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Abstract As was originally observed by C. F. Osgood and further developed by the
author, there is a formal analogy between Nevanlinna theory in complex analysis
and certain results in diophantine approximation. These notes describe this analogy,
after briefly introducing the theory of heights and Weil function in number theory
and the main concepts of Nevanlinna theory. Parallel conjectures are then presented,
in Nevanlinna theory (“Griffiths’ conjecture”) and the author’s conjecture on ratio-
nal points. Following this, recent work is described, highlighting work of Corvaja,
Zannier, Evertse, and Ferretti on combining Schmidt’s Subspace Theorem with ge-
ometrical constructions to obtain partial results on this conjecture. Counterparts of
these results in Nevanlinna theory are also given (due to Ru). These notes also de-
scribe parallel extensions of the conjectures in Nevanlinna theory and diophantine
approximation, to involve finite ramified coverings and algebraic points, respec-
tively. Variants of these conjectures involving truncated counting functions are also
introduced, and the relations of these various conjectures with the abc conjecture of
Masser and Oesterlé are also described.

0 Introduction

Beginning with the work of C. F. Osgood [1981], it has been known that the branch
of complex analysis known as Nevanlinna theory (also called value distribution the-
ory) has many similarities with Roth’s theorem on diophantine approximation. This
was extended by the author [Vojta, 1987] to include an explicit dictionary and to in-
clude geometric results as well, such as Picard’s theorem and Mordell’s conjecture
(Faltings’ theorem). The latter analogy ties in with Lang’s conjecture that a projec-
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tive variety should have only finitely many rational points over any given number
field (i.e., is Mordellic) if and only if it is Kobayashi hyperbolic.

This circle of ideas has developed further in the last 20 years: Lang’s conjecture
on sharpening the error term in Roth’s theorem was carried over to a conjecture in
Nevanlinna theory which was proved in many cases. In the other direction, Bloch’s
conjectures on holomorphic curves in abelian varieties (later proved; see Section
14 for details) led to proofs of the corresponding results in number theory (again,
see Section 14). More recently, work in number theory using Schmidt’s Subspace
Theorem has led to corresponding results in Nevanlinna theory.

This relation with Nevanlinna theory is in some sense similar to the (much older)
relation with function fields, in that one often looks to function fields or Nevanlinna
theory for ideas that might translate over to the number field case, and that work
over function fields or in Nevanlinna theory is often easier than work in the number
field case. On the other hand, both function fields and Nevanlinna theory have con-
cepts that (so far) have no counterpart in the number field case. This is especially
true of derivatives, which exist in both the function field case and in Nevanlinna
theory. In the number field case, however, one would want the “derivative with re-
spect to p,” which remains as a major stumbling block, although (separate) work of
Buium and of Minhyong Kim may ultimately provide some answers. The search for
such a derivative is also addressed in these notes, using a potential approach using
successive minima.

It is important to note, however, that the relation with Nevanlinna theory does not
“go through” the function field case. Although it is possible to look at the function
field case over C and apply Nevanlinna theory to the functions representing the
rational points, this is not the analogy being described here. Instead, in the analogy
presented here, one holomorphic function corresponds to infinitely many rational or
algebraic points (whether over a number field or over a function field). Thus, the
analogy with Nevanlinna theory is less concrete, and may be regarded as a more
distant analogy than function fields.

These notes describe some of the work in this area, including much of the nec-
essary background in diophantine geometry. Specifically, Sections 1–3 recall basic
definitions of number theory and the theory of heights of elements of number fields,
culminating in the statement of Roth’s theorem and some equivalent formulations of
that theorem. This part assumes that the reader knows the basics of algebraic number
theory and algebraic geometry at the level of Lang [1970] and Hartshorne [1977],
respectively. Some proofs are omitted, however; for those the interested reader may
refer to Lang [1983].

Sections 4–6 briefly introduce Nevanlinna theory and the analogy between Roth’s
theorem and the classical work of Nevanlinna. Again, many proofs are omitted;
references include Shabat [1985], Nevanlinna [1970], and Goldberg and Ostrovskii
[2008] for pure Nevanlinna theory, and Vojta [1987] and Ru [2001] for the analogy.

Sections 7–15 generalize the content of the earlier sections, in the more geometric
context of varieties over the appropriate fields (number fields, function fields, or C).
Again, proofs are often omitted; most may be found in the references given above.
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Section 14 in particular introduces the main conjectures being discussed here:
Conjecture 14.2 in Nevanlinna theory (“Griffiths’ conjecture”) and its counterpart
in number theory, the author’s Conjecture 14.6 on rational points on varieties.

Sections 16 and 17 round out the first part of these notes, by discussing the func-
tion field case and the subject of the exceptional sets that come up in the study of
higher dimensional varieties.

In both Nevanlinna theory and number theory, these conjectures have been
proved only in very special cases, mostly involving subvarieties of semiabelian va-
rieties. This includes the case of projective space minus a collection of hyperplanes
in general position (Cartan’s theorem and Schmidt’s Subspace Theorem). Recent
work of Corvaja, Zannier, Evertse, Ferretti, and Ru has shown, however, that using
geometric constructions one can use Schmidt’s Subspace Theorem and Cartan’s the-
orem to derive other weak special cases of the conjectures mentioned above. This is
the subject of Sections 18–22.

