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Survey of the Stab1hty of Linear F1n1te D1fference
o Equatlons

P. D. LAX and R. D. RICHTMYER

PART I ,
AN EQUIVALENCE THEOREM

RS : 1. Introduction ,
Beginning with the discovery by Courant, Friedrichs and Lewy [1]
of ‘the conditional stability of certain finite difference approximations to
partial differential equations, the subject of stability has been variously
‘discussed in the literature (see bibliography at end). The present paper is.
concerned with the numencal solution of initial value problems by finite
difference methods, generally for a finite time interval, by .a sequence of.
l:alculat1ons with increasingly finer mesh. Thus if £ is the time variable
and A¢f its increment, we are concerned with l1m1ts as At = 0 for fixed ¢,
not. with' limits as #— oo for fixed A¢ (although often "the stability con-
51derat1ons are similar). The basic question is whether the solution con-
verges to the true solution of the initial value problem as the mesh is
refined. The term stability, as usually understood, refers to a property
of the finite difference equations, or rather of the above mentioned sequence
of finite difference equations with mcrea)smgly finer mesh. We shall give a
definition of stability in terms of the uniform boundedness of 4 certain set
of operators and then show that under suitable circumstances, for linear
initial value problems, stability is necessary and sufficient for convergence
in a certain uniform sense for arbitrary initial data. The circumstances
are first that a certain consistency condition must be  satisfied -which
essentially insures that the difference equations approximate the differen- -
tial equations under study, rather than for example some other differential
equatlons and secondly that the initial value problem be properly posed
in a sense to be defined later.
‘We shall not be concerned with rounding errors, and in fact assume
that all anthmetlc steps are camed out w1th 1nf1n1te prec1310n But it will

“* The work for thJs paper was done undet Contract AT-(30—-I)—1480 of the Atomxc
Eneérgy ‘Conimission. : L
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.be.evident to the. réader. that-there.is an.intimate:connection- between
stability and practicality of the equations from the point .of view of the
growth;and amplification of rounding errors. Indeed; O’ Brien, Hyman and
Kaplan [8] defined stability in terms of the growth of rounding errors,
However, we have a slight preference for the definition given below, because
it emphasizes that stability still has to be considered, even if rounding
errors are negligible, unless, of course, the-initial data are chosen with
diabolical care so.as to be exactly free of those components that would
be unduly amplified if they were present. v

- The basic notions will be spelled ‘out in considerable detall below in
an attempt to motivate the definitions given and: to justify the approach
via the theory of linear operators in Banach space. We shall then give
the usual definition of a properly posed initial value problem define the
consistency of a finite difference approximation, define the stability of a

" sequence of frmte difference equations, and prove the equ1valence theorem '

2. The Function Space of an Imtral—‘Value Problem’

In the solutlon of an initial-value problem the tlme vanable t plays a
spemal role
by one or more ‘functions of certain other variables which we shall call space
‘vanables At any-stage of a machine- or hand-calculation one has at hand
a fiurmerical representation (e.g. in tabular form) of these functions, that is;

of the state of the system at some t1me £ As'time goes on, the state of the -

system changes accordmg to certam differential or mtegro—dlfferentral equa-
tions. It is convenient to thmk of these functrons ‘for a fixed £, as an
element or po1nt in a functron space ﬂ a.nd to denote them by a smgle
symbol u,

' The initial-value problems under cons1derat10n -are linear and we

suppose &% to be linear a.lso This may force us to accept as elements of ‘@‘

some functions not havmg direct srgmfrca.nce as states of a.physical system
- eg, functions having negative values- for 1nherently positive quantities
like temperature and particle dens1ty But it is convenient to admit such
functions as representing generalized states of the. system, and also to.admit
‘complex valued functions. If sums and differences of elements of & are
defined in the obvious manner by sums and differences of the corresponding
functions, and if multiplication of an element of & by a number is defined
in the equally. obvious manner as multiplication of the correspondmg func-
trons by that number, it is. clear that & is 2 hnear vector space. © .
“" “For a d15cussron ‘of ‘approximation and ‘errors, one neéds a measure
of the difference of two states # and v, and it is clear that hlS measure
- should have the propertles of a norm of the element w = % we there-

An instantaneous state of the physrcal system is descnbed»

4
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<= fore-denote this quantity by {| %] and suppose that #.is a Banach: space.
- The specrfrc choice of norm may vary from. one application to another;
.. in many:cases it can be identified with energy. Our assumption that & is

complete:with respect to the norm plays an 1mportant role inthe equrvalence,

theorem -of Section 8.

3 The Imtxal Value Problem

Let A denote a linear operator that tra.nsforms the element w:into ..
the element Au by spatial differentiations, matrix-vector multiplications

and the like. The initial value problem is to find a one-parameter set of
elements w(f) such that = ,

. = d Sy
(1) : 'gtu‘(tv) = Au(t), 0<t<T,
(@) w(0) =,

where %, represents a. preassrgned initial state of the system :
Systems involving higher order derivatives with respect to ¢ ‘can be

- put into the above form in the usual way by mtroducmg ‘the lower order

derivatives as further unknown functions.

- All the general considerations in the present discussion apply as well
when the operator 4 depends explicitly on £, and in fact were originally
presented in that generality? , but in the interest of simplicity of the for-

mulas we discuss here only the case of an operator 4 not dependmg on the.. .

parameter 7.
If there are boundary cond1t1ons in the problem, it is assumed that they
are linear homogeneous and are taken care of by restnctmg the domain
of A to functions satisfying the conditions.
By a genuine solution of (1) we mean a one-parameter set u{t) such
that first, #(¢) is in the domain of 4 for 0 <¢ < T and secondly
u(t—l— r) w(t)

(3) as 10, — Au(f) 0o<t<T.

> 0 uniformly in t,

If we pick an element ug.not in the domain of 4 (e.g., if 4 is a-differen-
tial operator and the functions represented by #, are nondifferentiable at
one or more pomts) we obviously cannot find a genuine solution satisfying
(2), but we assume that %, can always be approximated, as closely as one
desires, by an element #, for which a unique genuine solution exists. That

1P, D. Lax, Seminar, New York ‘University, January 1954.
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- is, if we definean operator Eo (t) ——--reaﬂy a one-parameter famrly of operators :

. = S0 that
. u(t) Eo(t)u(O) .0 s ST,

for any geniiine solution of (1) dependmg uniquely on u(O) we assume that
the domain of E4(t) is dense in' &.

