
Iterative methods for linear systems

Chris H. Rycroft∗

November 20th, 2007

Introduction

For many elliptic PDE problems, finite-difference and finite-element methods are the tech-
niques of choice. In a finite-difference approach, we search for a solution uk on a set of discrete
gridpoints 1, . . . , k. The discretized partial differential equation and boundary conditions
give us linear relationships between the different values of uk. In finite-element method, we
express our solution as a linear combination uk of basis functions λk on the domain, and the
corresponding finite-element variational problem again gives linear relationships between the
different values of uk.

Regardless of the precise details, all of these approaches ultimately end up with having
to find the uk which satisfy all the linear relationships prescribed by the PDE. This can be
written as a matrix equation of the form

Au = b

where we wish to find a solution u, given that A is a matrix capturing the differentiation
operator, and b corresponds to any source or boundary terms. Theoretically, this problem
could be solved on a computer by any of the standard methods for dealing with matrices.
However, the real challenge for PDEs is that frequently, the dimensionality of the problem
can be enormous. For example, for a two dimensional PDE problem, a 100× 100 grid would
be a perfectly reasonable size to consider. Thus u would be a vector with 104 elements, and
A would be a matrix with 108 elements. Even allocating memory for such a large matrix may
be problematic. Direct approaches, such as the explicit construction of A−1, are impractical.

The key to making progress is to note that in general, the matrix A is extremely sparse,
since the linear relationships usually only relate nearby gridpoints together. We therefore
seek methods which do not require ever explicitly specifying all the elements of A, but exploit
its special structure directly. Many of these methods are iterative – we start with a guess
uk, and apply a process that yields a closer solution uk+1.

∗Electronic address: chr@math.berkeley.edu

1

Typically, these iterative methods are based on a splitting of A. This is a decomposition
A = M −K, where M is non-singular. Any splitting creates a possible iterative process. We
can write

Au = b

(M −K)u = b

Mu = Ku + b

u = M−1Ku + M−1b

and hence a possible iteration is

uk+1 = M−1Kuk + M−1b.

Of course, there is no guarantee that an arbitrary splitting will result in an iterative method
which converges. To study convergence, we must look at the properties of the matrix R =
M−1K. For convergence analysis, it is helpful to introduce the spectral radius

ρ(R) = max
j
{|λj|}

where the λj are the eigenvalues of R. It can be shown [2] that an iterative scheme converges
if and only if ρ(R) < 1. The size of the spectral radius determines the convergence rate, and
ideally we would like to find splittings which result in as small a ρ(R) as possible.

An example: a two dimensional Poisson problem

In the convergence analysis later, we will consider a two dimensional Poisson problem on the
square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1, given by the equation

−∇2u = f,

subject to the Dirichlet conditions that u(x, y) vanishes on the boundary. We use a source
function of the form

f(x, y) =

{
1 if |x| < 0.5 and |y| < 0.5
0 otherwise.

(1)

This is plotted on a 33× 33 grid in figure 1. For convergence properties, the eigenfunctions
and eigenvalues of this function are very important, and to determine these, it is helpful to
consider an associated one-dimensional Poisson problem on the interval −1 ≤ x ≤ 1,

−d2u

dx2
= f(x),

subject to Dirichlet boundary conditions u(−1) = u(1) = 0. We consider a discretization
into N +2 gridpoints such that xj = −1+2j/(N +1) for j = 0, . . . , N +1. When constructing

2

the corresponding matrix problem, u0 and uN+1 need not be considered, since their values
are always fixed to zero. By discretizing the second derivative according to

d2u

dx2

∣∣∣∣
x=xj

=
uj−1 + uj+1 − 2uj

2h2

where h = 2/N , we can write the corresponding linear system as

TN


u1

u2
...

un

 =


2 −1 0

−1 2 −1
. . .

0 −1
. . . −1 0

. . . −1 2 −1
0 −1 2




u0

u1
...

un

 = 2h2


f0

f1
...

fn

 .