Sections 23–27 present generalizations of Conjectures 14.2 and 14.6. Conjecture
14.2, in Nevanlinna theory, can be generalized to involve truncated counting func-
tions (as was done by Nevanlinna in the 1-dimensional case), and can also be posed
in the context of finite ramified coverings. In number theory, Conjecture 14.6 can
also be generalized to involve truncated counting functions. The simplest nontrivial
case of this conjecture, involving the divisor [0]+ [1]+ [∞] on P1, is the celebrated
“abc conjecture” of Masser and Oesterlé. Thus, Conjecture 22.5 can be regarded
as a generalization of the abc conjecture as well as of Conjecture 14.6. One can
also generalize Conjecture 14.6 to treat algebraic points; this corresponds to finite
ramified coverings in Nevanlinna theory. This is Conjecture 24.1, which can also be
posed using truncated counting functions (Conjecture 24.3).

Sections 28 and 29 briefly discuss the question of derivatives in Nevanlinna the-
ory, and Nevanlinna’s “Lemma on the Logarithmic Derivative.” A geometric form
of this lemma, due to R. Kobayashi, M. McQuillan, and P.-M. Wong, is given, and it
is shown how this form leads to an inequality in Nevanlinna theory, due to McQuil-
lan, called the “tautological inequality.” This inequality then leads to a conjecture in
number theory (Conjecture 29.1), which of course should then be called the “tauto-
logical conjecture.” This conjecture is discussed briefly; it is of interest since it may
shed some light on how one might take “derivatives” in number theory.

The abc conjecture infuses much of this theory, not only because a Nevanlinna-
like conjecture with truncated counting functions contains the abc conjecture as a
special case, but also because other conjectures also imply the abc conjecture, and
therefore are “at least as hard” as abc. Specifically, Conjecture 24.1, on algebraic
points, implies the abc conjecture, even if known only in dimension 1, and Con-
jecture 14.6, on rational points, also implies abc if known in high dimensions. This
latter implication is the subject of Section 30. Finally, implications in the other di-
rection are explored in Section 31.
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1 Notation and Basic Results: Number Theory

We assume that the reader has an understanding of the fundamental basic facts
of number theory (and algebraic geometry), up through the definitions of (Weil)
heights. References for these topics include [Lang, 1983] and [Vojta, 1987]. We
do, however, recall some of the basic conventions here since they often differ from
author to author.

Throughout these notes, k will usually denote a number field; if so, then Ok will
denote its ring of integers and Mk its set of places. This latter set is in one-to-one
correspondence with the disjoint union of the set of nonzero prime ideals of Ok,
the set of real embeddings σ : k ↪→ R, and the set of unordered complex conjugate
pairs (σ ,σ) of complex embeddings σ : k ↪→ C with image not contained in R.
Such elements of Mk are called non-archimedean or finite places, real places, and
complex places, respectively.

The real and complex places are collectively referred to as archimedean or infi-
nite places. The set of these places is denoted S∞. It is a finite set.

To each place v ∈Mk we associate a norm ‖ ·‖v, defined for x ∈ k by ‖x‖v = 0 if
x = 0 and
(1.1)

‖x‖v =


(Ok : p)ordp(x) if v corresponds to p⊆ Ok;
|σ(x)| if v corresponds to σ : k ↪→ R; and
|σ(x)|2 if v is a complex place, corresponding to σ : k ↪→ C

if x 6= 0. Here ordp(x) means the exponent of p in the factorization of the fractional
ideal (x). If we use the convention that ordp(0) = ∞, then (1.1) is also valid when
x = 0.

We refer to ‖ · ‖v as a norm instead of an absolute value, because ‖ · ‖v does not
satisfy the triangle inequality when v is a complex place. However, let

(1.2) Nv =


0 if v is non-archimedean;
1 if v is real; and
2 if v is complex.

Then the norm associated to a place v of k satisfies the axioms

(1.3.1) ‖x‖v ≥ 0, with equality if and only if x = 0;
(1.3.2) ‖xy‖v = ‖x‖v‖y‖v for all x,y ∈ k; and
(1.3.3) ‖x1 + · · ·+ xn‖v ≤ nNv max{‖x1‖v, . . . ,‖xn‖v} for all x1, . . . ,xn ∈ k, n ∈ N.

(In these notes, N = {0,1,2, . . .}.)
Some authors treat complex conjugate embeddings as distinct places. We do not

do so here, because they give rise to the same norms.
Note that, if x ∈ k, then x lies in the ring of integers if and only if ‖x‖v ≤ 1 for

all non-archimedean places v. Indeed, if x 6= 0 then both conditions are equivalent
to the fractional ideal (x) being a genuine ideal.
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Let L be a finite extension of a number field k, and let w be a place of L. If w is
non-archimedean, corresponding to a nonzero prime ideal q⊆OL, then p := q∩Ok
is a nonzero prime of Ok, and gives rise to a non-archimedean place v ∈ Mk. If v
arises from w in this way, then we say that w lies over v, and write w | v. Likewise, if
w is archimedean, then it corresponds to an embedding τ : L ↪→C, and its restriction
τ
∣∣
k : k ↪→ C gives rise to a unique archimedean place v ∈Mk, and again we say that

w lies over v and write w | v.
For each v ∈Mk, the set of w ∈ML lying over it is nonempty and finite. If w | v

then we also say that v lies under w.
If S is a subset of Mk, then we say w | S if w lies over some place in S; otherwise

we write w - S.
If w | v, then we have

(1.4) ‖x‖w = ‖x‖[Lw:kv]
v for all x ∈ k ,

where Lw and kv denote the completions of L and k at w and v, respectively. We also
have

(1.5) ∏
w∈ML

w|v

‖y‖w = ‖NL
k y‖v for all v ∈Mk and all y ∈ L .

This is proved by using the isomorphism L⊗k kv ∼= ∏w|v Lw; see for example
[Neukirch, 1999, Ch. II, Cor. 8.4].