It is also desirable that the solution depend continuously on the mrtlal '

- data. If we alter the:initial date’ u, by addition of v, , we want to guarantee
that the alteration of the solution is small if vo is small i. e., that there
should be a constant K such that :

Il Eo@)oo || = K[| w0 |}, 0<i<T.

" We therefore assume that the operators Ey(t) are uniformly bmmded
for 0=¢t<T.

The_foregoing assumptlons charactenze a properly posed problem
For such a problem, E,(¢) has a bounded linear extension E (f} whose domain
is the entire space & and whose bound is the same as that of E(f), because
a bounded linear operator with a dense domain can always be so extended.
Then, for arbitrary %, , the one-parameter set of elements of A, u(t), given by

L u(t) = E@)u,
is mterpreted asa generahzed solution of the initial value problem ( 1) (2).

4 Frmte Drfference Approxxmatrons

When an. approxrmate solutlon is- obtained by - finite dlfference
methods;: the time variable ¢, in the first place; assumes dlscrete “values

f==f0, A, e, ", -+, where t* = = ndt, and correspondrngly, “one deals
with a dlscrete sequence w9, ut,---,u", -, of states of the physical
system. '

/In the second place the space variables are also discrete so that the
functrons describing a state of the system are specified only at the pomts
of a lattice or net of values of the space variables. However, we may still
regard such a specification. (although imperfect) as represented by a point
in the same function space %, by adopting some rule for specifying function
values between the points of the space lattice, for example linear inter-
polation.; Such a rule, if chosen with reasonable care, will not interfere with
the linearity or boundedness of the operators. dealt with!} (Some authors,

such as L. V. Kantorovitch [5] prefer to represent the sates u™ in a different 4

Banach. space Z, and to ‘establish_suitable. homomorphlsms between .%’
and &#'..) - o :

The flmte dlfference equatlons are: o
(4) T s B(At Az, Ay, -+ yu™,

time increment At and on the ‘sizes. of the space increments 4z, Ay, -
Contrary to possible appearance, this formulation is not restncted to

; explicit difference systems. If the system is implicit, the operator B will

contain the inverse of a (possibly infinite) matrix, but for present purposes

* it is not necessary to suppose that B can be easily written in explicit form.
. Whatever the calculation procedure may be which leads to »"+* when »*
& is' known,- it results in a. transformatlon in & and this transformatloﬂ is

denoted by ‘B.
We do assume however that the calculation procedure is a definite

. one whlch can be applied to any function %" and that the result %"+ dependsv
- linearly and continuously on #*, as is clearly the case for any reasonable
- scheme.. In other words, for any flxed 4t, Az and 4y, B is a bounded linear

transformation whose. domam is the whole Banach space.
-The .concepts of stability and convergence with which we deal here

: " supposean- infinite sequence of calculations with mcreasmgly finer mesh.
© ‘We assume relatrons "

4z — g,(41),
Ay = gy(4t),

.........

<. .which.tell. how the space.increments approach Zero as the tlme mcrement '

goes to. zero along the sequence, and we set
- B4, g(At), gde), - ) = (),
so that ' ' R o
(5) | Ut = C(At)ur
‘ 5. The Consistency Condition

Since
un+1- — un :

At
is to be an approximation to the time derivative,
C(Mt)u—u
At

must be an approximation, in some sense, to Au. We cannot expect this
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- where #"is (it is hoped) an approximation to #(¢*), and B denotes:a linear 4
~. finite difference operator. which depends, as indicated, on:the size. of the

/

L

to be true for all # in &, because in general A« is not even defined for all »

# in #. But we want“it to be true for nearly all % that can appear in a

-- genuine solution of the initial value problem; and for any particular genuine
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; solutlon ‘we:want the : apprommatlon ‘to- be -iiformly. .good; for: all: ¢ in
.QS < T, Spec1flcale, we -shall call the, family of operators: €(4f) a

conszstent appromzmatzon for- the-initial value problem,;. if for some! class- v '

- . of genuine solutions it is:true’ that, for any u(t) 1n this class;

{C_(%_;’_ } u(t)

prov1ded ‘that-the class U is sufﬁc1ent1y w1de and that its 1n1t1al elements
w(0) aré dense in-Z. - (6) is called the -consistency comtztzan P .
In applications, 4 is usually a differential and. C a difference operator
in-the space Variables. . To verify the consistency condition (6), Au-has
" to be compared. to (C(4¢)—I)u|At; to carry. out this comparison-expand
each term in C(4f)% into a finite Taylor series (take two or three terms,
depending on the order.of the differential operator.4), obtaining a differén-.
tial operator. The error in replacmg Cu by such a differential expression
~can be estimated, by Taylor’s theorem, for sufficiently smooth functions.
" Therefore the comparison can be carried out for all sufficiently smooth
“Solutions, and it is well known that the smooth solutmns are densé: among

all solutlons . : : .

0§t§ﬂ

, (6) ; hm = O umformly in t

. 4¢>0

6 Gonvergence

Operatmg # times on %, with C(4¢) glves u® = C(4t)"u, whlch it is

- hoped, apptoximates u(nAt). “Since u(t) = E{t)ug , we therefore make the
following definition: the family of operators C(4t) provides a convergent
approximation for the initial value problem if for any #, in # and for
any sequences A, n; such that 4 tends to zero and n,A,t——>t where

0=¢t=T then

=>0,. L0SisT.

X0 (e [uo— B0

Note that we require (7) to hold for every #y in & if C(At) is to be
called a convergent approx1mat10n

7. Stability'

Ina sequence of calculations with 4,f — 0, if each calculatlon is carried
from ¢ = 0 to ¢t ~ T, the operators which are used are those belonging to

..the set:

o R .- {C(At} ;_1 2,3,

0 < nA t<T for each 7,

all- applied_; to-do -The 1dea of: stablhty is. that there should be a hm1t to
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. _the extent to: whichi. any: component-of an:initial function can be amplified
" in; the numerical pracedure. Therefore the: approx1mat10nC (4;¢) is said -t

be stable:if the operators of the above set are uniformly bounded. . Note
that we make no reference here to the differential .equation whose solution

- is desired so that stability, as defined, is a. property solely of a sequence of

difference equation systems.

~In practice the bound of {C(4¢)}" is generally a contmuous function
of 4¢ in some interval, 0 < 4 < 7, so that. we may equlvalently define the
approxunatlon C(4¢) to be stable if for some T > 0, the set of operators

(9) S gsass

O <T
is uniformly bounded. ‘ e

8. The Equlvalence ‘Theorem

Given a pro;ﬁerly posed initial value problem (1), (2) and a fmzte dzf—
ference approximation C(At) to it that satisfies the consistency condition,
stability is a necessary and sufficient condition. that C (48): be a convergent
approvimation.