Motivated by previous lectures on the spectral method, we expect that the eigenvectors of
TN may be based on sine functions. A reasonable guess for the jth eigenfunction is

zj(k) =

√
2

N + 1
sin

πkj

N + 1
.

To verify this is an eigenfunction, and find its eigenvalue, we apply TN to obtain

(TNzj) (k) =

√
2

N + 1

(
2 sin

πkj

N + 1
− sin

π(k + 1)j

N + 1
− sin

π(k − 1)j

N + 1

)
.

Note that this expression will always be valid for the range k = 1, 2, . . . , N , and the boundary
values just work out. The last two sine functions can be rewritten using a trigonometric
identity to give

(TNzj) (k) =

√
2

N + 1

(
2 sin

πkj

N + 1
− 2 sin

πkj

N + 1
cos

πj

N + 1

)
=

√
2

N + 1
2

(
1− cos

πj

N + 1

)
sin

πkj

N + 1

= 2

(
1− cos

πj

N + 1

)
zj(k)

and thus we see that zj is an eigenvector with eigenvalue λj = 2(1 − cos πj/(N + 1)). The
smallest eigenvalue is λ1 = 2(1−cos π/(N+1)) and the largest is λN = 2(1−cos Nπ/(N+1)).

Returning to the two dimensional problem, we see that the corresponding derivative
matrix TN×N can be written as the tensor product of two one dimensional problems TN .
Its eigenvectors can be expressed as the tensor product of the one dimensional eigenvectors,
namely

zi,j(k, l) = zi(k)zj(l)

and their corresponding eigenvalues are

λi,j = λi + λj.

3

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1

f

x

y

f

Figure 1: A sample source function f(x, y) on a 33× 33 grid.

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0

0.05

0.1

0.15

0.2

u

x

y

u

Figure 2: The exact solution to the 2D Poisson problem −∇2u = f , with zero boundary
conditions and a source term given in figure 1.

4

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.002
0.004
0.006
0.008
0.01

u

x

y

u

Figure 3: The solution to the example 2D Poisson problem after ten iterations of the Jacobi
method.

The Jacobi Method

The Jacobi method is one of the simplest iterations to implement. While its convergence
properties make it too slow for use in many problems, it is worthwhile to consider, since it
forms the basis of other methods. We start with an initial guess u0, and then successively
improve it according to the iteration

for j = 1 to N do

um+1,j = 1
ajj

(
bj −

∑
k 6=j ajkum,k

)
end for

In other words, we set the jth component of u so that it would exactly satisfy equation
j of the linear system. For the two dimensional Poisson problem considered above, this
corresponds to an iteration of the form

for i = 1 to N do
for j = 1 to N do

um+1,i,j = (h2fj + um,i,j+1 + um,i,j−1 + um,i+1,j + um,i−1,j) /4
end for

end for

5

To find the corresponding matrix form, write A = D − L− U where D is diagonal, L is
lower-triangular, and U is upper-triangular. Then the above iteration can be written as

um+1 = D−1(L + U)um + D−1b.

The convergence properties, discussed later, are then set by the matrix RJ = D−1(L + U).
The Jacobi method has the advantage that for each m, the order in which the components

of um+1 are computed has no effect – this may be a favorable property to have in some parallel
implementations. However, it can also be seen that um must be retained until after um+1

is constructed, meaning we must store um+1 in a different part of the memory. The listing
given in appendix A.1 carries out the Jacobi iteration on the Poisson test function. It makes
use of two arrays for the storage of u, computing the odd uk in one and the even uk in the
other. Figure 3 shows a the progress of the Jacobi method after ten iterations.

