l}^{\sum_{l} u_{l} e^{-i l \xi}} \\
& \underbrace{}_{\hat{u}(\xi)}
\end{aligned}
$$

you can think of $w_{j}=e^{i j \xi}$ as an infinite column vector indexed by j with as a fixed parameter
Then $B w_{j}=\sum_{m} c_{m} w_{j+m}=\sum_{m} c_{m} e^{i(j+m) \xi}=\left(\sum_{m} c_{m} e^{i m \xi}\right) \underbrace{e^{i j \xi}}_{w_{j}^{\prime}}$ or $B W=G(\xi) w$
so $G(\xi)$ is the eigenvalue associated with the eigenvector W only problem is, w is not square summable, so $w \notin B_{h}$ (the operator B doesint have any eigenvalues or eigenvectors) since nome of the candidate eigenvectors are "legal"

Math 228 B Lee 8

Last time: van Newman stability analysis

$$
B=\sigma_{j}^{-1} g \sigma_{j}, \quad\|B\|_{2, h}=\|g\|_{2}=\|G\|_{\infty}
$$

fixing the broken $v=1 / 6$ scheme for $u_{t}=u_{x x}+10 u_{x}$

Today: amplification factors for arbitrary schemes bounds on the finite dimensional versions of B in terms of $G(\xi)$

General explicit finite difference schemes
shift operator: $\quad S u_{j}=u_{j+1} \quad\left(\operatorname{maps} l^{2}\right.$ to $\left.l^{2}\right)$

$$
\text { inverse }=\quad s^{-1} u_{j}=u_{j-1}
$$

(the finite dimensional version $S=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0\end{array}\right)$ is not invertible) but the circulant version $\longrightarrow S=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ i & 0\end{array}\right)$ is mertible
we can write our previous operators in terms of S :

$$
D_{x}^{+} u=\frac{S-I}{h} u, D_{x} u=\frac{I-S^{-1}}{h} u, D_{x}^{+} D_{x}^{-} u=\frac{S-2 I+S^{-1}}{h^{2}} u
$$

our favorite scheme: $u^{n+1}=B u^{n}, \quad B=\nu S^{1}+(1-2 \nu) S^{0}+\nu S^{-1}$ a general scheme: $B=\sum_{m=m_{1}}^{m_{2}} C_{m} S^{m}$ constant along diagonals (Toeplitz)
infinite matrix:

Its amplification factor may be computed as

$$
\begin{array}{rlr}
\widehat{B u}(\xi) & =\sum_{j} B u_{j} e^{-i j \xi} & \sum_{m}=\sum_{m=m_{1}}^{m_{2}} \\
& =\sum_{j}\left(\sum_{m} c_{m} u_{j+m}\right) e^{-i j \xi} & \\
& \equiv \sum_{m} \sum_{j} c_{m} u_{j+m} e^{-i j \xi} \quad \sum l=j+m
\end{array}
$$

note that if B
is symmetric, lie.

$$
=\sum_{m} \sum_{l} c_{m} u_{l} e^{-i(t-m) \xi}
$$

$m_{1}=-m_{2}$ and $c_{m}=c_{m}$
then $G(\xi)$ is real valued:

$$
G(\xi)=\sum_{m} c_{m} e^{i m \xi}
$$

you can think of $w_{j}=e^{i j \xi}$ as an infinite column vector indexed by j with ξ as a fixed parameter

Then $B w_{j}=\sum_{m} c_{m} w_{j+m}=\sum_{m} c_{m} e^{i(j+m) \xi}=\left(\sum_{m} c_{m} e^{i m \xi}\right) e^{i j}$ $\underbrace{}_{w_{\prime}^{\prime}}$ or $B w=G(\xi) w$
so $G(\xi)$ is the eigenvalue associated w th the eigenvector W only problem ts, w is not square summable, so $w \notin B_{h}$ (the operator B doesint have any eigenvalues or eigenvectors) since nome of the candidate eigenvectors are "legal"

The amplification factor allows us to compute the norm of B for the infinite domain problem. What does it tell us in the finite domain case? The answer depends on the boundary conditions.
case 1: Dinchlet B.C.'s
$0+2$ L J
$+1+1+$
0 Let's keep the letter B for the operator on l^{2} and use the letter A for the om e on \mathbb{R}^{J-1}
since A is a proper submatrix of $B, \quad\|A\|_{2,5} \leq\|B\|_{2, h}$ reason: if $x \in R^{j-1}$, define $u \in l^{2}$ via $u_{j}= \begin{cases}0 & j \leq 0 \\ x_{j} & i \leq j \leq J-1 \\ 0 & j \geq j\end{cases}$ Then $\quad\|u\|_{2, h}^{2}=h \sum_{j=-\infty}^{\infty}\left|u_{j}\right|^{2}=h \sum_{j=1}^{J-1}\left|x_{j}\right|^{2}=\|x\|_{2, h}^{2}$ and $A x$ is a subvector of $B u$:

$$
\mathrm{Bu}=\left(\begin{array}{c|c|c|}
B_{11} & B_{22} & 0 \\
\hline B_{21} & A & B_{23} \\
\hline 0 & B_{32} & B_{33}
\end{array}\right)\left(\begin{array}{l}
0 \\
x \\
0
\end{array}\right)=\left(\begin{array}{l}
B_{12} x \\
A x \\
B_{32} x
\end{array}\right) \quad \text { non-negative }
$$

egg.

$$
B_{12}=\left(\begin{array}{cc}
\vdots & \vdots \\
0 & 0 \\
0 & 0 \\
c_{m_{2}} & 0 \\
c_{2} & 0 \\
c_{1} c_{2} & c_{m_{2}} \\
\hline
\end{array}\right)
$$

$$
\text { so }\|B u\|_{2, h}^{2}=\|A x\|_{2, h}^{2}+\left\|B_{12} x\right\|_{2, h}^{2}+\left\|B_{3,2} x\right\|_{2, h}^{2}
$$

$$
\therefore\|A \times\|_{2, h} \leq\|B u\|_{2, h} \leqslant\|B\|_{2, L}=\underbrace{}_{\|x\| \|_{2, h}}
$$

case 1a: B is symmetric and tri-dingunal $\left.\quad A=\left(\begin{array}{l}\alpha \\ \beta \\ \beta_{0}^{\beta}\end{array} \sum_{\beta}^{\beta} \alpha_{\alpha}\right)\right\} J-1$ rows
then not only is $\|A\| \leq\|B\|$ but the eigenvalues of A are the values of G sampled at equal intervals:

$$
\begin{aligned}
&\left(\frac{l \pi}{J}\right) \quad 1 \leq l \leq J-1 \\
& x \in \mathbb{R}^{J-1}, \quad x_{j}=\sin \frac{j \pi l}{J} \quad 1 \leq j \leq J-1 \\
& w \in l^{2}, \quad w_{j}=e^{i j \xi} \quad-\infty<j<\infty, \xi=\frac{l \pi}{J} \\
& x_{j}=\operatorname{Im}\left(w_{j}\right)
\end{aligned}
$$

taking the imaginary part of $B_{w}=G(\xi) w$ and using gives $A x=G\left(\frac{2 \pi}{J}\right) x$ as claimed.

Case 2a: Newman B.c!'s, B symmetric \& in diagonal $\quad A=$ This time $G(0)$ and $G(\pi)$ are also eigenvalues

$$
\begin{aligned}
& \lambda_{l}=G\left(\frac{l \pi}{J}\right) \quad 0 \leq l \leq J \\
& x_{j}=\cos \frac{j \pi l}{J} \quad 0 \leq j \leq J \\
& w_{j}=e^{i, j} \quad-\infty<j<\infty \quad(J+1) \\
& x_{j}=\operatorname{Re}\left(w_{j}^{\prime}\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
B_{w}=G(\xi) w \\
\operatorname{Re}\left(w_{-1}\right)=\operatorname{Re}\left(w_{1}\right) \\
\left.\operatorname{Re}\left(w_{\tau}\right)=\operatorname{Re} w_{r}\right)
\end{array}\right\} \Rightarrow A x=G(\xi) x
$$

The correct discrete inner product is

$$
\left(u_{0} v\right)=\frac{h}{2} u_{0} \bar{v}_{0}+\sum_{j=1}^{J-1} u_{j} \bar{v}_{j}+\frac{h}{2} u_{j} v_{J}
$$

in this inner product, A is self-adjoint: $(A u, v)=(u, A v)$
case 3: Periodic B.C.'s, B arbitrary these values represent the solution

$$
\begin{array}{llllll}
j=0 & 1 & 2 & J-1 & J \\
x=0 & h & 2 h & L
\end{array}
$$

when wrputing erg. $D_{x}^{+} D_{x}^{-} U_{j}$ at $j=0$ " $j-1$ " means $J-1$ instead of -1 $j=J-1, " j+1 "$ means 0 instead of J

This time the", illegal" eigenvectors $\omega_{;}=e^{\prime \prime \xi}$ of B are eigenvectors of A as long as ξ respects the periodic b.'.s (no need to assume B is symmetric or tridiagonal)
requirement : $e^{i J \xi}=e^{i O \xi} \quad$ or $\quad \xi=\frac{2 \pi l}{j}$
\uparrow
spacing is double what it was in the Dirichlet \& Newman cases
rows 0 through $J-1$ of B :

A is the middle part of this matrix with the "wings" mapped baderinside

$$
A=\left(\begin{array}{ll}
A w=(\pi(\xi) w \\
w_{j}+J=w_{j}
\end{array}\right\} \Rightarrow A x=G(\xi) x
$$

result (periods b.c.s) :

J odd

$$
\begin{aligned}
& \lambda_{l}{ }^{2} G\left(\frac{2 \pi l}{J}\right) \\
& -\frac{J-1}{2} \leq l \leq \frac{J-1}{2}
\end{aligned}
$$

J even

$$
\begin{aligned}
& \lambda_{l}=G\left(\frac{2 \pi l}{J}\right) \\
& -\frac{J}{2} \leq l \leq \frac{J}{2}-1
\end{aligned}
$$

$G(\xi)$ us allowed to take on complex values in both plots.
Implicate schemes
the timestep restriction $\nu=\frac{h}{h^{2}} \leq \frac{1}{2}$ makes the schemes we have shaded so far rather impractical. Let's see chat happen if we try

Math 228 Lee 9

Last time: amplification factors for corbitray clues eigenvalue of finite dimensional versions of B in terms of $G(\xi)$

Today: implicit methods
higher dimensions
imphut schemes
the timestep restriction $\nu=\frac{k}{h^{2}} \leq \frac{1}{2}$ makes the schemes we have studied so far^{2} rather impractical. Let's see what happens if we try

$$
D_{t}^{+} u_{j}^{n}=D_{x}^{+} D_{x}^{-} u_{j}^{n+1} \longleftarrow \text { space derivative }
$$

or

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{h}=\frac{u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}}{h^{2}}
$$

or

$$
-\nu u_{j+1}^{n+1}+(1+2 v) u_{j}^{n+1}-\nu u_{j-1}^{n+1}=u_{j}^{n}
$$

we can write this as $B u^{n+1}=u^{n}$
where $B u_{j}=-\nu u_{j+1}+(1+2 v) u_{j}-\nu u_{j-1}$
The amplification factor for B is

$$
\begin{aligned}
G(\xi) & =-\nu e^{i \xi}+(1+2 \nu)-\nu e^{-i \xi} \\
& =1+2 \nu(1-\cos \xi) \\
& =1+4 \nu \sin ^{2}(\xi / 2)
\end{aligned}
$$

Since $G(\xi) \neq 0$ for $-\pi \leq \xi \leq \pi$,
the operator $g: L^{2}(-\pi, \pi) \rightarrow L^{2}(-\pi, \pi)$ is invertible:

$$
\begin{aligned}
& G f(\xi)=G(\xi) f(\xi) \\
& g^{-1} f(\xi)=\frac{1}{G(\xi)} f(\xi)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
3 g^{-1} \text { sit. } \\
y g^{-1} f=f \\
y^{-1} g f=f
\end{array}\right.
$$

we know how to compute norms of multiplication operators already:

$$
\left\|G^{-1}\right\|_{L}=\left\|\frac{1}{G}\right\|_{\infty}=\max _{-\pi \leq \xi \leq \pi} \frac{1}{|G(\xi)|}=1
$$

and since $B=F^{-1} g^{\sigma} f$
we have $B^{-1}=\sigma^{-1} G^{-1} \sigma$

so B is invertible and $\left\|B^{-1}\right\|_{2, h}=\left\|G^{-1}\right\|_{L^{2}}=1$ no matter what ν is. $\because a^{n+1}=B^{-1} u^{n}$ is unconditionally stable
this allows us to choose a much more reasonable refinement path; e.g.

$$
k=h \quad\left(\text { or } \nu=\frac{1}{h} \text { instead of a constant }\right)
$$

remember, the requremut for stability was that

$$
\exists K, \varepsilon \text { st. } \quad\left\|B(k)^{n}\right\| \leq K \quad \text { for } \quad\left\{\begin{array}{l}
0 \leq k<\varepsilon \\
0 \leq n k \leq T
\end{array}\right\}
$$

in our case $\varepsilon=1$ and $K=1$ works.
problem: our truncation error τ_{j}^{n} is still $O\left(h+h^{2}\right)$.
Thu was fine when k was $v h^{2}$, but now it's unacceptable.

$$
\begin{gathered}
\uparrow \\
\text { fixed constant }
\end{gathered}
$$

solutions Crank-Nicolson scheme

$$
D_{t}^{+} u_{j}^{n}=\frac{1}{2}\left[D_{x}^{+} D_{x}^{-} u_{j}^{n}+D_{x}^{+} D_{x}^{-} u_{j}^{n+1}\right]
$$

stencil

clam: $\tau_{j}^{n}=O\left(h^{2}+h^{2}\right)$
proof: ping in the exact solon and do a Taylor expansion around the point $\left(x_{j}, t_{n+\frac{1}{2}}\right)$
\circledast

$$
\begin{aligned}
D_{t}^{+} u_{j}^{n}= & \frac{u(j h, n k+k)-u(j h, n h)}{k} \\
= & \frac{\left[u+\frac{h}{2} u_{t}+\frac{1}{2}\left(\frac{k}{2}\right)^{2} u_{t t}+\frac{1}{6}\left(\frac{k}{2}\right)^{3} u_{t t t}+\cdots\right]-\left[u-\frac{h}{2} u_{t}+\frac{1}{2}\left(\frac{k}{2}\right)^{2} u_{t t}-\frac{1}{6}\left(\frac{k}{2}\right)^{3} u_{t+1}+\cdots\right]}{k} \\
= & u_{t}\left(j h, n k+\frac{k}{2}\right)+\frac{k^{2}}{24} u_{t t t}\left(j h, n h+\frac{k}{2}\right)+O\left(k^{4}\right) \\
D_{x}^{+} D_{x}^{-} u_{j}^{n}= & u_{x x}(j h, n k)+\frac{h^{2}}{12} u_{x x x x}(j h, n h)+O\left(h^{4}\right) \\
D_{x}^{+} D_{x}^{-} u_{j}^{n+1}= & u_{x x}(j h, n k+h)+\frac{h^{2}}{12} u_{x x x x}(j h, n k+h)+O\left(h^{4}\right) \\
\frac{1}{2}(\cdot+\cdot)= & u_{x x}\left(j h, n h+\frac{k}{2}\right)+\frac{k^{2}}{8} u_{x x t t}\left(j h, n h+\frac{k}{2}\right)+O\left(k^{4}\right) \\
& +\frac{h^{2}}{12}\left[u_{x x x x}\left(j h, n h+\frac{k}{2}\right)+\frac{h^{2}}{8} u_{\left.x x x x t+\left(j h, n h+\frac{k}{2}\right)+O\left(k^{4}\right)\right]}\right.
\end{aligned}
$$

conclusion:

$$
\begin{aligned}
\tau_{j}^{n} & =\circledast-\underbrace{\left(u_{t}-u_{x x}\right)}_{0}+\frac{k^{2}}{24} u_{t t t}-\frac{h^{2}}{8} u_{x x t t} \\
& -\frac{h^{2}}{12} u_{x x x x}+0\left(k^{4}+h^{4}\right)
\end{aligned}
$$

claim: Crank-Niolson is unconditionally stats.
Proof $=D_{t}^{+} u_{j}^{n}=\frac{1}{2}\left[D_{x}^{+} D_{x}^{-} u_{j}^{n}+D_{x}^{+} D_{x}^{-} u_{j}^{n+2}\right]$

$$
\begin{aligned}
& \frac{u_{j}^{n+1}-u_{i}^{n}}{k}=\frac{1}{2 h^{2}}\left[u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}+u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}\right] \\
& -\frac{1}{2} \nu u_{j+1}^{n+1}+(1+\nu) u_{j}^{n+1}-\frac{1}{2} \nu u_{j-1}^{n+1}=\frac{1}{2} \nu u_{j+1}^{n}+(1-v) u_{j}^{n}+\frac{1}{2} \nu u_{j-1}^{n} \\
& \left(I-\frac{v}{2} B\right) u^{n+1}=\left(I+\frac{\nu}{2} B\right) u^{n}, B u_{j}=u_{j+1}-2 u_{j}+u_{j-1}
\end{aligned}
$$

The amplification factor of B is $G(\xi)=e^{i \xi}-2+e^{-i \xi}$

$$
\begin{aligned}
& =-2(1-\cos 3) \\
& =-4 \sin ^{2}(3 / 2)
\end{aligned}
$$

The mapping of an operator to its amplification factor
is linear $\left(g=F B F^{-1} \Rightarrow \alpha y_{1}+\beta y_{2}=\sigma\left(\alpha B_{1}+\beta B_{2}\right) F^{-1}\right)$
so if we take the Fourier transform of (6) we get

$$
\left[1-\frac{v}{2}\left(-4 \sin ^{2}\left(\frac{\xi}{2}\right)\right)\right] \hat{u}^{n+1}(\xi)=\left[1+\frac{y}{2}\left(-4 \sin ^{2}\left(\frac{\xi}{2}\right)\right)\right] \hat{u}^{n}(\xi)
$$

or

$$
\hat{u}^{n+1}(\xi)=\underbrace{\frac{1-2 \nu \sin ^{2}(\xi / 2)}{1+2 \nu \sin ^{2}(\xi / 2)} ;}_{G_{1}(\xi)} \hat{u}^{n}(\xi)
$$

for any choice of $\xi, G_{1}(\xi)$ has the form $\frac{1-a}{1+a}$ for some $a>0$. But $\left|\frac{1-a}{1+a}\right|=\sqrt{\frac{1-2 a+a^{2}}{1+2 a+a^{2}}} \leq 1$ since $0 \leq 1-2 a+a^{2}<1+2 a+a^{2}$ $\therefore\left\|B_{1}\right\|_{2 ; h}=\left\|G_{1}\right\|_{L^{2}}=\left\|G_{1}\right\|_{\infty} \leq 1$ where $u^{n+1}=B_{1} u^{n}=\left(I-\frac{\nu}{2} B\right)^{-1}\left(I+\frac{\nu}{2} B\right) u^{n}$

The finite dimensional version of Crank-Nicoloson works the same, but instead of diagonalizing the operator with Pourer series, we use the discrete sine, cosine or Founder transform
Drichlet $B . C^{\prime} \prime$: $\quad B=\left(\begin{array}{cccc}-2 & 1 & & \\ 1 & -2 & 1 & \\ & \ddots & - & 1 \\ & & 1 & -2\end{array}\right), u^{n+1}=\left(I-\frac{v}{2} B\right)^{-1}\left(I+\frac{v}{2} B\right) u^{n}$

$$
\begin{array}{lll}
\mathbb{R}^{J-1} \xrightarrow{S} & \mathbb{R}^{J-1} & B_{1}=S^{-1} \wedge S
\end{array} \begin{array}{ll}
B_{1} \\
& \\
\mathbb{R}^{J-1} \xrightarrow{S} & \mathbb{R}_{l l}^{J-1}
\end{array}
$$

Neumann $B \cdot C^{\prime}: s \quad B=\left(\begin{array}{cccc}-2 & 2 & & \\ 1 & -2 & 1 & \\ & 1 & \ddots & 1 \\ & & 1 & -2 \\ & & 2 & -2\end{array}\right), U^{n+1}=\underbrace{\left(I-\frac{\nu}{2} B\right)^{-1}\left(I+\frac{v}{2} B\right)}_{B_{1}} U^{n}$

Periodic $B . C_{0}^{\prime} ; \quad B=\left(\begin{array}{ccccc}-2 & 1 & & 1 \\ 1 & -2 & 1 & & \\ & 1 & \ddots & 1 & 1 \\ 1 & & & 1 & -2\end{array}\right) \quad u^{n+1}=\underbrace{\left(I-\frac{\nu}{2} B\right)^{-1}\left(I+\frac{\nu}{2} B\right)}_{B_{1}} u^{n}$

$$
\mathbb{R}^{J} \xrightarrow{\circ} \underset{B_{1} \downarrow}{ } \mathbb{R}^{J} \quad B_{1}=F^{-1} \Lambda F, \quad A_{l l}=G_{1}\left(\frac{2 \pi l}{J}\right) \quad 0 \leq l \leq J-1
$$

$$
\mathbb{R}^{J} \downarrow \underset{\rightarrow}{\mathcal{F}^{J}} \quad\left(F^{-1}\right)_{j l}=e^{\frac{2 \pi i j l}{J}} \quad \sigma_{m j}=\frac{1}{j} e^{-\frac{2 \pi i m}{J}}
$$

all three operators $S, C,{ }_{F}$ are isometries up to a constant fetor, so B_{1} and \triangle have the same norm. in particular, $I-\frac{v}{2} B$ is invertible since its eigenvalues are ≥ 1 (and the fore not zero)

$$
\begin{aligned}
& \mathbb{R}^{J+1} \xrightarrow{C} \mathbb{R}^{J+1} \quad B_{1}=e^{-1} \wedge C \quad, \Lambda_{l l}=G_{1}\left(\frac{\pi l}{J}\right), 0 \leq l \leq J
\end{aligned}
$$

To implement these schemes, you can either use the appropriate transform (fast sim, fast cosine, or fast fowler transform) and then iterate by multiplying by the diagonal matrix x, or you can solve a tridiagonal system.

$$
\begin{aligned}
& u^{n+\frac{1}{2}}=\left(I+\frac{v}{2} B\right) u^{n} \leftarrow \operatorname{explicit} \text { half-step (easy) } \\
& u^{n+1}=\left(I-\frac{\nu}{2} B\right)^{-1} u^{n+\frac{1}{2}} \leftarrow \text { implicit half-step (solvetinding.) }
\end{aligned}
$$

tridiagonal systems can be solved in $O(N)$ time $\left\{\begin{array}{l}A x=b \\ \tau N \times N \text { matrix } \\ (N \text { is } J-1, J+1, \text { or } J)\end{array}\right.$ since A^{-1} is a dense matrix, so applying A^{-1} to b by matrix multiplication requires $O\left(N^{2}\right)$ flops

The IU factorization of a banded matrix is banded even if you use pivoting (but the band grows a little) LAPACK: $\quad \underbrace{\text { DGBTRF,Fortran }}_{\text {factor }}, \underbrace{\text { DGBTRS }}_{\text {solve }}<$ banded systems

This still wont handle the periodic case

optan 1: doit prot the last ow in
(end up with arrow shaped matrices: $L=(0) U=\left(\begin{array}{ll}0 & 1) \\ 0 & 1\end{array}\right.$ have to be mildly careful with stability of frectorizactions, but for diserctizations of PDE's it's otter ole not to prot (diagonal dominate)
option 2: use a sparse solver (e.g. colamd, symamd) matlab has these solvers built in, so just designate your matrix $A=\left(I-\frac{\nu}{2} B\right)$ as sparse and solve with backslash:

$$
x=A \backslash b
$$

Higher dimensions $\quad u_{t}=\Delta u$ (or $\nabla^{2} u$ if you prefer)

$$
\ln 2-d: \quad u_{t}=u_{x x}+u_{y y}
$$

exact solution : $u(x, y, t)=\frac{1}{4 \pi t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 t}} g(\xi, \eta) d \xi d \eta$ \uparrow not square rooted now
numerics:

2-d discrete grids attached to each time t_{n}
well often write u_{j}^{n} but j means $\left(j, j j_{2}\right)$ now discrete 2-no-m:

$$
\|u\|_{2, h}^{2}=h_{1} h_{2} \sum_{j}\left|u_{j}\right|^{2} \quad\left(=\left.h_{1} h_{2} \sum_{j=-\infty}^{\infty} \sum_{b=-\infty}^{\infty}\left|u_{j}\right|\right|^{2}\right)
$$

explicit scheme:

$$
\begin{aligned}
& D_{t}^{+} u_{j}^{n+1}=D_{x}^{+} D_{x}^{-} u_{j}^{n}+D_{l j}^{+} D_{y}^{-} u_{j}^{n} \\
& \\
& +v_{2} u_{j, l+1}^{n} \\
& u_{j l}^{n+1}=v_{1} u_{j-1, l}^{n}+\left(1-2 v_{1}-2 v_{2}\right) u_{j l l}^{n}+v_{1} u_{j+1, l}^{n} \\
& \\
& +v_{2} u_{j, l-1}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \nu_{1}=\frac{k}{h_{1}^{2}} \\
& \nu_{2}=\frac{k}{h_{2}^{2}}
\end{aligned}
$$

or $u^{n+1}=B u^{n}$
(t') easy to show that $\|B\|_{\infty}=1$ and $\|B\|_{1, h}=1$
if $\nu_{1}+\nu_{2} \leq \frac{1}{2}$

2283 Lecture 10

Last time: implicit methods

$$
\begin{aligned}
& \text { implicit methods } \\
& \text { Crenk-Niclion }\binom{O\left(k^{2}+h^{2}\right)}{\text { unconditional stability! }}
\end{aligned}
$$

Today: higher dimensions, ADI (alternating direction implicit)
higher dimensions: $\quad u_{t}=\Delta u \quad$ (or $u_{t}=\nabla^{2} u$)
in 2-d: $\quad u_{t}=u_{x x}+u_{y y}, \quad u(x, y, 0)=g(x, y)$
exact sol: $u(x, y, t)=\frac{1}{4 \pi t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 t}} g(\xi, \eta) d \xi d \eta$
numencs:

2-d discrete gads attacked to each time t_{n}
discrete 2-norm: $\|u\|_{2, h}^{2}=h, h_{2} \sum_{j, l=-\infty}^{\infty}\left|u_{j l}\right|^{2}$

$$
\begin{aligned}
& \text { exploit scheme }=D_{t}^{+} u_{j l}^{n+1}=D_{x}^{+} D_{x}^{-} u_{j t}^{n}+D_{y}^{+} D_{y}^{-} u_{j l}^{n} \\
&+v_{2} u_{j, l+1}^{n} \\
& u_{j l}^{n+1}=v_{1} u_{j+1, t}^{n}+\left(1-2 v_{1}-2 v_{2}\right) u_{j l}^{n}+v_{1} u_{j+1, l}^{n} v_{1}=\frac{k}{h_{1}^{2}} \\
&+v_{2} u_{j, t-1}^{n}
\end{aligned}
$$

or $u^{n+1}=\mathrm{Bu}^{n}$

The stencil for B looks like

it's easy to chuck that $\|B\|_{\infty}=1$ and $\|B\|_{1, h}=1$ as long as $v_{1}+\nu_{2} \leq \frac{1}{2}$ and if $v_{1}+v_{2}>\frac{1}{2}$ them $\|B\|_{\infty}>1$ and $\|B\|_{1, k}>1$ (same ides as $1 d$ care. counterexample for $\left\|\|_{\infty}\right.$: counterexaph for $\|\cdot\|_{1}$;

if $v_{1}+v_{2}>\frac{1}{2}$ then

$$
\begin{array}{ll}
h_{1} h_{2}\left[2\left|v_{1}\right|+2\left|v_{2}\right|+\left|1-2 v_{1}-2 v_{2}\right|\right] & \sum \begin{array}{cc}
v_{1} & 1-2 v_{2}-2 v_{2}
\end{array} \\
=h_{1} h_{2}\left[4\left(v_{1}+v_{2}\right)-1\right]>h_{1} h_{2}[1] & \|B u\|_{1, h}>1\|u\|_{1, h} \quad \text { with } u_{j l}=\left\{\begin{array}{lc}
1 & j=0, l=0 \\
0 & 0, w
\end{array}\right.
\end{array}
$$

To analyze the 2 -norm, we use a higher dimensional Fourier series
$l^{2}(Z X Z Z)$ square summable
doubly-indered requinics

$$
L^{2}([-\pi, \pi] \times[-\pi, \pi])
$$

square integrable functions

$$
\begin{gathered}
\left\{u_{j l}\right\}_{j l l}^{\infty} \quad \stackrel{\sigma_{F}}{\longleftrightarrow} \quad \hat{u}(\xi, \eta)=\sum_{j, l} u_{j, l} e^{-i(j \xi+l \eta)} \\
f_{j l}^{v}=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(\xi, \eta) e^{i(j \xi+l \eta)} d \xi d \eta
\end{gathered}
$$

In 2-d, Parseral's identity is

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\hat{u}(\xi, \eta)|^{2} d \xi d \eta=\frac{4 \pi^{2}}{h_{1} h_{2}}\left(h_{1} h_{2} \sum_{j l}\left|u_{j} \mu\right|^{2} \in\|F\|=\frac{2 \pi}{\sqrt{h_{1} h_{2}}}\right. \\
& h_{1} h_{2} \sum_{j l}\left|f_{j l}^{v}\right|^{2}=\frac{h_{1} h_{2}}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|f(\xi, \eta)|^{2} d \xi d \eta \in\left\|F^{-1}\right\|=\frac{\sqrt{h_{1} h_{2}}}{2 \pi}
\end{aligned}
$$

so σ_{F} and σ_{F}^{-1} are again isometries up to a scale factor and $\|F\| \cdot\left\|F^{-1}\right\|=1$

Amplification factors can be computed just as before

$$
\begin{gathered}
B=B u_{j l}=\sum_{p, q} c_{p q} u_{j+p, l+q} \quad\left(\sum_{p_{q}}=\sum_{p=p_{1}}^{p_{2}} \sum_{q=q_{1}}^{q_{2}} \text { a comport } \begin{array}{c}
\text { stencil }
\end{array}\right) \\
\sim \text { cerfferints of } \\
\text { the stencil }
\end{gathered}
$$

$$
\begin{aligned}
\widehat{B u}(\xi, \eta) & =\sum_{j, 1}\left(\sum_{p, q} c_{p q} u j+p, l+q\right) e^{-i(j \xi+l \eta)} \\
& =\sum_{p, q} \sum_{r, s} c_{p q} u_{r,} e^{-i((r-p) \xi+(s-q) \eta)} \\
& =\underbrace{\sum_{p, q} c_{p q} e^{i(p \xi+q \eta)}}_{G(\xi, \eta)} \underbrace{\sum_{r, s} u_{r s} e^{-i r \xi} e^{-i s \eta}}_{\hat{u}(\xi, \eta)}
\end{aligned}
$$

Let's split our explicit scheme $u^{n+1}=B u^{n}$ into smaller paces:

$$
B=I+\nu_{1} B_{1}+\nu_{2} B_{2},
$$

$$
\begin{aligned}
& B_{1} u_{j l}=u_{j-1, l}-2 u_{j l}+u_{j+1, l} \rightarrow G_{1}(\xi, \eta)=e^{-i \xi}-2+e^{i \xi} \\
& =-4 \sin ^{2}(\xi / 2) \\
& B_{2} u_{j l}=u_{j l-1}-2 u_{j l}+u_{j l+1} \rightarrow G_{2}(\xi, \eta)=e^{-i \eta}-2+e^{i \eta} \\
& =-4 \sin ^{2}(\eta / 2)
\end{aligned}
$$

so $\quad \pi(\xi, \eta)=1-4 \nu, \sin ^{2}(\xi / 2)-4 \nu_{2} \sin ^{2}(\eta / 2)$
worst care: $\xi=\pi, \eta=\pi, G(\pi, \pi)=1-4\left(\nu_{1}+\nu_{2}\right)$
So $\quad\|G\|_{\infty}=\max _{\substack{-\pi \leq \xi \leq \pi \\-\pi \leq \eta \leq \pi}}|G(\xi, \eta)|=\left\{\begin{array}{cl}1 & \nu_{1}+\nu_{2} \leq \frac{1}{2} \\ >1 & \nu_{1}+\nu_{2}>\frac{1}{2}\end{array}\right.$
we can also do implicit methods in $2-\lambda, \quad\left(u^{n+1}=B u^{n}\right)$

$$
\begin{array}{r}
\left(I-\nu_{1} B_{1}-\nu_{2} B_{2}\right) u^{n+1}=u^{n} \in \text { Backward Euler } \\
B=(\searrow)^{-1}, G(\xi, n)=\frac{1}{1+4 \nu, \sin ^{2}(\xi / 2)+4 \nu_{2} \sin ^{2}(\eta / 2)} \\
\|G\|_{\infty} \leq 1 \quad \text { unconditionally stable, but } O\left(h+h_{1}^{2}+h_{2}^{2}\right) \\
\left(I-\frac{\nu_{1}}{2} B_{1}-\frac{\nu_{2}}{2} B_{2}\right) u^{n+1}=\left(I+\frac{\nu_{1}}{2} B_{1}+\frac{\nu_{2}}{2} B_{2}\right) u^{n} \text { Crank-Nicolsou }
\end{array}
$$

$B=(V)^{-1}(\mathbb{L}, \quad$ unconditionally stable and

$$
G(\xi, \eta)=\frac{1-a}{1+a}, a=2 \nu_{1} \sin ^{2}(\xi / 2)+2 \nu_{2} \sin ^{2}(\eta / 2)
$$

$$
0\left(h^{2}+h_{1}^{2}+h_{2}^{2}\right)
$$

The problem is that these matres are not tightly banded.

looses like (in Dirichlet cai):

There are very effective numerical methods for soling liners system like this (multignd, fast sine transform) but today will talk about an approach known as

ADI (alternating direction impliat) it'' also frequently referred to as "operator spiting"

ADI scheme:

$$
\left(I-\frac{\nu_{1}}{2} B_{1}\right)\left(I-\frac{V_{2}}{2} B_{2}\right) u^{n+1}=\left(I+\frac{\nu_{1}}{2} B_{1}\right)\left(I+\frac{\nu_{2}}{2} B_{2}\right) u^{n}
$$

multiply tout:
truncation error:

$$
\begin{aligned}
\tau_{A D I}^{n} & =\frac{1}{k}\left[\left(I-\frac{v_{1}}{2} B_{1}-\frac{v_{2}}{2} B_{2}+\frac{v_{1} v_{2}}{4} B_{1} B_{2}\right) u^{n+1}-(I+\cdots) u^{n}\right] \\
& =\tau_{C N}^{n}+\frac{v_{1} v_{2}}{4} B_{1} B_{2}\left(\frac{u^{n+1}-u^{n}}{k}\right) \\
& =\tau_{c_{1, N}}^{n}+\frac{k^{2}}{4} D_{x}^{+} D_{x} D_{y}^{+} D_{y}^{-} D_{t}^{+} u^{n} \\
& =\frac{k^{2}}{24} u_{t t t}-\frac{k^{2}}{8} u_{x x t t}-\frac{k^{2}}{8} u_{y y t t}-\frac{h_{1}^{2}}{12} u_{x x x x}-\frac{h_{2}^{2}}{12} u_{y y y y}+\frac{k^{2}}{4} u_{x y y} t \\
& =-\frac{1}{12}\left(k^{2} u_{t t t}+h_{1}^{2} u_{x x x x}+h_{2}^{2} u_{y y y y}-3 k^{2} u_{x x y t}\right)+0\left(k^{4}+h_{1}^{4}+h_{2}^{4}\right)
\end{aligned}
$$

so the additional terms don't do any essential harm.

But now the linear systems we have to solve are tri-diagonal id systems

$$
\begin{array}{ll}
\text { Pri-diagonal id systems } \\
u^{n+\frac{1}{2}}=\left(I+\frac{v_{1}}{2} B_{1}\right) \overbrace{\left(I+\frac{v_{2}}{2} B_{2}\right) u^{n}}^{u^{n+1 / 4}} & \leftarrow \text { two explicit steps } \\
u^{n+3 / 4}=\left(I-\frac{v_{1}}{2} B_{1}\right)^{-1} u^{n+1 / 2} \quad & \leftarrow \text { a bunch of } 1 d \text { tridiagonal } \\
x^{n+1}=\left(I-\frac{v_{2}}{2} B_{2}\right)^{-1} u^{n+\frac{3}{4}} \quad \leftarrow \text { same story in the } x \text {-direction }
\end{array}
$$

The four operations can be done in any order since B_{1} and B_{2} commute stencils:

A stencil is like a column of a matrix. it tells you what the operator does to an elementary unit vector.
1d: $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) \epsilon^{\text {jth slot }}$

2d: | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 1 | | | |

conclusion: $\left(I-\frac{\nu_{1}}{2} B_{1}\right)^{-1},\left(I-\frac{\nu_{2}}{2} B_{2}\right)^{-1}$

$$
\left(I+\frac{\nu_{1}}{2} B_{1}\right),\left(I+\frac{\nu_{2}}{2} B_{2}\right)
$$

all commute with each other.

Our book distinguishes between the various orders of applying the 1-d operators du to difficulties with non-zero boundary conditions. This makes no sense to me. I'll explain the "right way" to deal with be's next time.
remark about truncation errors:
our schemes today were all of the form $A u^{n+1}=B u^{n}$ I defined $\tau^{n}=\frac{1}{k}\left[A u^{n+1}-B u^{n}\right]$.

To fit in the Lax-Richtmyer comvergenic proof setup, we really should define

$$
\tau^{n}=\frac{1}{k}\left[u^{n+1}-A^{-1} B u^{n}\right]
$$

so $\tau_{\text {correct def }}^{n}=A^{-1} \tau_{\text {what } \mp \text { did }}^{n}$
and

$$
\|\tau_{\text {correct det }}^{n} \leq \underbrace{\left\|A^{-1}\right\|}\| T^{n} \text { what I did }
$$

1 in all the cases of interest so far

$$
=O\left(h^{2}+h_{1}^{2}+h_{2}^{2}\right)
$$

so it's fine to work with the definitions I used.
$228 B$ Lee 11
Last time: (1) philosophy of Crank-Nicolson (discectize space first, get an $\operatorname{ODE}\left({ }^{2 . G_{-}^{-}} U_{t}^{-}=D_{x}^{+} D_{x}^{-} u\right)$, use your favonte scheme for stiff equations to solve th ODE (e.9. the $\begin{gathered}\text { tapeondidalrule) }\end{gathered}$
(2) 2-d heat equation
(3) 1-norm, ∞-norm analysis almost identical to th $1 d$ case
(4) 2-morm requires $2 d$ Founder analysis \& amplification factors
(5) Crank-Nicolion still gives an $O\left(k^{2}+h^{2}\right)$ umionditionally stable method, but the matrix you have to invert is not tightly bended

Today (1) discussion of truncation errors for implect methods
(2) ADI methods
(3) non-zero heat source
(4) nonzero boundary conditions
truncation errors: our schemes have always been of the for $A u^{n+1}=B u^{n}$.
when talking about trumation errors for th Backwal-Euler and cromk-Wicolion methods, we defined

$$
\tau^{n}=\frac{1}{k}\left[A u^{n+1}-B u^{n}\right]
$$

To fit in the Lax-Ridimyer framework, we really should use

$$
\begin{equation*}
\tau^{n}=\frac{1}{h}\left[u^{n+1}-A^{-1} B u^{n}\right] \tag{k}
\end{equation*}
$$

So $\tau_{\text {correct }}^{n}=A^{-1} \tau_{\text {convenient }}^{n}$ and $\left\|\tau_{\text {correct }}^{n}\right\| \leq \underbrace{\left\|A^{-1}\right\|} \cdot\left\|\tau_{\text {comveneat }}^{n}\right\|$
\therefore Any time A^{-1} is bounded, it's fin to work often equal to 1 but actually any constant with the more convement definition. is time here.