According to the definition of Section 8, this involves convergence
for an arbltrary initial element u, . lIn pnnc1ple an unstable scheme can
sometimes give convergence for special initial elements.lt (Such schemes
are.not generally very useful in practise, because the inftial data seldom
have the.required properties, and even if they do, round-off errors-are
likely to perturb the calculation enough to throw.it into a neighboring
divergent situation.)

We now prove the first part of the theorem a convergent scheme is
necessarily stable.

" We start by showing that for a convergent scheme the set of elements

10 CrAty, ndt <T

are bounded for each fixed #, in #. For, assume to the contrary that for
a'sequence #,, 4,4, n,4,¢ < T, the norms of the elements C™(d;t)u,. tend
to infinity. Select a subsequence such that #,4; tends to some limit

since the scheme was ‘assumed convergent, C™(4; t)u, would have to’ tend

to E(t)u, , which it couldn’t if it were unbounded.

We now appeal to the prmclple of uniform boundedness, which says
that if each operator L of a set is bounded and if there exists a function
K (u) such that || Lu [| < K(u) for all L in the set and all # in &, then
the set is uniformly bounded. Applying this to the present case, we see
that ‘the set (8) is uniformly bounded; and the approximation is- stable.
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be.a genuine solution belonging to the set U referred to in the

.. of consisténcy. = Then, for any positive ¢, : - i._.: :

: a1, “ e o=
== — A4 u@)| < =, 0<t<T,
l{ a @)<3 ST
for sufficiently 'smali At . Also, from the'definition of a ‘genuine solli,tion,
” E(—-A—t—*— u(t) “ < = : 0=t g T,

for sufficiently small A, so that by the triangle inequality,

(1) ey — B} ug) || < et 0<i<T,

for sufficiently small Az This last inequality might have been taken as
the basis of the definition of consxstency, but the definition given in Section 5
is -preferred for practical applications beécause it involves the operator 4

rather than the generally unknown so]ut1on operator E (t) Set . ...

= [{C(A ) — B, A,y
= zm{cm O)* [C(A,0—E(A2)] E((n,—1—R)4;¢) g

The equa.hty of the second and third members of this equation results from
- cancellation of all except the first and last terms of the third member wheén
written out in full. The norm of y, can be estimated by use of mequahty
( 11) w1th the help of the tnangle mequahty '

lwll<K Em ed;t = Ken;A;t < KsT,

for sufficiently small 4,2, where K denotes the uniform bound of the set (8) :

Therefore siice & was arbitrary; ,
(12) I|¢,”——>OB.SA#—>-O

" Now suppose that #;4 ,t —> ¢ as § -0, where t is a number in the inter-
val (0, T). - The difference {E(n;4,) — E (£)} 4o may be written in either

of two ways, dependmg on which of the two arguments %, 4; ta.nd tis the_

larger that is, as

or as
A”—(E(s) — I)E(t')uo if s= t — n,A,t > 0

(The reason. for making: the- distinction:is. that: the: solutlon operator E (t

(E(s) ~ I)E(t’)uo if 5= n,A-t-— ¢ g 0,: I .:-’,’-

4 _n,A t.
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is gené‘tally deflned ‘only for non-negative arguments) In either case;-
o HE@,4,) — E@)u || < Ky || (E(s) ~ Du|

whicki‘goes to-zero as s — 0 and therefore as § — co. Thus comblmng this
result w1th (12),

) = I[{C, s — E(t)]uoll =0 as j— o0

for any %y which can’ be the initial element of a geénuine solution of the
class U. But these initial elements are dense in %, so that if # is any element
of & there is a sequence u, , u,, - - - converging to #, each #, the initial
element of ‘a genuine solution for which (13) holds. Then '

[{c 40y — B0 = [{Cla,} — E(t)]u,
+A{CW )" (v — ) + E(2) (u — ).
The last two terms on the right of this equation can be made as small as

one pleases by choosing m sufficiently large, on account of uniform boun-'
dedness of the operators C*and of E(f). Then the first term on the right

- can be made as small as one pleases by choosing 4 ;¢ sufficiently small.-

Theréfore the left member of the above equation goes to Zero as § — oo.-
Sinc€" % ‘'was a.rbltrary, it is now established that C (4¢) 'is' a convergent
approximation as defined in Sect1on 6, and the equlvalence theorem is
established.

- The above sufficiency proof is an operator—theoretlc analogue of Fritz
John’s result relating the uniform boundedness of the values of the ap-
proximate solut1on to convergence in' the maximum norm.

PART II .

PARTIAL DIFFERENTIAL EQUATIONS.WITH
CONSTANT COEFFICIENTS

)

'9. Introduction

‘ Here the stab1hty reqmrement as defined in Part I, and ‘whose signifi-
cance is indicated by the equivalence theorem, is applied to a special class
of linear initial value problems — those of partial dlfferentlal equations with’
constant coefficients and with auxiliary conditions pernnttmg the use of -
Fourier series or integrals. If the space wariables ‘are restricted to a finite
domain and the boundary .conditions are of such a nature that they can be
represented as a periodicity condition, Fourier series are used. If the domain
is mflmte but the functions are. quadratically 1ntegrab1e Fourier integrals.
are used, via Plancherel’s theorem. Combinations are also possible, in which
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some of the space variables' have finite domain and others are unlimited.
All these cases lead to exactly the samé results, and our discussion will be
based on Fourier series. : ' . .

We shall be dealing with the following Banach space #: if $ is the
number of functions used to describe a state of the physical system, and 2
is the number of space variables, a point in & represents a p-vector function
defined in a d-dimensional unit cube (or rectangular paralielopiped). We
suppose that these functions aré in L? over this cube and that the square of
the Banach norm is given by equation (14). ;

The advantage of this norm over, for example, the maximum norm 1is
that the Parseval equation then shows that the Fourier transform establishes
a norm-preserving isomorphism between % and the space &' of the Fourier
coefficients. The stability requirement takes on a particularly simple form
in &' leading immediately to the Von Neumann condition as a ‘necessary

condition for stability.