Let L/K/k be a tower of number fields, and let w′ and v be places of L and k,
respectively. Then w′ | v if and only if there is a place w of K satisfying w′ | w and
w | v.

The field k = Q has no complex places, one real place corresponding to the inclu-
sion Q ⊆ R, and infinitely many non-archimedean places, corresponding to prime
rational integers. Thus, we write

MQ = {∞,2,3,5, . . .} .

Places of a number field satisfy a Product Formula

(1.6) ∏
v∈Mk

‖x‖v = 1 for all x ∈ k∗ .

This formula plays a key role in number theory: it is used to show that certain ex-
pressions for the height are well defined, and it also implies that if ∏v ‖x‖v < 1 then
x = 0.

The Product Formula is proved first by showing that it is true when k = Q (by
direct verification) and then using (1.5) to pass to an arbitrary number field.
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2 Heights

The height of a number, or of a point on a variety, is a measure of the complexity of
that number. For example, 100/201 and 1/2 are very close to each other (using the
norm at the infinite place, at least), but the latter is a much “simpler” number since
it can be written down using fewer digits.

We define the height (also called the Weil height) of an element x ∈ k by the
formula

(2.1) Hk(x) = ∏
v∈Mk

max{‖x‖v,1} .

As an example, consider the special case in which k = Q. Write x = a/b with a,b∈Z
relatively prime. For all (finite) rational primes p, if pi is the largest power of p
dividing a, and p j is the largest power dividing b, then ‖a‖p = p−i and ‖b‖p = p− j,
and therefore max{‖x‖p,1} = pb. Therefore the product of all terms in (2.1) over
all finite places v is just |b|. At the infinite place, we have ‖x‖∞ = |a/b|, so this gives

(2.2) HQ(x) = max{|a|, |b|} .

Similarly, if P ∈ Pn(k) for some n ∈ N, we define the Weil height hk(P) as fol-
lows. Let [x0 : · · · : xn] be homogeneous coordinates for P (with the xi always as-
sumed to lie in k). Then we define

(2.3) Hk(P) = ∏
v∈Mk

max{‖x0‖v, . . . ,‖xn‖v} .

By the Product Formula (1.6), this quantity is independent of the choice of homo-
geneous coordinates.

If we identify k with A1(k) and identify the latter with a subset of P1(k) via the
standard injection i : A1 ↪→ P1, then we note that Hk(x) = Hk(i(x)) for all x ∈ k.
Similarly, we can identify kn with An(k), and the standard embedding of An into Pn

gives us a height

Hk(x1, . . . ,xn) = ∏
v∈Mk

max{‖x1‖v, . . . ,‖xn‖v,1} .

The height functions defined so far, all using capital ‘H,’ are called multiplicative
heights. Usually it is more convenient to take their logarithms and define logarith-
mic heights:

(2.4) hk(x) = logHk(x) = ∑
v∈Mk

log+ ‖x‖v

and

hk([x0 : · · · : xn]) = logHk([x0 : · · · : xn]) = ∑
v∈Mk

logmax{‖x0‖v, . . . ,‖xn‖v} .
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Here
log+(x) = max{logx,0} .

The equation (1.5) tells us how heights change when the number field k is ex-
tended to a larger number field L:

(2.5) hL(x) = [L : k]hk(x)

and

(2.6) hL([x0 : · · · : xn]) = [L : k]hk([x0 : · · · : xn])

for all x ∈ k and all [x0, . . . ,xn] ∈ Pn(k), respectively.
Then, given x ∈Q, we define

hk(x) =
1

[L : k]
hL(x)

for any number field L ⊇ k(x), and similarly given any [x0 : · · · : xn] ∈ Pn(Q), we
define

hk([x0 : · · · : xn]) =
1

[L : k]
hL([x0 : · · · : xn])

for any number field L ⊇ k(x0, . . . ,xn). These expressions are independent of the
choice of L by (2.5) and (2.6), respectively.

Following EGA, if x is a point on Pn
k , then κ(x) will denote the residue field of

the local ring at x. If x is a closed point then the homogeneous coordinates can be
chosen such that k(x0, . . . ,xn) = κ(x).

With these definitions, (2.5) and (2.6) remain valid without the conditions x ∈ k
and [x0 : · · · : xn] ∈ Pn(k), respectively.

It is common to assume k = Q and omit the subscript k. The resulting heights are
called absolute heights.

It is obvious from (2.1) that hk(x) ≥ 0 for all x ∈ k, and that equality holds if
x = 0 or if x is a root of unity. Conversely, hk(x) = 0 implies ‖x‖v ≤ 1 for all v; if
x 6= 0 then the Product Formula implies ‖x‖v = 1 for all v. Thus x must be a unit,
and the known structure of the unit group then leads to the fact that x must be a root
of unity.

Therefore, there are infinitely many elements of Q with height 0. If one bounds
the degree of such elements over Q, then there are only finitely many; more gener-
ally, we have:

Theorem 2.7. (Northcott’s finiteness theorem) For any r ∈ Z>0 and any C ∈ R,
there are only finitely many x ∈Q such that [Q(x) : Q]≤ r and h(x)≤C. Moreover,
given any n ∈N there are only finitely many x ∈ Pn(Q) such that [κ(x) : Q]≤ r and
h(x)≤C.

The first assertion is proved using the fact that, for any x∈Q, if one lets k = Q(x),
then Hk(x) is within a constant factor of the largest absolute value of the largest coef-
ficient of the irreducible polynomial of x over Q, when that polynomial is multiplied
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by a rational number so that its coefficients are relatively prime integers. The sec-
ond assertion then follows as a consequence of the first. For details, see [Lang, 1991,
Ch. II, Thm. 2.2].