The Gauss–Seidel Method

The Gauss–Seidel method improves on the Jacobi algorithm, by noting that if we are up-
dating a particular point um+1,j, we might as well reference the already updated values
um+1,1,. . . ,um+1,j−1 in the calculation, rather than using the original values um,1,. . . , um,j−1.
The iteration can be written as:

for j = 1 to N do

um+1,j = 1
ajj

(
bj −

∑j−1
k=1 ajkum+1,k −

∑N
k=j+1 um,k

)
end for

The Gauss–Seidel algorithm has the advantage that in a computer implementation, we no
longer need to allocate two arrays for um+1 and um. Instead, we can make just a single array
for um, and carry out all the updates in situ. However, the Gauss–Seidel implementation
introduces an additional complication that the order in which the updates are applied will
affect the values of um. For a two dimensional problem, two particular orderings are worth
special attention:

• Natural ordering – this is the typical ordering that would result in a for loop. We first
loop successively through all elements of the first row (1, 1), . . . , (1, n) before moving
onto the second row, and so on.

• Red–Black ordering – this is the ordering that results by coloring the gridpoints red
and black in a checkerboard pattern. Specifically, we color a gridpoint (i, j) red if i+ j
is even, and black if i + j is odd. During the Gauss–Seidel update, all red points are
updated before the black points. For the two dimensional Poisson problem, we see that
updating a red grid point only requires information from the black gridpoints, and vice
versa. Hence the order in which points in each set are updated does not matter. We
can think of the whole Gauss–Seidel update being divided into a red grid point update
and black gridpoint update, and this can be helpful in the convergence analysis.

6

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0
0.004
0.008
0.012
0.016
0.02

u

x

y

u

Figure 4: The Gauss–Seidel solution to the example 2D Poisson problem after ten iterations.
The crinkles in the solution are due to the Red–Black update procedure.

From the algorithm above, we can write down the corresponding matrix splitting for the
Gauss–Seidel method as

(D − L)um+1 = Uum + b

um+1 = (D − L)−1Uum + (D − L)−1b.

Appendix A.2 contains a C++ code to carry out a Gauss–Seidel method on the example
problem, and the result after ten iterations is shown in figure 4.

Successive Over-Relaxation

Successive Over-Relaxation (SOR) is a refinement to the Gauss–Seidel algorithm. At each
stage in the Gauss–Seidel algorithm, a value um,j is updated to a new one um+1,j, which we
can think of as displacing um,j by an amount ∆u = um+1,j−um,j. The SOR algorithm works
by displacing the values by an amount ω∆u, where typically ω > 1, in the hope that if ∆u is
a good direction to move in, we might as well move further in that direction. The iteration
can be written as:

for j = 1 to N do

um+1,j = (1− ω)um,j + ω
ajj

(
bj −

∑j−1
k=1 ajkum+1,k −

∑N
k=j+1 um,k

)
end for

7

-1

-0.5

0

0.5

1 -1
-0.5

0
0.5

1

0

0.02

0.04

0.06

0.08
u

x

y

u

Figure 5: The SOR solution (using the theoretically optimal ω) to the example 2D Poisson
problem after ten iterations. The solution is closer to the answer than the Jacobi or Gauss–
Seidel methods.

The corresponding matrix form is

(D + ωL)um+1 = [(1− ω)D − Uω] um + ωb

um+1 = (D + ωL)−1 [(1− ω)D − Uω] um + (D + ωL)−1ωb.

Appendix A.3 contains a C++ code to carry out the SOR iteration on the example problem,
and the result is shown in figure 5. In the SOR algorithm, we are free to choose the value
of ω, and the best choices can be found by considering the eigenfunctions of the associated
problem. This is discussed in more detail below.

Convergence analysis and complexity

To examine the convergence properties of the different methods, we need to look at the
associated spectral radii. For the Jacobi method, we had RJ = D−1(L + U). For the 2D
Poisson problem, D = 4I so we can write RJ = (4I)−1(4I − TN×N) = I − TN×N/4. The
largest eigenvalue of RJ corresponds to the smallest of TN×N , namely

λ1,1 = 4− 2 cos

(
π

N + 1

)
− 2 cos

(
π

N + 1

)
= 4− 4 cos

(
π

N + 1

)
.

8

Hence

ρ(RJ) = cos

(
π

N + 1

)
.