Of course, the choice of a norm is restricted by the nature of the problem; -

i.e., the solution operators E () have to be bounded with respect to the norm.
In most problems of mathematical physics, the L* norm can be used.
" We give several sufficient conditions for stability;. these are mostly
of the nature of an auxiliary condition under which the Von Neumann con-
dition is also sufficient for stability. . -
‘One may perhaps surmise that in all practical cases (including problems
with variable coefficients,? and even nonlinear problems) the Von Neumann
condition is both necessary and sufficient for stability. Such a surmise
has often been made (so far apparently without misfortune) by people
who have to make actual calculations, and one can construct a good bit
of heuristic evidence for it. But the purpose of the present discussion is
to discuss only certain cases that can-be treated rigorously. A few simple
applications will be given. ' ' o :

10. Notation; Fpurier Series

Let x = (z,, %, * '+ , %) be a vector (vectors will be denoted by bold
face type) whose components #; , %2, ***, 4 are the space variables of the
problem. Suppose that the functions with which we deal are periodic with
. L, in the space variables. Consider a series '

P c(k)e‘f‘"

2Fritz. John has succeeded in proving in his important paper [13] that for parabolic
equations a mildly strengthened form of Von Neumann's condition is sufficient for, stability
even for operators with variable coefficients. A similar result for a certain class of hyperbolic
equations with variable coefficients has been obtained by Peter: Lax [14]. o

periods' Ly, Ly, -

“-where V=L, L,---L,.
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where k is a d~component vector whose components are 27l [Ly,**, 2al,[L
and wh.ere the summation is understood to be over all such1 velc;:ors <;bta1£;1e<‘iz
py letting J;, Z,, - + -, /; Tun independently over all positive éndhegative
integers and where ¢(k) is a complex-valued function defined on the lattice
of thgse vectors. This is a general trigonometrical series with the periodieit

described above. I_n our applications there are $ functions of the z’s; w)e’
treat them as the components of a p-component vector f(x). Foi ,an

vector y we denote by | y | the square root of the sum of the squares of ch
absolute values of the components. Therefore, if f(x) can be: expanded as

f(x) = S clk)e =,
the Parseval equation is -

\]_ L Ly
[ a0 R = Slew)

Any periodic f(x) for which the left member of (14) exists will be called
an e}ement of # and the square root of that member will be called its norm
S1'm11ar1y, any set of coefficients for which the right member of (14) 'exists.
will be called an-element of %’ and the square root of that member will
be called its norm. Then the Fischer-Riesz theorem says that & is a .com-
plete space and the Riesz-Fischer theorem says that there is a one-to-one
correspondence between elements of & and of &', if we adopt the usual
agreement that functions f(x) which differ only on a set of measure zero
are regardf:d as identical — this agreement is feaéonable, because the
coz.'respondmg states of the physical system would be physically indistin- -
guishable. The Parseval equation (14) shows that the  correspondence
between # and %' is norm-preserving. Statements of convergence bounded-
ness and the like can be taken over directly from & to &' or fror;l B toF ‘

Vg

11, .Properly Posed Problems

Tl.le general linear differential operator with constant coefficients can
be otained formally by taking a function D(k) or D(k, , %, , - - -, ;) which
isapx # matrix whose ‘elements .are polynomials in .Z;e; kg g PR
and substituting 8/dx, for k, , 3/ox, for &, , etc. If 4 is su’c;h ;1; ope;atdo;
and we apply it to the element ve™ ™ where v is a constant vector, the
resul? Is simply the product of this element -and D (ik). Therefor(’e ‘the
solution of the initial value problem - o

s | -%u(x,t)‘:A:u(g,‘i), |
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a6 o uE0)=ux) .

(17) : Cux, f) = Dy ¢ TP vy (k)

where ' , ‘

(18) - Vo(k) ='*—"f dwy- -+ | dwgug(x)e .
: VJoe 0 A .

The first requirement for a properly posed problem (see Section 3),
namely that the domain of the solution operator be dense in 4, is auto-
matically satisfied for the problems’ considered here, because the above
solution (equations (17) and (18)) is certainly valid whenever the initial
element u,(x) is a trigonometric polynomial and the trigonometric polyno-
mials are dense in .- o : o :
The second requirement for a properly posed problem takes the form
that || #°9)|| should be a bounded function of k and that the bound should
be uniform in £ (It should be obvious to the reader that if M isa p X p
matrix and we write || M || we mean the bound of the transformation
corresponding to M in a p-dimensional vector space with complex Euclidean
norm.) Whether this condition is satisfied must usually be investigated

separately in each case.

12. Finite Difference Equations

Just as the diffgérential operato'r 4 is represented, in the spéce %z,

by the matrix D{1k), the finite-difference operator B(4¢, Ax) will be represen-
ted in #' by a matrix G(4f, 4%, K) whose elements are functions of the
components of k as well as of the parameters 4f, AX. One reason for making
the Fourier transformation is that the elements of G(4¢, 4%, k) can generally
be found easily, even though B(4, Ax) represents an implicit system of
difference equations. N

Each difference equation equates to.zero a certain linear combination
of the components of u® and of u+ at a group of neighboring points of the
‘net used for the numerical work. Specifially, let this group of points be
referred to a particular point of the group with: coordinates @y, &z, - e,
so",tha,t a typical neighbor of this point in the group has. coordinates
o+ pr Ay, - -, % + B, Ax; where f; |+, B, are integers. The difference
equations can then be written in the form -

:(1'9) E(ﬁl,‘...,ﬁd) [A(ﬁl P ﬁd)uﬁﬂ(ﬂ’r + By Azy ;e o, Ty + Pudis) |

+ BBy, :_ﬁa)u"(-'”l + B4, AL Badzs)] =0,

where 4 and B are p X p matrices Whose"‘eferriénts depend on the g, and
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on ‘At and the Az, but not on.¢ (i.e. #) or the x; themselves. The summation
is over a finite number of neighbors — that is over a finite number of sets
of values of 8,,--, fa. o , R

This system is in general implicit, because inthe numerical work the
unknowns are thevalues of the components of u™ at the various net
points, and each equation contains generally .ééveral_of the unknowns. We
assume, however, that the system is such that if u"(x) i5 given as any
e}ement of 4, then u™(x) is uniquely determined by the difference éqiiei—
tions (19) and the periodicity requirement. ' D

If the Fourier series o

(20) un(x) = z(k;vn(k)efk-x

and a similar one for u"+(x) are substituted into (19), the typi(v:él“{:ér‘m
contains a factor - . -

exp (ilkn + By damy) + -« + Ruldty + fudes)])
from Yvhich we cancel out the common part ¢®* from all the terms of the
equation. What is left .can be written as . |
'  HvME) 4 Hy (k) =0
where H, is an abbreviation for.the matrix. S
E(ﬂl,-:-,ﬁ.,) APy, -, Ba) eXP‘{i[k1ﬁle1 +- -+ kdﬁddwd]}

and H, is.similar. The solvability assumpﬁon made in the preceding

paragraph is tantamount to the assumption that H, has an inverse. There-

fore we can write : B h S

(21) , vetl(k) = GvH(k)
where the matrix G is given by - . . : :
(22) G = G(d¢, Ax,k) = — H{*H, . .

