Math 224B, Spring 2006, Wilkening

Homework 6
due Mon, May 8

2
Let @ = {x € R* : T + 3 < 1}. Write a computer program to approximate the

solution of
Au=0 1n

1
u=g on Jf) (1)

where g(x) = log[(x1 + 2)® + (z9 + 1)?]. (Pretend we only know the values on the
boundary. Later we can compare the result to the exact solution u(x) = log[(x; +
2)? + (z2 + 1)°].)

We will use a vanilla version of the boundary element method to solve this problem.
The idea is to represent the solution using a double layer potential

/8nyN x,y)u(y) ds(y), (2)

where the Newtonian potential in two dimensions is given by

1
N(x,y) = 5 log|x ~y| (3)

and J,,N(x,y) = n(y)-V,N(x,y), where n(y) is the outward normal to the bound-
ary at y. We will discretize the problem by breaking the curve ~ into n segments

A; ={(2cost,sint) : ty;_1 <t <tyi11}, j=1,....n (4)
with midpoints (in parameter space)
X; = (2costyj, sinty;), j=1,...,n. (5)

The points t; are uniformly distributed from 0 to 27 with the last point equal to the
first point (modulo 27):

t = 27k /(2n), k=1,....2n+1. (6)

We will approximate p(y) to be constant on each segment, and enforce (2) only at
the collocation points x;:

u(x;) = </ On, N(x;,y) ds(y ) ZAUNJ (7)

This allows us to solve for p in terms of g. (For the self term (when j = i), treat x;
to be slightly on the interior side of the curve segment A;).



What to turn in:

(1) Find a simple formula for [ A, On,N(x,y) ds(y) in terms of x and the endpoints
of the segment A;.

Set n = 96 and write a matlab program to:

(2) Make a plot of p; vs. j

(3) Make a contour plot of your computed solution %approx(X)-

(4) Make a contour plot of Uapprox — Uexact-

The code snippet in the file hw6.m might help with the visualization. In this code, I
construct a mesh on which to evaluate the solution, triangulate it, and make a contour
plot. Before this code executes, I have already computed the vectors xx(k) = 2 cos(ty)
and yy(k) = sin(t;) for k = 1..2n + 1, as well as the vector mu(j), j = 1..n. The
routine “evall(x,y,xx,yy,mu)” computes the approximation of the integral (2) at (z, y)
using the segments stored in xx, yy and the moments mu. (Note that in this code I
am using y to represent the second component of (x,y) rather than as the integration
variable (which you can write as (§,n) if you find you need to — but you probably
won’t need to)).