Crank-Niolion in 2-d: $\overbrace{\left(I-\frac{\nu_{1}}{2} B_{1}-\frac{\nu_{2}}{2} B_{2}\right)}^{n} u^{n+1}=\overbrace{\left(I+\frac{\nu_{1}}{2} B_{1}+\frac{V_{2}}{2} B_{2}\right)}^{B} u^{n}$

$$
\begin{aligned}
& B_{1} u_{j l}=u_{j-1, l}-2 u_{j l}+u_{j+1, l} \\
& B_{2} u_{j l}=u_{j, l-1}-2 u_{j l}+u_{j l l}
\end{aligned}
$$

pros: $\tau^{n}=O\left(k^{2}+h_{1}^{2}+h_{2}^{2}\right)$, unconditunally stable
con: A is not tightly banded. Expensive to solve using Gaussian elimination

ADI scheme:

$$
\left(I-\frac{V_{1}}{2} B_{1}\right)\left(I-\frac{V_{2}}{2} B_{2}\right) u^{n+1}=\left(I+\frac{V_{1}}{2} B_{1}\right)\left(I+\frac{V_{2}}{2} B_{2}\right) u^{n}
$$

multiph it out:

$$
(I-\frac{v_{1}}{2} B_{1}-\frac{v_{2}}{2} B_{2}+\underbrace{\underbrace{1}}_{\left(\begin{array}{l}
\frac{v_{1} V_{2}}{4} B_{1} B_{2}
\end{array}\right)^{n+1}=\left(I+\frac{\nu_{1}}{2} B_{1}+\frac{v_{2}}{2} B_{2}+\frac{v_{1} v_{2}}{4} B_{1} B_{2}\right.})^{n} u^{n}
$$

truncation error:

$$
\begin{aligned}
\tau_{A D I}^{n} & =\frac{1}{k}\left[\left(I-\frac{v_{1}}{2} B_{1}-\frac{v_{2}}{2} B_{2}+\frac{v_{1} v_{2}}{4} B_{1} B_{2}\right) u^{n+1}-(I+\cdots) u^{n}\right] \\
& =\tau_{C N}^{n}+\frac{v_{1} v_{2}}{4} B_{1} B_{2}\left(\frac{u^{n+1}-u^{n}}{k}\right) \\
& =\tau_{C, N .}^{n}+\frac{k_{2}^{2}}{4} D_{x}^{+} D_{x}^{-} D_{y}^{+} D_{y}^{-} D_{t}^{+} u^{n} \\
& =\frac{k^{2}}{24} u_{t t t}-\frac{k^{2}}{8} u_{x x t t}-\frac{k^{2}}{8} u_{y y t t}-\frac{h_{1}^{2}}{12} u_{x x x x}-\frac{h_{2}^{2}}{12} u_{y y y y}+\frac{k^{2}}{4} u_{x y y} t \\
& =-\frac{1}{12}\left(k^{2} u_{t t t}+h_{1}^{2} u_{x x x x}+h_{2}^{2} u_{y y y y}-3 k^{2} u_{x x y y} t\right)+0\left(k^{4}+k_{1}^{4}+h_{2}^{4}\right)
\end{aligned}
$$

so the additional terms don't do any essential harm.

But now the linear systems we have to solve are tri-diagonal Id systems

$$
\begin{aligned}
& \text { tri-diagonal Id systems } \\
& \begin{array}{ll}
u^{n+\frac{1}{2}}=\left(I+\frac{v_{1}}{2} B_{1}\right) \overbrace{\left(I+\frac{v_{2}}{2} B_{2}\right) u^{n}}^{u^{n+1 / 4}} & \leftarrow \text { two exploit steps } \\
u^{n+3} 4= & \left(I-\frac{v_{1}}{2} B_{1}\right)^{-1} u^{n+1 / 2} \quad \leftarrow \text { bunch of } 1 \text { d tradiagoonal } \\
x^{n+1}=\left(I-\frac{v_{2}}{2} B_{2}\right)^{-1} u^{n+\frac{3}{4}} \quad \leftarrow \text { same story in } y \text {-direction }
\end{array}
\end{aligned}
$$

The four operations can be dome in any order since B_{1} and B_{2} commute stencils:

A stencil is like a column of a matrix. it tells you what the operator does to an elementary unit vector of the form 1d: $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) \in$ th slot

2d:

$$
\begin{aligned}
& A B=B A \Rightarrow(I+A) B=B(I+A) \\
& A B=B A \Rightarrow B A^{-1}=A^{-1} B
\end{aligned}
$$

conclusion: $\left(I-\frac{\nu_{1}}{2} B_{1}\right)^{-1},\left(I-\frac{V_{2}}{2} B_{2}\right)^{-1}$

$$
\left(I+\frac{\nu_{1}}{2} B_{1}\right),\left(I+\frac{\nu_{2}}{2} B_{2}\right)
$$

all commute with each other. ($\left.\begin{array}{c}\text { only for constant wefficients } \\ \text { on a rectangle, though }\end{array}\right)$

Nonzero heat source

$$
\begin{gathered}
u_{t}-u_{x x}=f(x, t) \\
u(x, 0)=g(x)
\end{gathered}
$$

exact solution: Let $U(t)$ be the operator mapping an initial condition to the solution of $u_{t}=u_{x x}$ at time t :

$$
u=\frac{u(t) g}{u} \text { means } u(x)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi
$$

The solution of the inhomogeneous problem (with $f \neq 0$) is then

$$
u(\cdot, t)=u(t) g+\int_{0}^{t} u(t-s) f(\cdot, s) d s
$$

physical interpretation: (superposition principle) each time slice $f d s$ propagates forward like an initial condition for a time $t-s$ (This is an example of Duhamel's principle, where you build up solutions of an inhomogeneous problem using the representation for initial value problem the homogeneous
If क) is confusing, it just means

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 t}} g(\xi) d \xi+\int_{0}^{t} \frac{1}{\sqrt{4 \pi(t-s)}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4(t-s)}} f(\xi, s) d \xi d s
$$

The numerical solution works the same way:

$$
f_{j}^{n}=f(j h, n k)
$$

explicit method:

$$
\begin{array}{cc}
\text { homogeneous IVP }(f=0) & \frac{\text { nonzero source }}{u^{n+1}=B u^{n}+k f^{n}} \\
u^{n+1}=B u^{n} & A u^{n+1}=u^{n}+b f^{n+1} \\
A u^{n+1}=u^{n} & B u^{n}
\end{array}
$$

use the "discrectize space first and choose your favorite ODE mut hod" as your guide for where to evaluate f

$$
\text { egg. } C-N:\left(u_{j}\right)_{t}=D^{+} D^{-} u_{j}+f_{j} \xrightarrow{\operatorname{trap}} \frac{r_{1}}{r_{j}^{n+1}}=u_{j}^{n}+k\left[\frac{D^{+} D^{-}-u_{j}^{n}+f_{j}^{n}}{2}+\frac{D^{+} D_{j}^{n+1}+f_{j}^{n+1}}{2}\right]
$$

The final solution is then a superposition:
exploit: $\quad u^{n}=B^{n} u^{0}+k \sum_{l=0}^{n-1} B^{n-1-l} f^{l}$
implicit: $\quad u^{n}=A^{-n} u^{0}+k \sum_{l=0}^{n-1} A^{-(n-l)} f^{l+1}$

$$
C-N: \quad u^{n}=\left(A^{-1} B\right)^{n} u^{0}+k \sum_{l=0}^{n-1}\left(A^{-1} B\right)^{n-1-l} A^{-1}\left(\frac{f^{l}+f^{l+1}}{2}\right)
$$

propagated
forworn d
by the
scheme
This may be thought of as a discrete version of Duhamel's proneiple
The presence of f doesnt affect the error analysis $\binom{f$ is absorbed }{ into $\tau^{n}}$

$$
\text { example: (expplectschema) } \quad \tau_{j}^{n}=\frac{1}{k}\left[u(j h,(n+1) k)-B[u(\cdot h, n k)]_{j}=f_{j}^{n}\right]
$$

numeral sorn: $u_{j}^{n+1}=B u_{j}^{n}+k f_{j}^{n}$
exact so ln: $u(j h,(n+1) k)=B\left[u(-h,(n+1) k]_{j}+k f_{j}^{n}+k \tau_{j}^{n}\right.$
error: $e_{j}^{n+1}=B e_{j}^{n}-k \tau_{j}^{n}$
now proceed as before to conclude that $\max _{0 \leq n k \leq T}\left\|e^{n}\right\| \leq K T \max _{0 \leq n \leq T} n \tau^{r} \|$

Nonzero boundary conditions
Id example: $\left\{\begin{array}{l}u_{t}=u_{x x} \\ u(0, t)=\alpha(t) \\ u(1, t)=\beta(t) \\ u(x, 0)=g(x)\end{array}\right\} \alpha, \beta, g$ given, find $u \quad \frac{h}{1+1+1}$
Let $B: \mathbb{R}^{J+1} \rightarrow \mathbb{R}^{J-1}$ be given by $B=\left(\begin{array}{cccccc}1 & -2 & 1 & 0 & & 0 \\ 0 & 1 & -2 & 1 & 0 & 1 \\ 0 & \searrow & 1 & 1 & 0 \\ 0 & 1 & -2 & 1\end{array}\right)_{j=J-1}^{j=1}$
Again we let the ODE method in time guide us in where to evaluate α, β :
explicit:

$$
\begin{array}{ll}
u^{n+1}=u^{n}+\nu B\left[\alpha^{n} ; u^{n} ; \beta^{n}\right] & \alpha^{n}=\alpha(n k) \\
u^{n+1}-\nu B\left[\alpha^{n+1} \cdot u^{n+1} \cdot \beta^{n+1}\right]=u^{n} & \beta^{n}=\beta(n k)
\end{array}
$$

fully imphest:

$$
u^{n+1}-\nu \mathbb{B}\left[\alpha^{n+1} ; u^{n+1} ; \beta^{n+1}\right]=u^{n}
$$

$C \cdot N$:

$$
u^{n+1}-\frac{v}{2} B\left[\alpha^{n+1} ; u^{n+1} ; \beta^{n+1}\right]=u^{n}+\frac{v}{2} B\left[\alpha^{n} ; u^{n} ; \beta^{n}\right]
$$

It's a little awkward to work with non-square matrices, so let's define

If we move all the known stuff
two columns $\left(\begin{array}{c}\text { indexed by } \\ 0 \text { and J } 1+ \\ \text { you like }\end{array}\right)$
to the right hand side, we get:
explicit: $\quad u^{n+1}=(I+\nu B) u^{n}+\nu \widetilde{B}\left[\alpha^{n} ; \beta^{n}\right]$
implant: $(I-\nu B) u^{n+1}=u^{n}+\nu \tilde{B}\left[\alpha^{n+1} ; \beta^{n+1}\right]$

$$
C \cdot N:\left(I-\frac{\nu}{2} B\right) u^{n+1}=\left(I+\frac{\nu}{2} B\right) u^{n}+\nu \tilde{B}\left[\frac{\alpha^{n+1}+\alpha^{n}}{2} ; \frac{\beta^{n+1}+\beta^{n}}{2}\right]
$$

(like f; above)
so the boundary data appear as source terms \wedge attached to the nodes nearest the boundary (the rows where \widetilde{B} has nonten entrees)
 have $\alpha(x, y, t)$ where x, y range over the boundary \hat{f}
when we discretize, stencils attached to the outer layer of unknowns will ask for boundary data, which we spit off into a \widetilde{B} operator just as in the id case.

$$
\begin{aligned}
& \mathcal{B}_{1}: \mathbb{R}^{9} \rightarrow \mathbb{R}^{9}, B_{2}: \mathbb{R}^{9} \rightarrow \mathbb{R}^{9} \\
& \tilde{B}_{1}: \mathbb{R}^{16} \rightarrow \mathbb{R}^{9}, \hat{B}_{2}: \mathbb{R}^{16} \rightarrow \mathbb{R}^{9}
\end{aligned}
$$

9 intenur nodes 16 boundary anodes

$$
\begin{aligned}
& \text { for lack of better notation: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\square^{\prime}\right] \\
\square \\
\square
\end{array}
\end{aligned}
$$

schemes:
explicit:

$$
u^{n+1}=\left(I+v_{1} B_{1}+v_{2} B_{2}\right) u^{n}+\left(\nu_{1} \bar{B}_{1}+v_{2} \bar{B}_{2}\right) \alpha^{n}
$$

implicit: $\left(I-\nu_{1} B_{1}-\nu_{2} B_{2}\right) u^{n+1}=$

$$
u^{n}+\left(\nu \widetilde{B}_{1}+v_{2} \widetilde{B}_{2}\right) \alpha^{n+1}
$$

not
$C-N: \quad\left(I-\frac{\nu_{1}}{2} B_{1}-\frac{\nu_{2}}{2} B_{2}\right) u^{n+1}=\left(I+\frac{\nu_{1}}{2} B_{1}+\frac{\nu_{2}}{2} B_{2}\right) u^{n}+\left(V_{1} \widetilde{B}_{1}+V_{2} \widetilde{B}_{2}\right)\left(\frac{\alpha^{n}+\alpha^{n+1}}{2}\right)$
ADI: $\quad\left(I-\frac{\nu_{1}}{2} B_{1}\right)\left(I-\frac{\nu_{2}}{2} B_{2}\right) u^{n+1}=\left(I+\frac{\nu_{1}}{2} B_{1}\right)\left(I+\frac{V_{2}}{2} B_{2}\right) u^{n}+\left(V_{1} \widetilde{B}_{1}+V_{2} \widetilde{B}_{2}\right)\left(\frac{\alpha^{n}+u^{n+1}}{2}\right)$

$$
+\frac{1}{4} \nu_{1} \nu_{2} \tilde{B}_{1} \tilde{B}_{2}\left(\alpha^{n}-\alpha^{n+1}\right)
$$

For the ADF scheme, this requires a 1 the care $\left(\tilde{B}_{1} \widetilde{B}_{2}\right.$ makes no sense $)$
for the infinite domain, $\left(I-\frac{V_{1}}{2} B_{1}\right)\left(I-\frac{V_{2}}{2} B_{2}\right)$

$$
=I-\frac{\nu_{1}}{2} B_{1}-\frac{\nu_{2}}{2} B_{2}+\frac{\nu_{1} V_{2}}{4} E
$$

Where the stencil for E is $\left(\begin{array}{ccc}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right)$

and our scheme is

$$
\begin{aligned}
& \left(I-\frac{V_{1}}{2} B_{1}-\frac{V_{2}}{2} B_{2}+\frac{v_{1} \nu_{2}}{4} E\right) u^{n+1}=\left(I+\frac{\gamma_{1}}{2} B_{1}+\frac{v_{2}}{2} B_{2}+\frac{\nu_{1}}{4} E\right) u^{n} \\
& +\left(-\frac{\nu_{1}}{2} \tilde{B}_{1}-\frac{\nu_{2}}{2} \bar{B}_{2}+\frac{\nu_{1} \nu_{2}}{4} \tilde{E}\right) \alpha^{n+1}=+\left(\frac{\nu_{1}}{2} \tilde{B}_{1}+\frac{v_{2}}{2} \bar{B}_{2}+\frac{v_{1} v_{2}}{4} \tilde{E}\right) \alpha^{n}
\end{aligned}
$$

or (since $E=B_{1} B_{2}$):

$$
\begin{aligned}
& \left(I-\frac{V_{1}}{2} B_{1}\right)\left(I-\frac{V_{2}}{2} B_{2}\right) u^{n+1}= \\
& \left(I+\frac{\left.v_{1} B_{1}\right)\left(I+\frac{v_{2}}{2} B_{2}\right) u^{n}}{\cdots} \begin{array}{l}
+\left(v_{1} \widetilde{B}_{1}+v_{2} \widetilde{B}_{2}\right)\left(\frac{\alpha^{n+1}+\alpha^{n}}{2}\right) \\
\\
+\frac{1}{4} v_{1} v_{2} \widetilde{E}\left(\alpha^{n}-\alpha^{n+1}\right)
\end{array}\right.
\end{aligned}
$$

as a source term
attached to the nodes adjacent to the boundary
$228 B \operatorname{Lec} 13$

Last time: introduction to the ware equation

Free space: $\quad u_{t t}=c^{2} \nabla^{2} u \quad$ (plane waves)
Ld: $\quad\left\{\begin{array}{l}u_{t t}=c^{2} u_{x x} \\ u(x, 0)=g_{0}(x) \\ u_{t}(x, 0)=g_{1}(x)\end{array}\right.$
d'Alembert's formula

$$
u(x, t)=\frac{g_{0}(x-c t)+g_{0}(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g_{1}(\xi) d \xi
$$

today: reduction to list order system
schemes for the baby (1-way) wave equation $u_{t}+a u_{x}=0$ domain of dipendence/influence
CFL condition
stability of a few schemes
reduction to $1^{\text {st }}$ order system:

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x} \quad v=\binom{u_{x}}{u_{t}} \\
& v_{t}=\binom{u_{x} t}{u_{t t}}=\binom{u_{x t}}{c^{2} u_{x x}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
c^{2} & 0
\end{array}\right)}_{A}\binom{u_{x}}{u_{t}}_{x}=A v_{x}
\end{aligned}
$$

diagonalize $A=U \Lambda U^{-1}, \quad \Lambda=\left(\begin{array}{cc}c & -c\end{array}\right), U=\left(\begin{array}{cc}1 & 1 \\ c & -c\end{array}\right), U^{-1}=\left(\begin{array}{cc}1 / 2 & 1 / 2 c \\ 1 / 2 & -1 / 2 c\end{array}\right)$

$$
\begin{aligned}
& v_{t}=u \Lambda u^{-1} v_{x} \quad w^{\prime}=u^{-1} v \\
& w_{t}=\Delta w_{x} \leftrightarrow\left\{\begin{array}{l}
\left(w_{1}\right)_{t}=c\left(w_{1}\right)_{x} \\
\left(w_{2}\right)_{t}=-c\left(w_{2}\right)_{x}
\end{array}\right.
\end{aligned}
$$

Result: the components of ω^{\prime} satisfy the baby (one-way) wave equation decouple and with $a= \pm c$.
baby wave equation: $u_{t}+a u_{x}=0$
$u(x, 0)=j(x) \quad-$ initial condition
general solution: $u(x, t)=g(x-a t)$

$a<0 \quad$ (lief toning)
here we plot $u(x, t)$ as for of x with t frozen.
schemes: \quad explicit $\{$ upwind $(a>0)\}: \overbrace{\frac{u_{j}+1}{}-u_{i}^{n}}^{\left.\text {downwind }^{n}(a<0)\right\}}+\frac{a \frac{\overbrace{j}^{u_{j}-u_{j}^{n}}}{D_{j}}}{D_{x} u_{j}^{n}}=0$
explicit $\left\{\begin{array}{l}\text { upwind }(a<0) \\ \text { downward (} a>0)\end{array}\right\}: \quad \delta_{t}^{+} u_{j}^{n}+a D_{x}^{+} u_{j}^{n}=0$
upwind means the space stencil is one-sided in the direction information is coming from (if wares go L to R, stencil" looks left " D_{x}^{-}) exploit centered: $D_{t}^{+} u_{j}^{n}+a \frac{a}{\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}}=0$ each of these schemes has
an implicit counterpart.

Domain of dependence and influence.
The exact solution $u(x, t)=g(x-a t)$ depends only on the value of g at one point:

for the full wave equation, $u_{t t}=c^{2} u_{x x}$, it depends only on the values of g_{0}, g, over a finite range

solution $u(x, t)$ of the
By contrast, thin heat equation e depends on $g(x)$ for all $x \in \mathbb{R}$ no matter how small t is.
similarly, we can draw the domain of influence of an initial point:

baby mane eqn

full wave eqn
Our schemes have domains of dependence ard influence as well.

upwind ($a>0$)

$$
\begin{aligned}
u_{j}^{n+1} & =u_{j}^{n}-a \frac{k}{h}\left(u_{j}^{n}-u_{j-1}^{n}\right) \\
& =v u_{j-1}^{n}+(1-v) u_{j}^{n} \\
v & =a \frac{h}{h}
\end{aligned}
$$

centered

$$
\begin{aligned}
u_{j}^{n+1} & =u_{j}^{n}-a \frac{k}{h}\left(\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2}\right) \\
& =\frac{v}{2} u_{j-1}^{n}+u_{j}^{n}-\frac{v}{2} u_{j+1}^{n}
\end{aligned}
$$

(FL)
The courant - Fredrects - Lew A condition states that a necessary condition for a scheme to converge is that the DOD of the scheme contain that of the exact solution in the mesh refinement 1 imit .
example: $\quad g(x)=$
 -a bump far off to the left.
suppose t is in the rage where the lump passes the origin:

The downwind scheme has no hope of getting the answer right:
\therefore <circle>numercal solution remains zero no matter how you refix the mesh since $g(x)=0$ for $x \geq 0$.

The upwind sclume requires that $\frac{k}{h}$ is smalt enough:

$\frac{k}{h}>\frac{1}{a}$ still hopeless. scheme cant know whet g "like where it matters.

$$
\frac{k}{h}<\frac{1}{a} \text { finally } i^{\prime} s
$$ pursible to get a good approximation of the solution (but no granter) it's-only a -necessary condition).

We know from th Lax-Richtmyer then that consistory + stability \Rightarrow convergence
all our schemes are consistent (since we want then down using ot, \bar{p}, etc) so $\quad($ no CFL $) \Rightarrow$ (no convergence) \Rightarrow (no stability)

Let's compute the norms of our operators B^{n} and verify this.
upwind $(a>0)$: $\quad u^{n+1}=B u^{n}, \quad B u_{j}=\nu u_{j-1}+(1-\nu) u_{j}, \nu=a \frac{k}{h}$

$$
B=\left(\begin{array}{cccc}
\therefore & \ddots & & \\
\nu & i-\nu & & \\
& \nu & 1-\nu & \\
& & \nu & 1-\nu
\end{array}\right)
$$

$$
\begin{array}{r}
\nu \leq 1:\|B\|_{\infty}=\|B\|_{1}=|\nu|+|1-\nu| \\
=\nu+1-\nu=1 \text { (stall) } \\
\nu>1:\|B\|_{\infty}=\|B\|_{1}=|\nu|+|1-\nu| \\
=\nu+\nu-1=2 \nu-1>1
\end{array}
$$

(unstable)
downwind $(a>0) \quad B u_{j}=(1+v) u_{j}-\nu u_{j t+}$

for any v :

$$
\begin{aligned}
\|B\|_{\infty}=\|B\|_{1} & =|1+\nu|+|-\nu| \\
& =1+2 \nu>1
\end{aligned}
$$

(unstable)
centered $(a>0) \quad B u_{j}=\frac{v}{2} u_{j-1}+u_{j}-\frac{v}{2} u_{j+1}$

$$
B=\left(\begin{array}{cc}
1 & -\frac{v}{2} \\
\nu / 2 & 1 \\
v_{2} & -v / 2 \\
& -v / 2 \\
v_{2} & 1
\end{array}\right) \quad \begin{aligned}
& \text { for amy } v, \quad\|B\|_{c s}=\|B\|_{1}=1+\left|\frac{D}{2}\right|+\left|\frac{v}{2}\right| \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

(unstable)
we can also compute amplification factors to deform the 2-horm:
upwind: $\quad B u_{j}=\nu u_{j-1}+(1-\nu) u_{j}$

$$
\begin{aligned}
G(\xi) & =\nu e^{-i \xi}+(1-\nu) e^{0} \\
& =1-\nu+\nu e^{-i \xi} \quad e^{i \theta}=\cos \theta+i \sin \theta \\
& =(1-\nu+\nu \cos \xi)-i \nu \sin \xi \\
|G(\xi)|^{2}= & (1-\nu+\nu \cos \xi)^{2}+\nu^{2} \sin ^{2} \xi \\
& =(1-\nu)^{2}+2(1-\nu) \nu \cos \xi+\nu^{2} \cos ^{2} \xi+\nu^{2} \sin ^{2} \xi \\
= & 1-2 \nu+\nu^{2}+2(1-\nu) \nu\left(1-2 \sin ^{2} \xi\right)+\nu^{2} \\
& 1-2 \nu+2 \nu^{2}+2 \nu-2 \nu^{2}-4 \nu s^{2}+4 \nu^{2} s^{2} \\
= & 1-4 \nu(1-\nu) \sin ^{2}(\xi / 2)
\end{aligned}
$$

so if $v \leq 1, \quad 0 \leq|G(\xi)|^{2} \leq 1 \quad \Rightarrow \|\left(G \|_{\infty}=1\right.$

$$
|G(0)|^{2}=1 \quad \Rightarrow \text { (stable) }
$$

and if $v>1, \quad \mid\left(\left.\pi(\pi)\right|^{2}=1+4 \nu(\nu-1)>1 \Rightarrow\|G\|_{\infty}>1\right.$
\Rightarrow (unstable)
downwind: $|G(\xi)|^{2}=1+4 \nu(1+\nu) \sin ^{2}(\xi / 2)$
$\|G\|_{\infty}>1$ wo matte what v is \Rightarrow (unstable)
Centered: $B u_{j}=\frac{v}{2} u_{j-1}+u_{j}-\frac{v}{2} u_{j+1}$

$$
\begin{aligned}
G(\xi) & =\frac{v}{2} e^{-i \xi}+1-\frac{v}{2} e^{i \xi}=1-i \frac{e^{i \xi}-e^{-i \xi}}{2 i} \\
& =1-i v \sin \xi \\
\|\epsilon\|_{\infty} & =\sqrt{1+\nu^{2}}>1 \quad \text { (unstable) }
\end{aligned}
$$

Summary: (1) the CFL condition tells you when the scheme is guaranteed to bead. (2) Often the stability breakpoint occurs exactly where th CFL condition is satisfied
(3) some schemes (like the forward time centered space) are unstable eventhing they satisfy CFL. (CFL does not give iufficunt conditions)
(4) for the heat equation, you include the DOD only in the limit as k and $h \rightarrow 0$ holding $\frac{k}{h^{2}}$ constant. That's OK because the effect of g decays. exponumally

Note: there's no way to save the downwind scheme by using a different refinement path. It's ok for

$$
\|B(k)\| \leqslant 1+C k
$$

since then we have $\left\|B(k)^{n}\right\| \leqslant(1+C k)^{n} \leqslant e^{C k n} \leqslant e_{\uparrow}^{C T}$ but for the downwind scheme we have

$$
\|B(k)\|_{2}=1+2 v=1+2 a \frac{k}{h}
$$

So as $h \rightarrow 0$, the factor $\frac{2 a}{h}$ on k goes to infinity and the C here stove up it dos, nt matter hov much we refine k compere to h - you're still only getting information from the right?
on the other hand, we can save the centered scheme, it's just expensive -
for exaph, let $h=\sqrt{a k}$ be ow refinement path.
Then $\|B(k)\|_{2}=\sqrt{1+\nu^{2}}=\sqrt{1+\left(a \frac{k}{h}\right)^{2}}=\sqrt{1+a k} \leq 1+\frac{1}{2} a k$
So $\left\|B(H)^{n}\right\|_{2} \leq e^{\frac{1}{2} a T}$
\therefore scheme is stable with this retirement path
But: (1) expensive $k=o\left(h^{2}\right)$
(2) error bound groves exponentially in time.

Next time well see how to fox these problems using the Lax-Wendroff and Lax-Freedrichs schemes.

Last tim: upwind, downwind, centered schemes for baby wave equation CFL condition gives a necessary condition for convergence (tells you whir a scheme is gneromateed to be bad) started analyzing stability of these schemes
today: finish stability analysis
show how to rescue centered scheme with a different refimemat path
postpone \rightarrow Lax Friedrich, Lax-Wendroff, Cramb-Nicuson schemes heat equation with spherical symmetry

Comment on 1-nom $\& \infty$-norm analysis:

$$
u^{n+1}=B u^{n}
$$

showing that $\|B\|_{1} \leq 1$ or $\|B\|_{\infty} \leq-1$ implies the scheme is stable since $\left\|B^{n}\right\| \leq\|B\|^{n} \leq 1$ in that care.
So our upwind scheme

$$
B u_{j}=v u_{j-1}+(1-v) u_{j} \quad \nu=a \frac{k}{h}, a^{>0}
$$

is stable for $v \leq 1$. But showing that $\|B\|_{1}>\mid$ or $\|B\|_{\infty}>1$ docs not imply the scheme is unstable since $\left\|B^{n}\right\|$ can be less than $\|B\|^{n}$. Matrix example: $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), A^{n}=\left(\begin{array}{ll}0 & g \\ 0 & 0\end{array}\right)$ so $\left\|A^{n}\right\|=0$ while $\|A\|^{n}=10^{n}$ for $n \geq 2$. for $n \geq 2$

But the 2-norm analysts does tell you about $\left\|B^{n}\right\|$ when BIS normal ($1=e^{e}, B^{T} B=B B^{T}$). (Fi nne difference operator) are normal).
we simply compute amplification factors to defermme the 2-norm:
upwind: $\quad B u_{j}=v u_{j-1}+(1-\nu) u_{j}$

$$
\begin{aligned}
G(\xi)= & \nu e^{-i \xi}+(1-\nu) e^{0} \\
& =1-\nu+\nu e^{-i \xi} \quad e^{i \theta}=\cos \theta+i \sin \theta \\
& =(1-\nu+\nu \cos \xi)-i \nu \sin \} \\
|G(\xi)|^{2}= & (1-\nu+\nu \cos \xi)^{2}+\nu^{2} \sin ^{2} \xi \\
= & (1-\nu)^{2}+2(1-\nu) \nu \cos \xi+\nu^{2} \cos ^{2} \xi+\nu^{2} \sin ^{2} \xi \\
= & 1-2 \nu+\nu^{2}+2(1-\nu) \nu\left(1-2 \sin ^{2} \xi\right)+\nu^{2} \\
& 1-2 \nu+2 \nu^{2}+2 \nu-z \nu^{2}-4 \nu s^{2}+4 \nu^{2} s^{2} \\
= & 1-4 \nu(1-\nu) \sin ^{2}(\xi / 2)
\end{aligned}
$$

so if $v \leq 1, \quad \begin{array}{r}0 \leq|G(\xi)|^{2} \leq 1 \\ |G(0)|^{2}=1\end{array} \quad \Rightarrow\|G\|_{\infty}=1$

$$
|G(0)|^{2}=1 \quad \Rightarrow(\text { stable })
$$

and if $\nu>1, \quad \|\left(\pi(\pi)^{2}=1+4 \nu(v-1)>1 \Rightarrow\|G\|_{\infty}>1\right.$ since $\left\|B^{n}\right\|_{2}=\left\|G^{n}\right\|_{\infty}=\|G\|_{\infty}^{n}$, the scheme is unstable if $v=\frac{k}{h}>1$ downwind: $|G(\xi)|^{2}=1+4 \nu(1+\nu) \sin ^{2}(\xi / 2)$
$\|\mathcal{G}\|_{\infty}>1$ wo matte what v is \Rightarrow (unstable)
Centered: $B u_{j}=\frac{v}{2} u_{j-1}+u_{j}-\frac{v}{2} u_{j+1}$

$$
\begin{aligned}
G(\xi) & =\frac{v}{2} e^{-i \xi}+1-\frac{\nu}{2} e^{i \xi}=1-i \frac{e^{i \xi}-e^{-i \xi}}{2 i} \\
& =1-i v \sin \xi
\end{aligned}
$$

$\|t\|_{0}=\sqrt{1+\nu^{2}}>1$
(unstable if $v=\frac{k}{h}$ is held fixed)

Note that the centered scheme is unstable even though it satisfies th CFL condition. (CFL does not gre sufficient conditions for convergence)

Saving the centered scheme.
consider the refinement path $h=\sqrt{a k}, \nu=a \frac{k}{h}=\sqrt{a h}$
Then $\|B(k)\|_{2}=\sqrt{1+\nu^{2}}=\sqrt{1+a k} \leq 1+\frac{1}{2} a k$
so $\left\|B(k)^{n}\right\|_{2} \leq\left(e^{\frac{1}{2} a k}\right)^{n} \leq e^{\frac{1}{2} a T} \left\lvert\, \begin{aligned} & \frac{\uparrow}{1+\varepsilon} \leq 1+\frac{\varepsilon}{2} \text { for a\| } \varepsilon>0 \\ & \left(1+\varepsilon \leq 1+\varepsilon+\frac{\varepsilon^{2}}{4}\right)\end{aligned}\right.$
\therefore scheme is stable with this refinement path.
but (1) it's expensive $\left(k=O\left(h^{2}\right)\right)$
(2) error bound grows exponentially with time.

Note: this wouldnt have worked in the 1-norm or ∞-norm analysis-

$$
\begin{aligned}
& \|B\|_{1}=\left|\frac{\nu}{2}\right|+|1|+\left|-\frac{\nu}{2}\right|=1+\nu=1+a \frac{k}{h} \\
& \left\|B^{n}\right\|_{1} \leq\|B\|_{1}^{n}=\left(1+a \frac{k}{h}\right)^{n} \geq 1+a \frac{n k}{h} \geq 1+\frac{a T}{2 h} \rightarrow \infty \\
& -\frac{T}{2} \leq n k \leq T \\
& \text { an equality) } \\
& \varepsilon>0:(1+\varepsilon)^{n}=\sum_{l=0}^{n}(\left.\begin{array}{l}
n \\
l
\end{array}\right|^{n-l} \varepsilon^{l} \geq \underbrace{1+n \varepsilon} \\
& \text { first fwoterms }
\end{aligned}
$$

lost the game here
(nth -2 -norm it's

The downing scheme cant be saved by using a different refinement path.

$$
\left\|B^{n}\right\|_{2}=\|B\|_{2}^{n}=(1+2 v)^{n} \geq 1+2 a \frac{n^{k}}{h} \geq 1+\frac{a T}{h} \rightarrow \infty
$$

It dosing matter how much we refine k compared to $h \ldots$ you're still only getting information fou the right! as $h \rightarrow 0$ $\frac{T}{2} \leq n k \leq T$

Better schemes for the wave equation
of the schemes so far, upwind has been the best, but it has 2 drawbacks: (7) it's fist order in time and space (unless $V=1$ (hen its exact)
(2) for systems you could have some waver moving L to R and others R to $L \ldots$ which way's upwind?

Lax-Friedrichs scheme

$$
\begin{aligned}
& \frac{u_{j}^{n+1}-\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)}{k}=-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h} \\
& u_{j}^{n+1}=B u_{j}^{n}=\left(\frac{1}{2}+\frac{v}{2}\right) u_{j-1}^{n}+\left(\frac{1}{2}-\frac{v}{2}\right) u_{j+1}^{n} \\
& G(\xi)=(i+v) \frac{e^{-i \xi}}{2}+(1-v) \frac{e^{i \xi}}{2}=\cos \xi-i v \sin \xi \\
& |G(\xi)|^{2}=\cos ^{2} \xi+\nu^{2} \sin ^{2} \xi=1-\left(1-v^{2}\right) \sin ^{2} \xi
\end{aligned}
$$

$|G(3)|^{2}$

truncation error of Lax-Friedrchs: $O\left(k+h^{2}\right)$

Lax-Wendroff scheme
this time we derive the scheme by trying to knock off more terms in the Taylor expansion (rather than using - geometne construction)

$$
\begin{aligned}
& \text { exact } \\
& \text { sol'n } \rightarrow u(x, t+k)=u+k u_{t}+\frac{k^{2}}{2} u_{t t}+\cdots \\
&=u+k\left(-a u_{x}\right)+\frac{k^{2}}{2}\left(a^{2} u_{x x}\right)+\cdots
\end{aligned}
$$

scheme: $\quad u_{j}^{n+1}=u_{j}^{n}-a k \frac{u_{j+i}^{n}-u_{j-1}^{n}}{2 h}+\frac{a^{2} k^{2}}{2} \frac{u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}}{h^{2}}$
or $\quad u_{j}^{n+1}=B u_{j}^{n}=\frac{1}{2} \nu(1+\nu) u_{j-1}^{n}+\left(1-\nu^{2}\right) u_{j}^{n}-\frac{1}{2} \nu(1-\nu) u_{j+1}^{n}$
the amplification factor is

$$
\left.\begin{array}{rl}
\|(\xi) & =1-i \nu \frac{e^{i \xi}-e^{-i \xi}}{2 i}+\frac{\nu^{2}}{2}\left(e^{-i \xi}-2+e^{i \xi}\right) \\
& =1-i \nu \sin \xi-\nu^{2}(1-\cos \xi) \\
& =1-2 \nu^{2} \sin ^{2} \xi / 2-i \nu \sin \xi
\end{array}\right] \begin{aligned}
\mid\left(\left.\pi(\xi)\right|^{2}\right. & =1-4 \nu^{2} \sin ^{2} \xi / 2+4 \nu^{4} \sin ^{4} \xi / 2+\nu^{2} \sin ^{2} \xi \\
& =1-4 \nu^{2}\left(1-\nu^{2}\right) \sin ^{4} \xi / 2
\end{aligned}
$$

Lax-Wendroff is a rae instance in mathematics where going after more accuracy by including more terms in a Tagb- expansion actually improves stability. (Runge-Kutte is another example)
\rightarrow method is $O\left(k^{2}+h^{2}\right)$ and stable for $v \leq 1$ with no exponential growth in the error bound or special refinement paths required. And, the scheme is centered in space, so it generalizes to systems with right and left moving waves simultaneously. (more later)

Crank-Nicolson $\quad u_{t}=-a u_{x}$

$$
\begin{aligned}
& \frac{u^{n+1}-u^{n}}{k}=\frac{1}{2}\left[-a \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2 h}-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}\right] \\
& \left(I+\frac{\nu}{2} B_{1}\right) u^{n+1}=\left(I-\frac{\nu}{2} B_{1}\right) u^{n}, \quad B_{1} u_{j}=\frac{1}{2}\left(u_{j+1}-u_{j-1}\right) \\
& G_{1}(\xi)=\frac{i e^{i \xi}-e^{-i \xi}}{2 i}=i \sin \xi \\
& u^{n+1}=B u^{n} \\
& G(\xi)=\frac{1-i \frac{\nu}{2} \sin \xi}{1+i \frac{\nu}{2} \sin \xi} \\
& \mid(G(\xi) \mid=1 \quad \text { unconditionally stable for any } V . \\
& \text { (implicit methods always satisfy CFL) }
\end{aligned}
$$

truncation error: $O\left(k^{2}+h^{2}\right) \leftarrow$ so probably gourd want to take timuiteps with $h \approx a k$ anyways (unconditional stability not as important for wave eqn. as this for heat en.)