G will be called the amplification matriz: it is the represéntation in 4’ of
the operator 'B(At, 4x). Therefore the stability requirement is that if the
manner of refinement of the mesh is given by 4x = g(4¢), the set of matrices V

i=12-"",
0=nd;t<T

sh?uld bfa uniformly bounded for all k with real components, the bound
being umf(?xm in k. Asin Part I of this paper 4;f is a sequence tending
to Z€r0 as § — 00 and corresponding to each  there is a et or grid of space
points such that each g;(d,?) = A=, g, (4;t) =4z, etc. also tends to zero.

The problem of stability is thus reduced to that of finding estimates
for the bounds of powers of the amplification matrix G.

(23) C {64yt 84,0, k),
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13. . The Voun Neumann (Necessary) Condition for Stability

A lower limit for the bounds of' the powers of .G is_easily given. Let
the eigenvalues of G be AV, 4, , A? (not assumed real, not assumed

distinct). Thé spectral radius of G is
¥y == 71(At AX k) Ma.xm Il(‘)l

Suppose the 4’s so ordered that | A ] = 7, and let o be an elgenvector_
correspondmg to eigenvalue A® . Then ;
1G]] = Maxg, NSV GV
vl T v

or generally the spectral radius is a lower bound for the bound of a matrix.

If G is raised to any power, each of its eigenvalues gets raised to the same

power and therefore the spectral radius G® is 77 . Therefore
el =7
We call
"Ry = Ry {48) == Max(k, 7y (42, 8(4¢), k), _
where the maximum is with respect to all k with real components. The
stability requirement of uniform boundedness of the set (23) 1mphes that

for some K,.
At >0,
0L M =T,

{Ry(40)}" = K,
.but this is equivzilenf to the conoitioh'

(24) : Ryt) =14 0(4)
where 0(4¢) denotes a quantity bounded by a constant times 4. Th1$ is
the Von Neumann necessary condition for stability. .
14, A Sufficient Condition for Stability

- Let the elgenvalues of G*G be denoted by ,u(l’ e /1,“” The bound
of G is

7y = 7(48, 4%, k) = || G || = Maxm [t M2 .
* Since || G| = ||G]|", if we call - .

R = R (At) = Maxy, 7, (4%, §(4¢), k), _
the stablhty reqmrement is satlsﬁed prov1ded there is a K such that 3

- A4t >0,

(Ri(d) S K, 0=ndt<T.

e
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but_ this is quivalent' to the condition
(25) . Ry(4t) < 1 4 0(4¢).
Consequently, we have )

THEOREM 1. Condition (25) is sufficient for stability.

If G is a normal matrix (i.e., one that commutes with its Hermitian
conjugate), the eigenvalues of G*G are just the squares of the absolute
values of the eigenvalues of G (because G* and G can be reduced to diagonal

form by the same unitary transformation), so that R,(4¢) = R,(4¢). There-
fore, we can state. the

COROLLARY. If G is a normal matrix, the Von Neumann condition (24)A
is sufficient as well as necessary for stability. :

15. A Second Sufficient Condition for Stability

As noted in the corollary, the case in which G is a normal matrix
is an important special case, and in that case there is a complete orthogonal
set of eigenvectors of G. Even if G is not normal, there may be a complete
set of linearly independent eigenvectors (not generally orthogonal). A
stability condltlon will now be given for such cases.

Let ¢, - 4(» denote a set of normalized, linearly independent
eigenvectors of G. Let T be the matrix having these eigenvectors as columns;
so that T,; = ¢,; and let 4 denote the determinant of 7. T provides a
similarity transformation (not in general unitary) that diagonalizes G.

That is,
AW 0
G:T—l( )T,
B “\o A®

W gy
(26) G”:T—l( - ) T.
o an

The inverse of T has elements given by’

. and therefore

(T, — algebraic cofactor of Tii' . N
4 .
If the columns (or rows) of any determinant are regarded as a set of vectors,
the absolute value of the determinant does not exceed the product of the
lengths of the vectors (corresponding to the interpretation of the determinant
as the volume of a multidimensional. parallelopiped of which the vectors
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form a set of coterminous edges).:Each column of the cofagtor mentioned.
above consists of p — 1 of the components of a normalized eigenvector of
G and hence has length less than or equal to L ('Zo.lrsequerltly,‘ ‘

@ =
ol =y |
Clearlji, ‘the absolute :iralue of an element of T cannot exbeed_ 1, s0 from’ (26),

l(Gn)tIl—-—IA!?;r’“.

where the factor ;152 comes from the fact that thefe ‘are pz terins in"the
expansion of the matrix product ((26). Since the bouind of a p ><75 matnx
does not exceed p times its -absolutely’largest elemerit, :

3

jai™

The determinant' A of course is a function of:Af and k, buit if it is
bounded: away from zero, we can replace | 4| by its greatest lower bound
in'-the above inequality and use the same reasomng that led to (25) in
Section 14; to prove S

e =

THEOREM 2. If there is a constant a such that }A [ >a > 0 for all
7eal k and all su]‘fzcwntly small At wheve A is the determinant of the normalized

ezgenvectors of the amphﬁcatwn matriz G(4t, g(41), k), the Von. Neumcmn' ‘

comiztzon (24) s sufﬁczmt as well as mecessary for. stabzlzty

16. A Third Sufficient Condition for Stability

In some cases of practical importance the determinant A vanishes for
certain values of k so that a different criterion must be found. To find
one, we start from Schur’s theorem that any square matrix 4 can be
reduced to triangular form by a unitary transformation

B = U*AU

where B is the tnangular matnx

AL By . By By,
0 @ By« B,,
‘ S0 .0 ™ B
B = v '
0o 0 0--- l(“

whose dlagonal elements are the eigenvalues of 4 and such that B =0

‘ Proyﬁded. o
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for i >7 Smce o element of U can exceed. I:in absolute value -