A Taylor series expansion shows us that ρ(RJ) = 1− 2π2/(N + 1)2. The time for us to gain
an extra digit of accuracy is approximately

1

log10 ρ(RJ)
∝ N2.

Thus we must run the algorithm for O(N2) iterations. Since there are O(N2) gridpoints for
the 2D problem, the total running time is O(N4). For detailed proofs of the convergence
properties of the other methods, the reader should refer elsewhere [2]. It can be shown that

ρ(RGS) = cos2

(
π

N + 1

)
,

so that one iteration of the Gauss–Seidel method is equivalent to two Jacobi iterations. Note
however the complexity is the same: we still need O(N2) iterations. For the SOR algorithm,
it can be shown that the optimal value of ω is

2

1 +
√

1− ρ(RJ)2
.

and that for this value,

ρ(RSOR) ≈ 1− 2
2π

N + 1
.

Since there is a factor of N in the denominator as opposed to N2, the order of computation
decreases to O(N) per grid point.

Figure 6 shows a plot of mean square error against the number of iterations for the model
problem with the Jacobi, Gauss–Seidel, and optimal SOR method. The lines agree with the
above results. The SOR method reaches numerical precision within 1200 iterations, while
the other two methods have not fully converged even after 104 iterations.

Multigrid

One of the major problems with the three methods considered so far is that they only apply
locally. Information about different cell values only propagates by one or two gridpoints per
iteration. However, for many elliptic problems, a point source may cause an effect over the
entire domain. The above methods have a fundamental limitation that they will need to be
applied for at least at many iterations as it takes for information to propagate across the
grid. As such, we should not expect to ever do better than O(N) operations per point. This
can also be seen by considering the eigenvalues. The maximal eigenvalue of RJ was set by
the λ1,1, corresponding to the lowest order mode. While the methods may effectively damp

9

10−30

10−25

10−20

10−15

10−10

10−5

1

105

0 2000 4000 6000 8000 10000

L
2
-n

or
m

er
ro

r

Iterations

Jacobi
Gauss–Seidel
Optimal SOR

Figure 6: Errors versus the number of effective iterations for the Jacobi, Gauss–Seidel, and
SOR methods, applied to the example 2D Poisson problem on a 65× 65 grid. The plots are
in line with the theoretical results of the text. The Gauss–Seidel method is faster than the
Jacobi method, but has still not reached double numerical precision after 10000 iterations.
The SOR method is significantly faster, but still requires 1200 iterations to reach double
numerical precision.

10

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (0)

x

y

f (0)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (1)

x

y

f (1)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (2)

x

y

f (2)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.2
0.4
0.6
0.8

1
f (3)

x

y

f (3)

Figure 7: The restriction of the example source term f using the multigrid method with
vdown = 0, vup = 2. Top left: the initial grid, with 33× 33 gridpoints. Top right: grid 1, with
17 × 17 gridpoints. Bottom left: grid 2, with 9 × 9 gridpoints. Bottom right: grid 3, with
5× 5 gridpoints.

out high frequency oscillations, it will take a very long time to correctly capture the lowest
modes with the largest wavelengths.

The multigrid method circumvents these limitations by introducing a hierarchy of coarser
and coarser grids. Typically, at each level, the number of gridpoints is reduced by a factor
of two in each direction, with the coarsest grid having ten to twenty points. To find a
solution, we restrict the source term to the coarse grids, refine the solution on each, and
interpolate up to the original grid. On the coarser grids, the lower frequency modes in
the final solution can be dealt with much more effectively. Since the coarser grids have
progressively fewer gridpoints, the time spent computing them is minimal. Because of this,
the multigrid algorithm requires only O(1) computation per point, which is the best order
of complexity that we could hope for.