Heat equation with spherical symmetry
full 3-d heat equ: $\quad \rho c \frac{\partial u}{\partial t}+\nabla \cdot J=f$

$$
[f]=\frac{\mathrm{cal}}{\mathrm{~cm}^{3} \cdot \mathrm{~s}}
$$

Fourne's law: $\quad J=-k \nabla u$

$$
[J]=\frac{c a l}{\mathrm{~cm}^{2}-\mathrm{s}}
$$

$$
\begin{aligned}
& {[\mathrm{K}]=\frac{\mathrm{cal}}{\mathrm{cmsK}}} \\
& {[\mathrm{c}]=\frac{\mathrm{cal}}{5 \cdot \mathrm{~cm}^{3}}} \\
& {[\mathrm{p}]=5 / \mathrm{cm}^{3}}
\end{aligned}
$$

$r_{j}=j h$
integrate over spherical shell

$$
\frac{\partial}{\partial t}\left[\rho \in \iint_{V_{j}} u d V\right]+\iint_{S_{j-1}+S_{j}+\frac{1}{2}} J-n d A=\iint_{V_{j}} f d V
$$

approximate the integrals:

$$
\frac{4}{3} \pi\left(r_{j+\frac{1}{2}}^{3}-r_{j-\frac{1}{2}}^{3}\right) f_{j}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\rho c^{\frac{4}{3}} \pi\left(r_{j+\frac{1}{2}}^{3}-r_{j-\frac{1}{2}}^{3}\right) u_{j}\right]+4 \pi r_{j+\frac{1}{2}}^{2} J_{j+\frac{1}{2}}-4 \pi r_{j-\frac{1}{2}}^{2} J_{j-\frac{1}{2}}, ~(v) \\
& -\left.4 \pi k r_{j+\frac{1}{2}}^{2} \frac{\partial u}{\partial r}\right|_{r_{j+1}}+\left.4 \pi k r_{j-\frac{1}{2}}^{2} \frac{\partial u}{\partial r}\right|_{r_{j}-\frac{1}{2}}
\end{aligned}
$$

approximate $\left.\frac{\partial u}{\partial r}\right|_{r_{j+\frac{1}{2}}}=\frac{u_{j+1}-u_{j}}{h}$

$$
\frac{\partial u_{j}}{\partial t}=\frac{3 k}{\rho c} \frac{\left(r_{j+\frac{1}{2}}^{2} \frac{u_{j+1}-u_{j}}{h}-r_{j-\frac{1}{2}}^{2} \frac{u_{j}-u_{j}-1}{h}\right)}{r_{j+\frac{1}{2}}^{3}-r_{j-\frac{1}{2}}^{3} r \text { denominator }=\left(3 r_{j}^{2}+h^{2} / 4\right) h}+\frac{f_{j}}{\rho c}
$$

Now disectize in time using $\frac{\partial u_{j}}{\partial t} \approx D_{t}^{+} u_{j}^{n}$ and on the RHS use: explef: u_{j}^{n}, f_{j}^{n} or imploct $u_{j}^{n+1} f_{j}^{n+1}$ or $C \cdot N: \frac{1}{2}\left(u_{j}^{n+1}+u_{j}^{n}\right)$

The origin reeds to be dealt with specially since the is no "fla from the left, i.e. from the inside"
integrate over sphere
appose integral:

$$
\frac{\partial}{d t}\left[\rho C \iint_{V_{0}} u d V\right]+\iint_{S_{V_{2}}} J \cdot n d A^{2}=\iint_{V_{0}} f d V
$$

$$
\frac{\partial}{\partial t}\left[\rho c \frac{4}{3} \pi r_{1 / 2}^{3} u_{0}\right]-\left.4 \pi k r_{1 / 2}^{2} \frac{\partial u}{\partial r}\right|_{r_{1 / 2}}=\frac{4}{3} \pi r_{1 / 2}^{3} f_{0}
$$

approx. $\left.\frac{\partial u}{\partial r}\right|_{r_{1 / 2}}=\frac{u_{1}-u_{0}}{h}$

$$
\frac{\partial u_{0}}{\partial t}=\frac{3 K}{\rho C} \frac{r_{1 / 2}^{2} \frac{u_{1}-u_{0}}{h}}{r_{1 / 2}^{3}}+\frac{f_{0}}{\rho C} \quad r_{1 / 2}=\frac{h}{2}
$$

for definitever), consider the fully impleith scheme:

$$
\begin{gathered}
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}=\frac{k}{\rho C} \frac{1}{h^{2}} B u_{j}^{n+1}+\frac{f_{j}^{n+1}}{\rho C} \quad\binom{I \text { absorbed }}{\text { the } 3 \text { into } B} \\
B u_{j}= \begin{cases}6\left(u_{1}-u_{0}\right) & j=0 \\
\frac{\left(j-\frac{1}{2}\right)^{2} u_{j}-1-\left[\left(j+\frac{1}{2}\right)^{2}+\left(j-\frac{1}{2}\right)^{2}\right] u_{j}+\left(j+\frac{1}{2}\right)^{2} u_{j+1}}{j^{2}+1 / 12} & 1 \leq j<M\end{cases}
\end{gathered}
$$

Bistridiagonal but is not constant along diagonals since the underlying PDE $\rho e \frac{\partial u}{\partial t}-k r^{-2} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=f$ does not have constant coefficients. Note that for large j, the stencil is close to $\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)$ (shill thickness small umpored to radius of curative of shell) shells look ike planes

Question 1: does the implicit scheme make sense? must show that

$$
A=I-V B \text { is invo-tibu. }\left(V=\frac{k}{\rho C} \frac{k}{h^{2}}\right)
$$

Gershgoren theorem: Let A be an arbitrary matrix. Then the eigenvalues λ of A are located in the union of the M disks

$$
\left|\lambda-a_{i k}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|
$$

Now, B has the property that it's row sums are zero with off diognenals

$$
B=\left(\begin{array}{cccccc}
-6 & 6 & 0 & 0 & 0 & 0 \\
3 / 13 & -30 / 13 & 27 / 13 & 0 & 0 & 0 \\
0 & 27 / 49 & -102 / 49 & 75 / 49 & 0 & 0 \\
0 & 0 & 75 / 109 & -\frac{222}{109} & \frac{147}{109} & 0 \\
0 & 0 & 0 & \frac{147}{193} & -\frac{390}{193} & \frac{243}{193} \\
\vdots & \vdots & \vdots & 0 & \frac{243}{301} & -\frac{606}{301}
\end{array}\right)
$$

so $\quad a_{i i}=\left|-\nu b_{i i}>\right|$ and $\sum_{j \neq i}\left|a_{i j}\right|=\sum_{j \neq i}\left|-\nu b_{i j}\right|=\left|\nu b_{i i}\right|$

Example: $i=0: \quad a_{00}=1+6 \nu, \quad\left|a_{01}\right|=|-6 \nu|=6 \nu$

$$
\begin{array}{ll}
i=1: & a_{11}=1+\frac{30}{13} \nu,\left|a_{10}\right|+\left|a_{12}\right|=\frac{30}{13} \nu \\
i=2: & a_{22}=1+\frac{102}{49} v,\left|a_{21}\right|+\left|a_{23}\right|=\frac{102}{49} v
\end{array}
$$

conclusion: All the eigenvalues of A have real part ≥ 1. so A is invertible (n ozero eigenvalues)

Question 2: B and A are not normal $\left(B^{\top} B \neq B B^{\top}\right)$ is there anything like our Fourrer analysis to analyze these schemes?
yes. Use a weighted norm:

$$
\begin{aligned}
& \|u\|_{2, h}^{2}=\frac{4}{3} \pi\left[r_{1 / 2}^{3} u_{0}^{2}+\sum_{j=1}^{M-1}\left(r_{j+\frac{1}{2}}^{3}-r_{j-\frac{1}{2}}^{3}\right) u_{j}^{2}\right] \\
& (u, v)_{2, h}=u^{\top} W \bar{v}, \quad W_{j j}= \begin{cases}\frac{\pi h^{3}}{6} & j=0 \\
4 \pi h^{3}\left(j^{2}+\frac{1}{12}\right) & 1 \leq j \leq M\end{cases} \\
& (u, B v)_{2, h}=u^{\top} W B \bar{v} \\
& (B u, v)_{2, L}=u^{\top} B^{\top} W \bar{v} \\
& \text { claim } W B=(W B)^{\top}=B^{\top} W \\
& (W B)_{i, i+1}=\left\{\begin{array}{cl}
\pi h^{3} & i=0 \\
4 \pi\left(i+\frac{1}{2}\right)^{2} h^{3} & i>0
\end{array}\right.
\end{aligned}
$$

$$
(W B)_{i+1, i}=\quad 4 \pi\left(i+1-\frac{1}{2}\right)^{2} h^{3} \quad i \geq 0
$$

So B II self-adjont in the .inner product, \therefore eigenvalues of B and A are real, eigenvectors are or thonormat.

$$
\left\|A^{-1}\right\| \leq 1
$$

impheit scheme U stable for any chare of V.

228 Lee 15

Last time: analysis of the heat equation with spherical symmetry

- non-constant coefficients prevent Fourier analysis fan working
- Gurshgorin's theorem replacer amplification factor annoys
- mesh weighted norms make the matrix self-adjont

Today: rescue the centered sclume
better schemes for the wave equation
Lax-Wendroff, Lax-Friedrichs, Crank-Nicolion, Leapfrog
Saving the centered scheme
scheme: $\quad u_{j}^{n+1}=B u_{j}^{n}=\frac{v}{2} u_{j-1}+u_{j}-\frac{v}{2} u_{j+1}, v=a \frac{k}{h}$
we allow " a " to be positive or negative with this scheme
amplification factor: $\left(G(\xi)=\frac{v}{2} e^{-i \xi}+1-\frac{v}{2} e^{i \xi}\right.$

$$
\begin{aligned}
& =1-i v \frac{e^{i \xi}-e^{-i \xi}}{2 i}=1-i v \sin \xi \\
& |G(\xi)|=\sqrt{1+\nu^{2} \sin ^{2} \xi} \\
& \|G\|_{\infty}=\max _{-\pi \leq \xi \leq \pi}|G(\xi)|=\sqrt{1+v^{2}}
\end{aligned}
$$

so it we $f\left(x v=a \frac{k}{h}\right.$ as we refine k and. h, then

$$
\left\|B^{n}\right\|_{2}=\left\|G^{n}\right\|_{\infty}=\left(1+\nu^{2}\right)^{n / 2} \rightarrow \infty \text { as } n \rightarrow \infty
$$

\therefore unstable.

Note that the centered scheme is unstable even though it satisfies the CFL condition. (CFL dos not give sufficient conditions for convergence)

Saving the centered scheme.
consider the refinement path $h=\sqrt{1 a k}, \nu=a \frac{h}{h}=\sqrt{a / h} \operatorname{sgn}(a)$
Then $\|B(k)\|_{2}=\sqrt{1+\nu^{2}}=\sqrt{1+\text { ak }} \leq 1+\frac{1}{2} a k$
so $\left\|B(k)^{n}\right\|_{2} \leq\left(e^{\frac{1}{2}|a| k}\right)^{n} \leq e^{\frac{1}{2} a T} \left\lvert\, \begin{aligned} & \sqrt{1+\varepsilon} \leq 1+\frac{\varepsilon}{2} \text { for a\|l } \varepsilon>0 \\ & \left(1+\varepsilon \leq 1+\varepsilon+\frac{\varepsilon^{2}}{4}\right)\end{aligned}\right.$
\therefore scheme is stable with this refinement path.
but (1) it's experave $\left(k=O\left(h^{2}\right)\right)$
(2) error bound grows exponentially with time.

Note: this wouldut have worked in the 1-norm or ∞-norm analysis-

$$
\|B\|_{1}=\left|\frac{v}{2}\right|+|1|+\left|-\frac{v}{2}\right|=1+|v|=1+|a| \frac{k}{h}
$$

Better schemes for the wave equation
of the schemes so far, upwind has been the best, but it has 2 drawbacks: (i) it's first order in time and space (unkss $V=1$, then it'sexait)
(2) for systems you could have some waves moving L to R and others R to $L \ldots$ which way's upwind?

Lax-Friedrichs scheme

$$
\begin{aligned}
& \frac{u_{j}^{n+1}-\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)}{k}=-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h} \\
& u_{j}^{n+1}=B u_{j}^{n}=\left(\frac{1}{2}+\frac{v}{2}\right) u_{j-1}^{n}+\left(\frac{1}{2}-\frac{v}{2}\right) u_{i+1}^{n} \\
& G(\xi)=(i+\nu) \frac{e^{-i \xi}}{2}+(1-\nu) \frac{e^{i \xi}}{2}=\cos \xi-i \nu \sin \xi \\
& |G(\xi)|^{2}=\cos ^{2} \xi+\nu^{2} \sin ^{2} \xi=1-\left(1-\nu^{2}\right) \sin ^{2} \xi \\
& \mid\left(\left.\hbar(3)\right|^{2}\right.
\end{aligned}
$$

truncation error of Lax-Friedrchs: $0\left(k+h^{2}\right)$

Lax-Wendroff scheme
this time we derive the scheme by trying to knock off more terms in the Taylor expansion (rather than using a geometne construction)

$$
\begin{aligned}
\underset{\text { solon }}{\text { exact }} \rightarrow u(x, t+k) & =u+k u_{t}+\frac{k^{2}}{2} u_{t t}+\cdots \\
& =u+k\left(-a u_{x}\right)+\frac{k^{2}}{2}\left(a^{2} u_{x x}\right)+\cdots
\end{aligned}
$$

scheme:

$$
u_{j}^{n+1}=u_{j}^{n}-a k \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}+\frac{a^{2} k^{2}}{2} \frac{u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}}{h^{2}}
$$

or $\quad u_{j}^{n+1}=B u_{j}^{n}=\frac{1}{2} \nu(1+\nu) u_{j-1}^{n}+\left(1-\nu^{2}\right) u_{j}^{n}-\frac{1}{2} \nu(1-\nu) u_{j+1}^{n}$
the amplification factor is

$$
\begin{aligned}
G(\xi) & =1-i \nu \frac{e^{i \xi}-e^{-i \xi}}{2 i}+\frac{\nu^{2}}{2}\left(e^{-i \xi}-2+e^{i \xi}\right) \\
& =1-i \nu \sin \xi-\nu^{2}(1-\cos \xi) \\
& =1-2 \nu^{2} \sin ^{2} \xi / 2-i \nu \sin \xi \\
\mid\left(\left.\epsilon(\xi)\right|^{2}\right. & =1-4 \nu^{2} \sin ^{2} \xi / 2+4 \nu^{4} \sin ^{4} \xi / 2+\underbrace{2} \sin ^{2} \xi \\
& =1-4 \nu^{2}\left(1-\nu^{2}\right) \sin ^{2} \xi / 2 \underbrace{i-\sin ^{2} \xi / 2}_{i-\sin ^{2} \xi / 2}
\end{aligned}
$$

so $\left\|B^{n}\right\|_{2}=\left\{\begin{array}{ccc}1 & \mid v \leq 1 & \text { (stable) } \\ \left(1-2 \nu \nu^{2}\right)^{n} & |\nu|>1 & \text { (unstable) }\end{array}\right.$ note: $|f| U \mid=1$ youget the exact solution, just like upwind.

Lax-Wendroff is a rae instance in mathematics where going after more accuracy by including more terms in a Tagb- expansion actually improves stability. (Runge-Kutte is another example)
$\Rightarrow \operatorname{method} i s \quad O\left(k^{2}+h^{2}\right)$ and stable for $|\nu| \leq 1$ with no exponential growth in the error bound or special refinement paths required. And, the scheme is centered in space, so it generalizes to systems with right and left moving waves simultaneously. (moore later)

Crank-Nicolson $\quad u_{t}=-a u_{x}$

$$
\begin{aligned}
& \frac{u^{n+1}-u^{n}}{k}=\frac{1}{2}\left[-a \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2 h}-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}\right] \\
& \left(I+\frac{\nu}{2} B_{1}\right) u^{n+1}=\left(I-\frac{\nu}{2} B_{1}\right) u^{n}, \quad B_{1} u_{j}=\frac{1}{2}\left(u_{j+1}-u_{j-1}\right) \\
& G_{1}(\xi)=\frac{i e^{i \xi}-e^{-i \xi}}{2 i}=i \sin \xi \\
& u^{n+1}=B u^{n} \\
& G(\xi)=\frac{1-i \frac{\nu}{2} \sin \xi}{1+i \frac{\nu}{2} \sin \xi} \\
& |G(\xi)|=1 \quad \quad \quad \begin{array}{l}
\text { unconditionally stable for any } V_{0} \\
\text { (implicit methods always satisfy cFL) }
\end{array}
\end{aligned}
$$

truncation error-: $0\left(k^{2}+h^{2}\right) \leftarrow$ so probably gourd want to take timuiteps with $h \approx a k$ anyways (unconditional stability not as important for wave eqn. as ti s for heat en-)

$$
\begin{aligned}
& \frac{u_{i}^{n+1}-u_{j}^{n-1}}{2 k}=-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 n}<D_{+}^{0} u_{j}^{n}=-a D_{x}^{0} u_{j}^{n} \\
& \left.u_{j}^{n+1}=u_{j}^{n-1}-\nu u_{j+1}^{n}+\nu u_{j-1}^{n} \quad \text { (example of a multistep }\right)
\end{aligned}
$$

how does the Fourier transform evolve?

$$
\begin{aligned}
\sum_{j} u_{j}^{n+1} e^{-i \xi} & =\sum_{j}\left(u_{j}^{n-1}-v u_{j+1}^{n}+\nu u_{j-1}^{n}\right) e^{-i j \xi} \\
\hat{u}^{n+1}(\xi) & =\hat{u}^{n-1}(\xi)-v e^{i \xi} \hat{u}^{n}(\xi)+\nu e^{-i \xi} \hat{u}^{n}(\xi) \\
& =\hat{u}^{n-1}(\xi)-(2 i \nu \sin \xi) \hat{u}^{n}(\xi)
\end{aligned}
$$

Moor generally, if $u^{n+1}=B_{1} u^{n}+B_{2} u^{n-1}$
then $\quad \hat{u}^{n+1}(\xi)=G_{1}(\xi) \hat{u}^{n}(\xi)+G_{2}(\xi) \hat{u}^{n-1}(\xi)$
in our case,

$$
\begin{array}{ll}
B_{1} u_{j}=-\nu u_{j+1}+v u_{j-1}, & B_{2}=I \\
G_{1}(\xi)=-2 i v \sin \xi, & G_{2}(\xi)=1
\end{array}
$$

now let's freeze ξ and suppress it in the notation. We need $\hat{u}^{0}, \hat{u}^{\prime}$ to get the recursion going. After that,

$$
\hat{u}^{n+1}=G_{1} \hat{u}^{n}+G_{2} \hat{u}^{n-1}
$$

This recursion may be solved in terms of the roots r_{1}, r_{2} of the polynomial $\rho(r)=r^{2}-G_{1} r-G_{2}$, ie. $r_{i, 2}=\frac{G_{1} \pm \sqrt{r_{1}^{2}+4 G_{2}}}{2}$ For leap frey, $r_{1,2}=\frac{-2 i \nu \sin \xi \pm \sqrt{-4 \nu^{2} \sin ^{2} \xi+4}}{2}= \pm \sqrt{1-\nu^{2} \sin ^{2} \xi}-i v \sin \xi$
if $r_{1} \neq r_{2}$, the solutun of the recursion is

$$
\hat{u}^{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}
$$

$\hat{u}^{n} \longleftarrow$ superscript an index
r_{j}^{n} superscript a power
to match the initial conditions, we need

$$
\begin{array}{ll}
c_{1}+c_{2}=\hat{u}^{0} \\
c_{1} r_{1}+c_{2} r_{2}=\hat{u}^{\prime} & \text { or }
\end{array} \quad\left(\begin{array}{ll}
1 & 1 \\
r_{1} & r_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\hat{u}^{0}}{\hat{u}^{1}}
$$

which give $\quad\binom{c_{1}}{c_{2}}=\frac{1}{r_{2}-r_{1}}\left(\begin{array}{cc}r_{2} & -1 \\ -r_{1} & 1\end{array}\right)\binom{\hat{u}^{0}}{\hat{u}^{\prime}}$
or

$$
\begin{aligned}
\hat{u}^{n} & =\left(r_{1}^{n}, r_{2}^{n}\right)\binom{c_{1}}{c_{2}}=\frac{1}{r_{2}-r_{1}}\left(r_{1}^{n} r_{2}-r_{1} r_{2}^{n}, r_{2}^{n}-r_{1}^{n}\right)\binom{\hat{u}^{0}}{\hat{u}^{\prime}} \\
& =-\hat{u} 0 \frac{r_{1} r_{2}\left(r_{1}^{n-1}-r_{2}^{n-1}\right)}{r_{1}-r_{2}}+\hat{u}^{1} \frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}
\end{aligned}
$$

in the limit as $r_{1} \rightarrow r_{2}$, we can use $r_{1}^{n}-r_{2}^{n}=\left(r_{1}-r_{2}\right) \sum_{k=0}^{n-1} r_{1}^{k} r_{2}^{n-1-k}$ to obtain:

$$
\begin{aligned}
\hat{u}^{n} & =-\hat{u}^{0} r_{1} r_{2} \sum_{k=0}^{n-2} r_{1}^{k} r_{2}^{n-2-k}+\hat{u}^{1} \sum_{k=0}^{n-1} r_{1}^{k} r_{2}^{n-1-k} \\
& =-(n-1) r_{1}^{n} \hat{u}_{0}+n r_{1}^{n-1} \hat{u}_{1} \\
& \uparrow \text { in } \text { limit }_{\text {as }} \rightarrow r_{1}
\end{aligned}
$$

We also could have derived thus result directly:
general solution when $r_{1}=r_{2}$:

$$
\hat{u}^{n}=c_{1} r_{1}^{n}+c_{2} n r_{1}^{n-1}= \begin{cases}c_{1} & n=0 \\ c_{1} r_{1}+c_{2} & n=1 \\ c_{1} r_{1}^{n}+c_{2} n r_{1}^{n-1} & n \geq 2\end{cases}
$$

the initial conditions yield:

$$
\left(\begin{array}{ll}
1 & 0 \\
r_{1} & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\hat{u}^{0}}{\hat{u}^{1}} \rightarrow\binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
1 & 0 \\
-r & 1
\end{array}\right)\binom{\hat{u}^{0}}{\hat{u}^{1}}
$$

45

$$
\begin{aligned}
\hat{u}^{n} & =\hat{u}^{0} r_{1}^{n}+\left(-r_{1} \hat{u}^{0}+\hat{u}^{1}\right) n r_{1}^{n-1} \\
& =-(n-1) r_{1}^{n} \hat{u}^{0}+n r_{1}^{n-1} \hat{u}^{1}
\end{aligned}
$$

Summary: for the leapfrog scheme, the Fourier coefficients $\hat{u}^{n}(\xi)$ evolve according to a two step recurrence (1.e-diffeence equation)

$$
\hat{u}^{n+1}=G_{1} \hat{u}^{n}+G_{2} \hat{u}^{n+1}
$$

This equation can be solved in terms of the roots r_{1}, r_{2} of the polynomial $p(r)=r^{2}-G_{1} r-G_{2}$.
The solution \hat{u}^{n} remains bounded for all n and all initial whetrions \hat{u}, \vec{u} of ρ satisfies the root condition

$$
\left|r_{1}\right| \leq 1, \quad\left|r_{2}\right| \leq 1 \text {, if } r_{1}=r_{2} \text { then }\left|r_{1}\right|<1
$$

228B Lee 16

Last time:
(1) The centered scheme is unstatle even thoyl it satisties CFL
(2) It cav be mede stable by choosing a different refimement path, but the resulting method is expasive and inaccurate (soluturns still yow exponeatially in time)
(3) analyzed Lax-Fredruch, Lax-wendoff, Crank-Nicolim
(4) intridued leaptroy scheme

Todas: andyze Leaphoy scheme.

Leapfrog scheme: $\quad u_{t}=-a u_{x} \quad \cdots \cdots \cdots \cdot n_{n}^{n+1}$

$$
\begin{aligned}
& \frac{u_{i}^{n+1}-u_{j}^{n-1}}{2 k}=-a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h}<D_{+}^{0} u_{j}^{n}=-a D_{x}^{0} u_{j}^{n} \\
& \left.u_{j}^{n+1}=u_{j}^{n-1}-\nu u_{j+1}^{n}+\nu u_{j-1}^{n} \quad \text { (example of a multistep }\right)
\end{aligned}
$$

how does the Fourier transform evolve?

$$
\begin{aligned}
\sum_{j} u_{j}^{n+1} e^{-i j \xi} & =\sum_{j}\left(u_{j}^{n-1}-v u_{j+1}^{n}+\nu u_{j-1}^{n}\right) e^{-i \xi} \\
\hat{u}^{n+1}(\xi) & =\hat{u}^{n-1}(\xi)-\nu e^{i \xi} \hat{u}^{n}(\xi)+\nu e^{-i \xi} \hat{u}^{n}(\xi) \\
& =\hat{u}^{n-1}(\xi)-(2 i v \sin \xi) \hat{u}^{n}(\xi)
\end{aligned}
$$

Moor genially, if $u^{n+1}=B_{1} u^{n}+B_{2} u^{n-1}$
then $\hat{u}^{n+1}(\xi)=G_{1}(\xi) \hat{u}^{n}(\xi)+G_{2}(\xi) \hat{u}^{n-1}(\xi)$
in our case,

$$
\begin{array}{ll}
B_{1} u_{j}=-\nu u_{j+1}+v u_{j-1}, & B_{2}=I \\
G_{1}(\xi)=-2 i v \sin \xi, & G_{2}(\xi)=1
\end{array}
$$

now let's freeze ξ and suppress it in the notation. We need $\hat{u}^{0}, \hat{u}^{\prime}$ to get the recursion going. After that,

$$
\hat{u}^{n+1}=G_{1} \hat{u}^{n}+G_{2} \hat{u}^{n-1}
$$

This recursion may be solved in terms of the roots r_{1}, r_{2} of the polynomial $\rho(r)=r^{2}-G_{1} r-G_{2}$, ie. $r_{i, 2}=\frac{G_{1} \pm \sqrt{r_{1}^{2}+4 G_{2}}}{2}$ For leepfor, $r_{1,2}=\frac{-2 i \nu \sin \xi \pm \sqrt{-4 \nu^{2} \sin ^{2} \xi+4}}{2}= \pm \sqrt{1-\nu^{2} \sin ^{2} \xi}-i \nu \sin \xi$
if $r_{1} \neq r_{2}$, the solutun of the recursion is

$$
\hat{u}^{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}
$$

$\hat{u}^{n} \longleftarrow$ superscript an index
r_{j}^{n} superscript a power
to match the initial conditions, we need

$$
\begin{gathered}
c_{1}+c_{2}=\hat{u}^{0} \\
c_{1} r_{1}+c_{2} r_{2}=\hat{u}^{\prime}
\end{gathered} \quad \text { or } \quad\left(\begin{array}{cc}
1 & 1 \\
r_{1} & r_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\hat{u}^{0}}{\hat{u}^{1}}
$$

which gives $\binom{c_{1}}{c_{2}}=\frac{1}{r_{2}-r_{1}}\left(\begin{array}{cc}r_{2} & -1 \\ -r_{1} & 1\end{array}\right)\binom{\hat{\imath}^{0}}{\hat{u}^{\prime}}$
or

$$
\begin{aligned}
\hat{u}^{n} & =\left(r_{1}^{n}, r_{2}^{n}\right)\binom{c_{1}}{c_{2}}=\frac{1}{r_{2}-r_{1}}\left(r_{1}^{n} r_{2}-r_{1} r_{2}^{n}, r_{2}^{n}-r_{1}^{n}\right)\binom{\hat{u}^{0}}{\hat{u}^{1}} \\
& =-\hat{u}^{0} \frac{r_{1} r_{2}\left(r_{1}^{n-1}-r_{2}^{n-1}\right)}{r_{1}-r_{2}}+\hat{u}^{\prime} \frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}
\end{aligned}
$$

in the limit as $r_{1} \rightarrow r_{2}$, we can use $r_{1}^{n}-r_{2}^{n}=\left(r_{1}-r_{2}\right) \sum_{k=0}^{n-1} r_{1}^{k} r_{2}^{n-1-k}$ to obtain:

$$
\begin{aligned}
& \hat{u}^{n}=-\hat{u}^{0} r_{1} r_{2} \sum_{k=0}^{n-2} r_{1}^{k} r_{2}^{n-2-k}+\hat{u}^{\prime} \sum_{k=0}^{n-1} r_{1}^{k} r_{2}^{n-1-k} \\
&=-(n-1) r_{1}^{n} \hat{u}_{0}+n r_{1}^{n-1} \hat{u}_{1} \\
& \quad \hat{\text { in limit }} \\
& \text { as } r_{1} \rightarrow r_{2}
\end{aligned}
$$

We also could have derived thus result directly:
general solution when $r_{1}=r_{2}$:

$$
\hat{u}^{n}=c_{1} r_{1}^{n}+c_{2} n r_{1}^{n-1}= \begin{cases}c_{1} & n=0 \\ c_{1} r_{1}+c_{2} & n=1 \\ c_{1} r_{1}^{n}+c_{2} n r_{1}^{n-1} & n \geq 2\end{cases}
$$

the initial conditions yield:

$$
\left(\begin{array}{ll}
1 & 0 \\
r_{1} & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\hat{u}^{0}}{\hat{u}^{1}} \rightarrow\binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
1 & 0 \\
-r_{1} & 1
\end{array}\right)\binom{\hat{u}^{0}}{\hat{u}^{1}}
$$

or

$$
\begin{aligned}
\hat{u}^{n} & =\hat{u}^{0} r_{1}^{n}+\left(-r_{1} \hat{u}^{0}+\hat{u}^{1}\right) n r_{1}^{n-1} \\
& =-(n-1) r_{1}^{n} \hat{u}^{0}+n r_{1}^{n-1} \hat{u}^{1}
\end{aligned}
$$

Summary: for the leapfoy scheme, the Fourier coefficients $\hat{u}^{n}(\xi)$ evolve according to a two step recurrence (1.e-differnce equation)

$$
\hat{u}^{n+1}=G_{1} \hat{u}^{n}+G_{2} \hat{u}^{n+1}
$$

This equation can be solved in terms of the roots r_{1}, r_{2} of the polynomial $p(r)=r^{2}-G_{1} r-G_{2}$.
The solution \hat{u}^{n} remains bounded for alt n and all, mitual wheditions \hat{u}, \hat{u} iff ρ satisfies the root condition $\left|r_{1}\right| \leq 1,\left|r_{2}\right| \leq 1$, if $r_{1}=r_{2}$ then $\left|r_{1}\right|<1$

The question we really care clout is: $\binom{$ how big is $\left\|\hat{u}^{\wedge}\right\|_{L^{2}}}{$ for $0 \leq n k \leq T}$ so we have to look more closely at the recursion for different choices of ξ, For the leapfrog scheme $\left.\left\{\begin{array}{l}r_{1}=\sqrt{1-\nu^{2} \sin ^{2} \xi}-i \nu \sin \xi \\ r_{2}=-\sqrt{1-\nu^{2} \sin ^{2} \xi}-i \nu \sin \xi\end{array}\right\} \begin{array}{l}i \nu \mid>1 \\ \Rightarrow \\ r_{0} \text { or } r_{2} \\ \text { sits ide } \\ \text { unite } \\ \text { uncle le } \\ f_{0} 0 \\ \xi=\frac{\pi}{2}\end{array}\right\}$ we saw that $\hat{u}^{n}=-\hat{u}^{0} \frac{r_{1} r_{2}\left(r_{1}^{n-1}-r_{2}^{n-1}\right)}{r_{1}-r_{2}}+\hat{u}^{1} \frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}$

$$
\begin{aligned}
r_{1}^{n}-r_{2}^{n} & =(-i)^{n}\left(e^{i n \theta}-e^{-i n \theta}\right) \\
& =(-i)^{n}(2 i) \frac{e^{i n \theta}-e^{-i n} \theta}{2 \tau}=2(-i)^{n-1} \sin n \theta \\
r_{1}-r_{2} & =(-i)(2 i) \frac{e^{i \theta}-e^{-i \theta}}{2 i}=2 \sin \theta
\end{aligned}
$$

so

$$
\begin{aligned}
\hat{u}^{n} & =-\hat{u}^{0} \frac{\overbrace{(-1)}^{r_{2}}(2)(-i)^{n-2} \sin ((n-1) \theta)}{2 \sin \theta}+\hat{u}^{\prime} \frac{2(-i)^{n-1} \sin n \theta}{2 \sin \theta} \\
& =-(-i)^{n} \frac{\sin ((n-1) \theta)}{\sin \theta} \hat{u}^{0}+(-i)^{n-1} \frac{\sin n \theta}{\sin \theta} \hat{u}^{\prime}
\end{aligned}
$$

note that $\sin \theta=\sqrt{1-\nu^{2} \sin ^{2} \xi} \quad$ lies in the range

$$
\sin \theta \geq \sqrt{1-v^{2}}
$$

if $|\nu|<1$, then $\left|\frac{\sin n \theta}{\sin \theta}\right| \leqslant \frac{1}{|\sin \theta|} \leq \frac{1}{\sqrt{1-\nu^{2}}}$

So

$$
\begin{aligned}
& \left|\hat{u}^{n}(\xi)\right| \leq \frac{1}{\sqrt{1-v^{2}}}\left(\left|\hat{u}^{0}(\xi)\right|+\left|\hat{u}^{\prime}(\xi)\right|\right) \\
& |\hat{u}(\xi)|^{2} \leq \frac{2}{1-v^{2}}\left(\left|\hat{u}^{0}(\xi)\right|^{2}+\left|\hat{u}^{\prime}(\xi)\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { here we use }(a+b)^{2}=a^{2}+2 a b+b^{2} \leq 2\left(a^{2}+b^{2}\right) \\
\uparrow \\
\therefore 0 \leq(a-b)^{2}=a^{2}-2 a b+b^{2} \Rightarrow 2 a b \leq a^{2}+b^{2}
\end{array}\right]} \\
& \therefore \hat{u}^{n} \|_{L^{2}(-\pi, \pi)}^{2}=\int_{-\pi}^{\pi} \left\lvert\, \hat{u}(\xi)^{2} d \xi \leq \frac{2}{1-v^{2}}\left[\int_{-\pi}^{\pi}\left|\hat{u}^{0}(\xi)\right|^{2} d \xi+\int_{-\pi}^{\pi}\left|\hat{u}^{1}(\xi)\right|^{2} d \xi\right]\right. \\
& \therefore \quad\left\|\hat{u}^{n}\right\|_{2}^{2} \leq \sqrt{\frac{2}{1-v^{2}}} \sqrt{\left\|\hat{u}^{0}\right\|_{2}^{2}+\left\|\hat{u}^{\prime}\right\|_{L^{2}}^{2}} \leq \sqrt{\frac{2}{1-\nu^{2}}}\left(\left\|\hat{u}^{0}\right\|+\left\|\hat{u}^{\prime}\right\|\right) \\
& \therefore\left\|u^{n}\right\|_{2, h} \leq \sqrt{\frac{2}{1-v^{2}}}\left(\left\|u^{0}\right\|_{2, h}+\left\|u^{1}\right\|_{2, L}\right]
\end{aligned}
$$

uniform bound on growth of solution which does not low up as $k, h \rightarrow 0$
\therefore scheme is stable for $|\nu|<1$, but the error bound gets worse and worse as ν appraacks 1 .
so what happens if $|\nu|=1$? The roots r_{1}, r_{2} still live on the unit circle, but when $\xi=\pi / 2$ we get a double root, which spells trouble.-

$$
\overbrace{r_{2}} \sin \theta=\sqrt{1-\nu^{2} \sin ^{2} \xi}=0 \text { when } \xi=\frac{\pi}{2},|\nu|=1
$$

This time well estimate $\left|\frac{\sin n \theta}{\sin \theta}\right|$ using:

$$
\begin{aligned}
|\sin n \theta| & =|\sin ((n-1) \theta) \cos \theta+\sin \theta \cos ((n-1) \theta)| \\
& \sum|\sin ((n-1) \theta)|+|\sin \theta| \\
& \sum|\sin (n-2) \theta|+2|\sin \theta| \\
& \vdots n|\sin \theta|
\end{aligned}
$$

So $\left|\frac{\sin n \theta}{\sin \theta}\right| \leqslant \min \left(\frac{1}{\sqrt{1-\nu^{2} \sin ^{2} \xi}}, n\right)$
if we know nothing about the initial data, we can't do much better than

$$
\left\|u^{n}\right\|_{2, h} \leqslant \sqrt{2} n\left(\left\|u^{0}\right\|_{2, h}+\left\|u^{\prime}\right\|_{2, h}\right)
$$

and in fact, this linear growth with the number of timesteps does actually happen

on a perwdir lattice, wo would get $\left\|u^{n}\right\|_{2, h}=n\left(\left\|u^{0}\right\|_{2, \text {, }}+\left\|u^{\prime}\right\|_{2, h}\right)$
\therefore scheme is unstable, but the instability is fairly mild. Since this poistem is lineef, you could borrow a factor of k from the truncation error to turn n into $n k \leq T$, so the convergence tests might actually indicate that the method is $O\left(k+h^{2}\right)$ rather than unstable.

Also, only modes close to $\frac{\pi}{2}$ will get amplified indefinitely, so if the initial condition happens to satisfy $\hat{u}^{0}(\xi)=0, \hat{u}^{\prime}(\xi)=0$ for ξ close to $\pi / 2$, you wort see the instability (note that initial conditions of th form $g(x)=\sin 2 \pi x$ or $\sin 4 \pi x$ or $\sin 2 N \pi x$ for some fixed N have this property for a fine enough mesh).

Finally, if $g(x)$ is a periodic, analytic function, its fourier coefficients will decay exponentially (eventually), and so for small enough h the magnitude of $\hat{u}^{0}(\xi)$ for ξ near $\pi / 2$ will decay as you refine the mesh, possibly saving the instability of the lexptry scheme with $|v|=1$.

Last time: Analysis of leapfrog method (and other 2-step schemes)
Today:- (1)spectrally accuratic differentiation \& integration of periodic function
(2) schemes for hyperbolic systems
(3) boundary conditions for hyperbolic systems.

Discrete founder tromiturn (in math: fft, ifft. beware of "of by $1^{\prime \prime}$ errors)

$$
\begin{aligned}
& w_{h}=\sum_{j=0}^{N-1} e^{-2 \pi i j h / N} u_{j} \quad w_{h+N}=w_{h}, \quad k \in \mathbb{Z} \\
& u_{j}=\frac{1}{N} \sum_{k=0}^{N-1} e^{2 \pi i j h / N} w_{k}=\sum_{h=-N / 2}^{\frac{N}{2}-1} e^{2 \pi i j h / j} w_{k} \quad \begin{array}{c}
\text { most } \\
\text { sensible } \\
\text { range of } \\
\text { indices }
\end{array}
\end{aligned}
$$

Then $u\left(x_{j}\right)=\frac{1}{N} \sum_{k} e^{i j \frac{2 \pi k}{N}} w_{k}=\frac{1}{N} \sum_{h} e^{i\left(\frac{x_{j}}{h}\right) \xi_{h}} w_{k}, \quad \xi_{h}=\frac{2 \pi k}{N}$ interpolate between sampled paints using same formula $\left(x_{j} \rightarrow x\right)$
spectrally accurate r differentiation and integration formulas:

$$
\begin{array}{cc}
u^{\prime}(x)=\frac{1}{N} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} e^{i\left(\frac{x}{h}\right) \xi_{k}}\left(i \frac{\xi_{k}}{h} W_{k}\right), & \int_{0}^{x} u(s) d_{s}=\frac{1}{N} \sum_{k \neq 0} e^{i \frac{x}{h} \xi_{k}}\left(\frac{W_{k}}{i-3 / k / h}\right) \\
\text { best to zero out } \begin{array}{cc}
N_{y \text { gust }} \text { frequency } & \text { need } w_{0}=0 \text { for this } \\
W_{N / 2}=0 & \text { to make sense }
\end{array}
\end{array}
$$

schemes for hyperbolic systems $\left(\nu=\frac{k}{h},-a \rightarrow A, \begin{array}{r}\text { real distinct } \\ \text { eigenvalues })\end{array}\right)$ goal: solve $\vec{u}_{t}=A \vec{u}_{x}$ where $\vec{u}_{\text {is }}$ a vector

Lax-Fnedrichs

$$
\vec{u}_{j}^{n+1}=\frac{1}{2}(I-\nu A) \vec{u}_{j-1}^{n}+\frac{1}{2}(I+\nu A) \vec{u}_{j+1}^{n}
$$

Lax-Wendroff

$$
\vec{u}_{j}^{n+1}=\vec{u}_{j}^{n}+v A\left(\frac{\vec{u}_{j+1}^{n}-\vec{u}_{j-1}^{n}}{2}\right)+\frac{v^{2}}{2} A^{2}\left(\vec{u}_{j-1}^{n}-2 \vec{u}_{j}^{n}+\vec{u}_{j+1}^{n}\right)
$$

Leapfrog

$$
\vec{u}_{j}^{n+1}=\vec{u}_{j}^{n-1}-v A \vec{u}_{j-1}^{n}+v A \vec{u}_{j+1}^{n}
$$

The footer analyill of these schemes is similar to the scalar case, but the amplification factor $G(\xi)$ becomes an amplification matrix (still called $G(\xi)$)

Lax-Fredich:: $\quad \hat{u}^{n+1}(\xi)=G(\xi) \hat{\bar{u}}^{n}(\xi), \quad G(\xi)=\frac{1}{2}(I-\nu A) e^{-i \xi}+\frac{1}{2}(I+\nu A) e^{i \xi}$

$$
=(\cos \xi) I+i \nu(\sin \xi) A
$$

Lax-Wendroff: $\quad G(\xi)=I+i \nu(\sin \xi) A+\frac{\nu^{2}}{2}\left(e^{-i \xi}-2+e^{i \xi}\right) A^{2}$

$$
=I-2 \nu^{2} \sin ^{2}(\xi / 2) \bar{A}^{2}+i \nu(\sin \xi) A
$$

Leapfrog:

$$
\begin{gathered}
\hat{\vec{u}}^{n+1}(\xi)=G_{1}(\xi) \hat{\vec{u}}^{n}(\xi)+G_{2}(\xi) \hat{\vec{u}}^{n-1}(\xi) \\
G_{1}(\xi)=2 i \nu(\sin \xi) A, \quad G_{2}(\xi)=I
\end{gathered}
$$

These amplification matrices are diagonalized along with A :

$$
A=U N U^{-1} \Rightarrow G(\xi)=U\binom{\tau(\xi, \lambda)}{G\left(\xi, \lambda_{N}\right)} U^{-1}
$$

so for fixed ξ, factors for $\mu_{\text {(schemeappled to }}=\lambda_{0} \cdot u_{x}$

$$
\begin{aligned}
& \left|\hat{u}^{n}(\xi)\right| \leq\left\|G(\xi)^{n}\right\| \cdot\left|\hat{\vec{u}}^{0}(\xi)\right| \\
& \left\|G(\xi)^{n}\right\| \leq\|u\| \cdot\left\|u^{-1}\right\| \cdot \max _{1 \leq l \leq N}|G(\xi, \lambda l)|^{n}
\end{aligned}
$$

and our 2-norm estimate lodes like

$$
\int_{-\pi}^{\pi}\left|\vec{u}^{n}(\xi)\right|^{2} d \xi \leqslant\left(\max _{-\pi \leq \xi \leq \pi}\left\|t(\xi)^{n}\right\|^{2}\right) \int_{-\pi}^{\pi}\left|\vec{u}^{0}(\xi)\right|^{2} d \xi
$$

or $\quad\left\|\vec{u}^{n}\right\|_{2 ; h} \leq \max _{i \leq \lambda \leq N}\left(\max _{-\pi \leq \xi \leq \pi} \mid\left(\xi(\xi, \lambda \rho) \|^{n}\right)\|u\| \cdot\left\|u^{-1}\right\| \cdot\left\|\vec{u}^{0}\right\|_{2 ; 2}\right.$

So stability boils doom to the scalar scheme applied to each eigenvalue separately. The same is true for the recursion involved in the leaphory scheme.