(27) o . Ma’XIBu'I SﬁzMaXl‘Adl
The general element of the #u-th power of B has the form
(28) (B )i = E Bikl Bkl X" Bkn-_,_-'j

summed over the indices &, , &, . . ., k,_, , arranged in every possible way,

z<k1£k< <k,,1_7

No matter how large # is, at most § — 7 of the factors in theabove product

‘can be off-diagonal elements of B This:will enable us to obtain a satis-

factory bound for. B by i 1mposmg restnctlons on the diagonal elements
only We assume that

(29), : A Max]}t‘”l—y<1

Co i>1

and call
Max ([ A0, 1) = = 1%

We focus our attention temporarily on those factors. of the .typcal

| product in (28) which are ‘off-diagonal elements of B, disregarding the.

d1agonal elements occurring in the product. The number of such factors

can be 7 where 0 <7 =47 —1%; let N be the number_of distinct ways

of choosing these # factors from among the off- d1agona1 elements of B,
taking into account the chain rule for subscnpts in matrix multlphcatmn

(Except for the trivial cases in which j—it=0o0r7v= O NI~ is just the

binomial coefficient (7 i_l— l)) .

Havmg chosen the 7 off-diagonal elements, we ‘consider the various
ways in -which they can be combined with diagonal elements to make the
general typical product in -(28) with the factors in the order shown there.
One arrangement is with the off—dlagonal elements crowded together at-the
right side of the product and preceded by a suitable power of 1) on their
left. Other arrangements can be obtamed from this .one by decreasmg the
power of A® and inserting suitable’ diagonal elements in positions to the
right of the leftmost off-diagonal element. The first such factor can be

inserted in any one of 7 positions, the next in any one of # + 1 positions,-
“the next in any one of 7 + 2-positions, and so forth: * But: the order of in-

sertion is irrelevant, so the number of dlstmct ways in which ¢ such. factors
can be inserted is '

W+U0+W

@+9—U

\
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“The inserted factors are all eigenvalues with index greater than .z (because .
of their positions in the product) hence with index greater than 1. There-
fore, by (29), the inserted factors, when multlphed together are bounded

by »?. Now the series
@« 7 + 1) .
2(«) 4

fr+g—1) ,

Y
g! ; :
being a hypergeometric series, is convergent to a finite limit because y < 1.

Let that limit be-denoted by F,(y). The power of A9 occurrmg in the
product is in any case bounded by (A*)®, so, finally .

H(B")| = (/1* Zm Ny (MaXlBsol) ().

This expansion is clearly mammlzed by takmg j—1=p—1. Then,
since the bound of a matrix does not exceed $ times the absolute value
of its largest element, and using (27) and the fact that the bound is invariant
under a unitary transformation, we find

. -1 ’
4]l = ()" 2w Ny (p? MaXIAstI ) F. ().

To apply thls result to the stability problem we mterpret A as the
amphﬁcatmn matrix G(4¢, 4x, k). The factor (A*)" is then bounded for
the set (23) if the Von Neumann condition is satisfied, and the other factors
in the above expression are bounded if y << 1 and the 4,, are bounded
The following theorem results: » :

THEOREM 3. If the elements of the amplification matrix G(A4¢, g(At) k)
are bounded functions of k and At for all real kK and all suffzczently small
positive At, and if there is a constant y such that -

[y (ds, 8(4s), k) | =y <1, 1=2 8,:-, %
then the Von Newmann condition (24) is suffzczent as well as necessary for
stability.

Roughly speaking, one eigenvalue is permltted to get up to 1, or even
1 + 6(4¢) provided the bound of the others is less than 1.

17. The Wave Equation

As a first example to ﬂlustrate the foregomg ideas we consider the

wave equation v
Py P

os? ox?

A satisfactory formulation is obtained by making the further definition

STABILITY. OF DIFFERENCE EQUATIONS 286

w=c 5'1/;/8:1’:,' whereupon the'equations become

v 3¢ ow

: —
(31) o ox
ow 0

o~ o

“and we now have a properly posed problem. In this case the square of the

-norm is the energy of the wave motion and by conservation of energy the
solution operator is bounded with bound unity.
The first choice of the finite difference equations that we wish to

- consider is

$41(e) =47(a) +5 ca [w (o +%) —wr(« —2)].

(32) .
wn-{-l(x) —_ wn(x) + [ n ( @) _ ¢n (x — A_x)] .
2 2
The amphflcatlon matrix is. ‘
1 21 Z%?smlegE
G(4t, A, k) = ’”

| Gdr Az, E) cdt | Az ~

27 — sin — 1

xr . 2

as found by substituting a Fourier term

. ‘(g:)e,-kz

. 7\ | - 41 n
for (Z”} into (32) and solving for (Z" +1) in terms of (-‘;n) as-

LY a®
(bn+l)= G(bn) ’
The quantity R; = R, (4¢) defined in Section 13 and appearing in the Von
Neumann condition, namely the maximum with respect to % of the spectral

radius of G, is
e
' + Az

and we reach the well known conclusion that the difference equations (32)
are unstable, at least if cA#/dx is kept at any constant value as At and'
Az —-0, -

In this example the Von Neumann condition could be satlsfled by
making A¢ and Az — 0 in such a way that Az/(4z)? is constant, but there
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is not much point in pursuing thislead because we all know.perfectly well

that there is a much better difference scheme than (32).
According to the scheme usual in fluid dynamical calculations, the

differential equations (21) are approximated by o

g =g + [ o+ ) o =T
o) = w"(@) + %Z [95”*1 (‘” + 4;) - "Smtl (x N A?z)] '

This scheme ‘differs from (32) only in the superscripts on ¢ in the s_écond
equation, (The equations would have a more centered look if we had used
the notation ¢™+% and ¢"* in place of ¢"* and ¢"). The .amplification
matrix is ' ' - :

(33)

(34) o 6= (ja , ’_“.a2)
where a is an abbreviation forz—witsinél—l—a-:,

Az 2
and : : G*G = (Lt;z z;zi a? a4) .
The characteristic equations of these ma.tﬁces are
(35) ’ 2 (2—a)i+1=0
and o .
(36) w—(@+apt+1=0

For each of these characteristic equations the product, of .the roots is 1.
In (35) the sum of the roots is 2 — &% consequently the roots lie on the unit
circle if a2 < 4. In (36) the roots.are real. We find, for the quantities
R,(A¢) and R,(At) introduced in Sections 13 and 14

o =1ifc—4f§1,"
: Az
R, (4%) ' oAt
=1 if—>1,
. Az

AL\t cAt\? e AR .
Ryt =V s(_c 4(__-) V (.C |
. “ ,'_2( _)1 ‘ 1+ A,x)_,-l-, aa) Vi+4l) -
The Von Neumann conditibn is satisfied for cdijAr = 1 but not for any

othér. fixed: value of cAtfdw. - . -
. The. sufficient condition.for stability given in Section 14, namely
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R;(At) £ 1+ 0(d4t), requires At = O((4x)?) as 4¢, Az > 0, which is much