To be more specific, we let the original problem be on grid 0, and we then introduce a
sequence of other successively coarser grids 1, . . . , g. We write u(i) and b(i) to represent the
solution and source terms on the ith grid. A multigrid algorithm requires the following:

• A solution operator S(u(i), b(i)) which returns a better approximation u(i) to the solution
on the ith level

• An interpolation operator T (u(i)) which returns an interpolation u(i−1) on the (i−1)th
level

11

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(3)

x

y

u(3)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(2)

x

y

u(2)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(1)

x

y

u(1)

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0
0.05
0.1

0.15
0.2

u(0)

x

y

u(0)

Figure 8: The solution of the v in the first multigrid V-cycle for the example 2D Poisson
problem. Top left: the exact solution on grid 3 to the f (3) source term in figure 7. Top right:
the interpolation and refinement on grid 2. Bottom left: the interpolation and refinement
on grid 1. Bottom right: the interpolation and refinement on grid 0. Even after a single
V-cycle, the solution is closer to the exact solution than the plots of 3, 4, and 5.

12

• A restriction operator R(b(i)) which returns a restriction b(i+1) on the (i + 1)th level

The interpolation and restriction operators can be thought of as rectangular matrices. As
an example, consider a problem with 9 equally-spaced gridpoints on the unit interval, at
(0, 1/8, 2/8, . . . , 1). Let grid 1 have 5 points at (0, 1/4, 2/4, 3/4, 1), and let grid 2 have 3
gridpoints at (0, 1/2, 1). Interpolation operators between the grids can be written as

T (1) =



1 0 0 0 0
1
2

1
2

0 0 0
0 1 0 0 0
0 1

2
1
2

0 0
0 0 1 0 0
0 0 1

2
1
2

0
0 0 0 1 0
0 0 0 1

2
1
2

0 0 0 0 1


, T (2)


1 0 0
1
2

1
2

0
0 1 0
0 1

2
1
2

0 0 1



where we are keeping the values at gridpoints common between the two levels, and intro-
ducing extra ones at the midpoints between each. Similarly, the restriction operators can be
written as

R(0) =


1 0 0 0 0 0 0 0 0
0 1

4
1
2

1
4

0 0 0 0 0
0 0 0 1

4
1
2

1
4

0 0 0
0 0 0 0 0 1

4
1
2

1
4

0
0 0 0 0 0 0 0 0 1

 R(1) =

 1 0 0 0 0
0 1

4
1
2

1
4

0
0 0 0 0 1

 .

It should be noted that without the boundary points, R(i) is the proportional to the transpose
of T (i+1), and this property is very useful in proving the convergence of the multigrid method.
However, this property is not strictly necessary to create an efficient multigrid algorithm.
Other methods of interpolating and restricting are also possible, and it should also be noted
that while a grid of size 2n + 1 has a particularly convenient multigrid formulation, the
multigrid method can be applied to grids of arbitrary size. Given a differential operator
matrix A = A(0) on the top level, we can define corresponding matrices on the lower levels
according to

A(i) = R(i−1)A(i−1)T (i).

With this definition, we can construct a solution operator S(u(i), b(i)) as a single red–black
Gauss–Seidel sweep. Given this, we can write a multigrid formulation as

function Multi(u(i), b(i))
if i = g then

compute exact solution to A(i)u(i) = b(i)

return u(i)

else

13

for j = 1 to vdown do
u(i) = S(u(i), b(i))

end for
r(i) = b(i) − A(i)u(i)

d(i) = T (Multi(0(i+1), R(r(i))))
u(i) = u(i) + d(i)

for j = 1 to vup do
u(i) = S(u(i), b(i))

end for
end if

The function is applied recursively, and at each stage, the remainder of the problem on the
level above is sent to the lower level. The algorithm starts on level 0, descends to level g,
and then ascends to level 0 again, following the shape of a V . It is therefore referred to as
the multigrid V-cycle. Other more elaborate methods of moving between grids are possible,
although the V-cycle is extremely efficient in many situations. In the algorithm, we are free to
choose the number of times the solution operator is applied on the way down and on the way
up, and typical good values to try may be vdown = vup = 2, or even vdown = 0, vup = 2. It may
also be worthwhile to carry out more iterations on the coarser grids, since the computation
is much cheaper there.