This result plays a central role in number theory, since (for example) proving an
upper bound on the heights of rational points is equivalent to proving finiteness.

3 Roth’s Theorem

K. F. Roth [1955] proved a key and much-anticipated theorem on how well an alge-
braic number can be approximated by rational numbers. Of course rational numbers
are dense in the reals, but if one limits the size of the denominator then one can ask
meaningful and nontrivial questions.

Theorem 3.1. (Roth) Fix α ∈Q, ε > 0, and C > 0. Then there are only finitely many
a/b ∈Q, where a and b are relatively prime integers, such that

(3.1.1)
∣∣∣a
b
−α

∣∣∣≤ C
|b|2+ε

.

Example 3.2. As a diophantine application of Roth’s theorem, consider the diophan-
tine equation

(3.2.1) x3−2y3 = 11, x,y ∈ Z .

If (x,y) is a solution, then x/y must be close to 3√2 (assuming |x| or |y| is large,
which would imply both are large):∣∣∣∣xy − 3√2

∣∣∣∣= ∣∣∣∣ 11
y(x2 + xy 3√2+ y2 3√4)

∣∣∣∣� 1
|y|3

.

Thus Roth’s theorem implies that (3.2.1) has only finitely many solutions.
More generally, if f ∈ Z[x,y] is homogeneous of degree ≥ 3 and has no repeated

factors, then for any a ∈ Z f (x,y) = a has only finitely many integral solutions.
This is called the Thue equation and historically was the driving force behind the
development of Roth’s theorem (which is sometimes called the Thue-Siegel-Roth
theorem, sometimes also mentioning Schneider, Dyson, and Mahler).

The inequality (3.1.1) is best possible, in the sense that the 2 in the exponent
on the right-hand side cannot be replaced by a smaller number. This can be shown
using continued fractions. Of course one can conjecture a sharper error term [Lang
and Cherry, 1990, Intro. to Ch. I].

If a/b is close to α , then after adjusting C one can replace |b| in the right-hand
side of (3.1.1) with HQ(a/b) (see (2.2)). Moreover, the theorem has been general-
ized to allow a finite set of places (possibly non-archimedean) and to work over a
number field:
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Theorem 3.3. Let k be a number field, let S be a finite set of places of k containing
all archimedean places, fix αv ∈ Q for each v ∈ S, let ε > 0, and let C > 0. Then
only finitely many x ∈ k satisfy the inequality

(3.3.1) ∏
v∈S

min{1,‖x−αv‖v} ≤
C

Hk(x)2+ε
.

(Strictly speaking, S can be any finite set of places at this point, but requiring S to
contain all archimedean places does not weaken the theorem, and this assumption
will be necessary in Section 5. See, for example, (5.3).)

Taking− log of both sides of (3.3.1), dividing by [k : Q], and rephrasing the logic,
the above theorem is equivalent to the assertion that for all c ∈ R the inequality

(3.4)
1

[k : Q] ∑
v∈S

log+
∥∥∥∥ 1

x−αv

∥∥∥∥
v
≤ (2+ ε)h(x)+ c

holds for all but finitely many x ∈ k.
In writing (3.3.1), we assume that one has chosen an embedding iv : k̄ ↪→ kv over

k for each v ∈ S. Otherwise the expression ‖x−αv‖v may not make sense.
This is mostly a moot point, however, since we may restrict to αv ∈ k for

all v. Clearly this restricted theorem is implied by the theorem without the ad-
ditional restriction, but in fact it also implies the original theorem. To see this,
suppose k, S, ε , and c are as above, and assume that αv ∈ Q are given for all
v ∈ S. Let L be the Galois closure over k of k(αv : v ∈ S), and let T be the set
of all places of L lying over places in S. We assume that L is a subfield of k̄,
so that αv ∈ L for all v ∈ S. Then (iv)

∣∣
L : L → kv induces a place w0 of L over

v, and all other places w of L over v are conjugates by elements σw ∈ Gal(L/k):
‖x‖w = ‖σ−1

w (x)‖w0 for all x ∈ L. Letting αw = σw(αv) for all w | v, we then have

‖x−αw‖w = ‖σ−1
w (x−αw)‖w0 = ‖x−αv‖

[Lw0 :kv]
v for all x∈ k by (1.4), and therefore

∑
w|v

log+
∥∥∥∥ 1

x−αw

∥∥∥∥
w

= ∑
w|v

[Lw0 : kv] log+
∥∥∥∥ 1

x−αv

∥∥∥∥
v
= [L : k] log+

∥∥∥∥ 1
x−αv

∥∥∥∥
v

since L/k is Galois. Thus

1
[k : Q] ∑

v∈S
log+

∥∥∥∥ 1
x−αv

∥∥∥∥
v
=

1
[L : Q] ∑

w∈T
log+

∥∥∥∥ 1
x−αw

∥∥∥∥
w

for all x ∈ k. Applying Roth’s theorem over the field L (where now αw ∈ L for all
w ∈ T ) then gives (3.4) for almost all x ∈ k.

Finally, we note that Roth’s theorem (as now rephrased) is equivalent to the fol-
lowing statement.

Theorem 3.5. Let k be a number field, let S ⊇ S∞ be a finite set of places of k, fix
distinct α1, . . . ,αq ∈ k, let ε > 0, and let c ∈ R. Then the inequality
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(3.5.1)
1

[k : Q] ∑
v∈S

q

∑
i=1

log+
∥∥∥∥ 1

x−αi

∥∥∥∥
v
≤ (2+ ε)h(x)+ c

holds for almost all x ∈ k.