Boundary conditions
periodic b/c's are easy to implement, but Dirichlet kNemmann conditions are tricky for wave equations.

Scalar equation: $u_{t}=a u_{x}$
solution constant along lines $x+a t=$ cons

$a<0$: ned a bic. on the left wall illegal to impose one on the right
$a>0$: need one on right wall, illegal on left.
example: solve $u_{t}=-a u_{x}, \quad a>0, \quad u(x, 0)=g(x)$ using Lax-Wendroff $u(0, t)=f(t)$

most common chore: just use upwind on right $b d_{y}$: $u_{J}^{n+1}=(1-a v) u_{J}^{n} \operatorname{tav} u_{j-1}^{n}$
in math form

$$
u^{n+1}=B u^{n}+\tilde{B} f^{n}
$$

all I see that is easy to p rue is $\|B\|_{\infty}=1$.
it's not ebvece, whether introducing a first order error at the right endpoint will wreck the $2^{\text {nd }}$ order convegence of Lax-Wendoff.

Another upton would be $u_{J}^{n+1}=c_{2} u_{j-2}+c_{1} u_{j-1}+c_{0} u_{J}$
choosing the coefficients $c_{0} c_{1}, c_{2}$ mater Taylor weefficenents:

$$
\begin{gathered}
u+k u_{t}+\frac{k^{2}}{2} u_{t t}=c_{2}\left(u-(2 h) u_{x}+\frac{(2 h)^{2}}{2} u_{x x}\right) \\
\uparrow \quad+c_{1}\left(u-k u_{x}+\frac{h^{2}}{2} u_{x x}\right) \\
-a u_{x} \quad a^{2} u_{x x} \quad+c_{0} u \\
\left(1-c_{0}-c_{1}-c_{2}\right) u+\left(-k a+h c_{1}+2 h c_{2}\right) u_{x}+\left(\frac{k^{2}}{2} a^{2}-\frac{h^{2}}{2} c_{1}-2 h^{2} c_{2}\right) u_{x x}^{2} 0 \\
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
a v \\
a^{2} \nu^{2}
\end{array}\right) \Rightarrow\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -3 / 2 & 1 / 2 \\
0 & -1 & -1 \\
0 & -1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{c}
1 \\
a v \\
a^{2} \nu^{2}
\end{array}\right) \\
\text { or } \quad u_{J}^{n+1}=-\frac{1}{2} a_{v}(1-a \nu) u_{J-2}+a v(2-a \nu) u_{J-1}+\left(1-\frac{a v}{2}(3-a v)\right) u_{J}
\end{gathered}
$$

But I suspect the scheme is unstated, i.e. B has an eigenvalue $\left|\lambda_{j}\right|>1$:

$$
B=\left(\begin{array}{cccc}
\alpha & \gamma & & \\
\beta & \alpha & \gamma & \\
& & \lambda & \\
& & \beta & \alpha \\
& & c_{2} & c_{1} \\
c_{0}
\end{array}\right)
$$

so boundary conditions for ware equations are difficult to deal with. Fortunately, for most physically important problems you can use synnetery to derive the correct BC.'s to use.

Idea: furn the Dirichlet conditions into periodic conditions:

$$
\begin{aligned}
& g_{0}(x)=-g_{0}(-x) \\
& g_{1}(x)=-g_{1}(-x)
\end{aligned}
$$

whatever the solution of the of problem is, the function

$$
v(x, t)=-u(-x, t) \quad-1 \leq x \leq 1, \quad t \geq 0
$$

is also a solution: $v_{t t}=-u_{t t}(-x, t)$

$$
\begin{aligned}
& v_{x}=u_{x}(-x, t) \\
& v_{x x}=-u_{x x}(-x, t)=-u_{i t}(-x, t)=v_{t t}
\end{aligned}
$$

since u \& satisfy the same (periodic) b.c.s and the same initial conditurs, they are equal (unlquemesis of solutions).

So $u(x, t)=-u(-x, t) \quad-1 \leq x \leq 1, t \geq 0$
in particular: $u(0, t)=-u(0, t) \Rightarrow u(0, t)=0$

$$
u(1, t)=-u(-1, t)=-u(1, t) \Rightarrow u(1, t)=0
$$

periodicity
so the new problem gives the sold to the original problem.

Next we want to figure out b.c.'; to impose on the original problem to mimic the periodic problem without actually computing any values at $x_{j}<0$

$$
\text { It order system }=\vec{w}=\binom{u_{t}}{u_{x}}, \vec{w}_{t}=A \vec{w}_{x}, A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

for the persodu system, the Lax-Wendott update at $\hat{j}=0$ would be

$$
\begin{aligned}
\vec{w}_{0}^{n+1} & =\vec{w}_{0}^{n}+v A\left(\frac{\vec{w}_{1}^{n}-\vec{w}_{-1}^{n}}{2}\right)+\frac{\nu^{2}}{2}{\underset{N}{A}}_{I}^{A^{2}}\left(w_{-1}^{n}-2 \vec{w}_{0}^{n}+\vec{w}_{1}^{n}\right) \\
& =\left(1-\nu^{2}\right) \vec{w}_{0}^{n}+\nu A\left(\frac{\vec{w}_{1}^{n}-\vec{w}_{-1}^{n}}{2}\right)+v^{2}\left(\frac{\vec{w}_{1}^{n}+\vec{w}_{-1}^{n}}{2}\right)
\end{aligned}
$$

But $\vec{w}_{-1}^{n}=\binom{u_{t}\left(-h, t_{n}\right)}{u_{x}\left(-h, t_{n}\right)}=\binom{-u_{t}\left(h, t_{n}\right)}{u_{x}\left(h, t_{2}\right)}, \quad w_{1}^{n}=\binom{u_{t}\left(h, t_{n}\right)}{u_{x}\left(h, t_{n}\right)}$

$$
u(x, t)=-u(-x, t)
$$

So

At the right endpant, a simpler analysis gives

$$
\vec{w}_{J}^{n+1}=\left(1-\nu^{2}\right) \vec{w}_{J}^{n}+\left(\begin{array}{cc}
0 & 0 \\
-\nu & \nu^{2}
\end{array}\right) \vec{w}_{J-1}^{n}
$$

For the case $\sum_{x=0}^{n=0} u_{x=1}^{v i n}=u_{x x} \downarrow_{x=1}^{u_{x}=0}$ we would actually extend by odd symmetry about the origin and even symmetry about $x=1$ to get a percodu domain 4 times as big

you only actually want to compute values of u (or w) between $0 \leq x \leq 1$
at 0: proceed as before: $\vec{w}_{0}^{n+1}=\left(1-\nu^{2}\right) \vec{w}_{0}^{n}+\left(\begin{array}{ll}0 & 0 \\ \nu & \nu^{2}\end{array}\right) \vec{w}_{1}^{n}$
at 1: $\vec{w}_{J}^{n+1}=\left(1-\nu^{2}\right) \vec{w}_{J}^{n}+\nu A\left(\frac{\vec{w}_{j+1}^{n}-\vec{w}_{j-1}^{n}}{2}\right)+\nu^{2}\left(\frac{\vec{w}_{j+1}^{n}+\vec{w}_{j 1}^{n}}{2}\right)$

$$
\begin{gathered}
w_{J+1}^{n}=\binom{u_{t}\left(1+h, t_{n}\right)}{u_{x}\left(1+h, t_{n}\right)}_{\uparrow}=\binom{u_{t}\left(1-h, t_{n}\right)}{-u_{x}\left(1-h, t_{n}\right)}, w_{J-1}=\binom{u_{t}\left(1-h, t_{2}\right)}{u_{x}\left(1-h, t_{n}\right)} \\
u(1+x, t)=u(1-x, t)
\end{gathered}
$$

so ${\underset{w}{J}}_{J}^{n+1}=\left(1-\nu^{2}\right) \vec{w}_{J}^{n}+v\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\binom{0}{-u_{x}\left(1-h, t_{n}\right)}+\nu^{2}\binom{u_{t}\left(1-h, t_{n}\right)}{0}$

$$
w_{J}^{n+1}=\left(1-\nu^{2}\right) \vec{w}_{J}^{n}+\left(\begin{array}{cc}
\nu^{2} & -v \\
0 & 0
\end{array}\right) \vec{w}_{J-1}^{n}
$$

$228 B$ lee 18
Dissipation and Dispersion
$u_{t}=-a u_{x}$, initial condition $u(x, 0)=g(x)=e^{i \frac{x}{h} \xi}$ exact solution: $u(x, t)=g(x-a t)=e^{i \frac{x-a t}{h} \xi}=e^{-i \frac{a t}{h} \xi i \frac{x}{h} \xi}$ Sampled on gid: $u\left(x_{j}, t_{n}\right)=\left(e^{-i a \frac{n k}{h} \xi}\right) e^{i j \xi}=\left(e^{-i a \frac{k}{n} \xi}\right)^{n} u\left(x_{j}, 0\right)$
numerical solution: $u_{j}^{n}=G(\xi)^{n} u_{j}^{0} \leftrightarrow$ Special initial data $u_{j}^{0}=e^{i j \xi}$
so want $G(\xi) \approx e^{-i a \nu \xi}, \nu=\frac{k}{h}$

def:
we say a scheme is dissipative of order $2 r$ if $\exists c>0$ s.t.

$$
\begin{gathered}
|G(\xi)|^{2} \leq 1-C \sin ^{2}(\xi / 2) \\
\text { for }-\pi \leq \xi \leq \pi
\end{gathered}
$$

So upwind is dissipative of order 2 if $0<a \nu<1$
Dispersion refers to the idea that waves with different (spatial) frequencies travel at different speeds.
for upwind, we have:
av >1: unstable
$a_{\nu}=1$: exact solution $\left(\frac{\alpha}{a}=1\right)$
$\frac{1}{2}<a \nu<1: \quad \alpha(\xi)>a \quad$ numerical wave speed:
is Faster
than true waversped.
$\underset{\text { interesting }}{\text { case }} \rightarrow a \nu=\frac{1}{2}$: wave speeds exact $(\alpha(\xi)=1)$
but disispation is large
$0<a \nu<\frac{1}{2}: \quad \alpha(\bar{\xi})<a \quad$ numerical wane speed
slowerthen exact

see computer plebs for better pictures
when ξ is small, we can Taylor expand $\frac{\alpha(\xi)}{a}=\frac{1}{a v \xi} \arctan \left(\frac{a V \sin \xi}{1-\operatorname{av}(1-\cos \xi)}\right)$
to learn:

$$
\frac{\alpha(\xi)}{a}=1+\frac{(1-\alpha \nu)(2-\alpha \nu-1)}{6} \xi^{2}+O\left(\xi^{4}\right)
$$

RHS happens to be exactly + when $a v=1, a v=\frac{1}{2}$

What does a graph plotting p or α vs. ξ tell us? $\xi=\pi c h$
Think of ξ as a wave number relative to the mishspacing

On a fixed periodic domain $[0, L]$, the permitted wave numbers are

$$
x=0, \pm \frac{2 \pi}{L}, \pm \frac{4 \pi}{L}, \pm \frac{6 \pi}{L}, \cdots \pm \frac{2 \pi m}{L} \cdots
$$

once we discretize into J segments of width $L=\frac{L}{J}$, the wrresponding "allowable" values of ξ are

$$
\xi=x h=0, \pm \frac{2 \pi}{J}, \pm \frac{4 \pi}{J}, \cdots \pm \frac{2 \pi m}{J}
$$

The corresponding functions $e^{i j \xi}$ on the grid are tire warty independent only for $-\frac{J}{2} \leq m \leq \frac{J}{2}-1$. For m outside. this range you get aliasing effects (a high frequency mode looks like a lower frequig. one.)
ξ close to zero: lots of gridponts to resolve the wave
\rightarrow better get ρ and α right for ξ near zero
ξ close to $\pm \pi$: waves like this oscillate wildly-6n th grid.
doit expect accuracy here - Good to have $p<1$ to damp then

$$
u_{t}=-a u_{x}
$$

Lax-Friedrichs

$$
\begin{aligned}
& u_{j}^{n+1}=\frac{1}{2}(1+a \nu) u_{i-1}^{n}+\frac{1}{2}(1-a \nu) u_{j+1}^{n} \\
& a(\xi)=\cos \xi-i a \nu \sin \xi=\rho e^{-i \alpha \nu \xi}
\end{aligned}
$$

$$
\tan (\alpha \nu \xi)=\frac{a \nu \sin \xi}{\cos \xi}=a \nu \tan \xi
$$

$$
\frac{\alpha(\xi)}{a}
$$

$$
\frac{\alpha}{a}=\frac{1}{a \vee \xi} \arctan (a \nu \tan \xi) \leftarrow \begin{gathered}
\text { always faster } \\
\text { than true } \\
\text { wnverspeed }
\end{gathered}
$$

$$
=1+\frac{1-(a v)^{2}}{3} \xi^{2}+O\left(\xi^{4}\right)
$$

Lax-Wendoff $\quad\left(u_{t}=-a u_{x}\right) \quad u_{j}^{n+1}=u_{j}^{n}-a v \frac{u_{j+1}-u_{j-1}}{2}+\frac{a^{2} v^{2}}{2}\left(u_{j-1}-2 u_{j}+u_{j}+1\right)$

main error in L-W is due to dispersion.

Leapfrog: $\quad u_{t}=-a u_{x} \quad u_{j}^{n+1}=-a v\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+u_{j}^{n-1}$

$$
\begin{array}{ll}
\hat{u}^{n+1}=G_{1}(\xi) \hat{u}^{n}(\xi)+G_{2}(\xi) \hat{u}^{n-1}(\xi) \\
\left.G_{1}(\xi)=-2 i a\right) \sin \xi, & G_{2}(\xi)=1
\end{array}
$$

general solution: $\hat{u}^{n}(\xi)=c_{1}(\xi) r_{1}(\xi)^{n}+c_{2}(\xi) r_{2}(\xi)^{n}$

$$
\begin{aligned}
& r_{1}=\sqrt{1-(a \nu)^{2} \sin ^{2} \xi}-i(a v) \sin \xi \quad<r_{1,2}=\frac{G_{1} \pm \sqrt{\sigma_{1}^{2}+4 G_{2}}}{2} \\
& r_{2}=-\sqrt{1-(a \nu)^{2} \sin ^{2} \xi}-i(a \nu) \sin \xi
\end{aligned}
$$

we can interpret the cases $c_{1}(\xi)=1, c_{2}(\xi)=0$ and $c_{1}(\xi)=0, c_{2}(\xi)=1$ as travelling wave solutions

$$
u_{j}^{n}=r_{1}(\xi)^{n} e^{i \xi \xi}, \quad x_{j}^{n}=r_{2}(\xi)^{n} e^{i j \xi}
$$

We again want to know how these compare to thexact soln $\left(e^{-i a \nu \xi}\right)^{n} e^{i j \xi}$
$\alpha, \sqrt{\xi}$

$$
r_{1}(\xi)=\rho_{1} e^{-i \alpha_{1} \nu \xi}, r_{2}(\xi)=-\rho_{2} e^{i \alpha_{2} \nu \xi} r_{2}
$$

$\rho_{1}=\rho_{2}=1 \leftarrow$ leapfrog is strictly non-disspative (no mode is damped)

$$
\frac{\alpha_{1}}{a}=\frac{\alpha_{2}}{a}=\frac{1}{a v \xi} \arctan \left(\frac{a v \sin \xi}{\sqrt{1-(a v)^{2} \sin ^{2} \xi}}\right)=1-\frac{1-(a v)^{2}}{6} \xi^{2}+0\left(\xi^{4}\right)
$$

α_{1} is the same (through ind order) as Lax-wendroff, but α_{2} is oscillating and travelling in the wrong direction. (Parasitic)

$$
r_{2}(\xi)=-\rho_{2} e^{+i \alpha_{2} v \xi}
$$

going wrong way oscillating

you can add numerical dissipation to any scheme.
For leapfrog, two natural candidates are:
$\dot{k}^{2} D+D-u_{j}^{n-1}$
(1) $\quad u_{j}^{n+1}=u_{j}^{n-1}-\operatorname{av}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+\frac{\varepsilon}{4}\left(u_{j-1}^{n-1}-2 u_{j}^{n-1}+u_{j+1}^{n-1}\right)$
(2) $\quad u_{j}^{n+1}=u_{j}^{n-1}-a v\left(u_{j+1}^{n}-u_{j-1}^{n}\right)-\frac{\varepsilon}{16} k^{4}\left(D^{+} D^{-}\right)^{2} u_{j}^{n-1}$
the recursion $\hat{u}^{n+1}=G_{1} \hat{u}^{n}+G_{2} \hat{u}^{n-1}$
holds with (1) $G_{1}=-2 i a v \sin \xi \quad G_{2}=1-\varepsilon \sin ^{2} \xi / 2$
or (2) $\left.G_{1}=-2 i \cos \sin \right\} \quad G_{2}=1-\varepsilon \sin ^{4} \xi / 2$
the roots become
(1) $r_{ \pm}=\frac{G_{1} \pm \sqrt{G_{1}^{2}+4 G_{2}}}{2}= \pm \sqrt{1-(a v)^{2} \sin ^{2} \xi-\varepsilon \sin ^{2} \xi / 2}-i(a \nu) \sin \xi$

so method is only frost order now
Araulack to (2) stencil is wider

we can probably find something better with this additional degree of freedom.

Last time: dissipation ह́ dispersion
amplification
factor
(complex)

dissipation: $\rho(\xi) \longleftarrow$ decay rete of different Fourier modes
dispersion: $\alpha(\xi) ~ \leftarrow d i f f e r e n t$ modes travel at different speeds

Today: (1) dispersion of the leapfrog scheme
(2) aliasing in the grid based farer transform
(3) group velvety and wave packets.
recap: if we start with a sequmer u_{j}^{0} and run th scheme $u^{n+1}=B u^{n}$, the Founder transform $\hat{u}^{n}(\xi)$ evolus via $\hat{u}^{n+1}(\xi)=G(\xi) \hat{u}^{n}(\xi)$ and we can interpret the inversion formula

$$
u_{j}^{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i j \xi} \hat{u}^{n}(\xi) d \xi=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\left(\xi(\xi)^{n} e^{i, j}\right] \hat{u}^{0}(\xi) d \xi\right.
$$

as a superposition of travelling Founder modes on the mesh. Note that an initial condition of the form $u_{j}^{0}=e^{i j \xi}$ with ξ frozen advances under th scheme $u^{n+1}=B u^{n}$ via $u_{j}^{n}=G(\xi)^{n} e^{i j \xi}$
it advances under th PDE $u_{t}=-a u_{x}$ via $u_{j}^{n}=e^{i \frac{x_{j}-a t_{n}}{h} \xi}=\left(e^{\left.-i a \frac{k}{n}\right)^{n}}\right)^{i j \xi}$ so we want to know how clone $G(\xi)=\rho e^{-\alpha \nu \xi}$ is to $e^{-i a \nu \xi}$.

Leapfrog: $u_{t}=-a u_{x} \quad u_{j}^{n+1}=-a v\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+u_{j}^{n-1}$

$$
\begin{aligned}
& \hat{u}^{n+1}=G_{1}(\xi) \hat{u}^{n}(\xi)+G_{2}(\xi) \hat{u}^{n-1}(\xi) \\
& G_{1}(\xi)=-2 i a v \sin \xi, \quad G_{2}(\xi)=1
\end{aligned}
$$

general solution: $\hat{u}^{n}(\xi)=c_{1}(\xi) r_{1}(\xi)^{n}+c_{2}(\xi) r_{2}(\xi)^{n}$

$$
\begin{aligned}
r_{2} \leftrightarrows r_{1} & r_{1}
\end{aligned}=\sqrt{1-(a \nu)^{2} \sin ^{2} \xi}-i(a \nu) \sin \xi \quad<r_{1,2}=\frac{G_{1}+\sqrt{G_{1}^{2}+4 G_{2}}}{2}
$$

we can interpret the cages $C_{1}(\xi)=1, C_{2}(\xi)=0$ and $C_{1}(\xi)=0, C_{2}(\xi)=1$ as. travelling wave solutions

$$
u_{j}^{n}=r_{1}(\xi)^{n} e^{i \xi \xi}, x_{j}^{n}=r_{2}(\xi)^{n} e^{i j \xi}
$$

We again want to know how these compare to the exact sorn $\left(e^{-i a \nu \xi}\right)^{n} e^{i j \xi}$

$$
r_{1}(\xi)=\rho_{1} e^{-i \alpha_{1} \nu \xi}, r_{2}(\xi)=-\rho_{2} e^{\frac{i}{i \alpha} \nu \xi} r_{2}^{0},
$$

$\rho_{1}=\rho_{2}=1 \leftarrow$ leapfrog is strictly non-disipative (no mode is danged)

$$
\frac{\alpha_{1}}{a}=\frac{\alpha_{2}}{a}=\frac{1}{a v \xi} \arctan \left(\frac{a v \sin \xi}{\sqrt{1-(a v)^{2} \sin ^{2} \xi}}\right)=1-\frac{1-(a v)^{2}}{6} \xi^{2}+0\left(\xi^{4}\right)
$$

α_{1} is the same (through ind order) as Lax-wendroff, but α_{2} is oscillating and travelling in the wrong direction. (parasitic)

$$
r_{2}(\xi)=-\frac{\rho_{2} e^{+i \alpha_{2} \nu \xi}}{}
$$ oscillating

aliasing: suppose $u(x)$ is a smooth function decam rapidly \downarrow to zero as $x \rightarrow \pm \infty$, and let $v_{j}=u\left(x_{j}\right)=u(j h)$.

Let's modify our grid bared fourier transform a little:

$$
\hat{v}(\xi)=h \sum_{j} e^{-i j \xi_{j}} \quad(h \text { is newly added })
$$

Poison summation formula:

$$
\begin{aligned}
& h \sum_{j} e^{-i j \xi} u(j h)=\sum_{n} \hat{u}\left(\frac{\xi+2 \pi n}{h}\right) \\
& \hat{u}(k)=\int_{-\infty}^{\infty} e^{-i k x} u(x) d x \quad \text { e } k \text { is a wave number here, }
\end{aligned}
$$

So $\hat{v}(\xi)=\hat{u}\left(\frac{\xi}{h}\right)+\sum_{n \neq 0} \hat{u}\left(\frac{\xi+2 \pi n}{h}\right)$

The values of \hat{n} outside th interval $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$ get mapped back into this interval, when the integral Λ is replaced by a discrete sum. (they ace. alazesed) in the found transform

$$
\begin{array}{r}
\hat{u}(k)=\int_{-\infty}^{\infty} e^{-i h x} u(x) d x, \quad \hat{v}(\xi)=\sum_{j=-\infty}^{\infty} e^{-i j \xi} u\left(x_{j}\right) h \\
\quad j \xi=\frac{x_{j}}{h} \xi=x_{j} \frac{\xi}{h}=x_{j} k
\end{array}
$$

so if h is small enough that $\hat{u}(k)$ is negligible for $|k| \geq \pi / h$, then $\hat{v}(\xi) \approx \hat{u}(k / h)$ to high accuracy. example: $u(x)=e^{-x^{2} / 2 \sigma^{2}}, \hat{u}(k)=\sqrt{2 \pi} \sigma e^{-\frac{k^{2} \sigma^{2}}{2}}$

say $h=\frac{\sigma}{2}$

$$
\hat{v}(\xi)=\hat{u}\left(\frac{\xi}{h}\right)+\sum_{n \neq 0} \hat{u}\left(\frac{\xi+2 \pi n}{h}\right)
$$

When $k=\pi / h, \quad \frac{k^{2} \cdot \sigma^{2}}{2}=\frac{\pi^{2} \sigma^{2}}{2 h^{2}}=2 \pi^{2}=-19.7$

$$
\exp \left(-\frac{k^{2} \sigma^{2}}{2}\right)=2.7 \times 10^{-9}
$$

so this sum is ting and $\hat{v} \approx \hat{u}$
example: $u(x)=e^{i k_{0} x} \phi(x), \quad \phi(x)=e^{-x^{2} / 2 \sigma^{2}}$
wave packet:

$$
\hat{u}(k)=\hat{\phi}\left(k-k_{0}\right)
$$

choose $h \leq \frac{\pi}{2 k_{0}}$ (only 4 grid points per wave length)
gawsian centred at k_{0}
assume $v \geq 4 h$ so $\sigma^{-1} \leq \frac{1}{4 h}=\left(\frac{1}{2 \pi}\right) \frac{\pi}{2 h}$
Then $\hat{u}(k)$ looks like $\frac{1}{-\pi / h}$

The distance for k_{0} to $\pm \frac{\pi}{h}$ is $\geq \frac{\pi}{2 h} \geq 2 \pi \sigma^{-1}$
\therefore boundary where alriang keels in is more than 6 stander deviations away. $\therefore \hat{v}(\xi) \approx \hat{u}(\xi / h)$
summary: you doint hove to sample a ware packet very closely for the discrete fore tranfure $\hat{v}(\xi)$ to accurately approximate th continues F.T. $\hat{\mu}(\xi / h)$.
group velocity: so what will our schemes do to a wave packet?

Equation: $u_{t}=-a u_{x}$
initudionditin: $u(x, 0)=e^{i k_{0} x} \phi(x), \quad \phi(x)=e^{-x^{2} / 2 \sigma^{2}}$
exact solution: $u(x, t)=e^{i k_{0}(x-a t)} \phi(x-a t)$
numerical solutim: $u_{j}^{n} \approx p\left(\xi_{0}\right)^{n} e^{i k_{0}(x_{j}-\underbrace{\alpha\left(\xi_{0}\right)}_{\uparrow} t_{n})} \phi(x-\underbrace{\gamma\left(\xi_{0}\right)}_{\uparrow} t_{n})$
$\xi_{0}=k_{0} h$
$\begin{gathered}\text { phase } \\ \text { velocity }\end{gathered}$
group
velocity
what is γ and why is it not equal to α ?

$$
\begin{aligned}
u_{j}^{n} & =\frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi}\left(\rho e^{-i \alpha y \xi}\right)^{n} e^{i, \xi} \hat{u}^{0}(\xi) d \xi
\end{aligned} \begin{gathered}
\left.e^{\hat{u}} \begin{array}{c}
\text { is the gad } \\
\text { based } F T \text {. here } \\
\text { (stopped using } \\
\hat{v} \text { for this }
\end{array}\right)
\end{gathered}
$$

phase velocity: $\frac{\omega}{k}=\alpha$
group velocity: $\frac{d \omega}{d \hbar}=\frac{d \xi}{d \hbar} \frac{d \omega}{d \xi}=h \cdot h^{-1} \frac{d}{d \xi}(\alpha \xi)=\frac{d}{d \xi}(\alpha \xi)=\gamma$

So now let's imagim that $\hat{u}^{0}(\xi)$ is narrowly peaked near koh (i.e. σ is large comped to h):

$$
\text { Them } \hat{u}^{0}(\xi) \approx \hat{\phi}\left(\frac{\xi}{h}-k_{0}\right)
$$

and

$$
k=\frac{Y}{h}-k_{0}
$$

$$
d k=\frac{d 3}{L}
$$

Tut $\hat{\phi}(h) \approx 0$ outside this regions so replace with $\int_{-\infty}^{\infty}$

$$
=p\left(\xi_{0}\right)^{n} e^{i k_{0}\left(x_{j}-\alpha_{0} t_{n}\right)} \phi\left(x_{j}-\gamma_{0} t_{n}\right)
$$

as claimed.

$$
\begin{aligned}
& u_{j}^{n} \equiv \frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} \rho(\xi)^{n} e^{-i\left(\frac{\xi}{h} x_{j}-\alpha(\xi) \frac{\xi}{h} t_{h}\right) \hat{u}^{0}(\xi) d \xi} \text { in region where } \hat{u}^{0}(\xi) \text { is nonzero: } \\
& \xi_{0}=k_{0} h, \rho(\xi) \approx \rho\left(\xi_{0}\right), \alpha(\xi) \xi \approx \alpha_{0} \xi_{0}+\gamma_{0}\left(\xi-\xi_{0}\right) \\
& \approx \frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} \int_{\text {ind } h_{p} \text { of } \xi}^{\rho\left(\xi_{0} e^{n} i \frac{\xi_{0}}{h}\left(x_{j}-\alpha_{0} t_{n}\right)\right.} e^{i\left(\frac{\xi-\xi_{0}}{h}\right)\left(x_{j}-\gamma_{0} t_{n}\right)} \hat{\phi}\left(\frac{\xi}{h}-k_{0}\right) d \xi \\
& =\rho\left(\xi_{0}\right)^{n} e^{i k_{0}\left(x_{j}-\alpha_{0} t_{n}\right)} \frac{1}{2 \pi} \int_{-\frac{\pi}{h}-k_{0}}^{\frac{\pi}{h}-k_{0}} e^{i k\left(x_{j}-\gamma_{0} t_{n}\right)} \hat{\phi}(k) d k
\end{aligned}
$$

Lee 20 , math 228 B
group velocity and wave packets

$$
\hat{\phi}(k)=\sqrt{2 \pi} \sigma e^{-\frac{k^{2} \sigma^{2}}{2}}
$$

$$
\left.u_{t}=-a u_{x}, u(x, 0)=e^{\left(k_{0} x\right.} \phi(x)\right) \quad \phi(x)=e^{-x^{2} / 2 \sigma^{2}}
$$

exact solution: $u(x, t)=e^{i k_{0}(x-a t)} \phi(x-a t)$
numencal jo ln: $v_{j}^{n}=\rho\left(\xi_{0}\right)^{n} e^{i k_{0}\left(x_{j}-\alpha\left(\xi_{0}\right) t_{n}\right)} \phi\left(x_{j}-\gamma\left(\xi_{0}\right) t_{n}\right)$
scheme: $v_{j}^{0}=u\left(x_{j}, 0\right) \leftarrow$ sample initial condition on grid
$v^{n+1}=B v^{n} \leftarrow$ apply finite difference scheme

$$
\begin{aligned}
& \hat{v}^{n}(\xi)=h \sum_{j} e^{-i j} v_{j}^{n}, \hat{u}(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d x \\
& \hat{v}^{0}(\xi)=h \sum_{j} e^{-i j \xi} u(j h, 0)=\hat{u}\left(\frac{\xi}{h}, 0\right)+\sum_{n \neq 0} \hat{u}\left(\frac{\xi+2 \pi n}{h}\right)
\end{aligned}
$$

$$
\therefore \hat{v}^{0}(\xi) \approx \hat{\phi}\left(\frac{\xi}{h}-k_{0}\right)
$$

our Founder analysis tells us
e.g. if $h k_{0} \leq \frac{\pi}{2}$ then

$$
\begin{aligned}
& h<\frac{\sigma}{4} \Rightarrow\left(\sum_{n \neq 0} \cdots\right) \leq \sigma e^{-18} \\
& h<\frac{\sigma}{6} \Rightarrow\left(\sum \cdots\right) \leq \sigma e^{-43}
\end{aligned}
$$

$$
\begin{aligned}
& v_{j}^{n}=\frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi}\left(\rho e^{-i \alpha \nu \xi}\right)^{n} e^{i j \xi} \hat{v}^{0}(\xi) d \xi \quad G(\xi)=\rho e^{-i \alpha \nu \xi} \\
&=\frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} \rho^{n} e^{i\left(\frac{\xi}{h} x_{j}-\alpha \frac{\xi}{h} t_{n}\right)} \hat{u}^{0}(\xi) d \xi \\
& \prod_{k=\xi / h}^{\omega=\alpha^{\xi} / h}
\end{aligned}
$$

phase velocity $\alpha=\frac{\omega}{k} \quad$ group velocity: $\quad \gamma=\frac{d \omega}{d k}=\frac{d}{d \xi}(\xi \alpha(\xi))$
so now let's imagine that $\hat{v}^{0}(\xi)$ is narrowly peaked near $\xi_{0}=h k_{0}$ (1.e. $h \sigma^{-1}<\frac{\pi}{2}$)

weill approximate $\left[\begin{array}{l}\rho(\xi) \approx p\left(\xi_{0}\right)=\rho_{0} \\ \alpha(\xi) \xi \approx \alpha_{0} \xi_{0}+\gamma_{0}\left(\xi-\xi_{0}\right)\end{array}\right] \begin{gathered}\text { in the region where } \\ \hat{u}^{0}(\xi) \text { is significant }\end{gathered}$

So

$$
\begin{aligned}
& v_{j}^{n}=\frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} \rho(\xi)^{n} e^{i\left(\frac{\xi}{h} x_{j}-\alpha(\xi) \frac{\xi}{h} t_{n}\right)} \hat{v}^{0}(\xi) d \xi \\
& \approx \frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} \underbrace{e}_{\text {indp-of } \xi\left(\xi_{0}\right)^{n} e^{i \frac{\xi_{0}}{h}\left(x_{j}-\alpha_{0} t_{n}\right)}} e^{\left.\frac{i\left(\xi-\xi_{0}\right)\left(x_{j}-\gamma_{0} t_{n}\right)}{h}\right)} \hat{\phi\left(\frac{\xi}{h}-k_{0}\right) d \xi} \begin{array}{l}
h=\frac{\xi}{h}-k_{0} \\
d k=h^{-1} d \xi
\end{array} \\
& =\rho\left(\xi_{0}\right)^{n} e^{i k_{0}\left(x_{j}-\alpha_{0} t_{n}\right)} \frac{1}{2 \pi} \int_{-\frac{\pi}{h}-k_{0}}^{\frac{\pi}{h}-k_{0}} e^{i k\left(x_{j}-\gamma_{0} t_{n}\right)} \hat{\phi}(k) d k
\end{aligned}
$$

but $\hat{\phi}(k) \approx 0$ outside this region someplace with $\int_{-\infty}^{\infty} \cdots$

$$
\left.v_{j}^{n}=\underbrace{\rho\left(\xi_{0}\right)^{n}}_{\begin{array}{c}
\text { numerical } \\
\text { dissipation }
\end{array}} e_{\begin{array}{c}
\text { carrier signal } \\
\text { travels at } \\
\text { phase velocity }
\end{array}}^{i k_{0}\left(x_{j}-\alpha_{0} t_{n}\right)} \phi\left(x_{j}-\gamma_{0} t_{n}\right) \right\rvert\, \begin{gathered}
\text { wave envelope travels } \\
\text { at goop velocity }
\end{gathered}
$$

in practice this is exactly what you see happen.

Stability aralysis for PDE'; with folutions that grow $\left(\begin{array}{c}\text { cant expect } \\ \text { 1B1|s } 1 \text { since } \\ \text { solutuon grocs }\end{array}\right)$ solition grous) examph: $u_{t}=-u_{x}+u \quad$ exact solin: $u(x, t)=e^{t} g(x-t)$ schem: Let', look for jomething like Lax-Wendropf

$$
\begin{aligned}
& u(x, t+k)=u(x, t)+k u_{t}(x, t)+\frac{k^{2}}{2} u_{t+}(x, t)+\cdots \\
& u_{t}=-u_{x}+u \\
& u_{t t}=-u_{x t}+u_{t}=u_{x x}-u_{x}-u_{x}+u=u_{x x}-z u_{x}+u \\
& u_{j}^{n+1}=u_{j}^{n}+k\left[-\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 k}+u_{j}^{n}\right]+\frac{k^{2}}{2}\left[\frac{u_{j+1}-2 u_{j}^{n}+u_{j-1}^{n}}{h^{2}}+u_{j}^{n}\right] \\
& =u_{j}^{n}-v \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2}+\frac{\nu^{2}}{2}\left(u_{j+1}^{n}-2 u_{j}+u_{j-1}^{n}\right) \leftarrow \stackrel{L . w .}{f_{0} r} \\
& +k\left[\left(1+\frac{k}{2}\right) u_{j}^{n}-v \frac{u_{j}^{n}+1-u_{p}^{n}-1}{2}\right] \\
& G(\xi)=\left(1-2 \nu^{2} \sin ^{2} \xi / 2-i \nu \sin \xi\right)+k\left[\left(1+\frac{k}{2}\right)-i \nu \sin \xi\right] \\
& |G(\xi)| \leq \sqrt{1-4 \nu^{2}\left(1-\nu^{2}\right) \sin ^{4} \xi / 2}+k \sqrt{\left(1+\frac{k}{2}\right)^{2}+\nu^{2} \sin ^{2} \xi} \\
& \|B\|_{2}=\|G\|_{\infty} \leq 1+2 k \quad \text { assuming } \nu \leq 1 \text { and } k \leq 1 \\
& \left\|B^{n}\right\| \leq\|B\|^{n} \leq(1+2 k)^{n} \leq\left(e^{2 k}\right)^{n}=e^{2 k n} \leq e^{2 T}
\end{aligned}
$$

\therefore schem is stable. (numercal solution $u^{n}=B^{n} u^{0}$ grows experentially in time, but that's OK. Tha twice soluthor does, tooBadscheines gow exponatially in n withant a k to balance it,

Fourier collocation / psendo-spectral methods the amplification factors of D_{x}^{0} and $D_{x}^{+} D_{x}^{-}$are

$$
\frac{e^{i \xi}-e^{i \xi}}{2 h}=\left(h^{-1} \sin \xi \text { and } \frac{e^{i \xi}-2+e^{-i \xi}}{h^{2}}=-4 h^{-2} \sin ^{2} \xi / 2\right.
$$

if we compute $\frac{\partial}{\partial x}$ and $\frac{\partial^{2}}{\partial x^{2}}$ of $e^{i \frac{x}{h} \xi}$, we get

here $D: l^{2} \rightarrow l^{2}$ is given by $D u_{j}=\frac{h^{-1}}{2 \pi} \int_{-\pi}^{\pi} i h^{-1} \xi e^{i \xi} \hat{u}(\xi) d \xi$
where $\hat{u}(\xi)=h \sum_{j=-\infty}^{\infty} e^{-i j \xi} u_{j}$
now let's try the method of liner (discretize spanefint) wing D:

$$
u_{t}=u_{x x} \quad \rightarrow \quad v_{t}=D^{2} v \quad \text { exact } \rightarrow u(x, t)
$$

finally, Let's discretize time using eeg- a Runge-Kutta method

$$
\left.\begin{array}{cc|c}
w_{1}=D^{2}\left(v^{n}\right) & \begin{array}{c}
\text { exploit } \\
\text { midpoint }
\end{array} & \begin{array}{l}
\text { for } y^{\prime}=f(t, y): \\
w_{2}=D^{2}\left(v^{n}+\frac{k}{2} w_{1}\right)
\end{array} \\
k_{1}=f\left(t_{n}, y_{n}\right) \\
v^{n+1}=v^{n}+k w_{2} & \left.\begin{array}{l}
\text { (under order } \\
\text { RK method }
\end{array}\right) & k_{2}=f\left(t_{n}+\frac{k}{2}, y_{n}+\frac{k}{2} k_{1}\right.
\end{array}\right)
$$

If we combine th i stages, we get $v^{n+1}=v^{n}+k D^{2} v^{n}+\frac{h^{2}}{2} D^{4} v^{n}=B v^{n}$
the amplification factor 15: $G(\xi)=1-\frac{k}{h^{2}} \xi^{2}+\frac{k^{2}}{2 h^{4}} \xi^{4}$

$$
=1-\nu \xi^{2}+\frac{\nu^{2}}{2} \xi^{4}
$$

maximum value: $\quad G^{\prime}(\xi)=-2 \nu \xi+2 \nu^{2} \xi^{3}=0 \quad \Rightarrow\left[\begin{array}{l}\xi=0 \\ \xi^{2}=1 / \nu\end{array}\right.$

$$
\|G\|_{\infty}= \begin{cases}1 & \nu \leq \frac{2}{\pi^{2}}=.2026 \quad \text { stable } \\ 1-\nu \pi^{2}+\frac{\nu^{2}}{2} \pi^{4} \quad \nu>\frac{2}{\pi^{2}} \quad \text { « instate }\end{cases}
$$

you can do the same sot of analyses for higher order RK methods. (need eigenvalues of B to lie inside the stability region of the scheme)
wave
Speed proportional
to height of wave
viscous Burger's eqn: $\quad u_{t}+u u_{x}=\varepsilon u_{x x}$
nonlinearity
initial condition: $\quad u(x, t)=\sin x,-\pi \leq x \leq \pi$ pervodu b.e.'s
method of lines: $v_{t}+D\left[\frac{1}{2} v^{2}\right]=\varepsilon D^{2} v$
$\uparrow \uparrow$ evaluate v^{2} on the gad spectral derivative operator (using FFF)
now timestep this using your favorite ODE method, e.g-

$$
\left[\begin{array}{l}
w_{1}=-D\left[\frac{1}{2}\left(v^{n}\right)^{2}\right]+\varepsilon D^{2} v^{n} \\
w_{2}=-D\left[\frac{1}{2}\left(v^{n}+\frac{k}{2} w_{1}\right)^{2}\right]+\varepsilon D^{2}\left(v^{n}+\frac{k}{2} w_{1}\right) \\
v^{n+1}=v^{n}+k w_{2}
\end{array}\right.
$$

expect

$$
\rightarrow \rightarrow-\infty \quad \rightarrow \quad \begin{gathered}
\text { shock } \\
\text { forms: }
\end{gathered}
$$

speed proportioned
to height
($\sum U_{x a}$ doesint kick in get)

then solution decease

$$
\text { (due to } \left.\varepsilon u_{x x}\right)
$$

need h small compared to ε to resolve the calentation

$T=5, N=512$

Spectral integration in matlab (for differentiation, mut. by $i h^{-1} \xi_{k}$ rather then divide) example $n=0 \quad u_{E E}=u_{x x} \quad u_{0}=0 \quad$ Dirichlet conditions
suppose you have computed $\binom{u_{t}}{u_{x}}$ on the grid and now you want to recover $u\left(x_{j}\right)$ from $u_{x}\left(x_{j}\right), \quad x_{j}=(j-1) h$

Known: $u \times(j)=u_{x}((j-1) h) \quad 1 \leq j \leq j+1$ wanted $u(j)=u\left(x_{j}\right)$

Let $N=25$ and extend by even symmetry

$$
u \times(J+1+j)=u \times(J+1-j) \quad 1 \leqslant j \leqslant J-1
$$

Now define wafft(u), i.e.

$$
\begin{aligned}
& w_{k}=\sum_{j=1}^{N} e^{-2 \pi i(j-1)(h-1) / N} u_{j}=\sum_{j=1}^{N} e^{-i j \xi_{k}} u_{j} \quad 1 \leqslant k \leqslant N \\
& \xi_{k}=\frac{2 \pi}{N} \cdot \begin{cases}k-1 & 1 \leq k \leq N / 2 \\
k-1-N & \frac{N}{2} H \leq k \leq N\end{cases} \\
& \text { using } \xi_{h} \text { avoids actually reshuffling the } \\
& \text { components of } W
\end{aligned}
$$

$\begin{aligned} & \text { Nyquist fregury always } \\ & \text { causes trouble... just zero }\end{aligned}$
out that mode.