" 'more. str_iligenﬁ than the Von Neqmann condition. But.the-sufficient con-. - .
- dition ‘given in-Section'15 gives what we want,. The normalized eigen-

vectors of the matrix (34) are easily found, and their determinant has the -

absolute value
v - - 3
| 4] ,:V‘l — (C—A-sinﬁf),.
o0 Az 2

- This is bounded. away from zero if ¢4t < Az. " We arrive thus :it-the‘ con— '

clusion, first stated in the Courant-Friedrichs-Lewy paper, that equations

(33) are stable if c4¢/Ax = constant < 1 but not if ¢4¢/Ax = constant > 1.

The case cAt/dx = 1 (stable according to Courarit, Friedrichs and Lewy)

is not handled by .our method. - . -7
Lastly, we consider the implicit system

741 — A" Et_[ n( A_x)

s =40 + 5z oo+ 3
+ w1 (x + é—]f) — w® (x — ék:) — gt (a: — ﬁ:)],

(37) ) o 2. ., 2 2

741 i n E_t_[ n( _iv)
(o) —w(o) + 5 - | 67 (2 + |
o A Az ‘ Az\”

ntl ) A ) — TtL PE—

| +é (x+2) ‘b(x 2) ¢ (x 2)]
as approximation to the differential equations (31). (Eqﬁations of this type

‘have been used, for example, by Arthur Carson of Los Alamos in studies -

of .the dynamics of stellar interiors.) The amplification matrix is

1 — a?l4 ia .
c ' 1+ a2/4 1+ a%4
N Ga. 1 —at4

1+ a?fd 1+ a%4
and G*G is the unit rh:i{rix. Th‘e criterion of Section 14 is always satisfied
and the equations. (37) are stable as 4¢ -0, 4z —0, no ‘matter what are
the relative rates at which A4¢ and Az approach zero. '

_18. Diffusion Equation; Two Level Formulas
_Consider the equatioﬁ ‘ . o :
ou - % %u 0%

e 4 e 4-2B —
ot - >ax2+ Bax8y+c

(38) Cop
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where the’quadratic form (A, B, C) is required to be positive definite; this
‘makes the differential equation parabolic. In consequence of this require-
ment, ‘the differential equation provides a properly posed initial - value
problem‘ for example in the space # of functions %(z, y) in L? over.a
rectangle in the x, y-plane. .

We consider in this section a certain class of dlfference equatmns in
which #*(z, ) and #*+(z, y) are connected directly. (In the two following
sections we will consider some schemes in which %", #*! and »"~1all appear
in the same equation; these will be referred to as three-level formulas:)

Introduce the followmg abbrev1at1ons : :

ul,  foru®(z,y),
Uiy s for #*(z + 4z, y),
u? 14y for u™(z, y + 4y), etc.,

and
n Wpprs — 205y + Ui
o7, for [A Ua)?
. u® . - un_ . — y? ) y + %,.,,_1 .;—1
2B i+1 541 4 1H—1 i+l I—L i—13
2 . 4dzdy
uP sq — 205 + Ul
+ C T J+! N .
(Ay)*?
The class of finite difference equations we vmsh to consider is
(39.) S ultt — ufy = At[OOF + (1 — 6)@:}]

where 6 is a non-negative constant. The choice 0 = 0 gives the usual ex-
plicit system and the choices § = 1, 6 =1 give the two favorite implicit

systems.
(As is well known, if B = C = 0, so that the pproblem reduces to ‘that

of one space variable, the implicit equations can be readily solved by a
simple algorithm. For two or more space variables it is wise to solve the
implicit equations approximately by a relaxation technique; this is of course
much .more labor than required, per cycle, by the explicit equations, but
it is nevertheless worthwhile, in some cases, to use the implicit equations
provided the relaxation is done by some method like the extrapolated
- Liebmann method.)

Since there is only one dependent va.nable the amphflcatlon matrix

has just one element:

1 1—86
G(dt, Az, Ay, B, , 7)——ﬂ——)~

1—6w
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where
w At[z (cos &, dz—1)— 25 sin k4 k,Ay-+ —— (cos kA )]
= _— sin
V=) e Gy S e S Ay e o

From the positive definite character of the quadratic form (A B, C) it
follows, after a little calculation, that .
4 C
— 4 — =W =0
o ]swso
, 1+ (1—ew
The expression - T — oW
interval and has the value 1 at W = 0. Therefore we will have
| G | < 1if this expression is = — 1 when W has its most negative value
From this the Von Neumann condition is found to be:
1) if% <6, no restriction on the way 4¢, 4z, 4y go to zero,
2) if 0<6=<% and if we suppose 4f/(dz)? and A4t/(dy)® kept
constant as 4¢, Az, Ay — 0, then
o I 4 o 1
“03 2At|:(Ax)2+ (Ay)z] =12
Since the matrix G has only one element, G commutes with G* (in
this particular example G = G*), so that the Von Neumann condition is
sufficient as well as necessary for stability.
This example can be generalized in various ways. For example one

is an increasing function of W in the above

. 0 : -
may include lower order terms, Da—u - E? -+ Fu, where D, E, F are
. T y -

constants, in the differential equation (38), and investigate their in-
fluence on stability. This is easily done because G is still a one-element
matrix, but we omit details. It is found that for any reasonable manner of '
treating these terms in the finite difference equation, the stability coun- -
dition is the same as before, except that sometimes the sign < in (40)
has to be replaced by <. We may note, however, that if F >0 it is im-
portant to have the Von Neumann condition in the form R,(4¢) = l—i—O(At)
rather than merely R,(4¢) <1, because there are then- generally true
solutions of the differential equation which increase exponentially as ¢ °
increases, and clearly we cannot expect (nor do we wish) to exclude such
solutions from the numerical work. : )

'19. The Du Fort-Frankel Equatlons
Du Fort and Frankel [12] have approx1mated the diffusion equat1on l
ou 0%

= constant >0
% o (@ )

(41)
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~ by-the ‘differen(:e equation
204t . [w
(dz)?