Indeed, given αv ∈ k for all v ∈ S, let α1, . . . ,αq be the distinct elements of the
set {αv : v ∈ S}. Then

1
[k : Q] ∑

v∈S
log+

∥∥∥∥ 1
x−αv

∥∥∥∥
v
≤ 1

[k : Q] ∑
v∈S

q

∑
i=1

log+
∥∥∥∥ 1

x−αi

∥∥∥∥
v
,

so Theorem 3.5 implies the earlier form of Roth’s theorem (as modified).
Conversely, given distinct α1, . . . ,αq ∈ k, we note that any given x ∈ k can be

close to only one of the αi at each place v (where the value of i may depend on v).
Therefore, for each v,

q

∑
i=1

log+
∥∥∥∥ 1

x−αi

∥∥∥∥
v
≤ log+

∥∥∥∥ 1
x−αv

∥∥∥∥
v
+ cv

for some constant cv independent of x and some αv ∈ {α1, . . . ,αq} depending on x
and v. Thus, for each x ∈ k, there is a choice of αv for each v ∈ S such that

1
[k : Q] ∑

v∈S

q

∑
i=1

log+
∥∥∥∥ 1

x−αi

∥∥∥∥
v
≤ 1

[k : Q] ∑
v∈S

log+
∥∥∥∥ 1

x−αv

∥∥∥∥
v
+ c′ ,

where c′ is independent of x. Since there are only finitely many choices of the system
{αv : v ∈ S}, finitely many applications of the earlier version of Roth’s theorem
suffice to imply Theorem 3.5.

4 Basics of Nevanlinna Theory

Nevanlinna theory, developed by R. and F. Nevanlinna in the 1920s, concerns the
distribution of values of holomorphic and meromorphic functions, in much the same
way that Roth’s theorem concerns approximation of elements of a number field.

One can think of it as a generalization of a theorem of Picard, which says that a
nonconstant holomorphic function from C to P1 can omit at most two points. This,
in turn, generalizes Liouville’s theorem.

An example relevant to Picard’s theorem is the exponential function ez, which
omits the values 0 and ∞. When r is large, the circle |z| = r is mapped to many
values close to ∞ (when Rez is large) and many values close to 0 (when Rez is
highly negative).

So even though ez omits these two values, it spends a lot of time very close to
them. This observation can be made precise, in what is called Nevanlinna’s First
Main Theorem. In order to state this theorem, we need some definitions.
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First we recall that log+ x = max{logx,0}, and similarly define

ord+
z f = max{ordz f ,0}

if f is a meromorphic function and z ∈ C.

Definition 4.1. Let f be a meromorphic function on C. We define the proximity
function of f by

(4.1.1) m f (r) =
∫ 2π

0
log+∣∣ f (reiθ )

∣∣ dθ

2π

for all r > 0. We also define

m f (∞,r) = m f (r) and m f (a,r) = m1/( f−a)(r)

when a ∈ C.

The integral in (4.1.1) converges when f has a zero or pole on the circle |z|= r,
so it is defined everywhere. The proximity function m f (a,r) is large to the extent
that the values of f on |z|= r are close to a.

Definition 4.2. Let f be a meromorphic function on C. For r > 0 let n f (r) be the
number of poles of f in the open disc |z|< r of radius r (counted with multiplicity),
and let n f (0) be the order of the pole (if any) at z = 0. We then define the counting
function of f by

(4.2.1) N f (r) =
∫ r

0
(n f (s)−n f (0))

ds
s

+n f (0) logr .

As before, we also define

N f (∞,r) = N f (r) and N f (a,r) = N1/( f−a)(r)

when a ∈ C.

The counting function can also be written

(4.3) N f (a,r) = ∑
0<|z|<r

ord+
z ( f −a) · log

r
|z|

+ord+
0 ( f −a) · logr .

Thus, the expression N f (a,r) is a weighted count, with multiplicity, of the number
of times f takes on the value a in the disc |z|< r.

Definition 4.4. Let f be as in Definition 4.1. Then the height function of f is the
function Tf : (0,∞)→ R given by

(4.4.1) Tf (r) = m f (r)+N f (r) .
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Classically, the above function is called the characteristic function, but here we
will use the term height function, since this is more in parallel with terminology in
the number field case. The height function Tf does, in fact, measure the complexity
of the meromorphic function f .

In particular, if f is constant then so is Tf (r); otherwise,

(4.5) liminf
r→∞

Tf (r)
logr

> 0 .

Moreover, it is known that Tf (r) = O(logr) if and only if f is a rational func-
tion. Although this is a well-known fact, I was unable to find a convenient refer-
ence, so a proof is sketched here. If f is rational, then direct computation gives
Tf (r) = O(logr). Conversely, if Tf (r) = O(logr) then f can have only finitely
many poles; clearing these by multiplying f by a polynomial changes Tf by at most
O(logr), so we may assume that f is entire. We may also assume that f is non-
constant. By [Hayman, 1964, Thm. 1.8], if f is entire and nonconstant and K > 1,
then

liminf
r→∞

logmax|z|=r | f (z)|
Tf (r)(logTf (r))K = 0 .

This implies that f (z)/zn has a removable singularity at ∞ for sufficiently large n,
hence is a polynomial.

The following theorem relates the height function to the proximity and counting
functions at points other than ∞.

Theorem 4.6. (First Main Theorem) Let f be a meromorphic function on C, and let
a ∈ C. Then

Tf (r) = m f (a,r)+N f (a,r)+O(1) ,

where the constant in O(1) depends only on f and a.