Now we can integrate the inversion formate $u x=1 \mathrm{fft}(w)$ term y term:

$$
u x\left(x_{j}\right)=\frac{1}{N} \sum_{k=1}^{N} e^{i \frac{x_{i}}{h} \xi_{k}} w_{k} \Rightarrow u\left(x_{j}^{j}\right)=\frac{1}{N} \sum_{h=1}^{N} e^{i j \xi_{h}}\left(\frac{w_{k}}{h^{-1} \xi_{h}}\right)+C
$$

algorithmically, you just hare to set

$$
\tilde{w}_{h}=\frac{h}{i \xi_{h}} \quad 1 \leq h \leq N
$$

and then define $u=1 \mathrm{fft}(\tilde{w})$, Easy...

C chosen so $u(0)=u(1)=0$
in fret, $c=0$ since the even
symmetry of aux gives u odd rymuction when C is omitted
the Finite element method

Poisson equation

$$
\begin{aligned}
-\Delta u & =f \quad \text { on } \Omega \\
u & =0 \quad \text { on } \partial \Omega \leftarrow \text { Drichlet B.C.'s } \\
\left(\Delta=\nabla^{2}\right. & \left.=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=L_{\text {aplacian }}\right)
\end{aligned}
$$

mathematical questuns: do solutions exist?
are they unique?
how nice are thy? (regularity)
computational questions: how can I find an approximate solution?
how close is the ", "o the tree solis?
how fast can I compute the solution?
how much memory does the computer need, etc...
There are several approaches to studying existence, uniqueness and regulenty of elliptic equations. Thy all have numerical counterparts:
(1) fundamental solutions, Green's funding, potential theory $\longrightarrow \underset{\text { bounder. }}{\text { integral }}$ internet
methods
(2) maximum prinesph \quad subharmonic function \sim useful for proving error bounds \rightarrow fixate difference method,
(3) Hilbert space methods \rightarrow finite elements.
idea of $3^{2 r}$ approach $=$ multiply by a test function v and integrate by parts

$$
\int-v \Delta u d x=\int v f d x
$$

divergence theorem: $\quad \int_{\Omega} \nabla \cdot \vec{w} d x=\int_{d \Omega} \vec{w} \cdot \vec{n} d s$
vector identity: $\nabla \cdot(v \nabla u)=\nabla v \cdot \nabla u+v \Delta u$
so $\quad \int-v \Delta u d x=\int_{\Omega} \nabla v \cdot \nabla u d x-\int_{\Omega} \nabla \cdot(v \nabla u) d x$

$$
\begin{aligned}
& =\int_{\Omega} \nabla v \cdot \nabla u d x-\int_{\partial \Omega} v \underbrace{v i n \cdot n)}_{\frac{\partial u}{\partial n}} d s \\
& \text { identity }
\end{aligned}
$$

Green's identity
so if $v=0$ on $\partial \Omega$, the boundgy term is zero and we get

$$
\int \nabla v \cdot \nabla u d x=\int f v d x
$$

We now introduce the sobolev spaces

$$
H(\Omega)=\text { "space of } L^{2} \text { functions with om }
$$

weak derivative in $L^{2} \quad\binom{$ defined }{ later }
$H_{0}^{\prime}(\Omega)=" H^{\prime}$ function that vanish on the boundary"
weal formulation of the Dirichlet problem:
find $x \in H_{0}^{\prime}(\Omega)$ such that for all fest functions $v \in H_{0}^{\prime}(\Omega)$

$$
\int \nabla u \nabla v d x=\int f v d x
$$

The finite element framework parallels the theoretical one.
A conforming $F E$ space is a finite dimensional subspace

$S_{h}=$ continuovers functions $u \in C(\Omega)$ that are precelvis linear on each triangle of a mesh and
example of a non-conforming FE space:
Ω is not
 zero at the boundary nods (and on $\Omega \backslash \Omega_{h}$)
a non-trival piecewise linear function on tho triangle Is ronizes on 2Ω, so doesn't betony to $H_{0}^{\prime}(\Omega)$

Discrete problem:
find $u_{h} \in S_{h}$ st. $\int \nabla u_{h} \cdot \nabla v d x=\int f v d x \quad \forall v \in S_{h}$
Note: the solution space is smaller, but it is now easier to be a solution since the space of test function is also smaller
The theoretical tools that are used to study the weak formulation of the continuous problem carry over directly to the diucetct problem (and provide error estimates)
what are these theoretical pools? $\quad\left[\begin{array}{l}\text { today: high level overview } \\ \text { later details }\end{array}\right.$
(1) The spaces $H^{\prime}(\Omega)$ and $H_{0}^{\prime}(\Omega)$ are $\frac{H_{i b} \text { bert spaces with }}{\pi}$ inner product

$$
(u, v)_{1}=\int_{\Omega} u v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
$$

as always, the norm of a Hilbert space is given by $\|u\|_{1}=\sqrt{(u, u)_{1}}$
warning: the derivatives here are weak derivatives (defined later).
if you comider only differentiable functions, the spaces are not auplute.
Our finite dimensional subspace $S_{h} \subseteq H_{0}^{\prime}(\Omega)$ inherits the inner product from the ambient space. (S_{h} is also a Hilbat space in its own right)
(2) The equation were trying to solve has th stmeture:
find $u \in H$ sit. $a(u, v)=\langle l, v\rangle \quad \forall v \in H$

Here $a(\cdot, \cdot)$ is a bilinew form and $\langle l$,$\rangle 11 a line functional$

$$
\begin{array}{c|c}
a: H \times H \rightarrow \mathbb{R} & l: H \rightarrow \mathbb{R} \\
a(u, \alpha v+\beta w)=\alpha a(u, v)+\beta(u, w) & \langle l, \alpha u+\beta v\rangle=\alpha\langle l, u\rangle+\beta\langle l, v\rangle \\
a(\alpha u+\beta v, w)=\alpha a(u, v)+\beta(v, v) & \uparrow \\
1 & \text { for any } u, v \in H \text { and } \alpha, \beta \in \mathbb{R}
\end{array}
$$

$$
\text { for my } u, v ; \omega \in H \text { and } \alpha, \beta \in \mathbb{R}
$$

in our care, $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x$

$$
\left\langle l,(r\rangle=\int_{\Omega} f_{v} d x\right.
$$

Then's a powerful theorem called the Lax-Milgmen theorem that says that if $a(\cdot$,$) is a coercive, continuous$ betinear form and $\left\langle l_{s}\right\rangle$ is a bounded, linear functional then there "1 a unique solution u satisfying

$$
a(u, v)=\langle\ell, v\rangle \quad \forall v \in H .
$$

coercivity means $\exists \alpha>0 \quad$ s.t. $\quad \alpha\|u\|^{2} \leq a(u, u) \quad \forall u \in H$ continuity means $\exists C<\infty \quad$ s.t. $\quad|a(u, v)| \leq C\|u\| \cdot\|v\| \quad \forall u, v \in H$ (or boundedness)
same idea for linear functionals. I is bounded (or continuous) if

$$
\exists C<\infty \quad \text { sit. } \quad|\langle\ell, v\rangle| \leq C\|v\| \quad \forall v \in H
$$

The smallest chore of C is denoted \|ell (the norm of l)
In our case, $\|u\|_{1}^{2}=\int_{\Omega} u^{2} d x+\int_{\Omega}|\nabla u|^{2} d x$
So it's easy to shaw $|a(u, v)| \leqslant\|u\|_{1} \cdot\|r\|_{1} \leftarrow C=1$ works and $\quad\left|\left\langle l_{j} v\right\rangle\right| \leqslant\|f\|_{0} \cdot\|v\|_{1}$ for a

$$
\sqrt{\int_{\Omega} f^{2} d x} \leftarrow \text { upper bound for lyell }
$$

coercivity is harder to pore, 1.e. that $\exists \alpha>0$ s.t.

$$
\alpha\|u\|_{1}^{2} \leq a(u, u) \quad \forall u \in H_{0}^{\prime}(\Omega)
$$

(proof is based on the Poincare - Fredrick inequathy... discussed week)
summary: the Lax-Milgrin thewere gives us enstunce and uniqueness of the continuous and discrete systems:

$$
\begin{array}{ll}
a(u, v)=\langle l, v\rangle & \forall v \in H_{0}^{\prime}(\Omega) \\
a\left(u_{h}, v\right)=\langle l, v\rangle & \forall v \in S_{h}
\end{array}
$$

(3) we now want to estimate the error, $\left\|u_{h}-u\right\|_{1}$
from (*), we have

$$
a\left(u-u_{h}, v\right)=0 \quad \forall v \in S_{h}
$$

Galerkin orthogonality (closest solution in the a-norm

$$
\left.\|u\|_{a}=\sqrt{a(u, u)}\right)
$$

using coercivity, we have

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{1}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}+v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right)+\underbrace{a\left(u-u_{h} v_{h}-u_{h}\right)}_{0 \text { since } v_{h}-u_{h} \in S_{h}} \\
& \sum C\left\|u-u_{h}\right\|-\left\|u-v_{h}\right\|
\end{aligned}
$$

$\therefore\left\|u-u_{h}\right\|_{1} \leqslant \frac{c}{2}\left\|u-v_{h}\right\|$ for ever $\left.v_{h} \in s_{L}\right) \leftarrow$ Lea's lemma
this reduces the erro-analyss to determining how well the true sola can be approximated by any function in the $F E$ space.
(4) Now we look for other function in S_{i} that we can gramenter are clos to u, namely $v_{h}=I_{h} u$

By cea: $\left\|u-u_{h}\right\|_{1} \leq \frac{\leq}{2}\left\|u-I_{h} u\right\|_{1}$
\qquad
we wII see that there is a constant C_{2} depending on the mesh quality K
interpolation operator. Evaluate the exact solution
at the nodes and interpolate on the elements

Sobolev space of
here $|u|_{z, L}{ }^{2} \int_{\Omega} u_{x x}^{2}+u_{x y}^{2}+u_{y y}^{2} d x$ square inteymill function with two weak derivatives
finally, there's a theorem (the elliptic regularity theorem) that says that if Ω is convex, there is a constant C_{3} st. the solution of the Dinchlet problem $\left[\begin{array}{ccc}-\Delta u=f & m \Omega \\ n=0 & \text { on } \partial \Omega\end{array}\right]$

$$
\begin{aligned}
& \|u\|_{2}^{2} \\
& =\| u u_{0}^{2} \\
& +\left\{u 1^{2}+\mid u i^{2}\right)
\end{aligned} \rightarrow\|x\|_{2} \leq c_{3}\|f\|_{0} \quad \text { final error estimate: } \quad\left\|u-u_{h}\right\|_{1} \leq \frac{C c_{2} c_{3}}{\alpha} h\|f\|_{0}
$$

Sobolev spaces
Let $1 \leq p<\infty$, define $L(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: \int|f(x)|^{p} d x<\infty\right\}$ function which we equal ca. are idintipted (we dost dutrynish between $f \& g$ if $\int_{\Omega}(f-g) d x=0$)
most Common (ave): $p=1,2, \infty$

$$
L^{\infty}=\left\{f: \Omega \rightarrow \mathbb{R}: \sup _{x \in \Omega}|f(x)|<\infty\right\}
$$

The norms on the L^{P} spans are:

$$
\begin{aligned}
& \|f\|_{p}^{p}(\Omega)=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{1 / p} \quad 1 \leq p<\infty \\
& \|f\|_{\infty}=\sup _{x}|f(x)|
\end{aligned}
$$

The spare $\left({ }^{2}(\Omega)\right.$ is special. Notanly is it a Banach space, it's ats or Hilbert spare with th inner product

$$
\begin{aligned}
(f, g) & =\int_{\Omega} f(x) g(x) d x \quad \\
\|f\| & \left.=\sqrt{(f, f)} \quad \begin{array}{c}
\text { or } \int f(x) \overline{g(x)} d x \\
\text { if comply valued } \\
\text { fens are conndend }
\end{array}\right)
\end{aligned}
$$

we will write $\|f\|_{0}$ to mean $\|f\|_{L^{2}}(\Omega)$
and $(f, g)_{0}$ to mean $\int_{\Omega} f g d x$

A Hilbert space is a complete inner product space.
completeness is the reason for studying weak derivatives.
for example, we can endow
$C^{\prime}(I), I^{2}(-1,1)$ with the inner product

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x+\int_{-1}^{1} f^{\prime}(x) g^{\prime}(x) d x
$$

but the sequence $f_{n}(x)=\sqrt{x^{2}+1 / n^{2}}$ is a cauchy sequence which doesint converge to an fruition $f \in C^{\prime}(I)$. (it converges to $f(x)=|x|$ chichis not differentiable at $x=0$)

$\left\{f_{n}\right\}$ is Cauchy:

$$
\left\|f_{n}-f_{m}\right\| \leq\left\|f_{n}-f\right\|+\left\|f_{m}-f\right\| \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

since $\left\|f_{n}-f\right\|^{2}=\int_{-1}^{1}\left(f_{n}(x)-f(x)\right)^{2} d x+\int_{-1}^{1}\left(f_{n}^{\prime}(x)-f^{\prime}(x)\right)^{2} d x \rightarrow 0$
as $n \rightarrow \infty$ by dominated convergence theorem.
weak derivatives
dif: $C_{c}^{\infty}(\Omega)=\{\phi: \Omega \rightarrow \mathbb{R}: \phi$ is smoth $(\infty$-differenticlu) $\}$ ϕ has compent inpport

$$
\begin{aligned}
& \text { spt } \phi=\{x: \phi(x) \neq 0\}<\text { closure in } \Omega \\
& =\left\{x \in \Omega: \exists \text { sequence } x_{n} \rightarrow x \quad \text { s.t. } \Lambda \phi\left(x_{n}\right) \neq 0\right\}
\end{aligned}
$$

spt ϕ is compent if it is clored and bounded.
as a subsetot \mathbb{R}^{n}
motivation: suppore $u \in c^{\prime}(\Omega)$ and $\phi \in c_{c}^{\infty}(\Omega)$

$$
\operatorname{div}\left(\begin{array}{c}
0 \\
u_{i p} \\
0
\end{array}\right)<\prec^{i t h s l o t}=\left(\partial_{i} u\right) \phi+u \partial_{i} \phi \quad \partial_{i}=\frac{\partial}{\partial x_{i}}
$$

so $\quad \int_{\Omega}\left(\partial_{i} u\right) \phi+u \partial_{i} \phi d x=\int_{\Omega} \operatorname{div}\left(\begin{array}{l}0 \\ u_{0}^{0} \\ i\end{array}\right) d x=\int_{\partial_{\Omega}}\binom{u_{0}^{0} \theta_{0}}{0} \cdot n d A=0$ div.
thim

$$
\therefore \int_{\Omega} u \partial_{i} \phi d x=-\int_{\Omega}\left(\partial_{i} n\right) \phi d x \quad(i=1, \ldots, n)
$$

$$
\begin{gathered}
\phi=0 \mathrm{on} \\
\partial \Omega
\end{gathered}
$$

integration by prito furmula

Conclusun: Let $\Omega \subseteq \mathbb{R}^{n}$ be ope and connected.
if $u \in C^{\prime}(\Omega)$ and $\phi \in C_{c}^{\infty}(\Omega)$ the

$$
\int_{\Omega} u d_{i} \phi d x=-\int_{\Omega}\left(\partial_{i} u\right) \phi d x \quad(i=1, \ldots, n)
$$

mon generally, if $u \in C^{k}(\Omega)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the

$$
\int_{\Omega} n \partial^{\alpha} \phi d x=(-1)^{|\alpha|} \int_{\Omega}\left(\partial^{\alpha} u\right) \phi d x
$$

Here each α_{1} is an int age $\geqslant 0$ and

$$
\partial^{\alpha} u=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} u
$$

further notation: $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$
for $x \in \mathbb{R}^{n}$ we writ $x^{a^{2}}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$

$$
\alpha!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!
$$

$\alpha \leqslant \beta$ means $a_{1} \leqslant \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \quad$ how many ways p ball in k balls ."n
the number of multr-indices of order k is

$$
\#\{\alpha:|\alpha|=k\}=\binom{n-1+k}{n-1}=\frac{(n-1+k)!}{(n-1)!k!}
$$

example: choosing 2 from 6 leaves 4 objet partitioned into 3 groups:

$$
\begin{aligned}
n=3, h=4 & \bullet 0 \cdot \omega\left(0, \leftrightarrow \alpha=(1,3,1), \partial^{\alpha}=\partial_{1} \partial_{2}^{2} \partial_{3}\right. \\
& 0 \cdot 0 \cdot \cdots \leftrightarrow \alpha=(0,1,3), \partial^{\alpha}=\partial_{2} \partial_{3}^{3}
\end{aligned}
$$

def: Suppose $u, v \in L^{2}(\Omega)$ and α is a multi-indox. We say v is the oath partial derivation of $n\left(v=\partial^{\alpha} u\right)$ provided that

$$
\int_{\Omega} u \partial^{\alpha} \phi d x=(-1)^{|\alpha|} \int_{\Omega} v \phi d x
$$

for all test functions $\phi \in C_{c}^{\infty}(\Omega)$. Note: this is the definition of $\partial^{\alpha} u$.
we just saw that contassical dervantios are weal denvatives.
The: weak derivatives are unique.
pf: $\operatorname{sp} v=\partial^{\alpha} u$ and $v=\partial^{\alpha} u$.
Then $(-1)^{|\alpha|} \int_{\Omega} v \phi d x=\int u \partial^{\alpha} \phi d \lambda=(-1)^{|\alpha|} \int_{\Omega} \approx \phi d x$
i.e. $\quad \int_{\Omega}(v-\tilde{v}) \phi d x=0 \quad \forall \phi \in C_{c}^{\infty}(\Omega)$

$$
\therefore r=\tilde{v} \text { are. } \quad \text { K(see eng. Evans, PDE } \begin{aligned}
& \text { Lieb \& Loss, Analysis })
\end{aligned}
$$

Rh: The definition only really requires

$$
u, v \in L_{l_{0} c}^{\prime}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}: \int_{k}|u(x)| d x<\infty \quad \forall c p t k \subset \Omega\right\}
$$

but we will orb ever need the L^{2} theory of weal derivatives.

Sobolev spaces: $H^{m}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \left\lvert\, \begin{array}{cc}\forall \alpha \text { with }|\alpha| \leq m, \\ \partial^{\alpha} u \text { exists weakly } \\ \text { and belongs to } L^{2}(\Omega)\end{array}\right.\right\}$ scalar product

$$
\begin{array}{ll}
(u, v)_{m}=\sum_{|\alpha| \leq m}\left(\partial^{\alpha} u, \partial^{\alpha} v\right)_{0} \Longleftarrow & t^{2} \text { inner padmet } \\
& \left(H^{0}=L^{2}\right) \\
& (f, g)_{0}=\int_{\Omega} f g d x
\end{array}
$$

norm:

$$
\|u\|_{m}=\sqrt{(u, u)_{m}}=\sqrt{\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{0}^{2}}
$$

Sem'-norm:

$$
|u|_{m}=\sqrt{\sum_{|\alpha|=m}\left\|\partial^{\alpha} u\right\|_{0}^{2}}
$$

a semnorm on a vector space X
is a mapping $x \rightarrow\|x\|$
form X to $[0, \infty)$ rit.

$$
\|x+y\| \leq\|x\|+\|y\|
$$

$$
\|\lambda \times\|=|\lambda|\|x\|
$$

A nom is a semi nom it.

$$
\|x\|=0 \text { if } x=0
$$

important cases:

$$
\begin{aligned}
& (u, v)_{0}=\int_{\Omega} u v d x \\
& (u, v)_{1}=\int_{\Omega} u v d x+\int_{\Omega} \nabla u \cdot \nabla v d x
\end{aligned}
$$

note that $\begin{aligned} \sum_{|\alpha|=1}\left(\partial^{\alpha} u, \partial^{\alpha} v\right)_{0} & =\left(\partial_{1} u\right)\left(\partial_{1} v\right)+\cdots+\left(\partial_{n} u\right)\left(\partial_{n} v\right) \\ & =\nabla u \cdot \nabla v\end{aligned}$

$$
=\nabla u \cdot \nabla v
$$

$$
\begin{array}{r}
(u, v)_{2}=(u, v)_{1}+\int_{\Omega} \text { lowtri }\left(D^{2} u\right): \text { lowtri }\left(D^{2} v\right) d x \\
\text { A Hessian matrix }\left(D^{2} u\right)_{i j}=\partial_{i} j_{j} u \\
1 \leq i, j \leq n \\
\text { lowtri }(A)=\left(\begin{array}{ccc}
A_{11} & 0 & \therefore \\
A_{21} & A_{21} & \vdots \\
A_{n 1} & A_{n 2}^{0} \cdots A_{n n}
\end{array}\right) \quad A: B=\sum_{i, j} A_{i j} B_{i 1}
\end{array}
$$

$228 B$ Sec 23
Last time: weak derivatives, definition of Sobolev spares
Today: finish discussing soblevepaces,
prove Poincare -Friedrich regequility (ceercivit, of $a(v, r)=\int_{\Omega} \nabla u \cdot \nabla r d x$)
recap: \qquad non-negative integer
weak derivatives: Suppose $u, v \in L^{2}(\Omega)$ and α is a multi-index. we say v is the oath partial derivative of $u\left(v=\partial^{\alpha} u\right)$ provided that

$$
\int_{\Omega} u \partial^{\alpha} \phi d x=(-1)^{|\alpha|} \int_{\Omega} v \phi d x
$$

for alt test functions $\phi \in C_{c}^{\infty}(\Omega)$. Note this is the definition of $\partial^{\alpha} u$.

Sobolev spaces: $\quad H^{m}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \quad \forall \alpha\right.$ with $|\alpha| \leq m ~\left(\partial^{\alpha} u\right.$ exists weakly $\}$ and belongs to $L^{2}(\Omega)$

Scalar product: $(u, v)_{m}{ }^{2} \sum_{|\alpha| \leq m}\left(\partial^{\alpha} u, \partial^{\alpha} v\right)_{0<-L^{2}}\left(H^{0} z^{2} L^{2}\right)$

$$
(f, g)_{0}=\int_{\Omega} f_{g} d x
$$

norm: $\|u\|_{m}=\sqrt{(u, u)_{m}}=\sqrt{\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{0}^{2}}$
seminorm properteris
Seminorm: $|u|_{m}=\sqrt{|\alpha|=m}| | \partial^{\alpha} u \|_{0}^{2}$ Impuctunt cases

$$
\begin{aligned}
& \text { taunt eases } \\
& (u, v)_{0}=\int_{\Omega} u v d x,(u, v)_{1}=\int_{\Omega} u v d x+\int_{\Omega} \nabla_{u} \cdot v \cdot d x \quad \begin{array}{l}
\text { now } \\
\|x\|=0 \text { above and } x=0
\end{array}
\end{aligned}
$$

note that $\sum_{|\alpha|=1}\left(\partial^{\alpha} u_{1} \partial^{\alpha} v\right)_{0}=\left(\partial_{i} u, \partial_{i} v\right)_{0}+\cdots+\left(\partial_{n} u ; \partial_{n} v\right)_{0}=\int_{\Omega} \nabla_{u} \cdot \nabla_{u} d x$

Remark: In Id, there' already a generalization of derivative beyond $C^{k}(a, b)$

$$
\begin{gathered}
\Omega=(a, b) \\
\text { open interval }
\end{gathered}+\quad a \quad b
$$

Fundamental theorem of Calculus fir Lelesgue integrals:
If $a<b$ and $F:[a, b] \rightarrow \mathbb{R}$, TFAE:
(1) F is absolutely continuous on $[a, b]$
(2) $F(x)-F(a)=\int_{a}^{x} f(t) d t$ for some $f \in L^{\prime}(a, b)$
(3) F is differentiable almost evergwive on $[a, b]$,

$$
F^{\prime} \in L^{\prime}(a, b) \text {, and } F(x)-F(a)=\int_{a}^{x} F^{\prime}(t) d t
$$

Here (1) means that $\forall \varepsilon>0 \quad \exists \delta>0$ sit. if $\left(a_{1}, b_{1}\right), \ldots,\left(a_{N}, b_{N}\right)$ is any disjoint collection of intervals in $[a, b]$ with $\sum_{1}^{N}\left(b_{i}-a_{i}\right)<\delta$ then $\sum_{1}^{N}\left|F\left(b_{i}\right)-F\left(a_{i}\right)\right|<\varepsilon$
proof of theorem: see Folland's book on Real Analysis
Lemma: if F, G are abs. cont. on $[a, b]$ then so is $F G$ and

$$
\int_{a}^{1}\left(F G^{\prime}+F^{\prime} G\right) d x=F\left(\left.T\right|_{a} ^{b}\right.
$$

Theorem: $u \in H^{\prime}(a, b)$ if $(u$ is equal ace to an absolutely continuous function on $[a, b]$, and

$$
\left.u^{\prime} \in l^{2}(a, b)\right)
$$

proof: SkIP!
\Leftrightarrow Let $\phi \in c_{c}^{\infty}(a, b)$, Since u and ϕ are als.cant,, the lemme gives

$$
\int_{a}^{b} u \phi^{\prime} d x=\underbrace{\left.u \phi\right|_{a} ^{b}}_{0}-\int_{a}^{b} u^{\prime} \phi d x
$$

So u^{\prime} (defined ave. as $\lim _{h \rightarrow 0} \frac{u(x+h)-n(x)}{h}$) is a weak duration of u. Since $u, u^{\prime} \in L^{2}, u \in H^{\prime}$.
\Rightarrow Given $u, v \in L^{2}(a, b)$ sit. $\int_{a}^{b} u \phi^{\prime} d p=-\int_{a}^{b} v \phi d x$ define $\tilde{u}(x)=\int_{a}^{x} v(t) d t$.

Then \tilde{u} is abs. cont. and $\tilde{u}^{\prime}=v$ a.e. and hence weakly by above.

$$
\therefore \quad \int(u-\tilde{u}) \phi^{\prime} d x=0 \quad \forall \phi \in C_{c}^{\infty}(a, b) .
$$

Choose an $\Phi_{0} \in c_{c}^{\infty}(a, b)$ with $\int_{a}^{b} \phi_{0}(x) d x=1$
For an $\phi \in C_{c}^{\infty}(a, b)$ we have

$$
\phi(x)=\underbrace{\phi(x)-\alpha \phi_{0}(x)}+\alpha \phi_{0}(x) \quad \alpha=\int_{a}^{b} \phi(x) d x
$$

has mean zero hence equals $\psi^{\prime}(x)$ for $\psi(x)=\int_{a}^{x} \phi(t)-\alpha \phi_{0}(t) d t$

$$
\begin{aligned}
& \therefore \int(u-\tilde{u}) \phi d x=\int(u-\tilde{u}) \alpha \phi_{0}(x) d x=\alpha c=c \int_{a}^{b} \phi(x) d x \in c_{c}^{\infty}(a, b) \\
& \therefore \int(u-\tilde{u}-c) \phi d x=0 \quad \forall \phi . \quad \therefore u=\tilde{u}+c \text { a.e. } \\
& \therefore u 11 \text { abs cuT. }
\end{aligned}
$$

In 2-d there are unbodd fom m H^{\prime}.

Claim $u(x, y)=\log \log \frac{2}{r}$ belons to $H^{\prime}(\Omega), \Omega=\left\{x^{2}+y^{2} 21\right\}$ unit disk
$p f^{-} \quad r=\sqrt{x^{2}-y^{2}}, \quad \partial_{x} r=\frac{x}{r} \quad \partial_{y} r=\frac{y}{r}$

$$
\nabla u=\frac{-1}{r^{2} \log \frac{2}{r}}\binom{x}{y} \quad|\nabla u|^{2}=\frac{1}{r^{2} \log ^{2} \frac{2}{r}}
$$

(1) $\int_{\Omega}|\nabla u|^{2} d x=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{r^{2} \operatorname{ly}^{2} \frac{2}{r}} r d r d \theta=2 \pi \int_{0}^{1} \frac{1}{r \log ^{2} \frac{2}{r}} d r$

$$
\left\{\begin{array}{l}
\log \frac{2}{r}=\log 2-\log r \rightarrow \frac{\partial}{\partial r}\left(\log \frac{2}{r}\right)^{-1}=-\left(\log \frac{2}{r}\right)^{-2}\left(-\frac{1}{r}\right) \\
=\left.2 \pi\left(\log \frac{2}{r}\right)^{-1}\right|_{0} ^{1}=\frac{2 \pi}{\log 2}-0<\infty
\end{array}\right.
$$

(2)

$$
\lim _{r \rightarrow 0} \frac{\log \log \frac{2}{r}}{r^{-1 / 2}}=\lim _{r \rightarrow 0} \frac{\frac{-1}{r \log _{r}^{2}}}{-1 / 2 r^{-3 h}}=\lim _{r \rightarrow 0} \frac{2 r^{1 / 2}}{\log ^{2 / r}}=0
$$

(3) Let $\Omega_{\varepsilon}=\Omega \backslash B(0, \varepsilon)$

Then for any $\phi \in C_{c}^{\infty}(\Omega)$

Greens identity scalia en
Ω_{ε} since $u \& \phi$ are
smooth there

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}} u \partial_{i} \phi d x=\underbrace{\int_{\partial \Omega_{\varepsilon}} u n_{i} d s}_{\Sigma_{2 \pi}(\log }- \\
& \int_{\Omega} u \partial_{i} \phi d x=-\int_{\Omega} \partial_{i} u \phi d x
\end{aligned}
$$

\therefore the classical derivative blows up slowly enough at theorgin that it is a weak derivative.
$\therefore u \in H^{\prime}(\Omega)$ as claimed.
Exerase: show that for $n \geq 3, u(x)=r^{-\alpha}$ is an H^{\prime} function on the uni ball for $\alpha<\frac{n-2}{2}$.
dif: A subset X of a normed space Y is dense if $\forall y \in Y$ and $\varepsilon>0 \quad \exists x \in X$ s.t. $\|x-y\|<\varepsilon$.

The norm here is the Y norm (since $X \subseteq Y$, Ximhents this norm)
Example: \mathbb{Q} is duse in \mathbb{R}, but \mathbb{R} is not dense in \mathbb{C}.

Thuvem: Let $\Omega \subset \mathbb{R}^{n}$ be an uses set with precewis smooth boundary, and let $m \geq 0$. The $C^{\infty}(\Omega) \cap H^{m}(\Omega)$ is duse in $H^{m}(\Omega)$.
(1.e. $\forall u \in H^{m}(\Omega)$ and $\varepsilon>0 \quad \exists v \in C^{\infty}(\Omega) \cap H^{m}(\Omega)$ st.

$$
\|u-v\|_{m}<\varepsilon
$$

pf: see egg. Evans' PDE book.
def: $H_{0}^{m}(\Omega)=$ the closure of $C_{c}^{\infty}(\Omega)$ in $H^{m}(\Omega)$
w.r.t.

$$
\text { the norm } 11 \cdot H_{m} \text {. }
$$

Theorem: (Poincare - Friedrich inequality)
Supprier Ω is contained in an n-dimly cube with side length s. Then

$$
\|u\|_{0} \leqslant \frac{s}{\sqrt{2}}|u|_{,} \text {for all } u \in H_{0}^{\prime}(\Omega)
$$

ph: mas assume $\Omega \subset Q=\left\{x \in \mathbb{R}^{n} ; \quad 0<x_{i}<3, i=1, \ldots, n\right\}$ by translation and rotation if necessain. ($\|u\|_{0}$ and $|u|_{1}$ are invariant under such changes of coordinates)

Let $u \in C_{c}^{\infty}(\Omega)$.
Extend it to $C_{c}^{\infty}(Q)$
via $u=0$ on $Q \backslash \Omega$

Then $u\left(x_{1}, \ldots, x_{n}\right)=u\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \partial_{1} u\left(t, x_{2}, \ldots, x_{n}\right) d t$ Cauchy-Schwarz: $|u(x)|^{2} \leq \int_{0}^{x_{1}} 1^{2} d x \int_{0}^{x_{1}}\left|\partial_{1} \mu\left(t, x_{2}, \ldots, x_{n}\right)\right|^{2} d t$ $\leqslant x_{1} \int_{0}^{s}\left|\partial_{1} u\left(t, x_{2}, \ldots, x_{n}\right)\right|^{2} d t$
for fixed x_{2}, \ldots, x_{n} : a constant index. of x_{1}

$$
\int_{0}^{s}|u(x)|^{2} d x_{1} \leq\left.\underbrace{\left(\int_{0}^{s} x_{1} d x_{1}\right)}_{s^{2} / 2}\left(\int_{0}^{s} \mid v_{1} u(t)_{1} x_{2}, \ldots x_{n}\right)\right|^{2} d t)
$$

integrate over other coords:

$$
\begin{aligned}
\|u\|_{0}^{2}=\int_{Q}|u|^{2} d x & \leq \frac{s^{2}}{2} \int_{Q}\left|\partial_{1} u\left(t, x_{2}, \cdots, x_{n}\right)\right|^{2} d t d x_{2} \cdots d x_{n} \\
& =\frac{s^{2}}{2} \int_{Q}\left|\partial_{1} u\right|^{2} d x \leq \frac{s^{2}}{2} \int_{Q}|\nabla u|^{2} d x=\frac{s^{2}}{2}|u|_{1}^{2}
\end{aligned}
$$

This establishes the result $\left(\|u\|_{0} \leq \frac{s}{\sqrt{2}}|u|_{1}\right)$ for all $u \in C_{c}^{\infty}(\Omega)$, which is a dene subset of $H_{0}^{\prime}(\Omega)$.

Now let v be any function in $H_{0}^{1}(\Omega)$ and let $\varepsilon>0$. Since $C_{c}^{\infty}(\Omega)$ is dense in $H_{0}^{\prime}(\Omega), \exists u \in C_{c}^{\infty}(\Omega)$ sit. $\|u-v\|_{1} \leq \varepsilon$ Then $\|v\|_{0} \leqslant\|u\|_{0}+\|v-u\|_{0} \leq \frac{s}{\sqrt{2}}|u|_{1}+\varepsilon$

$$
\sum \frac{s}{\sqrt{2}}\left(|u-v|_{1}+|v|_{1}\right)+\varepsilon \leq \frac{s}{\sqrt{2}}|v|_{1}+\left(\frac{s}{\sqrt{2}}+1\right) \varepsilon
$$

Since q is arbatrang, $\|v\|_{0} \leq \frac{5}{\sqrt{2}}|v|_{1}$ as claimed. corollary: $1 . I_{1}$ is a norm equivalent to $\|\cdot\|_{1}$ on $H_{0}^{\prime}(\Omega)$

$$
|u|_{1} \leq\|u\|_{1}=\left(\|u\|_{0}^{2}+|u|_{1}^{2}\right)^{1 / 2} \leq\left(\frac{s^{2}}{2}+1\right)^{1 / 2}|u|_{1}
$$

corollary: : $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x$ is coercer on $H_{0}^{\prime}(\Omega) . \alpha\| \| \|_{1}^{2} \leq \alpha_{a}(u, u), \quad, \alpha=\left(1+\frac{\left.3^{\frac{3}{2}}\right)^{-1}}{\text { fun }}\right.$

2288 Lee 24
Last time. In $1 d ; H^{\prime}(a, b)=\left\{u:(a, b) \rightarrow \mathbb{R} \left\lvert\, \begin{array}{cc}u+5 \text { equal are to an absolutely } \\ \text { wontinuwers fin on }[a, b] \text { and } u_{x} \in L^{2}(a, b)\end{array}\right.\right\}$ - In higher dimeminas), $H^{\prime}(\Omega)$ contains functions that blow up

Today: Cocrunty and the Lax-Milgrom theorem
postpone to page 3.
Theorem: $C^{\infty}(\Omega) \cap H^{m}(\Omega)$ is dine on $H^{m}(\Omega)$ for any open sit $\Omega \leqslant \mathbb{R}^{n}$ execuis: f_{1} in the blank: this means: $\forall u \in H^{m}(\Omega)$ and $\varepsilon>0$, \qquad
def: $H_{0}^{m}(\Omega)=$ the closure of $C_{c}^{\infty}(\Omega)$ in $H^{m}(\Omega)$

$$
=\left\{u \in H^{m}(\Omega): \exists v_{1}, v_{2}, \ldots \in C_{c}^{\infty}(\Omega) \text { sit } v_{k} \rightarrow u \text { in } H^{m}(\Omega)\right\}
$$

exercise: $v_{k} \rightarrow U$ in $H^{m}(\Omega)$ means: $\forall \varepsilon>0 \exists N$ st.
in words:
$H_{0}^{m}(\Omega)$ is the set of all functions $u: \Omega \rightarrow \mathbb{R}$ such that $\partial^{\alpha} u \in L^{2}(\Omega)$ for $|\alpha| \leq m$ and $u=0$ on $\partial \Omega$.
$u=0$ is imposed by requiring that you i. \uparrow these wake denvitires exist and belong to $L^{2}(\Omega)$.
can get a-bitraily close to u by a c^{∞} function v with compact support in Ω

The weak formulation of the Dinchlet problem is:
find $u \in H_{0}^{\prime}(\Omega)$ st. $a(u, v)=\langle l, v\rangle \quad \forall v \in H_{0}^{\prime}(\Omega)$
where $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x,\langle l, v\rangle=\int_{\Omega} f v d x$
we need to show that $a(\cdot, \cdot)$ is bounded and coercive and the at l is bounded.