Figure 7 shows the restriction of the source term in the test problem on the coarser grids.
Figure 8 shows the solution being successively refined on the grids. Even after a single V-
cycle, the solution is close to the exact answer. Figure 9 shows the computation times for
two different multigrid algorithms, compared with the previous three methods considered.
The multigrid algorithms reach numerical precision extremely quickly, much faster even
than SOR. Only twenty Gauss–Seidel iterations are applied at the top level before double
numerical precision has been reached.

A Code listings

The following codes were used to generate the Jacobi, Gauss–Seidel, and SOR diagrams in
these notes. They are written in C++ and were compiled using the GNU C++ compiler.
Each of the first three routines calls a common code listed in appendix A.4 for setting up
useful constants and defining common routines. This common code also contains a function
for outputting the 2D matrices in a matrix binary format that is readable by the plotting
program Gnuplot [1]. This output routine could be replaced in order to save to different
plotting programs.

A.1 Jacobi method – jacobi.cc

// Load common routines and constants
#include "common.cc"

14

10−30

10−25

10−20

10−15

10−10

10−5

1

105

0 100 200 300 400 500

L
2
-n

or
m

er
ro

r

Effective iterations

Jacobi
Gauss–Seidel
Optimal SOR

Multigrid, vdown = 0, vup = 2
Multigrid, vdown = vup = 2

Figure 9: Errors versus the number of effective iterations for the several different iteration
techniques. Here, to allow a direct comparison, “effective iterations” for the multigrid meth-
ods is defined by the number of Gauss–Seidel iterations that are applied on the top grid
level, since the Gauss–Seidel iterations on the coarser grids are small in comparison. For
the vdown = 0, vup = 2 method, the effective number of iterations is twice the number of
V-cycles. For the vdown = vup = 2 method, the algorithm was slightly modified, so that only
two Gauss–Seidel iterations were applied at the top level each time, instead of the expected
four. Thus the effective number of iterations is also twice the number of V-cycles. The speed
of the multigrid methods is startling when compared to any of the other three iterations.

15

int main() {
int i,j,ij,k;
double error,u[m∗n],v[m∗n],z;
double ∗a,∗b;

// Set initial guess to be identically zero
for(ij=0;ij<m∗n;ij++) u[ij]=v[ij]=0;
output and error("jacobi out",u,0);

// Carry out Jacobi iterations
for(k=1;k<=total iters;k++) {

// Alternately flip input and output matrices
if (k%2==0) {a=u;b=v;} else {a=v;b=u;}

// Compute Jacobi iteration
for(j=1;j<n−1;j++) {

for(i=1;i<m−1;i++) {
ij=i+m∗j;
a[ij]=(f(i,j)+dxxinv∗(b[ij−1]+b[ij+1])

+dyyinv∗(b[ij−m]+b[ij+m]))∗dcent;
}

}

// Save and compute error if necessary
output and error("jacobi out",a,k);

}
}

A.2 Gauss–Seidel – gsrb.cc

// Load common routines and constants
#include "common.cc"

int main() {
int i,j,ij,k;
double error,u[m∗n],z;

// Set initial guess to be identically zero
for(ij=0;ij<m∗n;ij++) u[ij]=0;
output and error("gsrb out",u,0);

// Compute Red−Black Gauss−Seidel iteration
for(k=1;k<=total iters;k++) {

for(j=1;j<n−1;j++) {
for(i=1+(j&1);i<m−1;i+=2) {

16

ij=i+m∗j;
u[ij]=(f(i,j)+dxxinv∗(u[ij−1]+u[ij+1])

+dyyinv∗(u[ij−m]+u[ij+m]))∗dcent;
}

}
for(j=1;j<n−1;j++) {
for(i=2−(j&1);i<m−1;i+=2) {

ij=i+m∗j;
u[ij]=(f(i,j)+dxxinv∗(u[ij−1]+u[ij+1])