This theorem is a straightforward consequence of Jensen’s formula

log |c f |=
∫ 2π

0
log
∣∣ f (reiθ )

∣∣ dθ

2π
+N f (∞,r)−N f (0,r) ,

where c f is the leading coefficient in the Laurent expansion of f at z = 0. For details,
see [Nevanlinna, 1970, Ch. VI, (1.2’)] or [Ru, 2001, Cor. A1.1.3].

As an example, let f (z) = ez. This function is entire, so N f (∞,r) = 0 for all r.
We also have

m f (∞,r) =
∫ 2π

0
log+ er cosθ dθ

2π
= r

∫
π/2

−π/2
cosθ

dθ

2π
=

r
π

.

Thus
Tf (r) =

r
π

.

Similarly, we have N f (0,r) = 0 and m f (0,r) = r/π for all r, confirming the First
Main Theorem in the case a = 0.
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The situation with a =−1 is more difficult. The integral in the proximity function
seems to be beyond any hope of computing exactly. Since ez = −1 if and only if z
is an odd integral multiple of πi, we have

N f (−1,r) = 2
∫ r

0

[
s

2π
+

1
2

]
ds
s
≈ 2

∫ r

0

s
2π

ds
s

=
r
π

,

where [ · ] denotes the greatest integer function. The error in the above approximation
should be o(r), which would give m(−1,r) = o(r). Judging from the general shape
of the exponential function, similar estimates should hold for all nonzero a ∈ C.

In one way of thinking, the First Main Theorem gives an upper bound on the
counting function. As the above example illustrates, there is no lower bound for
an individual counting function (other than 0), but it is known that there cannot be
many values of a for which N f (a,r) is much smaller than the height. This is what
the Second Main Theorem shows.

Theorem 4.7. (Second Main Theorem) Let f be a meromorphic function on C, and
let a1, . . . ,aq ∈ C be distinct numbers. Then

(4.7.1)
q

∑
j=1

m f (a j,r)≤exc 2Tf (r)+O(log+ Tf (r))+o(logr) ,

where the implicit constants depend only on f and a1, . . . ,aq.

Here the notation ≤exc means that the inequality holds for all r > 0 outside of a
set of finite Lebesgue measure.

By the First Main Theorem, (4.7.1) can be rewritten as a lower bound on the
counting functions:

(4.8)
q

∑
j=1

N f (a j,r)≥exc (q−2)Tf (r)−O(log+ Tf (r))−o(logr) .

As another variation, (4.7.1) can be written with a weaker error term:

(4.9)
q

∑
j=1

m f (a j,r)≤exc (2+ ε)Tf (r)+ c

for all ε > 0 and any constant c. The next section will show that this correponds to
Roth’s theorem.

Corollary 4.10. (Picard’s “little” theorem) If a1,a2,a3 ∈ P1(C) are distinct, then
any holomorphic function f : C→ P1(C)\{a1,a2,a3} must be constant.

Proof. Assume that f : C→P1(C)\{a1,a2,a3} is a nonconstant holomorphic func-
tion. After applying an automorphism of P1 if necessary, we may assume that all a j
are finite. We may regard f as a meromorphic function on C.
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Since f never takes on the values a1, a2, or a3, the left-hand side of (4.8) van-
ishes. Since f is nonconstant, the right-hand side approaches +∞ by (4.5). This is a
contradiction. ut

As we have seen, (4.8) has some advantages over (4.7.1). Other advantages in-
clude the fact that q−2 on the right-hand side is the Euler characteristic of P1 minus
q points, and it will become clear later that the dependence on a metric is restricted
to the height term. It is also the preferred form when comparing with the abc con-
jecture.

5 Roth’s Theorem and Nevanlinna Theory

We now claim that Nevanlinna’s Second Main Theorem corresponds very closely to
Roth’s theorem. To see this, we make the following definitions in number theory.

Definition 5.1. Let k be a number field and S ⊇ S∞ a finite set of places of k. For
x ∈ k we define the proximity function to be

mS(x) = ∑
v∈S

log+ ‖x‖v

and, for a ∈ k with a 6= x,

(5.1.1) mS(a,x) = mS

(
1

x−a

)
= ∑

v∈S
log+

∥∥∥∥ 1
x−a

∥∥∥∥
v
.

Similarly, for distinct a,x ∈ k the counting function is defined as

NS(x) = ∑
v/∈S

log+ ‖x‖v

and

(5.1.2) NS(a,x) = NS

(
1

x−a

)
= ∑

v/∈S
log+

∥∥∥∥ 1
x−a

∥∥∥∥
v
.

By (2.4) it then follows that

(5.2) mS(x)+NS(x) = ∑
v∈Mk

log+ ‖x‖v = hk(x)

for all x ∈ k. This corresponds to (4.4.1).
Note that k does not appear in the notation for the proximity and counting func-

tions, since it is implied by S.
We also note that all places outside of S are non-archimedean, hence correspond

to nonzero prime ideals p⊆ Ok. Thus, by (1.1), (5.1.2) can be rewritten
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(5.3) NS(a,x) = ∑
v/∈S

ord+
p (x−a) · log(Ok : p) ,

where p in the summand is the prime ideal corresponding to v. This corresponds to
(4.3).

The number field case has an analogue of the First Main Theorem, which we
prove as follows.

Lemma 5.4. Let v be a place of a number field k, and let a,x ∈ k. Then

(5.4.1)
∣∣∣log+ ‖x‖v− log+ ‖x−a‖v

∣∣∣≤ log+ ‖a‖v +Nv log2 .