To prove boundedness of a and l, we use Cauchy-Schwarz:

Theorem: Let H be a vector space with inner product $(\cdot$,$) .$
Then $|(x, y)| \leq\|x\| \cdot\|y\| \quad \forall x, y \in H$
pf: if $x \cdot 0-y$ is zero, we have $0 \leq 0$ otherwise let $\lambda=\|x\|, \mu=\operatorname{sgn}((x, y))\|y\|$ and check that

$$
\begin{aligned}
\theta \leqslant(\mu x-\lambda y, \mu x-\lambda y) & =\mu^{2}(x, x)-2 \lambda \mu(x, y)+\lambda^{2}(y, y) \\
& =2\left\|x n^{2}\right\| y n^{2}-2\|x\|\|y\|(x, y) \|
\end{aligned}
$$

so $\quad|(x, y)| \leqslant\|x\| \cdot\|y\|$

Corollary: Let $a(\cdot, \cdot)$ be a symmetric, positive semidefinite bilinear form on H. Then $\quad|a(x, y)| \leq\|x\|_{a}\|y\|_{a}$ where $\|x\|_{a}=\sqrt{a(x, x)}$
pf. define the new inner product $((x, y))=\varepsilon(x, y)+a(x, y)$
Canehy-Schwarz implies $|((x, y))| \leq \sqrt{((x, x))} \sqrt{((y, y))}$
Now take thu limit as $\varepsilon \rightarrow 0_{\text {- }}$
note: $\|\cdot\|_{a}$ II only a semi-norm if a is not positive definite

Clam: $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x$ is bounded on $H^{\prime}(\Omega) \quad\left(\right.$ hence on $\left.H_{0}^{\prime}(\Omega)\right)$
pf: $|a(u, v)| \leq \sqrt{a(u, u)} \sqrt{a(v, v)} \leq \sqrt{\|u\|_{0}^{2}+a(u, v)} \sqrt{\|v\|_{0}^{2}+a(v, v)}$
for any $u, v \in H^{-1}(\Omega), \quad=\|u\|,\|v\|_{1}$
so $C=1$ works in $|a(u, v)| \leq C\|u\|,\|v\|$,
Claim: $\langle\ell, v\rangle=\int_{\Omega} f r d x$ is bounded on $H^{\prime}(\Omega)$
pf: $\quad|\langle\ell, v\rangle| \leq\|f\|_{0} \cdot\|v\|_{0} \leq\|f\|_{0}\|v\|_{1}$ usually strut inequality \downarrow tunes f So $C=\|f\|_{0}$ works in $\langle\ell, v\rangle \leq C\|v\|_{i} \quad$ (so $\|e\|_{i} \leq\|f\|_{0}$)

Now we want to prove that $a(, j)$ is coercive on $H_{0}^{i}(\Omega)$, 1.e. (1) $\quad \exists \alpha>0$ sit. $\alpha\|u\|_{i}^{2} \leq a(u, u) \quad \forall u \in H_{0}^{1}(\Omega)$

This is nt true on all of $H^{\prime}(\Omega)$ as the function $u(x) \equiv 1$
Satistive $\|u\|_{1}^{2}=\int u^{2} d x=\operatorname{volume}(\Omega)>0$
while $a(u, u)=\int_{\Omega} 8 \cdot-\nabla_{u} d x=0$
Note that the issue in $*$ is whether lotto can be bounded by $|⿲ 1|$

$$
\alpha\|v\|_{1}^{2}=\alpha\left(\|u\|_{0}^{2}+\mid u_{1}^{2}\right) \stackrel{?}{\leq} a\left(u_{1} u\right)=|u|_{1}
$$

need $\|u\|_{0}^{2} \leq\left(\frac{1}{\alpha}-1\right)|u|_{1}^{2} \quad \forall u \in H_{6}^{\prime}(\Omega)$
so back to page 1.

Theorem: (Doncaré Friedrich inequality)
Suppose Ω is contained in an n-dimensional cute with side length S. Then

$$
\| u t_{0} \leqslant \frac{s}{\sqrt{2}}|u|_{1} \quad \forall u \in H_{6}^{\prime}(\Omega)
$$

proof in 2d: (see Lee 23 for n dimensions)
may assume $\Omega \subseteq Q=\{(x, y): 0<x<5,0<y<5\}$ by tristation $女$ rotation if necessary. (Hut and \|ll\#, are inworiat under such changes of coordinates) Let $u \in C_{c}^{\infty}(\Omega)$. Extend it to $C_{c}^{\infty}(Q)$ via $u=0$ on $Q \backslash \Omega$.
Then $u(x, y)=u(0, y)+\int_{0}^{x} u_{x}(t, y) d t \quad \epsilon$ FTOC
Cauchy-Schwarz. $|u(x, y)|^{2} \leq \int_{0}^{x} 1^{2} d t \int_{0}^{x}\left|u_{x}(t, y)\right|^{2} d t$

$$
s \quad x \int_{0}^{s}\left|u_{x}(t, y)\right|^{2} d t
$$

holding y fixed:

$$
\int_{0}^{5}|u(x, y)|^{2} d x \leqslant\left(\int_{0}^{5} x d x\right)\left(\int_{0}^{5}|u x(t, y)|^{2} d t\right)
$$

now integrate in y-dilution:

$$
\begin{aligned}
\|u\|_{0}^{2} & =\int_{0}^{s} \int_{0}^{s}|u(x, y)|^{2} d x d y \leq \frac{s^{2}}{2} \int_{0}^{s} \int_{0}^{s}\left|U_{x}(t, y)\right|^{2} d t d y \\
& =\frac{s^{2}}{2} \iint_{Q}\left|u_{x}\right|^{2} d x d y \leq \frac{s^{2}}{2} \iint_{Q}|\nabla u|^{2} d x d y=\frac{s^{2}}{2}|u|_{1}^{2}
\end{aligned}
$$

This establishes the result $\left(\|u\|_{0} \leq \frac{s}{\sqrt{2}}|u|_{1}\right)$ for all $u \in C_{c}^{\infty}(\Omega)$ When is a dense subset of $H_{0}^{\prime}(\Omega)$

Now let v be any function in $H_{0}^{\prime}(\Omega)$ and let $\varepsilon>0$.
Since $C_{c}^{\infty}(\Omega)$ is dense in $H_{b}^{\prime}(\Omega), \exists u \in C_{c}^{\infty}(\Omega)$ sit. $\|u-v\|_{1} \leq \varepsilon$
Then $\|v\|_{0} \leqslant\|u\|_{0}+\|v-u\|_{0} \leqslant \frac{s}{\sqrt{2}}|u|_{1}+\varepsilon$

$$
\leq \frac{s}{\sqrt{2}}\left(|u-v|_{1}+|v|_{1}\right)+\varepsilon \sum \frac{s}{\sqrt{2}}|v|_{1}+\left(\frac{s}{\sqrt{2}}+1\right) \varepsilon
$$

since ε is arbitrary, $\|v\|_{0} \leq \frac{s}{\sqrt{2}}|v|_{1}$ as claimed.
corollary: $1 \cdot 1$, in a norm on $H_{0}^{\prime}(\Omega)$ equivalent to $\|-\|_{\text {, }}$

$$
|u|_{1} \leqslant\|u\|_{1}=\left(\|u\|_{0}^{2}+\mid u \|_{1}^{2}\right)^{1 / 2} \leqslant\left(\frac{s^{2}}{2}+1\right)^{1 / 2}|u|_{1}
$$

Corollary: $a(u, v)=\int_{\Omega} \nabla_{u} \cdot \nabla v d x$ is coercive on $H_{0}^{\prime}(\Omega)$ with with $\alpha=\left(1+\frac{s^{2}}{2}\right)^{-1}$

Lav ill $\left\{\begin{array}{l}\text { let be a Hilbert pane. }\end{array}\right.$
Lax-Milgnan theorem:: Suppose $a: H \times H \rightarrow \mathbb{R}$ is bounded, ceereve \& bilinear. and $l: H \rightarrow \mathbb{R}$ is bounded ad linear. Then \exists !utu st. $a(u, v)=\langle l, v\rangle \quad \forall v \in H$.
well prove it in the special cars that $\left.a(\cdot,)^{\prime}\right)$ is also symmetric. (see eng. Evans' PDE book for general case)
based on Brass p^{38}
Proof: ${ }^{t}$ define $J(u)=\frac{1}{2} a(u, u)-\langle l, u\rangle$
Note that $a(u, u) \geq \alpha\|u\|^{2}$
and $\quad\langle\ell, u\rangle \leq\|\ell\|-\|u\|$

Idea: J attains its minimum at u iff $a(u, v)=\langle l, v\rangle \quad \forall v$.
reason:
$J(n+t r)=$

$$
\begin{gathered}
J(u)+t[a(u, v)-4, v, r] \\
+\frac{1}{2} t^{2} a(v, v)
\end{gathered}
$$

used symmetry of a her

So $\quad J(u) \geq \frac{1}{2} \alpha\|u\|^{2}-\|e\| \cdot\|u\|$

$$
=\frac{1}{2 \alpha}(\alpha\| \|\|-\| e \|)^{2}-\frac{\|l\|^{2}}{2 \alpha} \geq-\frac{\|l\|^{2}}{2 \alpha}
$$

$\therefore J(u)$ 1) bounded from below. Let $J_{0}=\inf \{J(u): u \in H\}$ and let $\left\{u_{k}\right\}_{k=1}^{\infty}$ be a minimizing sequence.

$$
\text { Then } \alpha\left\|u_{m}-u_{n}\right\|^{2} \leqslant a\left(u_{m}-u_{n}, u_{m}-u_{n}\right)
$$

Now use parallelogram law

expand it out.... cross terms cancel.

$$
\begin{aligned}
& a\left(u_{m}+u_{n}, u_{m}+u_{n}\right)+a\left(u_{m}-u_{n}, u_{m}-u_{n}\right)=2 a\left(u_{m}, u_{m}\right)+2 a\left(u_{n}, u_{n}\right) \\
& \therefore \alpha\left\|u_{m}-u_{n}\right\|^{2} \leqslant \\
& \leqslant a\left(u_{m}, u_{m}\right)+2 a\left(u_{n}, u_{n}\right)-a\left(u_{m}+u_{n}, u_{m}+u_{n}\right) \\
&= 4 J\left(u_{m}\right)+4 J\left(u_{n}\right)-8 J\left(\frac{u_{m}+u_{n}}{2}\right) \\
&-4\left\langle\ell, u_{m}\right)+4\left\langle l, u_{n}\right\rangle-8\left\langle l, \frac{u_{m}+u_{n}}{2}\right) ;-0
\end{aligned}
$$

But $J\left(\frac{u_{m}+u_{n}}{2}\right) \geq J_{0}$ since $J_{0} 11$ the inferuum. So

$$
\alpha\left\|u_{m}-u_{n}\right\|^{2} \leq 4 J\left(u_{m}\right)+4 J\left(u_{n}\right)-8 J_{0}
$$

$\left.\begin{array}{c}(\text { subtracting less } \\ \text { makes it ing ge- }\end{array}\right)$
Since $\left\{u_{m}\right\}$ it a minimizing sequence, for every $\varepsilon>0$ there is an N s.t. $n \geq N \Rightarrow J\left(u_{m}\right)-J_{0}<\frac{\varepsilon^{2} \alpha}{8}$
\therefore if $m, n \geq N$ then $\left\|u_{m}-u_{n}\right\| \leq \varepsilon$ so $\left\{u_{m}\right\rangle$ is Cauchy.
since Hicomplete, U_{m} converges to somethn, say u_{0}
Since J is continuous (l and a are bounded), we have

$$
\begin{array}{ll}
\text { continuity } & u_{n} \text { is a minimitim sequence. } \\
& \downarrow \\
J(U)=J\left(\lim _{n} u_{n}\right) \stackrel{\downarrow}{=} \lim _{n} J\left(u_{n}\right)=J_{0}
\end{array}
$$

Since u minimizes J, it satisfies $a(u, v)=\langle l, v) \quad \forall v \in H$.
u is unique because two such minimizes u_{1}, u_{2} could be strung together into a sequence $u_{1}, u_{2}, u_{1}, u_{2}, u_{1}, u_{2}, \ldots$
which is also a minimizing sequence, hence is Cauchy and converges. This is a contradiction unless $u_{1}=u_{2}$.

Note: We've actually proved the Rest representation theorem as a special care:
let $a(u, v)=(u, v)$
given $l \in H^{\prime} e d n e t$ space of H

$$
\exists!u \text { sit. } \quad(u, v)=(l, v) \quad \forall v \in H
$$

Thus the canonical map from H to H^{\prime} given by $u \mapsto\left(u,{ }^{\circ}\right)$ is onto (ifs an isometry, actually) (in the complex case, $u \rightarrow(\cdot, u)$ is conjugate linear from H to H^{\prime})

228 Lu e 25

Last time: discussed HW poithem 4
generalization of Cacchy-S chworz to symmetry, positive reemidifinite bilinear forms
$a(\because)$ and (l, \cdot) are bounded
a(...) is not coercive on all of $H^{\prime}(\Omega)$ definition of $H_{0}^{\prime}(\Omega)$ (closure of $C_{c}^{\infty}(\Omega)$ in $H^{\prime}(\Omega)$) started proving Poincare Fredrids inequality

Today: finish Poincare-Fredichs proof
Lax-Milgmen theorem
stability of finite elements
Céás lemma
4A Notational issues and hint on homework prillem 3.

Theorem: (Pomear - Frednchs inequity)
Suppose $\Omega \mathbb{R}^{2}$ is contained in a square with side length S.
(*) Then $\|u\|_{0} \leqslant \frac{s}{\sqrt{2}}|u|_{1}$ for all $u \in C_{c}^{\infty}(\Omega)$
proof so far: (i) translate and rotate Ω to fotmende $Q=[0,5] \times[0,5]$

(2) Show that holds for $u \in C_{c}^{\infty}(\Omega)$
(20) use fundematal theorem of calculus for $u \in C_{c}^{\infty}(\Omega)$:

$$
u(x, y)=\underbrace{u(0, y)}_{0}+\int_{0}^{x} u_{x}(t, y) d t
$$

(2b) use Cauchy schwarz

$$
|u(x, y)|^{2} \leq \int_{0}^{x} 1^{2} d t \int_{0}^{x}\left|u_{x}(t, y)\right|^{2} d t \leq x \int_{0}^{s}\left|u_{x}(t, y)\right|^{2} d t
$$

(20) integrate over Ω

$$
\begin{gathered}
\|u\|_{0}^{2}=\iint_{\Omega}|u(x, y)|^{2} d x d y=\iint_{Q}|u(x, y)|^{2} d x d y \leq \frac{s^{2}}{2} \iint_{Q}\left|u_{x}(t, y)\right|^{2} d t d y \\
\leq \frac{s^{2}}{2} \iint_{Q}|\nabla u|^{2} d x d y=\frac{s^{2}}{2}|u|_{1}^{2}
\end{gathered}
$$

This establish th result for all $u \in C_{c}^{\infty}(\Omega)$, which 11 a dene subset of $H_{0}^{\prime}(\Omega)$.
(3) final step: extad result to all of $H_{0}^{\prime}(\Omega)$ using a density argumate Let N be any function in $H_{0}^{\prime}(\Omega)$ and lat $\varepsilon>0$. ($\left.\begin{array}{c}v \text { is hike } \\ \text { where wit } \\ a \text { test foes. }\end{array}\right)$ a test firs.
Since $C_{c}^{\infty}(\Omega)$ is duse in $H_{0}^{\prime}(\Omega), \exists u \in C_{c}^{\infty}(\Omega)$ st. $\|u-v\|_{1} \leq \varepsilon-$ Then $\|v\|_{0} \leq\|u\|_{0}+\|v-u\|_{0} \leq \frac{s}{\sqrt{2}}|u|_{1}+\varepsilon$

$$
\leq \frac{5}{\sqrt{2}}\left(|u-v|_{i}+|v|_{i}\right)+\varepsilon \leq \frac{s}{\sqrt{2}}|v|_{i}+\left(\frac{s}{\sqrt{2}}+1\right) \varepsilon
$$

The only way this can be twee for att $\varepsilon>0$ is if $\|v\|_{0} \leq \frac{s}{\sqrt{2}}|v|_{1}$ as claimed.
corollary: $\quad 1 \cdot$, is a norm on $H_{0}^{\prime}(\Omega)$ equivalent to $\|\cdot\|_{1}$
pe:

$$
|u|_{1} s\|u\|_{1}=\left(\|u\|_{0}^{2}+|u|_{1}^{2}\right)^{1 / 2} s\left(\frac{s^{2}}{2}+1\right)^{1 / 2}|u|_{1}
$$

cooley; $a(u, v)=\int_{\Omega} \nabla u \cdot \Pi v d x d y$ is coercive on $H_{0}^{\prime}(\Omega)$ with $\alpha=\left(1+\frac{5^{2}}{2}\right)^{-1}$
Remak: this poos would work for Ω contained in a rectangle Q whore shortest side is 5 . It would even

Remark: for a square (or n-cube in n dimensions) we can average the result in each direction and ot tain

$$
\|u\|_{0} \leq \frac{s}{\sqrt{2 n}}|u|_{1} \quad u \in H_{0}^{\prime}(\Omega)
$$

Lax-Milgram theorem: Let H be a Hilbert space.
Suppose $a: H \times H \rightarrow \mathbb{R}$ is bounder, coercive and bilinear and $\ell: H \rightarrow \mathbb{R}$ is bounded and linear Then $\exists!u \in H$ st. $a(u, v)=\langle\ell, v) \quad \forall v \in H$
well prove it in the special coot that $a(, j)$ is also symmetric. (see e.g. Evans' PDE book for the general case)

Idea: I attains its
based on Brass 38
Prot: define $J(u)=\frac{1}{2} a(u, u)-\langle\ell, u\rangle$
Note that $a(u, u) \geq \alpha\|u\|^{2}$
and $\quad\langle\ell, u\rangle \leq\|e\| \cdot\|u\|$

$$
\text { so } \begin{aligned}
J(u) & \geq \frac{1}{2} \alpha\|u\|^{2}-\|e\|-\|u\| \\
& =\frac{1}{2 \alpha}(\alpha\|u\|-\|e\|)^{2}-\frac{\|l\|^{2}}{2 \alpha} \geq-\frac{\|e\|^{2}}{2 \alpha}
\end{aligned}
$$

$\therefore J(u)$ 1) bounded from below. Let $J_{0}=\inf \{J(u): u \in H\}$ and let $\left\{u_{k}\right\}_{k=1}^{\infty}$ be a minimizing sequence.
Then $\alpha\left\|u_{m}-u_{n}\right\|^{2} \leqslant a\left(u_{m}-u_{n}, u_{m}-u_{n}\right)$
Now use parallelogram law

expand it out.-. crosisterms cancel.

$$
\begin{aligned}
& a\left(u_{m}+u_{n}, u_{m}+u_{n}\right)+a\left(u_{m}-u_{n}, u_{m}-u_{n}\right)=2 a\left(u_{m}, u_{m}\right)+2 a\left(u_{n}, u_{n}\right) \\
& \therefore \alpha \alpha\left(u_{m}-u_{n} \|^{2} \leqslant\right. \\
& \leqslant a\left(u_{m}, u_{m}\right)+2 a\left(u_{n}, u_{n}\right)-a\left(u_{m}+u_{n}, u_{m}+u_{n}\right) \\
&= 4 J\left(u_{m}\right)+4 J\left(u_{n}\right)-8 J\left(\frac{u_{m}+u_{n}}{2}\right) \\
&-1+4\left\langle\ell, u_{m}\right)+4\left\langle l, u_{n}\right\rangle-8\left\langle l, \frac{u_{m}+u_{n}}{2}\right) ;
\end{aligned}
$$

But $J\left(\frac{u_{m}+u_{n}}{2}\right) \geq J_{0}$ since $J_{0} 11$ the infemum. So

$$
2\left\|u_{m}-u_{n}\right\|^{2} \leq 4 J\left(u_{m}\right)+4 J\left(u_{n}\right)-8 J_{0}
$$

$\binom{($ subtracting less }{ makes it Liger }
Since $\left\{u_{m}\right\}$ it a minimizing segunce, for every $\varepsilon>0$ there is an N sit. $n \geq N \Rightarrow J\left(u_{m}\right)-J_{0}<\frac{\varepsilon^{2} \alpha}{8}$
\therefore if $m, n \geq N$ then $\left\|u_{m}-u_{n}\right\| \leq \varepsilon$ so $\left\{u_{m}\right\}$ is Cauchy.
since H 11 complete, u_{m} converges to somethm, say u_{0}
Since J is continuous (l and a are bounded), we have

$$
\begin{array}{cc}
\frac{\text { continuity }}{\downarrow} & \begin{array}{c}
u_{n} \text { is } a \\
\downarrow \\
J(u)=J\left(\lim _{n} u_{n}\right) \\
=\lim _{n} J\left(u_{n}\right)
\end{array}=J_{0}
\end{array}
$$

$$
u_{n} \text { is a minimitionsequice. }
$$

Since u minimizes J, it satisfies $a(u, v)=\langle l, v) \quad \forall v \in H$.
u is unique because two such minimizes u_{1}, u_{2} could be strung together into a sequence $u_{1}, u_{2}, u_{1}, u_{2}, u_{1}, u_{2}, \ldots$ which is ats a minimizing sequence, hence is Cauchy and converges. This is a contradiction unless $u_{1}=u_{2}$.

Note: We've actually proved the Rest representation theorem as a special case:

Let $a(u, v)=(u, v)$
given $l \in H^{*}$ duct space of H

$$
\exists!u \text { st. } \quad(u, v)=(l, v) \quad \forall v \in H
$$

Thus the canonical map from H to H^{*} given by $u \mapsto\left(u,{ }^{\circ}\right)$ is onto (it's an isometry, actually) (in the complex case, $u \rightarrow(0, u)$ is conjugate linear $\operatorname{from} H$ to H^{*})

Note: Lax-Milgren applies equally well to the subspace $S_{h} \varsigma H_{0}^{\prime}(\Omega)$ so we get existace and uniqueness of the weak formulations of the continuous and discrete pollems:
(*)

$$
\begin{array}{lll}
\exists!u \in H_{0}^{\prime}(\Omega) & \text { s.t. } & a(u, v)=\langle l, v) \\
\exists!u_{h} \in S_{h} & \text { st. } & a\left(u_{h}, v\right)=\langle l, v\rangle \\
\forall v \in H_{0}^{\prime}(\Omega)
\end{array}
$$

Stability: the solutions u and u_{h} are bounded by the nom of f
pf ${ }^{2}$

$$
\begin{aligned}
\alpha\|u\|_{1}^{2} & \leq a(u, u)=\langle l, u\rangle
\end{aligned} \begin{aligned}
& \leq\|l\|_{1} \cdot\|u\|_{1} \quad\binom{-\Delta u f^{\prime} f^{\lambda} \Omega}{u=0 \text { in } \Omega \Omega} \\
& \leq\|f\|_{0} \cdot\|u\|_{1}
\end{aligned}
$$

Error analysis (Cea's lemma) the $F E$ solution is within a constant of the best possible approximation in the FE space S_{h} :

$$
\left\|u-u_{h}\right\|_{1} \leq \frac{c}{\alpha} \inf _{v_{h} \in S_{h}}\left\|u-v_{h}\right\|_{1}
$$

pf: form (x) we have $a\left(u-u_{h}, v\right)=0 \quad \forall v \in S_{h}$. (Gaterkin $\left.\begin{array}{c}\text { arthegondity }\end{array}\right)$ Thus $\alpha\left\|u-u_{h}\right\|_{1}^{2} \leqslant a\left(u-u_{h}, u-u_{h}\right)$ $O \quad\left(v_{h} \in S_{h}\right.$ is arbitrary $)$ $=a\left(u-u_{h}, u-\sqrt{v_{h}+v_{h}}-u_{h}\right)$
$\therefore\left\|u-u_{h}\right\| \leqslant \frac{c}{2}\left\|u-v_{h}\right\|$ for every $v_{h} \in S_{h}$. Noutake infimum of RHS.

Notational issues:
$|(u, v)| \leq\|u\| \cdot\|v\| \quad \leftarrow$ Candy Scherez (inner product)
$|\langle\ell, v\rangle| \leqslant\|l\| \cdot\|v\| \subset$ defintown of norm of l
(the ballets arc anoth way to writ u $l(v)$)
subscripts:

$$
\begin{aligned}
& \mathbb{R}^{n}: \quad\|x\|_{p}=\left(\sum_{i=1}^{n}|x i|^{p}\right)^{1 / p} \\
& L^{p}: \quad\|u\|_{L_{p}}=\left(\iint_{\Omega}|u(x, y)|^{p} d x d y\right)^{1 / p} \\
& H^{m}: \quad\|u\|_{H^{m}}=\left(\sum_{|\alpha| \leq m} \iint_{\Omega}\left|\partial^{\alpha} u\right|^{2} d x d y\right)^{1 / 2}
\end{aligned}
$$

$\|u\|_{2}$ could mean $\|u\|_{L^{2}}$ or $\|u\|_{H^{2}} \quad H^{0}=L^{2}$
Lately I have been writing $\left\{\begin{array}{l}\|u\|_{0}=\|u\|_{2} \\ \|u\|_{2}=\|u\|_{H^{2}}\end{array}\right.$
we have:

$$
\begin{array}{r}
L^{2}(\Omega)=\begin{array}{rr}
H^{0}(\Omega) \geq H^{\prime}(\Omega) \geq H^{2}(\Omega) \geq \cdots \\
U & U 1 \\
H_{0}^{\prime \prime}(\Omega) \geq H_{0}^{\prime}(\Omega) \geq H_{0}^{2}(\Omega) \geq \cdots
\end{array}
\end{array}
$$

Hölders inequality generalizes Cauchy-Schwarz for L^{P} spans. In \mathbb{R}^{n}, it looks like
equality of

$$
\left.b^{T} \times\right\rangle \varepsilon\|b\|_{q}\|x\|_{p}, \quad\|b\|_{q}=\left(\sum_{i} \| b_{i} 1^{q}\right)^{1 / q}
$$

ω and z or limee-1) deposit
with $w_{i}^{\prime}=\operatorname{sgn}\left(x_{i}\right)\left(x_{i} P^{P}, z_{i}^{\left.i=\operatorname{sgn}\left(b_{i}\right) b_{i}\right)^{9}}\right.$ $q^{q} \frac{1}{p}+\frac{1}{q}=1 \quad$ (pdq are conjugate expounds)
dual spaces: If X is a normed linear space, its dual space is
$X^{k}=\{$ bounded linear functionally on $X\}$
the nom on x^{*} is $\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|}$
X^{*} is complete ever if X is not complete.
continuity and boundedness: a linear mapping $f: X \rightarrow \mathbb{R}$ is bounded of it is continuous.
$\Leftrightarrow \quad|f(x)-f(y)|=|f(x-y)| \leqslant\|f\|\|x-y\|$
$\Rightarrow \quad$ if f is continuous at $0, \exists \delta>0$ s.t. $\mid f(y)-\underbrace{f(0) \mid<1 \quad \forall\|y\|<\delta \text {. }}_{0}$
so if $x \neq 0$, then $y=\frac{1}{2} \delta \frac{x}{\|x\|}$ satisfies $\|y\|_{2}=\delta / 2<\delta$
and $\quad|f(y)|=\frac{1}{2} \delta \frac{|f(x)|}{\|x\|}<1 \Rightarrow \frac{|f(x)|}{\|x\|} \leq \frac{2}{8} \forall x \neq 0$.

Subspaces and exturions. If $M \subseteq X$ and $F \in X^{*}$
then $f=\left.F\right|_{M} \in M^{*}$ restriction of F to M (ie. $F(x)=f(x) \forall x \in M$)
The Hahn-Bamach theorem says that every lineerfunctional on M is of this form:
HBT: Given $f \in M^{*} \quad \exists F \in X^{*}$ sit. $\left.F\right|_{M}=f$ and $\|F\|=\|f\|$.

促號 in problem 3a，we have $M=C^{\infty}(\Omega) \cap H^{\prime}(\Omega)$

$$
X=H^{\prime}(\Omega)
$$

噱 5 and gave you a liner functional f on M that S．is bounded when MII equipped with the L^{2} norm：

$$
\frac{1}{5} \frac{\sum_{0}}{f} \quad|f(u)| \leq C\|u\|_{0} \quad \forall u \in M \quad H^{\circ}=L^{2}
$$

$$
H^{\prime}
$$

to apply the HBT you need to show f is bounded皆等 with respect to the norm inherited from X ，namely $\| \cdot U_{1}$
$\xi \longrightarrow$ to be shown：$\exists c_{1}$ st－$|f(u)| \leq c_{1}\|u\|_{1} \quad \forall u \in M$
Now $H B T \Rightarrow \exists F \in X^{x}$ sit．$F(u)=f(u) \quad \forall u \in M$
In problem 36，we have $M=C^{\infty}(\Omega) \cap H^{\prime}(\Omega)$

$$
x=L^{2}(\Omega)
$$

Now all you know is that $f \in M^{*}$ when Mus equipped with the H^{\prime} norm：

$$
|f(v)| \leqslant C\|u\|, \forall r \in M
$$

and before we can apply the HBT，we have to show the f is bad w．rit．th norm intuited from x ：
\rightarrow to he shown：$\exists c_{1}+|f(u)| \leq c_{1}\|u\|_{0} \quad \forall u \in M$

$$
\text { Now } H B T \Rightarrow \exists F \in X^{\$} \text { st. } F(n)=f(w) \quad \forall u \in M
$$

Remake．the HBT in not really neccesiag in the proptem since MT T duse in X ， but it makes the proofs a lot caster．
produce a counterexample?
So how would you prover the nt
here's an examph to model your proof on:
Let $M=C[0,1], \quad X=L^{\prime}(0,1)$ given $f \in M^{*}$ when M IS equipped with the max norm, lee.

$$
|f(v)| \leqslant C\|u\|_{\infty}
$$

can f be extend comtinnousty to an $F \in X^{*}$?
Answer: no. Counterexample: $f(u)=u(0)$.
we have $|f(u)| \leq \max _{0 \leq x \leq 1}|u(x)|$ so $c=1$ works her
but f is not bounded on M when Mriequipped with L 'norm.
Try to reach contradiction: suppose $\exists c_{1}$ s.t. $|f(u)| \leq c_{1}\|u\|_{L} \forall u \in M$.
look for bad u : lane value here
how about $M(x)=\frac{1}{\varepsilon+\sqrt{x}}$
The $|f(u)|=\frac{1}{\varepsilon}$ white $\|u\|_{t}=\int_{0}^{1}|u(x)| d x \leqslant \int_{0}^{1} \frac{1}{\sqrt{x}} d x=2$
With $\varepsilon=\frac{1}{2}\left(c_{1}+1\right)^{-1}$ we have $|f(n)|=2 c_{1}+2$ $\left.2 x^{\prime 2}\right|_{0} ^{1 \uparrow}$
white $C_{1}\|u\|_{l}^{\prime} \leq 2 C$, contradicting so f cont ext- λ to $F \in X^{*}$ since th popped F isis ever boded on M. In your homework, Ab se consider $f(u)=u(1)-u(0)$. \leftarrow why it it bonded (orin th homework notation, $(l, u)=U(1)-U(0)$) in $H^{\prime}(0,1)$?
$228 B$ Lee 26
Last time: finsthd pary Poincomé Fredachs inequlity $\|u\|_{0} \leq \frac{s}{\sqrt{2}}|u|_{\text {, }}^{\forall u \in H_{0}^{\prime}(\Omega)}$ proved Lax-Milgrum theorem in the symmetri case $a(u, r)=a(v, u)$ established comection between minimizing $J(u)=\frac{1}{2} a(u, v)-\langle l, u\rangle$ and solving $a(u, v)=\langle l, v\rangle \quad \forall v \in H$.

Tuday: stability of fintu elements
Céa's temme.
implematation issues
Recap: Lax-Milgrem: let H be a Hilbat spare, $a: H \times H \rightarrow \mathbb{R}$
a bounded, coecin biliee form, $l: H \rightarrow \mathbb{R}$ a bounded lineer functionad.
Then $\exists!u \in H$ s.t. $a(v, v)=\langle l, v) \quad \forall v \in H$.
pf: (1) $J(u)=\frac{1}{2} a(u, u)-\langle l, u\rangle \quad v^{w u}$ used symuty of a here.

$$
J(u+t v)=J(u)+t \underbrace{[a(u, v)-\langle l, v\rangle]}_{\text {first vanction of } J \text { in } v \text { dircction: }}+\frac{1}{2} t^{2} a(v, v)
$$

u minimizes J iff $\lambda=0$ $\forall v e H . ~\left[\begin{array}{c}D J(u) v=a(u, v)-\langle h, v\rangle \\ \frac{\delta J}{\delta u}=-\Delta u-f\end{array}=\iint \frac{\delta J}{\delta u} d x d y\right.$
(2) correvity \& parallelognm law \Rightarrow any minimiting seghounce for J is a Eavchy Syunce
(3) Completeness of $H \Rightarrow$ this sequence convers to somithy, sang U.
(4) u minimizes J, hence satisfies $a(u, v)=\langle p, v) \quad \forall v \in H$
(b) u-1) unique stre two minimizes $u_{1} \& u_{2}$ can bestung togethto form a minimizing requance (which is thes canchy)

Example: cercivity is important! $H=l^{2}$, $\|x\|=\sum_{k=1}^{\infty} x_{k}^{2}$.

$$
a(x, y):=\sum_{k=1}^{\infty} 2^{-k} x_{k} y_{k}
$$

is positive and continuant, Lat not coerevere.

$$
\langle f, x\rangle:=\sum_{k=1}^{\infty} 2^{-k} x_{k}
$$

is a bounded lime functional since $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right) \in l^{2}$.
But $J(x)=\frac{1}{2} a(x, x)-\langle f, x\rangle$ does not attain a minimum in l^{2} : the only way for

$$
a(x, y)=\langle f, y\rangle \quad \forall y \in l^{2}
$$

is for $x=(1,1,1, \ldots)$, which dos not belong to ℓ^{2} ?

Remember, the notation $\langle f$,$\rangle is just a fancy way$ of writing $f(\cdot)$. Here f is just a linear functional on H (we dint always hor to use the letter l in this notation)
finitelemat space
Note: Lax-Milgran apples equally well to the subspace $S_{h} \subset H_{0}^{\prime}(\Omega)$ so we get existence and uniqueness of the weak formulations of the continuous and discrete pollens:
$\exists!u \in H_{0}^{\prime}(\Omega)$ sit. $\quad a(u, v)=\langle l, v) \quad \forall v \in H_{0}^{\prime}(\Omega)$
$\exists!u_{h} \in S_{h}$ st. $a\left(u_{h} v\right)=\langle l, v\rangle \quad \forall v \in S_{1}$

Stability: the solutions u and u_{h} are bounded by the norm of f
pf:

$$
\begin{aligned}
& \alpha\|u\|_{1}^{2} \leq a(u, u)=\langle l, u\rangle \leq \\
& \therefore\|u\|_{1} \leq \frac{1}{\alpha}\|f\|_{0} \\
& \text { similarly, }\left\|u_{n}\right\|_{1} \leq \frac{1}{2}\|f\|_{0}
\end{aligned}
$$

Error analysis (Cea's lemma) the $F E$ solution is within a constant of the best possible approximation in the FE space S_{h} :

$$
\left\|u-v_{l_{n}}\right\|_{1} \leq \frac{C}{\alpha} \inf _{v_{h} \in S_{h}}\left\|u-v_{h}\right\|_{1}
$$

pf: from (क) we have $a\left(u-u_{h}, v\right)=0 \quad \forall v \in S_{h}=$ (Taterkin $\begin{gathered}\text { orthogonality) }\end{gathered}$ Thus $a\left\|u-u_{h}\right\|_{1}^{2} \leqslant a\left(t-u_{h}, u-u_{h}\right)$ $0 \quad\left(v_{h} \in S_{h}\right.$ is arbitrary $)$

$$
=a\left(u-u_{h}, u-\sqrt[v]{h}+\sqrt[v]{h}^{h}-u_{h}\right)
$$

$$
\begin{aligned}
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& \leqslant C\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\|
\end{aligned}
$$

$\therefore\left\|u-u_{h}\right\| \leqslant \frac{C}{2}\left\|u-v_{h}\right\|$ for every $v_{h} \in S_{h}$. Noutalce infirm of RHS.

So how do we actually solve the discrete system: find $u_{h} \in S_{h}$ sit

$$
a\left(u_{n}, v\right)=(l, v) \quad \forall v \in S_{L} ?
$$

Chook a basis for S_{1}, say $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$. Then Θ is equivalent to

$$
a\left(u_{h}, \varphi_{i}\right)=\left\langle l, \varphi_{i}\right\rangle \quad i=1 \ldots N
$$

writing $v_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j}$ we obtain the system of equations

$$
A u=b, \quad A_{i j}=a\left(\varphi_{j}, \varphi_{i}\right), \quad b_{i}=\left\langle l, \varphi_{i}\right\rangle
$$

A is symmetric positu definite (hence muetisle):

$$
\begin{aligned}
u^{\top} A u=\sum_{i j} u_{i} A_{i} ; u_{j} & =a\left(\sum_{j} u_{j} \varphi_{j}, \sum_{i} u_{i} \varphi_{i}\right) \\
& =a\left(u_{h}, u_{n}\right) \geq \alpha\left\|u_{n}\right\|_{i}^{2}>0 \text { unless } u=0 .
\end{aligned}
$$

Which bass should we choose?
right now were doing conforming $F E$, so we require the $\varphi_{0}(x, y)$ to belong to $H_{0}^{\prime}(\Omega)$.
one may show that a prececrise polynomial fun. belongs to $H^{\prime}(\Omega)$ of it is continuous across the edges of the mesh. (discontinuities in slope are OK: but the value cant jump)

A convenient basis to use is a nodal basis: $\varphi_{i}\left(\vec{x}_{j}\right)=\delta_{i j}$ the support of these bris functions is limited nader of the mesh bo the elements touchy the relevant node $\varphi_{i} \leftrightarrow \vec{x}_{i}$
for triangles, their's a $1-1$ correspondence between polynomials of degree p and their values at uniformly spooned points:

For linear and langue elements, the value of the function along anedge is umquely determine by its values at the nodes on that edge. So continuity across edges (between nodes) is automatic.
\square
along this edge, the cute function g of tho variables on esther side match up with the unique cultic function of 1 varath passing through thus 4 nodal values
for quadrilateral elements, the \# of dyrees of freedom cont match so nicely:
\int bilinear quadrilateral element $\left(Q_{1}\right)$

$$
\begin{array}{r}
1, x, y, x y \quad\left(\text { so not all } 2^{\text {nd }} \text { order polynomials }\right) \\
\text { are used }
\end{array}
$$

0 serendipity $1 x y x y x^{2} y^{2} x^{2} y x y^{2}$

biquadratic element (Q_{2})

$$
1 x \text { y } x y x^{2} y^{2} \quad x^{2} y x y^{2} x^{2} y^{2}
$$

Thees an the most commonly used C^{0} elements. For some problems, we need C^{\prime} elements (so the basis functions belong te $H^{2}(\Omega)$) Example: biharmome equation $\Delta^{2} u=f$

Argyris triangle, 21 d.o.f., $\left.\begin{array}{c}\text { all } 5 \text { th ode } \\ \text { polynomials }\end{array}\right)$

- means match normal derivative
- match value
- match gradients $\left(u_{x}, u_{y}\right)$

0 match $2^{\text {nd }}$ deaves $\left(u_{x x}, u_{x y}, u_{y y}\right)$

Clough-Tocher 12 do
maer-elemant (cubic on each sub-elemut)

$$
30=3(6)+3+3+2(3)
$$

Rather than compute $A_{i j}^{\prime \prime}=a\left(\varphi_{j}, \varphi_{i}\right)$ basis function by bases function (ie. node by rode), it'i mare efferent to do it element by clement.

$$
\begin{aligned}
& A_{i j}=\sum_{T \in T} a_{T}\left(\varphi_{j}, \varphi_{i}\right) \\
& a_{T}(u, v)=\iint_{T} \nabla u \cdot \nabla v d x d y
\end{aligned}
$$

$$
\sigma=\text { set of triangles }
$$

in mesh

On each triangle we compares a local stifferess matrix (with nodes numbered 1 .np) and then add these entries to the global stifferess matrix in the appropriate row i and columns local numberm

$$
A_{i j}^{d e c}=a_{T}\left(\varphi_{i}, \varphi_{j}\right)
$$

for $i=1.6$
$A^{\text {roc is a full npanp matrix }}$
but A is very sparse (so be sure to use a spare matrix for A)

Assembly of the local shifferess matnx is usually dome, using the change of variables formula. in the reference triangle

Numerical quedrabur
to actually do the integrals over the reference triangle, we use Gaussian quadratim: example 3 pants G, Q. rule: refits.

equal weight $W_{i}=\frac{A}{3}=\frac{1}{6}$
integrates polynomials of $d y \leq 2$ exactly -
example from book: 7 pt G, Q rub

$$
\left(\frac{9-2 \sqrt{15}}{21}, \frac{6+\sqrt{15}}{21}\right)\left(\frac{6-\sqrt{15}}{21}, \frac{9+2 \sqrt{15})}{21}\right)
$$

$$
\begin{aligned}
& w t_{\text {回 }}=9 / 180 \\
& w t_{\Theta}=\frac{155+\sqrt{15}}{2400} \\
& w t_{0}=\frac{155-\sqrt{15}}{2400} \\
& \text { suM }=1 / 2
\end{aligned}
$$

integrates polynomials of deg ≤ 5 exactly
in huT directory, I give you several G.Q, rules:

n	d	gauss 02	these high order
3	2	05	ones anent so
7	5	08	
16	8	easy to find	
37	13	19	
73	19	in the	

$2281 \operatorname{lec} 27$

Last tim: corcivity is important in Lax-Milgram (example)
stability: FE solin u_{h} is bod in terms of data $f:\left\|u_{h}\right\|_{1} \leq \frac{1}{Q}\|f\|_{0}$ Céa's lamina: $\left.\left\|u-u_{n}\right\|_{1} \leq \frac{1}{\alpha}, \inf _{v_{n} \in S_{n}}\left\|u-v_{h}\right\|_{1}\right\rangle$-best passible approx in S_{h} choose a bass, gat postern détimate linear system $A u=b$
today: implementation details
def: a function $u: \Omega_{h} \rightarrow \mathbb{R}$ is piecewise smooth if its restriction to each triangle is a C^{∞} function with derivatives that extend continuously to the boundary of the trangh. The limit need not be the sums when approved from a different triangle.
e.g. $\left\langle T_{1} \sqrt{T_{2}}\right\rangle \quad u(x, y)=\left\{\begin{array}{cc}x^{2}+7 y & (x, y) \in T_{1} \\ 3 e^{y} & (x, y) \in T_{2}\end{array}\right.$
is piecewise smooth. It doing matter how you define the function on the boundaries of the triangles. What does matter is then once you pick a triangle, you can redefine u and its derivatives on ∂T to get continuous functions on all of T (including ∂T)
theorem: A piecewise smooth function $u: \Omega_{h} \rightarrow \mathbb{R}$ belongs to $H^{m}\left(\Omega_{h}\right)$ if $u \in C^{m-1}\left(\Omega_{h}\right)$, ie. the limit of $\partial^{\alpha} u$ on the boundary of adjacent triangles is the same when approached fomether triangle for $|\alpha| \leqq m-1$. in particular, if u is precewse smooth, then $u \in H^{\prime}(\Omega) \Leftrightarrow u \in C^{\circ}(\Omega)$ i.e. u is continuous across triangles but its derivatives can jump.