+dyyinv∗(u[ij−m]+u[ij+m]))∗dcent;
}

}

// Save the result and compute error if necessary
output and error("gsrb out",u,k);

}
}

A.3 Successive Over-Relaxation – sor.cc

// Load common routines and constants
#include "common.cc"

int main() {
int i,j,ij,k;
double error,u[m∗n],z;

// Set initial guess to be identically zero
for(ij=0;ij<m∗n;ij++) u[ij]=0;
output and error("sor out",u,0);

// Compute SOR Red−Black iterations
for(k=1;k<=total iters;k++) {

for(j=1;j<n−1;j++) {
for(i=1+(j&1);i<m−1;i+=2) {
ij=i+m∗j;
u[ij]=u[ij]∗(1−omega)+omega∗(f(i,j)

+dxxinv∗(u[ij−1]+u[ij+1])
+dyyinv∗(u[ij−m]+u[ij+m]))∗dcent;

}
}
for(j=1;j<n−1;j++) {
for(i=2−(j&1);i<m−1;i+=2) {

ij=i+m∗j;
u[ij]=u[ij]∗(1−omega)+omega∗(f(i,j)

+dxxinv∗(u[ij−1]+u[ij+1])

17

+dyyinv∗(u[ij−m]+u[ij+m]))∗dcent;
}

}

// Save the result and compute error if necessary
output and error("sor out",u,k);

}
}

A.4 Common routine for setup and output – common.cc

// Load standard libraries
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;

// Set grid size and number of iterations
const int save iters=20;
const int total iters=200;
const int error every=2;
const int m=33,n=33;
const double xmin=−1,xmax=1;
const double ymin=−1,ymax=1;

// Compute useful constants
const double pi=3.1415926535897932384626433832795;
const double omega=2/(1+sin(2∗pi/n));
const double dx=(xmax−xmin)/(m−1);
const double dy=(ymax−ymin)/(n−1);
const double dxxinv=1/(dx∗dx);
const double dyyinv=1/(dy∗dy);
const double dcent=1/(2∗(dxxinv+dyyinv));

// Input function
inline double f(int i,int j) {

double x=xmin+i∗dx,y=ymin+j∗dy;
return abs(x)>0.5||abs(y)>0.5?0:1;

}

// Common output and error routine
void output and error(char∗ filename,double ∗a,const int sn) {

// Computes the error if sn%error every==0
if(sn%error every==0) {

18

double z,error=0;int ij;
for(int j=1;j<n−1;j++) {

for(int i=1;i<m−1;i++) {
ij=i+m∗j;
z=f(i,j)−a[ij]∗(2∗dxxinv+2∗dyyinv)

+dxxinv∗(a[ij−1]+a[ij+1])
+dyyinv∗(a[ij−m]+a[ij+m]);

error+=z∗z;
}

}
cout << sn << " " << error∗dx∗dy << endl;

}

// Saves the matrix if sn<=save iters
if(sn<=save iters) {
int i,j,ij=0,ds=sizeof(float);
float x,y,data float;const char ∗pfloat;
pfloat=(const char∗)&data float;

ofstream outfile;
static char fname[256];
sprintf(fname,"%s.%d",filename,sn);
outfile.open(fname,fstream::out

|fstream::trunc |fstream::binary);

data float=m;outfile.write(pfloat,ds);
for(i=0;i<m;i++) {
x=xmin+i∗dx;
data float=x;outfile.write(pfloat,ds);

}

for(j=0;j<n;j++) {
y=ymin+j∗dy;
data float=y;
outfile.write(pfloat,ds);
for(i=0;i<m;i++) {

data float=a[ij++];
outfile.write(pfloat,ds);

}
}
outfile.close();

}
}

19

References

[1] http://gnuplot.info/.

[2] J. W. Demmel, Applied numerical linear algebra, SIAM, 1997.

[3] G. H. Golub and C. H. Van Loan, Matrix computations, Johns Hopkins University Pub-
lishers, 1996.

20