" This system is of interest for two reasons, the first havmg 1o &

(42) w"*‘l(x)-——u”—l(x)—-

consistency and the second with stablhty Tt is readily verified it .t;--the_

consistency condition of Section 5 is satisfied if and only if A¢/4z > 0 as
" At, Az — 0. In fact, if Afj/Ax—>pu where wisa ‘constant, it is clear that
the d1fference equatlon (42) apprommates the drfferent1a1 equation

u aZu 0w ‘

a i Mo | |
rather than (41). just how large values of 4 t/A% can be tolerated in practrce
is of course not settled by our argument.

To write (42) in the form requrred by our general theory, we  must
mtroduce another dependent variable, say. é(x), as follows '

w(2) = §) + [u"(x+Ax> wi(e) — §ia) o (x—Ax)J
$m41(2) = wr().

The amplification matnx is"

(A )2

. : . gy COS. kAx —\
(43) Gt Az, k)= {1+ y 14y
a _ . 1 - 0
204t e e
where y = ——. The characteristic values of G are.

(dz)r” arer
' _ ycos kAx £ V1 — y?sin® kdx

(“) 14y

and it is readlly found that a) the Von Neumann condition is always

satisfied, and in fact R,(4¢) = 1, b) for any fixed value of y, R,(4t) =

constant > 1 so that condition (25) of Section 14 is of nio use, c) the deter-
- minant A of the normalized. eigenvectors of ¢ vanishes when y sin k dz = 1,
so that the condition (Theorem 2)-of Section 15 is of no use, d) the criterion

of Section 16 is satisfied because the lesser of the roots (44) is always,

y—1 12
bounded, in absolute value, by

dition is agaln ‘sufficient as well as necessary for stabﬂrty
Therefore, the Du Fort-Fra.nkel equations are always stable, but the
time increment must be limited on account of the consistency condition.

(@t Az)— u'**i<w>-—-u"v—1(w)+uﬂi(f”_fi‘tﬂf‘ |

l ,'so that thie Von Neumann con-
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20. Positive Operators

In thlS section we present a sufficient condition, due' to Friedrichs
[4], for the stability of certain difference schemes. The schemes considered
are explicit two level schemes for vector-valued unknowns; i.e., the value
of the approximate solution at time ¢ + % and position  is expressed as a
linear” combination of its computed values at the time #: '

(45) - u(t + 4) = z ¢ u(x + 4td,) = C(4t)u.

In Friedrichs’ theory the drsplacement vectors d (finite in number) need
not lie on a lattice. The coefficient matrices c, are functions of x, and are
requlred to satisfy the following" conditions: »
i .3 ¢,(x).=1I (the identity matrix), . . ' ‘
r : .
ii) ¢(x) is symmetric and positive definite,’ ,
"iii) - ¢,(x) is a Lipschitz continuous function of the vector variable x.

Conclusion: The difference scheme (45) is stable.

We reproduce Friedrichs” proof, and show that the norm of C(4%)
with respect to the L2 norm over the whole space, is bounded by

(46) | Cde)] <1+ A4,
where the constant A depends on the Lipschitz constant of the ¢,, and
on the number of coefficients. Since stability means the uniform bounded-
ness of | C*{A¢) |, ndt < T, and IC“(At) = [C(At) |, the estimate (46)
implies stability. -

To ‘estimate || C|], Friedrichs uses this characterization of the norm
of an operator:

e || = Sup-(u, Cv),
full=lv]=1

where the bracket denotes the L? scalar product over the period paral—
lelogram :

(47) T (u Cv) = qu ,(x v(x + Atd,)dx.

It follows from this characterlzatlon of the norm of C that any upper bound

for (u, Cv) valid for all vectors u and v of unit length is an upper bound
for ||C||. We shall find an upper bound for (u, Cv) from (47). Since the
matrices ¢ were assumed to be positive, we can apply the Schwarz inequality
to the terms u’cv-in the 1ntegrand We get after throwmg 1n the 1nequa11ty
about the arithmetic and the geometric mean,

_u'ev <lucu+ FVoV.
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Substituting this into the integrand in (47) we have the following inequality:
(48) (v, Cy) S 13 /() (xu) + 33 [ V0 + Ao (V' (e + A1)

The first term on the right in (48) is; on at.ccgunf'of the requi.re’m'ent that
Z ¢, (x) is the identity, just §(u, u) which is g, since u has u_m_t,norm. : Ip
the second group of terms intreduce X' = X + Atd, as.new independent
variable; we obtain - . . S e
BV — ().

If.in thé ;cibové ex;:)réssi‘on_',wé _replé,ce o (X! — 4td,) by ¢ (X'), the_,en:o;
committed is at most a constant times 4¢f, on account of ',the. gssuqu- Lip-
schitz continuity of the coefficients c. Imagine sucha substltutlon_l).erformed,
and treat the resulting group of terms the same way as the ﬁlrst group
of terms. This way we find that the value of the second group ot.' terms is
at ~m0§t 1/2 4 const. Zt, and have the desired 1 - const. -At estimate for
the whole expression (48). o o

Such symmetric positive difference operators come up.m,dlfferffnce
approximations to solutions of symmetric hyperbolic systems, i.e., equations
of the form . : - .
(49) S wtaustiu=0
where the coefficients a, are symmetric matrices. " A majority of the equa-
tions of mathematical physics which describe reversible phenomena are’ of
this form: the general theory of such equations has begn‘develope(? .by
Friedrichs (loc. cit), where he gives a recipe for associating. a Pos1t1ve
symmetric operator to each symmetric hyperbolic operator. We give here

such a recipe:
Take for the displacement -vectors d, the 24 vectors
| do=+ (0 0, 4,0, 0) _
Here the A, are arbitrary constants, the side lengths of a reCtar;g.’ular la.tt.ice
in x-space. Replace the x-space derivative Uz in the differential equation
(49) by centered difference quotients between x__fi—'Atch and x— Atdk,
and the time derivative by the forward difference quotient u(x, ¢ + At)
— T(x, ) where u is the weighted average ,—é-ocku(xj:h(l.k",;t), the sum of
the weights « being one. The Tesulting difference equation can be sqlved
for u(x, ¢4 4t): ' oL " | |
uz, t+ A = Culz, ) =3 ey ule LAl "

" cor =%l I Filay .o

r=1+-+,d.

where®

SFor the sake of simplicity we have taken b, the coefficient of u in (49), to be zero.
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Clearly, if the o, are fixed positive constants, the coefficients ¢, can
be made positive definite by taking 4, large enough. . ‘Of course in practice
it is the space mesh that stays constant and 4¢ is made small enough.
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