A convenient basis to use is a nodal basis: $\varphi_{i}\left(\vec{x}_{j}\right)=\delta_{i j}$ \uparrow the support of these bris functions is limited nodes of the mesh bo the elements touchy the relevant node $\varphi_{i} \leftrightarrow \vec{x}_{i}$
for triangles, their's a $1-1$ correspondence between polynomials of degree p and their values at uniformly speed points:

$\frac{\text { nodes }}{1}=$ \#of polynomials	
P_{1}	$p=0$
P_{3}	constant fins

For linear and Ingle elements, the value of the function along anedge is umquely determined by its values at the nodes on that edge. So continuity across edges (between nodes) is automatic.
wive coble for of (x, y)
along this edge, the cable function of tho varalus on ertherside match up with the unique cultic function of 1 varuath passing through those 4 nodal values
for quadrilateral elements, the \# of dyrees of freedom cont match so nicely:

$$
\begin{array}{r}
1, x, y, x y \quad\left(\text { so not alt } 2^{\text {nd }}\right. \text { order polynomials } \\
\text { are used }
\end{array}
$$

Serendipity $1 \times y$ by $x^{2} y^{2} x^{2} y x y^{2}$
element
biquadratic element (Q_{2})

$$
1 x \text { y } x y x^{2} y^{2} \quad x^{2} y x y^{2} \quad x^{2} y^{2}
$$

Thees on the most commonly used C^{0} elements. For some problems, we need C^{\prime} elements (so the basis function belong bo $H^{2}(\Omega)$) Example: biharmome equation $\Delta^{2} u=f$

Argyris triangle, 21 d.o.f., $\binom{$ all 5 th orin }{ polynomials }

- means match normal dervatwe
- match value
- match gradients $\left(u_{x}, u_{y}\right)$

0 match $2^{\text {nd }}$ derive $\left(u_{x x}, u_{x y}, u_{y y}\right)$

Clough-Tocher 12 dof
macr-elemant (cubic on each sub-elemut)

$$
30=3(6)+3+3+2(3)
$$

Rather than compute $A_{1 j}^{\prime \prime}=a\left(\varphi_{j}, \varphi_{i}\right)$ basis function by bases function (ie. node by rode), it's mare efficient to do it element by clement.

$$
\begin{aligned}
& A_{i j}=\sum_{T \in,} a_{T}\left(\varphi_{j, 2}, \varphi_{i}\right) \\
& a_{T}(u, v)=\iint_{T} \nabla u \cdot \nabla v d x d y
\end{aligned}
$$

On each triangle we compute a local stifferess matrix (with nodes numbed 1., np) and then add these entries to the global stifferess matrix in the appropriate rows and columns local numbers

for $i=1-6$

$A^{\text {low is a full naans matrix }}$ for $j=1 \ldots 6$
we add because several triangle T are likely to
but A is very sparse (so be sure to use a sparse matrix for A) affect each entry of A

Let $I=\left[x_{k}, x_{k+1}\right] \leftarrow \ln 1 d$ the elements are intervals instead of triangles There are two basis functions with support on the interval: ${ }_{0}^{1} \sum_{x_{k}}^{\varphi_{k}} \int_{x_{k+1}}^{\varphi_{k+1}} \frac{\partial \varphi_{k}}{\partial \lambda}=-\frac{1}{2}$

$$
A_{i j}^{l_{i} c}=a_{I}\left(\varphi_{\ell_{i}} \varphi_{\ell_{i}}\right)=\int_{x_{k}}^{x_{k+1}} \frac{\partial \varphi_{j}^{\prime}}{\partial x} \frac{\partial \varphi_{l_{i}^{\prime}}}{\partial x} d x \Rightarrow A^{\ell_{0}}=\frac{1}{h}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right){ }^{x_{k}} x_{k+1} \frac{\partial \varphi_{k+1}}{\partial x}=\frac{1}{h}
$$ total to global mapping: $l_{1}=k, l_{2}=k+1$

sum the contrail ton fromerch interval $\rightarrow A=\frac{1}{h}\left(\begin{array}{cccc}1 & -1 & & \\ -1 & - & -1 & 1 \\ -1 & 2 & -1 \\ & -1 & 1\end{array}\right)$

In practice, it's often convenient to compute the local stiffness matrix using a reference element

$$
A_{i j}^{l_{0} c}=a_{T}\left(\varphi_{l_{j}}, \varphi_{l i}\right)=\iint_{T} \underbrace{}_{u_{\text {in the formula above }}^{\nabla_{x} \varphi_{l_{j}}} \cdot \nabla_{x} \varphi_{l_{i}}} d x d y
$$

Let $\psi_{i}(\xi, \eta)=\varphi_{l_{i}}(F(\xi, \eta)) \quad \begin{array}{ll}\xi \leftrightarrow \xi_{1} & x \leftrightarrow x_{1} \\ \eta \leftrightarrow \xi_{2} & y \leftrightarrow x_{2}\end{array}$ 3 flavors of chain rule: $\begin{cases}\frac{\partial \psi}{\partial \xi_{j}}=\sum_{k} \frac{\partial \varphi}{\partial x_{k}} \frac{\partial x_{k}}{\partial \xi_{j}} & \vec{x}=F(\vec{\xi}) \\ (\psi=\varphi \cdot F) & =D \varphi \cdot D F \\ \left(\nabla_{\xi} \psi\right)^{\top}=\left(\nabla_{x} \varphi\right)^{\top} \cdot D F-D F=\left(\begin{array}{ll}\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}\end{array}\right)\end{cases}$

The last one gives $\left(\nabla_{x} \varphi\right)^{\top}=\left(\nabla_{\xi} \psi\right)^{\top} \cdot(D F)^{-1}$ or $\nabla_{x} \varphi=(D F)^{-\top} \nabla_{\xi} \psi$

$$
\therefore A_{i j}^{\operatorname{lic}}=\iint_{R}\left[(D F)^{-T} \nabla_{\xi} \psi_{j}\right]_{\uparrow} \cdot\left[(D F)^{-T} \nabla_{\xi} \psi_{i}\right]|\operatorname{det} D F| d \xi d \eta
$$

The integrand is now a function of $\vec{\xi}$ only, and the basu functions $\psi_{1}, \ldots, \psi_{n p}$ do not change from triangle to triangle... only the mapping F from R to T changes.

Exampli: 1d quadratic elements

$$
I=\left[x_{2 k}, x_{2 k+2}\right]
$$

$$
x=F(\xi)=x_{2 k}+2 h \xi
$$

$$
D F(\xi)=2 h
$$

$$
\begin{aligned}
& \psi_{1}(\xi)=\frac{\left(\frac{1}{2}-\xi\right)(1-\xi)}{\left(\frac{1}{2}\right)(1)}=\frac{\frac{1}{2}-\frac{3}{2} \xi+\xi^{2}}{\frac{1}{2}}=2 \xi^{2}-3 \xi+1 \\
& \psi_{2}(\xi)=\frac{(\xi)(1-\xi)}{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}=-4 \xi^{2}+4 \xi \\
& \psi_{\xi}(\xi)=\frac{(\xi)\left(\xi-\frac{1}{2}\right)}{(1)\left(\frac{1}{2}\right)}=2 \xi^{2}-\xi \\
& A_{i j}^{l o c}=\int_{0}^{1}\left[(2 h)^{-1} \frac{\partial \psi_{j}}{\partial \xi}\right]\left[(2 h)^{-1} \frac{\partial \psi_{i}}{\partial \xi}\right]|2 h| d \xi=\frac{1}{2 h} \int_{0}^{1} \frac{\partial \psi_{j}}{\partial \xi} \frac{\partial \psi_{i}}{\partial \xi} d \xi \\
& \text { e.g. } \quad A_{13}^{l o c}=\frac{1}{2 h} \int_{0}^{1}(4 \xi-1)(4 \xi-3) d \xi=\frac{1}{2 h} \int_{0}^{1} 16 \xi^{2}-16 \xi+3 d \xi=\frac{1}{6 h}
\end{aligned}
$$

result: $A^{\text {loe }}=\frac{1}{h}\left(\begin{array}{ccc}7 / 6 & -4 / 3 & 1 / 6 \\ -4 / 3 & 8 / 3 & -4 / 3 \\ 1 / 6 & -4 / 3 & 7 / 6\end{array}\right)$

Example: $2 d$ isoparametric elements

$$
\begin{aligned}
\psi_{1}(\xi, \eta) & =(1-\xi-\eta)(1-2 \xi-2 \eta) \\
-\xi \quad \psi_{2}(\xi, \eta) & =(\xi)(2 \xi-1) \\
\psi_{3}(\xi, \eta) & =(\eta)(2 \eta-1) \\
\psi_{4}(\xi, \eta) & =(2 \xi)(2-2 \xi-2 \eta) \\
\psi_{\xi}(\xi, \eta) & =4 \xi \eta \\
\psi_{6}(\xi, \eta) & =(2 \eta)(2-2 \xi-2 \eta) \\
\binom{x}{y}=F\binom{\xi}{\eta} & =\sum_{k=1}^{6}\binom{x_{k}}{y_{k}} \psi_{k}(\xi, \eta)
\end{aligned}
$$

$$
D F=\left(\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \eta}
\end{array}\right)=\left(\begin{array}{ll}
\sum_{k} x_{k} \frac{\partial \psi_{k}}{\partial \xi}(\xi, \eta) & \sum_{k} x_{k} \frac{\partial \psi_{h}}{\partial \eta}(\xi, \eta) \\
\sum_{h} y_{h} \frac{\partial \Psi_{h}}{\partial T}(\xi, \eta) & \sum_{h} y_{h} \frac{\partial \psi_{k}}{\partial \eta}(\xi, \eta)
\end{array}\right)
$$

2×2 matrix depunlimy on ξ and η
brakikinto sum of scalar integrals

$$
A_{i j}^{\operatorname{loc}_{1}, k}=\iint_{R}\left[\operatorname{row}_{k}\left(D F^{-T}\right) \nabla_{\xi} \psi_{i}\right]\left[\operatorname{row}_{k}\left(D F^{-T}\right) \nabla_{\xi} \psi_{j}\right]|\operatorname{der} D F| \frac{j}{d \xi} d \eta
$$

This integral is mosteasily evaluated using Gaussian quadrature:
 $O(g-n p)$ work to form $E^{(h)}, O\left(g \cdot(n p)^{2}\right)$ to amputee $A^{\text {lock })^{h}}$ from $E^{(h)}\binom{$ Lever 13 Blast }{ speed }

$$
\begin{aligned}
& =\left(E^{(n) T} E^{(h)}\right)_{\ddot{j}}
\end{aligned}
$$

Numerical quadrature
to actually do the integrals over the reference triangle, we use Gaussian quadretux:
example 3 pants G, Q. rule:

equal weight $w_{i}=\frac{A}{3}=\frac{1}{6}$
integrates polynomials of $d e g \leq 2$
example from book: 7 pt G. Q, ruh

$$
\begin{aligned}
& w t_{1}=9 / 180 \\
& w t_{\Theta}=\frac{155+\sqrt{15}}{2400} \\
& w t_{0}=\frac{155-\sqrt{15}}{2400} \\
& \text { SuM }=1 / 2
\end{aligned}
$$

integrates polynomials of deg ≤ 5 exactly
in ha directory, I give you several G.Q. rules:
$\left.\begin{array}{c|cc}n & d & \\ \hline 3 & 2 & \text { gansu } \\ 7 & 5 & 05 \\ 16 & 8 & 08 \\ 37 & 13 & 13 \\ 73 & 19 & 19\end{array}\right\}$
these high ordo ones anent so easy to find in the literature?

228B Lee 28

Last time: (1) if u is precenic smooth, then $u \in H^{m}\left(\Omega_{Q}\right) \Leftrightarrow u \in C^{m-1}\left(\Omega_{h}\right)$
(2) nodal basis $\Rightarrow c^{0}$ elements (\$0 modeling values at common)
(3) C' elements are tricky (have to avoid jump in normal derivative)
(4) element by element assembly
today: (1) reference element for computing local stiffness matrix
(2) numencal quadmture
(3) interpolating f (use of a mass matrix)
(4) non-zero dirichlet data

Recap: element by element assembly
global stiffness matnx: $\quad A_{i j}=a\left(\varphi_{i}, \varphi_{j}\right)=\sum_{T \in T} \iint_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x d y$
or $\quad A_{i j}=\sum_{T} A_{i j}^{(T)}, \quad A_{i j}^{(T)}=\iint_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x d y$
Not: $A_{i ;}^{(T)}$ is zero unless nodes $i x ;$ both belong to triangle T
all other entries of $A^{(T)}$ are zero 9
To represent $A^{(T)}$, we just need the node numbers $l_{1}, l_{2}, l_{3}\binom{$ in general }{$l_{1}, \ldots, l_{n p}}$ and the 3×3 local stiffness matrix $A_{i j}^{l o c}$:

$$
\begin{aligned}
& A_{i j}^{l o c}=A_{l_{i} \ell_{j}}^{(T)}=\iint_{T} \nabla \varphi_{l_{i}} \nabla \varphi_{l_{j}} d x d y .
\end{aligned}
$$

In practice, it's often convenient to compete the local staffers) matrix using a reference element

$$
A_{i j}^{l_{i}}=a_{T}\left(\varphi_{l_{i}}, \varphi_{l_{j}}\right)=\iint_{T} \underbrace{\nabla_{x} \varphi_{l_{i}}}_{\text {w in the formula above }} \cdot \nabla_{x} \varphi_{l j} d x d y
$$

Let $\psi_{i}(\xi, \eta)=\varphi_{l i}(F(\xi, \eta)) \quad \begin{array}{ll}\xi \leftrightarrow \xi_{1} & x \leftrightarrow x_{1} \\ & \eta \leftrightarrow \xi_{2}\end{array} \quad y \leftrightarrow x_{2}$

$$
3 \text { flavors of chain rule: } \begin{cases}\frac{\partial \psi}{\partial \xi_{j}}=\sum_{k} \frac{\partial \varphi}{\partial x_{k}} \frac{\partial x_{k}}{\partial \xi_{j}} & \vec{x}=F(\vec{\xi}) \\
D \psi=D \cdot F) & =D \varphi \cdot D F \\
\left(\nabla_{\xi} \psi\right)^{\top}=\left(\nabla_{x} \varphi\right)^{\top} \cdot D F \quad D F=\left(\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right)\end{cases}
$$

The last one gives $\left(\nabla_{x} \varphi\right)^{\top}=\left(\nabla_{\xi} \psi\right)^{\top} \cdot(D F)^{-1}$ or $\nabla_{x} \varphi=(D F)^{-\top} \nabla_{\xi} \psi$

$$
\therefore A_{i j}^{\operatorname{loc}}=\iint_{R}\left[(D F)^{-T} \nabla_{\xi} \psi_{j}\right]_{\uparrow} \cdot\left[(D F)^{-T} \nabla_{\xi} \psi_{i}\right]|\operatorname{det} D F| d \xi d \eta
$$

The integrand is now a functor of $\vec{\xi}$ only, and the base functions $\psi_{1}, \ldots, \psi_{n p}$ do not change from trangh to triangle... only the mapping F from R to T changes.

Exampl: Id quadratic elements

$$
I=\left[x_{2 k}, x_{2 k+2}\right]
$$

node numbers of this element

$$
\begin{aligned}
& x=F(\xi)=x_{2 k}+2 h \xi \\
& D F(\xi)=2 h
\end{aligned}
$$ $l_{1}=2 k, l_{2}=2 k+1, l_{3}=2 k+2 \quad \xi=0 \quad \frac{1}{2} \quad 1$

$$
\begin{aligned}
& \frac{\xi}{4} \begin{array}{l}
\psi_{1}(\xi)=\frac{\left(\frac{1}{2}-\xi\right)(1-\xi)}{\left(\frac{1}{2}\right)(1)}=\frac{\frac{1}{2}-\frac{3}{2} \xi+\xi^{2}}{\frac{1}{2}}=2 \xi^{2}-3 \xi+1 \\
\frac{\xi}{\xi} \\
\psi_{2}(\xi)=\frac{(\xi)(1-\xi)}{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}=-4 \xi^{2}+4 \xi \\
\psi_{\xi}(\xi)=\frac{(\xi)\left(\xi-\frac{1}{2}\right)}{(1)\left(\frac{1}{2}\right)}=2 \xi^{2}-\xi \\
A_{i j}^{l o}=\int_{0}^{1}\left[(2 h)^{-1} \frac{\partial \psi_{j}}{\partial \xi}\right]\left[(2 h)^{-1} \frac{\partial \psi_{i}}{\partial \xi}\right]|2 h| d \xi=\frac{1}{2 h} \int_{0}^{1} \frac{\partial \psi_{j}}{\partial \xi} \frac{\partial \psi_{i}}{\partial \xi} d \xi
\end{array}
\end{aligned}
$$

e.g. $\quad A_{13}^{\text {lc }}=\frac{1}{2 h} \int_{0}^{1}(4 \xi-1)(4 \xi-3) d \xi=\frac{1}{2 h} \int_{0}^{1} 16 \xi^{2}-16 \xi+3 d \xi=\frac{1}{6 h}$ result: $A^{\text {lee }}=\frac{1}{h}\left(\begin{array}{ccc}7 / 6 & -4 / 3 & 1 / 6 \\ -4 / 3 & 8 / 3 & -4 / 3 \\ 16 & -4 / 3 & 7 / 6\end{array}\right)$
 each box holds $A^{(T)}$ from page 1 as T (or better, I) ranges our all the elements

Example: ad isoparamitric elements

$$
\begin{aligned}
& \psi_{1}(\xi, \eta)=(1-\xi-\eta)(1-2 \xi-2 \eta) \\
& \psi_{2}(\xi, \eta)=(\xi)(2 \xi-1) \\
& \psi_{3}(\xi, \eta)=(\eta)(2 \eta-1)
\end{aligned}
$$

$$
f_{y}(\xi, \eta)=(2 \xi)(2-2 \xi-2 n)
$$

$$
t_{s}(\xi, \eta)=4 \xi \eta
$$

$$
\psi_{6}(\xi \eta)=(2 \eta)(2-2 \xi-2 \eta)
$$

$$
\begin{gathered}
\left(x_{1}, y_{\eta}\right) \quad\binom{x}{y}=F\binom{\xi}{\eta}=\sum_{k=1}^{6}\binom{x_{k}}{y_{h}} \psi_{k}(\xi, \eta) \\
D F=\left(\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial r} & \frac{\partial g}{\partial \eta}
\end{array}\right)=\left(\begin{array}{ll}
\sum_{k} x_{k} \frac{\partial \psi_{k}}{\partial \xi}(\xi, \eta) & \sum_{k} x_{k} \frac{\partial \psi_{h}}{\partial \eta}(\xi, \eta) \\
\sum_{h} y_{h} \frac{\partial \psi_{n}}{\partial \tau}(\xi, \eta) & \sum_{h} y_{h} \frac{\partial \psi_{k}}{\partial \eta}(\xi, \eta)
\end{array}\right)
\end{gathered}
$$

2×2 matrix depulimon ξ and η
in the homework; $\quad\left(x_{4}, y_{4}\right)=\frac{1}{2}\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right]$ and $\left(x_{6}, y_{6}\right)=\frac{1}{2}\left[\left(x_{1}, y_{1}\right)+\left(x_{3}, y_{3}\right)\right]$ so $\quad\binom{x}{y}=F\binom{\xi}{\eta}=\binom{x_{1}+\left(x_{2}-x_{1}\right) \xi+\left(x_{3}-x_{1}\right) \eta+\left(x_{5}-\frac{x_{2}+x_{3}}{2}\right) 4 \xi \eta}{y_{1}+\left(y_{2}-y_{1}\right) \xi+\left(y_{3}-y_{1}\right) \eta+\left(y_{5}-\frac{y_{2}+y_{3}}{2}\right) 4 \xi \eta}$
because of the curved boundary, the Jawtian depends on ξ and η :

$$
\begin{aligned}
& D F=\left(\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial_{y}}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right)=\left(\begin{array}{ll}
\left(x_{2}-x_{1}\right)+\left(x_{5}-\frac{x_{2}+x_{3}}{2}\right) 4 \eta & \left(x_{3}-x_{1}\right)+\left(x_{5}-\frac{x_{1}+x_{3}}{2}\right) 4 \xi \\
\left(y_{2}-y_{1}\right)+\left(y_{5}-\frac{y_{2}+y_{2}}{2}\right) 4 \eta & \left(y_{3}-y_{1}\right)+\left(y_{5}-\frac{y_{2}+y_{3}}{2}\right) 4 \xi
\end{array}\right) \\
& D F=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad D F^{-T}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)<\text { also a function }
\end{aligned}
$$

Now that we have $D F^{-\top}$ and $\psi_{1}, \psi_{2}, \ldots, \psi_{6}$ we can compute

$$
A_{i j}^{b_{0} c}=\iint_{R}\left[(D F)^{-T} \nabla_{\xi} \psi_{i}\right] \cdot\left[(D F)^{-1} \nabla_{\xi} \psi_{j}\right]|\operatorname{det} D F| d \xi d \eta
$$

There are \$6 integrals to be performed here. It turns out a lot of the work can be re-used:
step 1: get rid of the dot product (do the x and y derivatives separately)

$$
\begin{aligned}
& A_{i j}^{\text {look }}=\iint_{R} \underbrace{\left[\operatorname{row}_{k}\left(D F^{-\top}\right) \nabla_{\xi} \psi_{i}\right]\left[\operatorname{row}_{k}\left(D F^{-T}\right) \nabla_{\xi} \psi_{j}\right]|d i+D F|}_{\omega(\xi, \eta)} d \xi d \eta
\end{aligned}
$$

step 2: use Gaussian quadrature to do the integrals over R

$$
\iint_{R} w(\xi, \eta) d \xi d \eta \approx \sum_{m=1}^{g} w\left(\xi_{m}, \eta_{m}\right) \underbrace{w_{m}} \int_{\text {quadrature points }} \text { weights }
$$

In our case we find that $A_{i j}^{\text {doc }{ }^{k}}=\sum_{m=1}^{g} E_{m i}^{(h)} E_{m j}^{(k)}$
where

$$
\begin{aligned}
& E_{m j^{\prime}}^{(k)}=[\operatorname{row}_{k}\left(D F\left(\xi_{m}, \eta_{m}\right)^{-T}\right) \underbrace{\nabla_{\xi} \psi_{j}\left(\xi_{m}, \eta_{m}\right)}] \sqrt{\sqrt{\operatorname{detDF}\left(\xi_{m}, \eta_{m}\right) \mid w_{m}}} \\
& 1 \leq m \leq g \\
& 1 \leq j \leq n p=6 \\
& \text { these numbers can be } \\
& \text { computed once and for all } \\
& \text { (derivatives of the basis } \\
& \text { (functions at the ansis points) } \\
& O(g \cdot n p) \text { work to form } E^{(k)} \\
& O\left(g \cdot(n p)^{2}\right) \text { work to compute } A^{\log h}=\underbrace{E^{(h)} T^{(h)}}_{\text {matrix milliphlication }} \text { (at Level3-BLAS speed) }
\end{aligned}
$$

Numerical quedraburi
to actually do the integrals over the reference trangh, we use Gaussian quadrate:
example 3 pant G.Q. rule:

equal weight $w_{i}=\frac{A}{3}=\frac{1}{6}$ integrates polynomials of $\mathrm{deg} \leq 2$ exactly.
example from book: 7 pt G Q ruh

integrates polynomials of deg ≤ 5 exactly
in hw7 directory, I give you several G.Q, rules:

Interpdating $f: W_{e}$ need to solve $a\left(U_{h}, v_{h}\right)=\left\langle\ell, v_{h}\right\rangle \quad \forall v_{h} \in V$
where $a\left(u_{h}, v_{h}\right)=\iint_{\Omega_{h}} \nabla u_{h} \cdot \nabla v_{h} d x d y$

$$
\left\langle l, v_{h}\right\rangle=\iint_{\Omega_{h}} f v_{h} d x d y
$$

In practice, we usually replace f by $\tilde{f}(x, y)=\sum_{k} f\left(x_{k}, y_{k}\right) \varphi_{h}(x, y)$ i.e we interpolate f from its values at the nodes using the same basis functions we use to represent the solution.
error:

$$
a\left(u_{h}-\tilde{u}_{h}, v_{h}\right)=\left\langle\ell-\tilde{l}, v_{h}\right\rangle=\iint_{\Omega_{h}}(f-\tilde{f}) v_{L} d x d y
$$

choosing $v_{h}=u_{h}-\tilde{u}_{h}$ we get $\left\|u_{h}-\tilde{u}_{h}\right\|_{1} \leqslant \frac{1}{\alpha}\|f-\tilde{f}\|_{0}$ (as in $\left.\begin{array}{l}\text { Lee 25 }\end{array}\right)$
linear elements: if $f \in H^{2}\left(\Omega_{h}\right)$ then $\|f-\tilde{f}\| \leq C\|f\|_{2} h^{2}$ quadratic $n:$ if $f \in H^{3}\left(\Omega_{h}\right)$ the $\|f-\tilde{f}\| \leq C\|f\|_{3} h^{3}$
so the error committed by interpolating f is one order higher in h than the errorestimates well derive for u_{h} next week.
\therefore interpolating f does not significantly affect convergence of the FE method.
mass matrix: $u_{h}(x, y)=\sum_{k} u_{k} \varphi_{h}(x, y), \tilde{f}(x, y)=\sum_{k} f_{k} \varphi_{k}(x, y)$

$$
\begin{aligned}
& a\left(u_{h}, \varphi_{i}\right)=\left\langle\tilde{l}, \varphi_{i}\right\rangle \quad i \leq i \leq n \\
& \sum_{k} a\left(\varphi_{k}, \varphi_{i}\right) u_{k}=\sum_{k}\left(\iint_{\Omega_{h}} \varphi_{k} \varphi_{i} d x d y\right) f_{k} \\
& A u=M f \quad A_{i j}=a\left(\varphi_{i}, \varphi_{j}\right), \quad M_{i j}=\iint \varphi_{i} \varphi_{j} d x d y
\end{aligned}
$$

M should be assembled element by element as well, but the formulas are simpler since there ar no derivatives involved.

$$
\begin{aligned}
& M=\sum_{T} M_{i j}^{(T)}, \quad M_{l_{i} l_{j}}^{(T)}=M_{l_{j}}^{l_{c}}=\iint_{T} \varphi_{l_{i}} \varphi_{l_{j}} d x d y \\
& =\iint_{R} \psi_{i} \psi_{j}|\operatorname{det} D F| d \xi d \eta \\
& \text { bass } f(x) \text { in } \\
& \text { ref. triangle } \\
& =\sum_{m=1}^{g} E_{m i} E_{m j}=\left(E^{\top} E\right)_{i j}
\end{aligned}
$$

$$
E_{m j}=\psi_{j}\left(\xi_{m}, \eta_{m}\right) \sqrt{\left|\operatorname{de}+D F\left(\xi_{m}, \eta_{m}\right)\right| w_{m}}
$$

$\xi_{m} M_{m} w_{m}$ quadrature points and weights

Nonzero bic's: want to solve $-\Delta u=f$ in Ω

$$
x=g \text { on } \partial \Omega
$$

idea: pick any function u_{0} that equals g on $\partial \Omega$. $\left(u_{0} \in H^{\prime}(\Omega)\right)$
decompose $u=u_{0}+u_{1}, u_{1} \in H_{0}^{\prime}(\Omega)$
Then $-\Delta u=-\Delta u_{0}-\Delta u_{1}=f$
so u, should satisfy

$$
\begin{aligned}
&-\Delta u_{1}=f+\Delta u_{0} \\
& u_{1}=0 \quad \text { in } \Omega \\
& \text { on } \partial \Omega
\end{aligned}
$$

hit with test fins integrate by pacts:

$$
a\left(u_{1}, v\right)=\iint_{\Omega} f_{v} d x d y-a\left(u_{0}, v\right) \quad \forall v \in H_{0}^{\prime}(\Omega)
$$

the RHS is a bounded linear functional on $H_{0}^{\prime}(\Omega)$, so Lax-Migran gives a unique solution $U_{1} \in H_{0}^{\prime}(\Omega)$ such that $u=u_{0}+u_{1}$ solves the original problem.

The finite element approach is identical.
Let $S^{h} C H^{\prime}(\Omega)$ contain all $\Lambda_{\text {basis functions on the mesh }}$ (even those corresponding to nodes on the boundary)
and let $S_{0}^{h}=H_{0}^{\prime}(\Omega) \cap S_{h}$ be the linear span of the basis functions corresponding to interior nodes.

We use the basis function on the boundary to represent Uo,h

$$
u_{0, h}(x, y)=\sum_{k \in K_{b d r y}} g_{k} \varphi_{k}(x, y)
$$

$$
\left.\begin{array}{rl}
K_{b d y}= & \left\{k:\left(x_{k}, y_{k}\right) \in \partial \Omega_{h}\right\} \\
= & \text { sector boundary } \\
\text { node numbers }
\end{array}\right\} \begin{array}{r}
g_{k}=g\left(x_{h}, y_{k}\right)= \\
\text { prescribed } \\
\text { values on } \\
\text { boundary }
\end{array}
$$

we decompose $u_{h}=u_{0, h}+u_{1, h}$ and solve

$$
a\left(u_{1, h}, v_{h}\right)=\left\langle\tilde{l}_{,} v_{h}\right\rangle-a\left(u_{0, h}, v_{h}\right) \quad \forall v_{h} \in S_{0}^{h}
$$

Note that $u_{1, h}$ and v_{h} only involve interior bays functions white \tilde{f} (the interpolated version of f) and $U_{0, h}$ also move boundary nodes.
$A=$ usual stiffness matrix ($N_{\text {int }} \times N_{\text {int }}$)

$$
M=\text { mass matrix } \quad\left(N_{\text {int }} \times N\right) \quad N=N_{\text {int }}+N_{\text {bd }}
$$

$$
B=\text { boundary stiffness matrix }\left(N_{\text {int }} \times N_{\text {bd }}\right)
$$

To implement this, I would have each node carry: x, y, f, u, flag, eqn
intertor or bay equation number τ (mapping to rows and columns of B)
A and B can be updated simultaneously from the local stifferes notion:

$$
\begin{aligned}
& \text { for } i=1 . .6 \\
& \text { if } f \operatorname{lag}\left(l_{i}\right)=0 \quad \| \begin{array}{l}
\text { dag nodes rolelvant } \\
\text { to rows }
\end{array} \\
& \text { for } j=1.6 \\
& \text { If } f \log \left(l_{j}^{\prime}\right)=0 \\
& A\left(\operatorname{leqn}\left(l_{i}\right), \operatorname{eqn}\left(l_{j}\right)\right)+=A_{i j}^{l_{0} c} \\
& \text { else } \\
& B\left(\operatorname{eqn}\left(l_{i}\right), \operatorname{eqn}\left(l_{j} j\right)+=A_{i j}^{l_{i}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& u_{1, h}=\sum_{k \in K_{\text {int }}} u_{k} \varphi_{k}, \tilde{f}=\sum_{k \in K_{\text {all }}} f_{k} \varphi_{k}, \quad u_{0, h}=\sum_{k \in K_{\text {dr }}} g_{k} \varphi_{k} \\
& K_{\text {all }}=K_{\text {dry }} \cup K_{\text {int }} \longleftarrow \text { interior nodes } \\
& \sum_{k \in K_{\text {int }}} a\left(\varphi_{i}, \varphi_{k}\right) u_{k}=\sum_{k \in K_{\text {all }}}\left(\iint \varphi_{i} \varphi_{k} d_{x} d_{y}\right) f_{k}-\sum_{k \in K_{\text {bury }}} a\left(\varphi_{i}, \varphi_{k}\right) g_{k} \\
& A u=M f-B g \\
& A]^{u}=M \int^{f}-B^{9}
\end{aligned}
$$

$228 B$ Lee 29

Last time: (i) reference element for computing local stiffens matrix
(a) change of variables formula for the integral
(D) chain rule to comet deviaturs from $\frac{\partial}{\partial x,}, \frac{\partial}{\partial y}$ into $\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}$
(c) numencal quadrature is used to do the integrals (most of the work bolls down to matrix-matrix multiplication)

Today= (i) finish discussing implementation issues
(a) interior and boundary modes
(b) interpolating f
(c) non-zer druchlet data
(d) computing errors in the homework
comment on Dirichlet conditions:
I've beenwiting $A_{i j}=\iint_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x d y$
butactually the stiffness matrix only involves interior nodes '\& '
2 options: (1) number the nodes so that interornodes come first
or (2) maintain a separate numbering of the interior nodes
(sweep through the mesh once to set up this numberng)

$$
\begin{aligned}
& k=1, b=1 \\
& \text { for } i=\operatorname{lon} \\
& \text { if flag }(i)=0 \\
& \text { eqn }(i)=k+t \longleftarrow \text { interior } \\
& \text { elk } \\
& \text { numbering } \\
& \text { eqn }(i)=b+t \longleftarrow \begin{array}{c}
\text { boundary } \\
\text { numbing }
\end{array}
\end{aligned}
$$

to avoid excessive notation, let's pretend that the interior nodes come first in th list, lie.

$$
\begin{array}{ll}
\operatorname{eqn}(i)=i & 1 \leq i \leq N_{\text {int }} \\
\operatorname{eqn}(i)=i-N_{\text {int }} & N_{\text {in }}+1 \leq i \leq N
\end{array}
$$

Interpdating $f: W_{e}$ need to solve $a\left(U_{h}, v_{h}\right)=\left\langle\ell, v_{h}\right\rangle \quad \forall v_{h} \in V$
where $a\left(u_{h}, v_{h}\right)=\iint_{\Omega_{h}} \nabla u_{h} \cdot \nabla v_{h} d x d y$

$$
\left\langle l, v_{h}\right\rangle=\iint_{\Omega_{h}} f v_{h} d x d y
$$

In practice, we usually replace f by $\tilde{f}(x, y)=\sum_{k} f\left(x_{k}, y_{k}\right) \varphi_{h}(x, y)$ i.e we interpolate f from its values at the nodes using the same basis functions we use to represent the solution.
error:

$$
a\left(u_{h}-\tilde{u}_{h}, v_{h}\right)=\left\langle\ell-\tilde{l}, v_{h}\right)=\iint_{\Omega_{h}}(f-\tilde{f}) v_{h} d x d y
$$

choosing $v_{h}=u_{h}-\tilde{u}_{h}$ we get $\left\|u_{h}-\tilde{u}_{h}\right\|_{1} \leqslant \frac{1}{\alpha}\|f-\tilde{f}\|_{0} \quad\binom{$ as in }{ Lee 25 }
linear elements: if $f \in H^{2}\left(\Omega_{h}\right)$ then $\|f-\hat{F}\|_{0} \leq C|f|_{2} h^{2}$ quadratic $n:$ if $f \in H^{3}\left(\Omega_{h}\right)$ the $\|f-\tilde{f}\|_{0} \leq C|f|_{3} h^{3}$
so the error committed by interpolating f is one order higher in h than the errorestimates well derive for u_{h} shortly
\therefore interpolating f does not significantly affect convegenese of the FE method.
mass matrix: $\quad u_{k}(x, y)=\sum_{k=1}^{N_{n}{ }_{k}} u_{k} \varphi_{k}(x, y), \quad \tilde{f}(x, y)=\sum_{k=1}^{N} f_{k} \varphi_{k}(x, y)$

$$
\begin{gathered}
a\left(u_{h}, \varphi_{i}\right)=\left\langle\tilde{l}, \varphi_{i}\right\rangle \quad i \leq i \leq N_{i n t} \\
\sum_{k} a\left(\varphi_{k}, \varphi_{i}\right) u_{k}=\sum_{k}\left(\iint_{\Omega_{h}} \varphi_{k} \varphi_{i} d x d y\right) f_{k} \\
A u=M f, \quad A_{i j}=a\left(\varphi_{i}, \varphi_{j}\right), M_{i j}=\int \varphi_{i} \varphi_{j} d x d y \\
1 \leq i, j \leq N_{\text {int }} \quad 1 \leq i s N_{\text {int },}, j \leq N
\end{gathered}
$$

M should be assembled element by element as well, but the formulas are simpler since there ar no derivatives involved.

$$
\begin{aligned}
& M=\sum_{T} M_{i j}^{(T)}, \quad M_{l_{i} l_{j}^{\prime}}^{(T)}=M_{i j}^{l_{j c}}=\iint_{T} \varphi_{l_{i}} \varphi_{l_{j}} d x d y \\
& =\iint_{R} \psi_{i} \psi_{j}|\operatorname{det} D F| d \xi d \eta \\
& \text { basis } f(n) \text { in } \\
& \begin{array}{l}
\text { nesis.trinamble } \\
\text { nev }
\end{array}=\sum_{m=1}^{9} E_{k i} E_{m j}=\left(E^{\top} E\right)_{i j}
\end{aligned}
$$

$$
E_{m j}=\psi_{j}\left(\xi_{m}, \eta_{m}\right) \sqrt{1 \operatorname{de}+D F\left(\xi_{m}, \eta_{m}\right) / w_{m}}
$$

ξ_{m}, m_{m}, w_{m} quadrature points and weights

Nonzero bic's: want to solve $-\Delta u=f$ in Ω

$$
x=g \text { on } \partial \Omega
$$

idea: pick any function u_{0} that equals g on $\partial \Omega$. $\left(u_{0} \in H^{\prime}(\Omega)\right)$
decompose $u=u_{0}+u_{1}, \quad u_{1} \in H_{0}^{\prime}(\Omega)$
Then $-\Delta u=-\Delta u_{0}-\Delta u_{1}=f$
so U, should satisfy

$$
\begin{aligned}
-\Delta u_{1} & =f+\Delta u_{b} \quad \text { in } \Omega \\
u_{1} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

hit with test fin, integrate by parts:

$$
a\left(u_{1}, v\right)=\iint_{\Omega} f \cdot d x d y-a\left(u_{0}, v\right) \quad \forall v \in H_{0}^{\prime}(\Omega)
$$

the RHS is a bounder linear functional on $H_{0}^{\prime}(\Omega)$, so Lax-Milgran gives a unique solution $U_{1} \in H_{0}^{\prime}(\Omega)$ such that $u=u_{0}+u_{1}$ solves the original problem.