Proof. Case I: v is archimedean.
We first claim that

(5.4.2) log+(s+ t)≤ log+ s+ log+ t + log2

for all real s, t ≥ 0. Indeed, let f (s, t) = log+(s+ t)− log+ s− log+ t. By considering
partial derivatives, for each fixed s the function has a global maximum at t = 1,
and for each fixed t it has a global maximum at s = 1. Therefore all s and t satisfy
f (s, t)≤ f (1,1) = log2.

Now let z,b∈C. Since |z| ≤ |z−b|+ |b|, (5.4.2) with s = |z−b| and t = |b| gives

log+ |z|− log+ |z−b| ≤ log+(|z−b|+ |b|)− log+ |z−b| ≤ log+ |b|+ log2 .

Similarly, since |z−b| ≤ |z|+ |b|, we have

log+ |z−b|− log+ |z| ≤ log+(|z|+ |b|)− log+ |z| ≤ log+ |b|+ log2 .

These two inequalities together imply (5.4.1).
Case II: v is non-archimedean.
In this case Nv = 0, so the last term vanishes. Also, since v is non-archimedean, at

least two of ‖x‖v, ‖x−a‖v, and ‖a‖v are equal, and the third (if different) is smaller.
If ‖x‖v = ‖x−a‖v, then the result is obvious, so we may assume that ‖a‖v is equal
to one of the other two. If ‖a‖v = ‖x‖v, then∣∣∣log+ ‖x‖v− log+ ‖x−a‖v

∣∣∣= log+ ‖x‖v− log+ ‖x−a‖v ≤ log+ ‖x‖v = log+ ‖a‖v

since 0 ≤ log+ ‖x− a‖v ≤ log+ ‖x‖v. If ‖a‖v = ‖x− a‖v then (5.4.1) follows by a
similar argument. ut

Corresponding to Theorem 4.6, we then have:

Theorem 5.5. Let k be a number field, let S ⊇ S∞ be a finite set of places of k, and
fix a ∈ k. Then

hk(x) = mS(a,x)+NS(a,x)+O(1) ,

where the constant in O(1) depends only on k and a. In fact, the constant can be
taken to be hk(a)+ [k : Q] log2.
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Proof. First, we note that

mS(a,x)+NS(a,x) = mS

(
1

x−a

)
+NS

(
1

x−a

)
= hk

(
1

x−a

)
.

Next, by comparing with the height on P1, we have

hk

(
1

x−a

)
= hk([x−a : 1]) = hk([1 : x−a]) = hk(x−a) .

Therefore, it suffices to show that

hk(x−a) = hk(x)+O(1) ,

with the constant in O(1) equal to [k : Q] log2. This follows immediately by applying
Lemma 5.4 termwise to the sums in the two height functions. ut

It will later be clear that this theorem is a well-known geometric property of
heights.

We now consider the Second Main Theorem. With the notation of Definition 5.1,
Roth’s theorem can be made to look very similar to Nevanlinna’s Second Main The-
orem. Indeed, multiplying (3.5.1) by [k : Q] and substituting the definition (5.1.1) of
the proximity function gives the inequality

q

∑
j=1

mS(a j,x)≤ (2+ ε)hk(x)+ c ,

which corresponds to (4.9). As has been mentioned earlier, it has been conjectured
that Roth’s theorem should hold with sharper error terms, corresponding to (4.7.1).
Such conjectures predated the emergence of the correspondence between number
theory and Nevanlinna theory, but the latter spurred renewed work in the area. See,
for example, [Wong, 1989], [Lang and Cherry, 1990], and [Cherry and Ye, 2001].

Unfortunately, the correspondence between the statements of Roth’s theorem and
Nevanlinna’s Second Main Theorem does not extend to the proofs of these the-
orems. Roth’s theorem is proved by taking sufficiently many x ∈ k not satisfying
the inequality, using them to construct an auxiliary polynomial, and then deriving a
contradiction from the vanishing properties of that polynomial. Nevanlinna’s Sec-
ond Main Theorem has a number of proofs; for example, one proof uses curvature
arguments, one follows from Nevanlinna’s “lemma on the logarithmic derivative,”
and one uses Ahlfors’ theory of covering spaces. All of these proofs make essen-
tial use of the derivative of the meromorphic function, and it is a major unsolved
question in the field to find some analogue of this in number theory.

A detailed discussion of these proofs would be beyond the scope of these notes.
Beyond Roth’s theorem and the Second Main Theorem, one can define the defect

of an element of C or of an element a ∈ k, as follows.
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Definition 5.6. Let f be a meromorphic function on C, and let a ∈ C∪{∞}. Then
the defect of a is

δ f (a) = liminf
r→∞

m f (a,r)
Tf (r)

.

Similarly, let S⊇ S∞ be a finite set of places of a number field k, let a ∈ k, and let Σ

be an infinite subset of k. Then the defect is defined as

δS(a) = liminf
x∈Σ

mS(a,x)
hk(x)

.

By the First Main Theorem (Theorems 4.6 and 5.5), we then have

0≤ δ f (a)≤ 1 and 0≤ δS(a)≤ 1 ,

respectively. The Second Main Theorems (Theorems 4.7 and 3.5) then give

∑
a∈C

δ f (a)≤ 2 and
q

∑
j=1

δS(a j)≤ 2 ,

respectively. This is just an equivalent formulation of the Second Main Theorem,
with a weaker error term in the case of Nevanlinna theory, so it is usually better to
work directly with the inequality of the Second Main Theorem.

The defect gets it name because it measures the extent to which N f (a,r) or
NS(a,x) is smaller than the maximum indicated by the First Main Theorem.