The finite element approach is identical.
Let $S^{h} \subset H^{\prime}(\Omega)$ contain all balas functions on the mesh (even those corresponding to nodes on the boundary)
and let $S_{0}^{h} \subset H_{0}^{\prime}(\Omega) \cap S_{h}$ be the linear span of the bass functions corresponding to interior nodes.

We use the basis function on the boundary to represent $U_{0, h}$

$$
u_{0, h}(x, y)=\sum_{k \in K_{b d r y}} g_{k} \varphi_{k}(x, y)
$$

$$
\begin{aligned}
K_{b d y}= & \left\{k:\left(x_{h}, y_{k}\right) \in \partial \Omega_{h}\right\} \\
= & \text { sector boundary } \\
& \text { node numbers } \\
g_{k}=g\left(x_{h}, y_{h}\right)= & \text { presconbed } \\
& \text { values on } \\
& \text { boundary }
\end{aligned}
$$

$$
a\left(u_{1, h}, v_{h}\right)=\left\langle\tilde{l}^{\prime}, v_{h}\right\rangle-a\left(u_{0, h}, v_{h}\right) \quad \forall v_{h} \in S_{0}^{h}
$$

Note that $u_{1, h}$ and v_{h} only involve interior bays functions white \tilde{f} (the interpolated version of f) and $U_{0, h}$ also move boundary nodes.
$A=$ usual stiffness matrix ($N_{\text {int }} \times N_{\text {int }}$)

$$
M=\text { mass matrix } \quad\left(N_{\text {int }} \times N\right) \quad N=N_{\text {int }}+N_{\text {bdy }}
$$

$$
B=\text { boundary stiffness matrix }\left(N_{\text {int }} \times N_{b d y}\right)
$$

To implumit this, I would have each node carry: $x, y, f, u, f l a g$, eqn
interior or bay equation number \mathcal{T} (mapping to rows and columns of B)
A and B can be updated simultaneously from the local stiffens matrix:

$$
\begin{aligned}
& \text { for } i=1 . .6 \\
& \text { if } f \operatorname{lag}\left(l_{i}\right)=0 \quad \text { "bd modes romelevant } \\
& \text { for } j=1.6 \\
& \text { If } f \log \left(l_{j}\right)=0 \\
& \text { Align } \left.\left(l_{i}\right) \operatorname{egn}\left(l_{j}\right)\right)+=A_{i j}^{l_{0 c}} \\
& \text { else } \\
& B\left(\operatorname{eqn}\left(l_{i}\right) \text { eq }\left(l_{j}\right)\right)+A_{i j}^{\text {lc }} \\
& M\left(\operatorname{equ}\left(l_{i}\right), l_{j}\right)+=M_{i j}^{l_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{1, h}=\sum_{k \in K_{\text {int }}} u_{k} \varphi_{k}, \tilde{f}=\sum_{k \in K_{\text {all }}} f_{k} \varphi_{k}, \quad u_{0, h}=\sum_{k \in K_{b d y}} g_{k} \varphi_{k} \\
& K_{\text {all }}=K_{\text {dry }} \cup K_{\text {int }} \text {-interior nodes } \\
& \sum_{k \in K_{\text {int }}} a\left(\varphi_{i}, \varphi_{k}\right) u_{k}=\sum_{k \in K_{\text {all }}}\left(\iint \varphi_{i} \varphi_{k} d x d_{y}\right) f_{k}-\sum_{k \in K_{\text {bury }}} a\left(\varphi_{i}, \varphi_{k}\right) g_{k} \\
& A u=M f-B g \\
& A\left\|^{u}=M-B\right\|^{f}
\end{aligned}
$$

computing errors in the homework. One you get the solution, you need to compute

$$
\left\|u_{h}-u\right\|_{0}=\sqrt{\iint_{\Omega}\left(u_{h}(x, y)-u(x, y)\right)^{2} d x d y}
$$

and

$$
\left|u_{h}-u\right|_{1}=\sqrt{\iint_{\Omega}\left|\nabla\left(u_{h}(x, y)-u(x, y)\right)\right|^{2} d x d y}
$$

These integrands may be brodeen up as $\iint_{\Omega} \ldots \cdot d x d y=\sum_{T} \iint_{T} \cdots d x d y+\sum_{S} \int_{S} \cdots d x d y$ over each sliver , $u_{h}(x, y)$ is zero and you should integrate $u(x, y)^{2}$ or $\left|\nabla_{u}(x, y)\right|^{2}$ by hand.
\uparrow shivers active mesh.

Over each trangh, we us the reference element to do the integration

$$
\begin{aligned}
w(x, y) & =u_{h}(x, y)-u(x, y) \\
\iint_{T} w^{2} d x d y & =\iint_{R}(w \circ F)^{2}|d i+D F| d \xi d \eta \\
& =\sum_{m} w\left(F\left(\xi_{m}, \eta_{m}\right)\right)^{2}\left|d t+D F\left(\xi_{m}, \eta_{m}\right)\right| w_{m}
\end{aligned}
$$

so you just have 6 evaluate the errors wo at the images of the gangs points in T sends on ξ, η only
in the isoparametne
case \uparrow

$$
\text { note that } w\left(F\left(\xi_{m}, \eta_{m}\right)\right)=\underbrace{\sum_{i=1}^{6} u_{l i} \psi_{i}\left(\xi_{m}, \eta_{m}\right)-u\left(F\left(\xi_{m}, \eta_{m}\right)\right)}
$$

similarly

$$
\iint_{T}|\nabla w|^{2} d x d y=\iint_{R}\left|\nabla^{w} \sim \circ F\right|^{2}|d+\nabla F| d \xi d \eta=\sum_{m} \mid \nabla_{x} w\left(\left.F\left(\xi_{m}, \eta_{m}\right)\right|^{2}\left|d r \nabla F\left(\xi_{m}, \eta_{m}\right)\right| w_{m}\right.
$$

where

$$
\nabla_{x} w\left(F\left(\xi_{m}, \eta_{m}\right)\right)=\sum_{i=1}^{6} u_{l_{i}} \underbrace{D F\left(\xi_{m} \eta_{m}\right)^{\top} \nabla_{\xi} \psi_{i}\left(\xi_{m} \eta_{m}\right)}_{\nabla_{x} \varphi_{l_{i}}\left(F\left(\xi_{m}, \eta_{m}\right)\right)}-\underbrace{\boldsymbol{c}_{m},\left(F\left(\xi_{m} \eta_{m}\right)\right)}_{\left.\left.\begin{array}{c}
u_{x} \\
u_{x} \\
u_{y}
\end{array}\right) \text { calf(} \xi_{m}, \eta_{m}\right)}
$$

228B Rec 30

Last trim: (1) two ways of settim up th data structure for solving the
(a) eliminate the bounden node to get an $N_{\text {ant }} \times N_{\text {int }}$ system Dirchletpollem
\Rightarrow-(b) zero out the rows and columns of A corropondmy to bounday nodes and put 1's on the diagonal there
(2) nonzero s/c's: decompose $u_{h}=\underbrace{\sum_{k \in K_{m}, m_{k}} u_{k} \varphi_{k}}_{u_{h}^{(1)}}+\underbrace{\sum_{k \in K_{b}+\lambda y} u_{k} \varphi_{k}}_{u_{h}^{(())}}$
solve

$$
\begin{aligned}
& a\left(u_{h}^{(1)}, v_{h}\right)=\left\langle l, v_{h}\right)-a\left(u_{h}^{(0)}, v_{h}^{\prime}\right) \quad \forall v_{h} \in S_{0}^{h} \in \begin{array}{c}
\text { test fininetions } \\
\text { stilizeo on } \\
\text { bdry }
\end{array} \\
& \text { or } A u^{(1)}=M f-B u^{(0)} \longleftarrow
\end{aligned}
$$

in the (b) strategy above, youve simply corrected the error you made by zeroing out the boundary node columns:
$\hat{\imath}$ want this column to bezero si stfetness matrix is symmetric. you know the value of u_{j} for this colima since ($x ; y, y$) II out the boundary. So just move it to the RHS

$$
\left(\begin{array}{ccc}
* & 0 & * \\
0 & 1 & 0 \\
0 & 0.000 \\
* & 0 & *
\end{array}\right)(u)=M f-\left(\begin{array}{l}
* \\
0 \\
0 \\
y_{x}
\end{array}\right) u_{j} \quad\binom{\text { also ned torero ont }}{\text { that rain of }}
$$

doing this for all the bdry moly gives a system like for the unknown interior values.
(3) competing error on the wash.

Remark: method (a) is not difficult tomplement either, and is particularly useful for problems in fluid mechanics where you use quadratic elements for velonty and linearellements for pressure.

Today: last steps of the error analysis.
we know $\left\|u_{h}-u\right\|_{1} \leq \frac{1}{\alpha} \inf _{v_{h} \in S_{h}}\left\|v_{h}-u\right\|_{1} \leq \frac{1}{\alpha}\left\|I_{h} u-u\right\|_{1}$ so our final task is to estimate the interpolation error $\left\|u-I_{h} u\right\|_{1}$
main steps:
(i) on the reference triangle, for integers $t \geq 2 \quad \exists c$, depending on t such that $\|u-I\|_{t, R} \leq\left. C_{1}(t)\left|u-I u \|_{t, R}=C_{1}(t)\right| u\right|_{t, R}$ where In is the polynomial of degree $t-1$ that agrees with u at the $\frac{t(t+1)}{2}$ uniformly spaced points on the triangle.
examples: $\quad t=2$ \square

$$
\begin{aligned}
& \operatorname{Iu}(\xi, \eta)=u_{2} \xi+u_{3} \eta+u_{1}(1-\xi-\eta) \\
& \operatorname{Iu}(\xi, \eta)=\sum_{k=1}^{6} u_{k} \psi_{k}(\xi, \eta) \\
& \left(u_{k}=u\left(\xi_{k}, \eta_{k}\right)\right)
\end{aligned}
$$

$$
t=3 \quad \sum_{4}^{3}=\operatorname{Iu}(\xi, \eta)=\sum_{k=1}^{6} u_{k} \psi_{k}(\xi, \eta)
$$

this is a Poincare - Friedrich type of result. It says that the lower derivatives of any function that is zero at the interpolation points are controlled by the highest derivatives (those of order t):
just as the constant functors prevent $\|u\|_{0} \leq C|u|_{1} \forall u \in H^{\prime}(\Omega)$ without restricting u to be zero on the boundary, the polynomials prevent

$$
\|u\|_{t-1} \leq c|u|_{t} \quad \forall u \in H^{t}(\Omega) .
$$

Pinning down the values of u to be zero at the nodes removes these lower order polynomials freon the space.
step 2. Suppose T_{1} and T_{2} are any two triangles in the plane.

$$
\Delta \stackrel{F}{T_{1}} \nabla_{T_{2}}
$$

- Let F be an affine mapping of T_{1} onto T_{2}. $v_{\mathbb{R}}<u$
\mathbb{R} - Let $U=T_{2} \rightarrow \mathbb{R}$ and $v: T_{1} \rightarrow \mathbb{R}$ satisfy $v=u \circ F$ Then there are constants $c_{2}(t)$ for $t=0,1,2, \ldots$ such that

$$
|v|_{t, T_{1}} \leqslant c_{2}(t)\|D F\|^{t}|\operatorname{det} D F|^{-1 / 2}|u|_{i, T}
$$

for all $u \in H^{t}\left(T_{2}\right)$ and $v=u \cdot F \quad\left(\begin{array}{c}\text { whet automatically } \\ \text { belongs to } \\ \text { to }\end{array}\right)$ $H^{+}\left(T_{1}\right)$

To prove this, it's useful to think of higher derivatives as multilinear maps:
$u: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad$ function
$\operatorname{Du}(\vec{x}): \mathbb{R}^{2} \rightarrow \mathbb{R}$ linear operator

$$
D u(\vec{x}) \vec{w}=\frac{d}{d s} \int_{s=0} u(\vec{x}+s \vec{w})=\frac{\partial u}{\partial x}(\vec{x}) w^{\prime}+\frac{\partial u}{\partial y}(\vec{x}) w^{2}
$$

$D^{2} u(\vec{x}): \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ Symmetric, bilinear operator

$$
D^{2} u(\vec{x})\left(\vec{w}_{1}, \vec{w}_{2}\right)=\left.\left.\frac{d}{d s_{1}}\right|_{s_{1}=0} \frac{d}{d s_{2}}\right|_{s_{2}{ }^{2}} u\left(\vec{x}+s_{1} \vec{w}_{1}+s_{2} \vec{w}_{2}\right)=w_{1}^{\top}\left(\begin{array}{cc}
\frac{\partial^{2} u}{\partial x^{2}} & \frac{\partial^{2} u}{\partial x^{2} \vec{j}} \\
\frac{\partial^{2} u}{\partial x \partial y} & \frac{\partial^{2} u}{\partial y^{2}}
\end{array}\right) w_{2}
$$

$$
\text { or } D^{2} u(\vec{x})\left(\vec{w}_{1}, \vec{w}_{2}\right)=\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(\vec{x}) w_{1}^{i} w_{2}^{j}
$$

in geneal: $D^{m} u(\vec{x}) \div\left(\mathbb{R}^{2}\right)^{m} \rightarrow \mathbb{R}$ " symmetric, multilinear operator

$$
D^{m} u(\vec{x})\left(\vec{w}_{1}, \ldots, \vec{w}_{m}\right)=\sum_{i=1}^{2} \ldots \sum_{i_{m}=1}^{2} \frac{\partial^{m} u}{\partial x_{i},-\partial x_{i}}(\vec{x}) w_{1}^{i} \ldots w_{m}^{i m}
$$

So a fancy way of writing $\frac{\partial^{m} u}{\partial x_{i_{1}} \cdots x_{i m}}(\vec{x}) \frac{\text { is } \nabla^{m} u(\vec{x})\left(\vec{e}_{i_{1}}, \vec{e}_{i_{2}}, \ldots, \vec{e}_{i_{m}}\right)}{\hat{\uparrow} \rightarrow}$

$$
\begin{gathered}
\uparrow \uparrow \vec{\uparrow}> \\
\stackrel{\rightharpoonup}{e}_{1}=\binom{1}{0}, \vec{e}_{2}=\binom{0}{1}
\end{gathered}
$$

chain rule: $\quad v(\vec{\xi})=u(\overbrace{F}^{\vec{F}} \vec{\xi}))$

$$
\begin{aligned}
& \frac{\partial v}{\partial \xi_{j}}=\frac{\partial u}{\partial x_{k}} \frac{\partial x_{u}}{\partial \xi_{j}} \quad\binom{\text { summation }}{\text { imp plied }} \\
& \frac{\partial^{2} v}{\partial \xi_{j} \cdot \xi_{j}}=\frac{\partial^{2} u}{\partial x_{l} \partial x_{k}} \frac{\partial x_{k}}{\partial \xi_{j}} \frac{\partial x_{l}}{\partial \xi_{i}}+\frac{\partial u}{\partial x_{k}} \overbrace{\partial^{2} x_{k}}^{\partial \xi_{i} \partial \xi_{j}} \\
& \frac{\partial^{2} v}{\partial \xi_{l} \partial \xi_{i} \partial \xi_{j}}=\frac{\partial^{2} u}{\partial x_{b} \partial x_{l} \partial x_{k}} \frac{\partial x_{k}}{\partial \xi_{j}} \frac{\partial x_{l}}{\partial \xi_{i}} \frac{\partial x_{k}}{\partial \xi_{a}}+\hat{T}_{\text {termini involving }}^{0}
\end{aligned}
$$ inge denvatives of F

more simply:

$$
D^{m} v(\vec{\xi})\left(\vec{w}_{1}, \ldots, \vec{w}_{m}\right)=D^{m} u(F(\vec{\xi}))\left(D F \vec{w}_{1}, \ldots, D F \vec{w}_{m}\right)
$$

the matrix $D F$ is constant since F is affine-

Next we compute

$$
\begin{aligned}
& |v|_{t, T_{1}}^{2}=\iint_{T_{1}} \sum_{j=0}^{t}\left|\partial_{\xi}^{j} \partial_{\eta}^{t-j} v(\xi, \eta)\right|^{2} d \xi d \eta \\
& =\iint_{T} \sum_{j=0}^{t} \mid D^{t} v(\xi, \eta)(\underbrace{\vec{e}_{1, \ldots, e^{\prime}}^{\vec{e}_{1}}}_{j \text { times }}, \underbrace{\vec{e}_{2, \cdots, \vec{e}_{2}}}_{t-j \text { times }})^{2} d \xi d \eta \\
& =\iint_{T_{2}} \sum_{j=0}^{t}\left|D^{t} u(x, y)\left(D f \vec{e}_{1},-, D f \vec{e}_{2}\right)\right|^{2}\left|\operatorname{det} D F^{-1}\right| d x d y \\
& \leq \iint_{T_{2}}(t+1)\|D F\|^{2 t}\left\|D^{t} u(x, y)\right\|^{2}\left|d t+D F^{-1}\right| d x d y \underset{\binom{d t\left(D F^{-1}\right)}{\left.=(d t+D F)^{-1}\right)}}{ } \\
& \leq \quad(t+1)\|D F\|^{2 t}|\operatorname{det} D F|^{-1} \iint_{T_{2}}\left\|D^{t} u(x, y)\right\|^{2} d x d y \\
& \leq c_{2}(t)^{2}\left|D D \|^{2 t}\right| d u+\left.D F\right|^{-1}|u|_{t, T_{2}} \quad c_{2}(t)=\sqrt{\frac{(t+1)!}{\left[\frac{t}{2}!!\frac{t}{2}\right]!}}
\end{aligned}
$$

follows from the definition of norm of a multilinear functional:

$$
\begin{aligned}
B=D^{t} u(x, y),\|B\|= & \sup _{\left\|\vec{w}_{1}\right\|=1}\left|B\left(\vec{w}_{1}, \ldots, \vec{w}_{t}\right)\right| \\
& \| \vec{w}_{t} \hat{\|}=1
\end{aligned}
$$

so $\left|B\left(\vec{w}_{1}, \ldots, \vec{w}_{t}\right)\right| \leqslant\|B\| \cdot\left\|\vec{w}_{,},\right\| \cdot \cdots \vec{w}_{t} \|$ in our case, $\vec{w}_{j}=D F \vec{e}_{j}$ so $\left\|\vec{w}_{j}\right\| \leq\|D F\| \cdot \overbrace{\vec{e}}^{j} \|$ hence $|B(\underbrace{D F \vec{e}_{1}, \cdots, \underbrace{}_{t-j+1 m s} D F \vec{e}_{2}}_{j \text { toms }})| \varepsilon\|B\| \cdot\|D F\|^{t}$
follows from multilinearity of $B=D^{t} u(x, y)$:

$$
\begin{aligned}
& \left|B\left(\vec{w}_{1}, \ldots, \vec{w}_{t}\right)\right|=\left|\vec{e}_{1}+w_{1}^{2} \vec{e}_{2}^{\prime} B\left(\vec{e}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{t}\right)+w_{1}^{2} B\left(\vec{e}_{2}, \vec{w}_{2}, \ldots, \vec{w}_{t}\right)\right| \\
& \quad \text { cawn.sinwarz } \\
& \quad \leqslant \sqrt{\left(w_{1}^{\prime}\right)^{2}+\left(w_{1}^{2}\right)^{2}} \sqrt{\sum_{i=1}^{2}\left|B\left(\vec{e}_{i}, \vec{w}_{1}, \ldots, \vec{w}_{t}\right)\right|^{2}}
\end{aligned}
$$

By induction:

$$
\left.\mid B\left(\vec{w}_{i}\right) \ldots, \vec{w}_{\tau}\right) \mid \leqslant\left\|\vec{w}_{1}\right\|\left\|\vec{w}_{2}\right\| \cdots \vec{w}_{t} \| \sqrt{\sum_{i=1}^{2} \sum_{i=1}^{2}\left|B\left(\vec{e}_{i, 1}, \ldots \vec{e}_{i}\right)\right|^{2}}
$$

which gives an upper bound on \|BH
Finally, we use symmetry of the derivative:

$$
\begin{aligned}
& \left\|D^{t} u(x, y)\right\|^{2} \leq \sum_{i=1}^{2} \cdots \sum_{i_{t}=1}^{2}\left|\frac{\partial^{t} u}{\partial x_{i} \cdot \partial x_{i}}(x, y)\right|^{2} \\
& =\sum_{j=0}^{t}\binom{t}{j}\left|\partial_{x}^{j} \partial_{y}^{t-j} u(x, y)\right|^{2} \\
& \leq\left(\max _{o \leq j \leq t} \frac{t!}{j!(t-j))!} \sum_{j=0}^{t}\left|\partial_{x}^{j} \partial_{y}^{t-i} u(x, y)\right|^{2}\right. \\
& =\iint_{T_{2}}\left\|D^{t} u(x, y)\right\|^{2} d x d y \sum \frac{t!}{\left[\frac{t}{2} \left\lvert\,!\left[\frac{t}{2}\right]!\right.\right.} \iint_{T_{2}}^{t} \sum_{j=0}^{1}\left(\partial_{x}^{j} x_{y}^{t-j} u(x, y)^{\frac{T}{2}} d x d y\right. \\
& \begin{array}{r}
(t+1) \iint_{T_{2}}\left\|D^{t} u(x, v)\right\|^{2} d x d y \leq c_{2}(t)^{2}|u|_{t,} T_{2} \begin{array}{c|cc}
t & c_{2}(t) \\
\hline 0 & 1 & 1.00 \\
1 & \sqrt{2} & 1.41 \\
2 & \sqrt{6} & 2.45 \\
3 & \sqrt{12} & 3.46 \\
c_{2}(t)^{2} & =\frac{(t+1)!}{\left[\frac{t}{2}\right]!\left\lceil\frac{t}{2}\right]!} & \begin{array}{c}
\sqrt{30} \\
5
\end{array} \\
\hline \frac{\sqrt{60}}{} & 7.78 \\
6 & \sqrt{140} & 11.8
\end{array}
\end{array}
\end{aligned}
$$

step 3 derive a bound on \|DF\| in terms of the mesh quality, K. for a trangh T, define two rad il:

Suppose $F: T_{1} \rightarrow T_{2}$ is an affine map
 pick any $\vec{w} \in \mathbb{R}^{2}$ sit. $\|w\|=2 P_{1}$
Peck $\vec{\xi}_{0} \vec{\xi}_{1} \in T$, on inscribed carole so $\vec{\omega}=\vec{\xi}_{1}-\vec{\xi}_{0}$

Then $\|D F \vec{w}\|=\left\|F\left(\vec{\xi}_{1}\right)-F\left(\vec{\xi}_{0}\right)\right\| \leq 2 r_{2}=\frac{2 r_{2}}{2 p_{1}}\|\vec{w}\|$ Faffing

$$
\therefore\|D F\| \leq \frac{2 r_{2}}{2 p_{1}}
$$

reverse T_{1}, T_{2} :

$$
\left\|D F^{-1}\right\| \Sigma \frac{2 r_{1}}{2 \rho_{2}}
$$

condition number of $D F: \quad\|D F\| \cdot\left\|D F^{-1}\right\| \leq \frac{r_{2}}{p_{1}} \cdot \frac{r_{1}}{p_{2}}$
Let: The mesh quality parameter k is defined via

$$
K=\max _{T \in \sigma} \frac{r_{T}}{P_{T}} \cdot(\text { a smaller } K \text { is better })
$$

Step 4: For $t \geq 2 \exists c_{3}$ depending on t s.t.

$$
\left\|u-I_{h} u\right\|_{m} \leq c_{3}(t) k^{m} h^{t-m}|u|_{t} \frac{\forall u \in H^{t}\left(\Omega_{h}\right)}{0 \leq m s t}
$$

interpolation by piecewise polynomials of deg $t-1$.
proof: it suffices to establish the estimate on each trangh $T \in I$

Pick; between 0 and m

From step 1, we have $|v-I v|_{j, R} \leqslant c_{1}(t)|v|_{t, R}$
From step 2 in the forward direction, we learn:

$$
|v|_{t, R} \leq c_{2}(t)\|D F\|^{t}|d e t D F|^{-1 / 2}|u|_{t, T}
$$

stringing these together, we obtain:

$$
\left|u-I_{n} U\right|_{j, T} \leq c_{1}(t) c_{2}(j) c_{2}(t)\left(\|D F\| \cdot\left\|D F^{-1}\right\|\right)^{j}\|D F\|^{t-j} \mid u_{t, T}
$$

ref ri: $\quad r_{R}=\frac{\sqrt{2}}{2} \quad P_{R}=\frac{2-\sqrt{2}}{2} \quad \frac{r_{R}}{P_{R}}=\frac{\sqrt{2}}{2-\sqrt{2}}=\sqrt{2}+1$
a) $\frac{1}{a} \operatorname{stg}^{3}$

$$
\begin{aligned}
& a^{2}=2\left(\frac{1}{2}-a\right)^{2} \\
&=\frac{1}{2}-2 a+2 a^{2} \\
& a^{2}-2 c+1 \\
& a=\frac{2 \pm \sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \|D F\| \cdot\left\|D F^{-1}\right\| \leq \frac{r_{R}}{\rho_{T}} \frac{r_{T}}{\rho_{R}} \leq(\sqrt{2}+1) K \\
& \|D F\| \leq \frac{r_{T}}{\rho_{R}}=\frac{2 r_{T}}{2-\sqrt{2}} \leq \frac{h}{2-\sqrt{2}}=\left(1+\frac{\sqrt{2}}{2}\right) h
\end{aligned}
$$

r_{T} : radius, h_{T} : diameter \square

$$
\underbrace{\left|u-I_{h} u\right|_{j, T} \leq c_{1}(t) c_{2}(j) c_{2}(t)(1+\sqrt{2})^{j}\left(1+\frac{\sqrt{2}}{2}\right)^{t-j} K^{j} h^{t-j}|u|_{t, T}}_{\substack{\text { sum from } \\
j=0 \text { tom }}} \begin{aligned}
\mid u I_{m}, T & \leqslant c_{3}(m, t) k^{m} h^{t-m}|u|_{t T} \\
C_{3}(m, t) & =\sum_{j=0}^{m} c_{1}(t) c_{2}(j) c_{2}(t)(1+\sqrt{2})^{j}\left(1+\frac{\sqrt{2}}{2}\right)^{t-j}
\end{aligned}
$$

for simplicity, we set $m=t$ and drop the m dependuce of $c_{3}(t)$
so not we have the error estimate

$$
\left\|u_{h}-u\right\|_{i}^{c a a} \frac{1}{\alpha}\left\|u-I_{h} u\right\|_{1} \leq \frac{1}{\alpha} c_{3}(t) R h^{t-1}|u|_{t}
$$

which bounds the H^{\prime} norm of the error in the F.E. solution in terms of the H^{t} seminom of the solution.

Regulanty theorem:

1. If Ω is convex, $\exists C_{4}(\Omega)$ sit. $\|u\|_{2} \leq c_{4}\|f\|_{0}$
2. If $\partial \Omega$ is C^{t} with $t \geqslant 2, \exists C_{4}(\Omega, t)$ st. $\|u\|_{t} \leq c_{4}\|f\|_{t-2}$
3. If Ω is a rectangle and $f=0$ in a nughborhood of the corners, then $\exists C_{1}\left(\Omega, \tilde{\Omega}_{t}\right)$ st. $\|H\|_{t, \Omega} \leq \frac{C_{y}\|f\|_{t-2}, \tilde{\Omega}}{\forall f \in H^{t-2}}$ $\left.\forall f \in H_{0}^{t-2}\right)$
We haven't quite dome enough to analyze isoparamutric elements (since we assumed F was affine) but at least we have proved th following?

Theorem: suppose Ω is a convex polygon and we use linear or lighe-order elements. Then

$$
\left\|u_{h}-u\right\|_{1} \leq C_{5}(\Omega) k h\|f\|_{0} \quad C_{5}(\Omega)=\frac{1}{2} C_{3}(2) C_{4}(\Omega)
$$

(borne singularities prevent improved estimates)
\uparrow coercivity constant depends on Ω.

Theorem: Suppose Ω is a rectangle and $\widetilde{\Omega} \subset C \Omega$
"com pact subset of"
Then if we use triangular elements of degree P then

$$
\begin{aligned}
&\left\|u_{h}-u\right\|_{1} \leqslant C_{5}\left(\Omega, \tilde{\Omega}_{j p}\right) \kappa h^{p}\|f\|_{p-1} \forall f \in H_{0}^{p-1}(\tilde{\Omega}) \\
& C_{5}=\frac{1}{2} C_{3}(p+1) C_{4}(\Omega, \tilde{\Omega}, p+1)
\end{aligned}
$$

The lsopanmetric theorem should look something like:
Theorem: suppose $\partial \Omega$ is C^{t} and we use isoparametric elements of degree $p=t-1$. Then

$$
\left\|u_{h}-u\right\|_{1} \leqslant c_{5}(\Omega, t)<h^{p}\|f\|_{p-1} \quad \forall f \in H^{p-1}(\Omega)
$$

2 issues I haven't worked ont: (1) K needs to take m to account higher devivatwes of F since F is no longer affine
(2) we need to estimate the errors in the slivers between $\Omega_{\text {and }} \Omega_{h}$. Also, Ω_{h} is probably not strictly contained in Ω, so need to sway non-conforming elements.

Last time i error analysis, how thu H^{m} semnoom trunstorms under an affine map interpolation on the reference element
shape regular meshes (bounding $\|D F\|,\left\|D F^{-1}\right\|$ intern of K) interpolation on the mesh elliptic reguluits theorem

$$
\text { today: }\left\{\begin{array}{l}
L^{2} \text { error estimates } \\
\text { Newman problem }
\end{array}\right.
$$

L^{2} error estimates.
recall the method of proof for H^{\prime} errors:

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{1} \sum \frac{1}{\alpha} \inf _{v_{h} e s_{h}}\left\|u-v_{h}\right\|_{1} \leq \frac{1}{\alpha}\left\|u-I_{h} u\right\|_{i} & \leq \frac{c_{3}}{\alpha} k h|u|_{2} \\
& \leq \frac{c_{3} c_{u}}{\alpha} k h\|f\|_{0}
\end{aligned}
$$

stall works for L^{2} :

$$
\left\|u-I_{h} u\right\|_{0} \leqslant c_{3}(2) k^{0} h^{2-0}|u|_{2}=c_{3} h^{2}|u|_{2}
$$

but the bilinear form $a\left(, s^{\prime}\right.$) is not continuous (or even defined) on l^{2} so lea's lemma breaks down.

It turns out you do get an extra power of h in th L^{2} error.
proof (Nitsche's trick, a duality argument)
detime $e=u-u_{h}$
1 Lialerkin orthogonality. as in proof of lea, $\quad a(e, v)=0 \quad \forall v \in S_{h}$

Let φ solve $\quad-\Delta \varphi=e$ in Ω

$$
\varphi=0 \text { on } \partial \Omega
$$

Ω convex $\Rightarrow\|\varphi\|_{2} \quad \leq c_{4}\|e\|_{0} \quad c_{4} \operatorname{ind} p$. of e
Green's formula: $(e, e)=-(e, \Delta \varphi)=a(e, \varphi)$
Note that $I_{h} \varphi \in S_{h}$, so $a\left(e, I_{n} \varphi\right)=0$

$$
\begin{aligned}
\therefore(e, e) & =a\left(e, \varphi-I_{h} \varphi\right) \\
\mu e \|_{0}^{2}=(e, e) & =a\left(e, \varphi-I_{h} \varphi\right)
\end{aligned}\|e\|_{1}\left\|\varphi-I_{n} \varphi\right\|_{1}, ~ l
$$

finally we get to use the interpolation theorem:

$$
\left\|\varphi-I_{h} \varphi\right\|_{1} \leqslant c_{3} k h|\varphi|_{2} \leqslant \underbrace{c_{3} C_{4} k}_{C} h\|e\|_{0}
$$

divide through by $\|e\|_{0}=$

$$
\begin{aligned}
& \|e\|_{0} \leqslant \underset{\uparrow h\|e\|_{1} \leqslant}{c h^{2}|u|_{2} \leqslant \underset{\uparrow}{c} \underset{\sim}{c} \underset{\sim}{2}\|f\|_{0}} \\
& \text { second order in } L^{2} \\
& \text { first order in } \mathrm{H}^{\prime}
\end{aligned}
$$

Mixed boundary conditions

$$
\begin{aligned}
-\Delta u & =f \\
u & =0 \text { on } \Gamma_{0} \leftarrow \text { assume } T_{0} \text { has } \\
\frac{\partial u}{\partial n} & =g \text { on } \Gamma_{1}
\end{aligned}
$$

define Hilbut space $V=\left\{u \in H^{\prime}(\Omega) \cap C^{\infty}(\Omega): \begin{array}{l}u=0 \text { in } \\ \text { neighborhood }\end{array}\right\}^{-}$ of Γ_{0}
in other word, V is the set of all $H^{\prime}(\Omega)$ functions
that can be gotten to arlatronly coset by C^{∞} functions that rams near T_{0}.
note that $H_{0}^{\prime}(\Omega) \subset V \subset H^{\prime}(\Omega)$
Any classical solis of this problem satisfies

$$
\iint_{\Omega} \overbrace{-v \Delta u}^{v-f} d x d y=\int_{T}-v \nabla u \cdot n d s+\iint_{\Omega} \nabla u \cdot \nabla v \cdot d x d y
$$

for $v \in V$, the integral ave T_{0} is zero since $v=0$ there.

dit: a wale sols of the maxed biv=p is a function $u \in V$ sit.

$$
a(v, v)=\iint_{\Omega} f v d x d y+\int_{\Gamma_{1}} g r d s
$$

To apply Lax-Milgram, we need \hbar show that $a(\because, \dot{\prime})$ is wercive on V and that $S_{T_{1}} g^{v} d s$ is bounded on $V_{\text {. }}$.
coercivity: Claim: Pomcané-Fnednchs hills as long
as T_{0} has positive length. (i.e. $g c>0$ sit

$$
\left.\|u\|_{0} \leq c \mid u \|_{1} \quad \forall u \in V\right)
$$

proof: this is had th prove in general, butiuppore Ω is a square and Γ_{0} is a lime segment of length L.

Let $R=(0,5) \times(0, L)$ be the shaded region shown.
Let $u \in C^{\infty}(\Omega) \cap H^{\prime}(\Omega)$ sit. $u=0$ near T_{0}.
Choir $(x, y) \in \Omega$ and $y^{\prime} \in(0, L)$.
Then $u(x, y)=u\left(x, y^{\prime}\right)+\int_{y^{\prime}}^{y} u_{y}(x, t) d t \quad$ FTOC. for any number, $(a+b)^{2} \leqslant 2 a^{2}+2 b^{2} \quad$ Young's inequanty

$$
\therefore u(x, y)^{2} \leq 2 u\left(x, y^{\prime}\right)^{2}+2\left(\int_{y!}^{y} u_{y}(x, t) d t\right)^{2}
$$

Cawhy-Schwarz:

$$
\begin{aligned}
\left(\int_{y^{\prime}}^{y} u_{y} d t\right)^{2} & \varepsilon \int_{y^{\prime}}^{y} f^{2} d t \int_{y^{\prime}}^{y} u_{y}^{2} d t \\
& \leq S \int_{0}^{1} u_{y}^{2} d t
\end{aligned}
$$

So

$$
u(x, y)^{2} \leqslant 2 u(x, y)^{2}+2 s \int_{0}^{s} u_{y}(x, t)^{2} d t
$$

now let's integrate with rosput x, y and y^{2} (3 integrals)

$$
\begin{array}{ll}
\int_{0}^{L} \cdot \cdot d y^{\prime}: & L u(x, y)^{2} \leqslant 2 \int_{0}^{L} u\left(x, y^{\prime}\right)^{2} d y^{\prime}+2 s L \\
\iint_{\Omega}^{s} u_{y}(x, t)^{2} d t \\
& L \int_{\Omega} u(x, y)^{2} d x d y \leq 2 s \int_{0}^{s} \int_{0}^{L} u\left(x, y^{\prime}\right)^{2} d y^{\prime} d x+2 s^{2} \int_{0}^{5} \int_{0}^{1} u_{y}\left(x, y^{2} d t d x\right. \\
L\|u\|_{0, \Omega}^{2} & \leqslant 2 s\|u\|_{0, R}^{2}+2 s^{2} L|u|_{1, \Omega}^{2} \\
\|u\|_{0, \Omega}^{2}<2 \frac{s}{L}\|u\|_{0, R}^{2}+2 s^{2}|u|_{1, \Omega}^{2}
\end{array}
$$

over the rectangle R, the previous proof works:

$$
\|u\|_{0, R}^{2} \leq{\underset{\sim}{\text { see lee } 25}} \frac{s^{2}}{2}|u|_{1, R}^{2} \leq \frac{s^{2}}{2}|u|_{1, \Omega}^{2}
$$

so $\quad\|u\|_{0, \Omega}^{2} \leqq 2 \frac{s}{L}\left(\frac{s^{2}}{2}|u|_{1, \Omega}^{2}\right)+2 s^{2}|u|_{1, \Omega}^{2}$

$$
s\left(\frac{s}{L}+2\right) s^{2}|u|_{1, \Omega}^{2}
$$

and $\quad\|u\|_{0, \Omega} \leq \sqrt{2+\frac{S}{L}} s|u|_{1, \Omega}$
density of $\left(C^{\infty} n H^{\prime}\right.$ ravishing ween $\left.P_{0}\right)$ in V gives the rent for all $u \in V$.

$$
\|u\|_{\|}^{2}=\|u\|_{0}^{2}+|u|_{1}^{2} \leq\left[1+\left(2+\frac{j}{2}\right) s^{2}\right] \quad a(u, u) \quad \forall u \in V_{.} \therefore \alpha=[\cdots]^{-1}
$$

Last step: the lineefimstinal $\langle l, v\rangle=\int_{\Gamma_{1}} v g d s$ is bounded on V.

Theorem: (trace theorem): there is a bounded linear operator

proof? agar for the retable. $\Omega=$
Let $u \in C^{\prime}(\bar{\Omega})$.

$$
\begin{aligned}
& u(x, 0)=u(x, y)-\int_{0}^{y} u_{y}(x, t) d t \\
& \left.u(x, 0)^{2} \leqslant 2 u(x, y)^{2}+2 \int_{0}^{y} u_{y}^{2} d t\right)^{2} \leqslant 2 u(x, y)^{2}+2 \int_{0}^{s} u_{y}(x, t)^{2} d t \\
& s \int_{0}^{1} u(x, 0)^{2} d x \leqslant 2\|u\|_{0}^{2}+2 s^{2}|u|_{1}^{2} \leqslant \underbrace{\max \left(2,2 s^{2}\right)}_{\Gamma}\|u\|_{1}^{2}
\end{aligned} \text { repeat on other } 3 \text { situs } \quad l
$$

$$
\begin{aligned}
\int_{\partial \Omega} u^{2} d s & \leqslant 8\left(s+\frac{1}{s}\right)\|u\|_{1}^{2} \\
\|u\|_{0, T} & \leqslant \sqrt{8\left(s+\frac{1}{s}\right)}\|u\|_{1}
\end{aligned}
$$

$L H S$ is $\| \gamma$ ul l ${ }_{0, \Gamma}$. This shows $\gamma: C^{\prime}(\bar{\Omega}) \rightarrow L^{2}(\Gamma)$
is bounded when $C^{\prime}(\Omega)$ is given the H^{\prime} norm. Since $C^{\prime}(\bar{\Omega})$ is dense in $H^{\prime}(\Omega)$ and $L^{2}(\Gamma)$ is complete, γ extents untomwonty to $H^{\prime}(\Omega)$ without increabip tots norm.
so $\langle l, v\rangle=\int_{\Gamma} v g d s$ is a compontion of two
bonded operators: $H^{\prime}(\Omega) \xrightarrow{\gamma} L^{2}(\Gamma) \xrightarrow{\delta_{j_{1}} \cdot g d s} \mathbb{R}$
$\therefore l \pi$ bounded.
$\therefore \exists!u \in V$ sit $a(u, v)=\iint_{\Omega} f v d x d y+\int_{T_{1}} g^{v} d s$ for att $v \in V$.
\therefore if there is a classical solution, we have found it. (classical solution are weak solutions and week solution are unique.)

Ir the finite element framework, Newman bic.'s are imposed "naturally", Lie. you just lease them as vanably like the interior untenoing and the solution ends up having the night stope in the mush refinement limit. (all of our convergence theorems work the same for the Mixed problem, except there could be singulemties, prevention $\left\|\left\|_{2} \leqslant C\right\| f\right\|_{0}$.
where Γ_{0} meets T_{1}

$$
a\left(u_{h}, v_{h}\right)=\iint_{\Omega} f v_{h} d x d y+\int_{T} g_{h} d s
$$

Tprinupte of virtual works
Dirichlet conditions. in mechanics.
Remove them from the system. (impore their values directly)