We conclude this section by noting that Definition 5.1 can be extended to x ∈ k̄.
Indeed, let k and S be as in Definition 5.1, and let x ∈ k̄. Let L be a number field
containing k(x), and let T be the set of places of L lying over places in S. If L′ ⊇ L is
another number field, and if T ′ is the set of places of L′ lying over places of k, then
(1.4) gives

(5.7) mT ′(x) = [L′ : L]mT (x) and NT ′(x) = [L′ : L]NT (x) .

This allows us to make the following definition.

Definition 5.8. Let k, S, x, L, and T be as above. Then we define

mS(x) =
1

[L : k]
mT (x) and NS(x) =

1
[L : k]

NT (x) .

These expressions are independent of L ⊇ k(x) by (5.7). As in (5.1.1) and (5.1.2),
we also let

mS(a,x) = mS

(
1

x−a

)
and NS(a,x) = NS

(
1

x−a

)
.

Likewise, Theorem 5.5 (the number-theoretic First Main Theorem) extends to
x ∈ k̄, by (2.5), (5.7), and (5.8). The expression (5.2) for the height also extends.
Roth’s theorem, however, does not extend in this manner, and questions of extending



130 Paul Vojta

Roth’s theorem even to algebraic numbers of bounded degree are quite deep and
unresolved.

6 The Dictionary (Non-geometric Case)

The discussion in the preceding section suggests that there should be an analogy
between the fields of Nevanlinna theory and number theory. This section describes
this dictionary in more detail.

The existence of an analogy between number theory and Nevanlinna theory was
first observed by C. F. Osgood [1981, 1985], but he did not provide an explicit
dictionary for comparing the two theories. This was provided by Vojta [1987]. An
updated version of that dictionary is provided here as Table 1.

The first and most important thing to realize about the dictionary is that the ana-
logue of a holomorphic (or meromorphic) function is an infinite sequence of rational
numbers. While it is tempting to compare number theory with Nevanlinna theory by
way of function fields—by viewing a single rational point as being analogous to a
rational point over a function field over C and then applying Nevanlinna theory to
the corresponding section map—this is not what is being compared here. Note that
the Second Main Theorem posits the non-existence of a meromorphic function vi-
olating the inequality for too many r, and Roth’s theorem claims the non-existence
of an infinite sequence of rational numbers not satisfying its main inequality.

We shall now describe Table 1 in more detail. Much of it (below the top six rows)
has already been described in Section 5, with the exception of the last line. This is
left to the reader.

The bottom two-thirds of the table can be broken down further, leading to the
top six rows. The first row has been described above. One can say more, though.
The analogue of a single rational number can be viewed as the restriction of f to
the closed disc Dr of radius r. Of course f

∣∣
Dr

for varying r are strongly related, in
the sense that if one knows one of them then all of them are uniquely determined.
This is not true of the number field case (as far as is known); thus the analogy is not
perfect.

However, when comparing f
∣∣
Dr

to a given element of k, there are further similar-
ities between the respective proximity functions and counting functions. As far as
the proximity functions are concerned, in Nevanlinna theory m f (a,r) depends only
on the values of f on the circle |z|= r, whereas in number theory mS(a,r) involves
only the places in S. So places in S correspond to ∂Dr, and both types of proxim-
ity functions involve the absolute values at those places. Moreover, in Nevanlinna
theory the proximity function is an integral over a set of finite measure, while in
number theory the proximity function is a finite sum.

As for counting functions, they involve the open disc Dr in Nevanlinna theory,
and places outside of S (all of which are non-archimedean) in number theory. Both
types of counting functions involve an infinite weighted sum of orders of vanishing
at those places, and the sixth line of Table 1 compares these weights.
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Table 1 The Dictionary in the One-Dimensional Case

Nevanlinna Theory Number Theory

f : C→ C, non-constant {x} ⊆ k, infinite

r x

θ v ∈ S

| f (reiθ )| ‖x‖v, v ∈ S

ordz f ordv x, v /∈ S

log
r
|z|

log(Ok : p)

Height function Logarithmic height

Tf (r) =
∫ 2π

0
log+ | f (reiθ )| dθ

2π
+N f (∞,r) hk(x) = ∑

v∈Mk

log+ ‖x‖v

Proximity function

m f (a,r) =
∫ 2π

0
log+

∣∣∣∣ 1
f (reiθ )−a

∣∣∣∣ dθ

2π
mS(a,x) = ∑

v∈S
log+

∥∥∥∥ 1
x−a

∥∥∥∥
v

Counting function

N f (a,r) = ∑
|z|<r

ord+
z ( f −a) log

r
|z|

NS(a,x) = ∑
v/∈S

ord+
p (x−a) log(Ok : p)

First Main Theorem Property of heights
N f (a,r)+m f (a,r) = Tf (r)+O(1) NS(a,x)+mS(a,x) = hk(x)+O(1)

Second Main Theorem Conjectured refinement of Roth
m

∑
i=1

m f (ai,r) ≤exc 2Tf (r)−N1, f (r)

+O(r logTf (r))

m

∑
i=1

mS(ai,x)≤ 2hk(x)+O(loghk(x))

Defect

δ (a) = liminf
r→∞

m f (a,r)
Tf (r)

δ (a) = liminf
x

mS(a,x)
hk(x)

Defect Relation Roth’s theorem

∑
a∈C

δ (a)≤ 2 ∑
a∈k

δ (a)≤ 2

Jensen’s formula Artin-Whaples Product Formula

log |c f |=
∫ 2π

0
log | f (reiθ )| dθ

2π

+N f (∞,r)−N f (0,r)

∑
v∈Mk

log‖x‖v = 0
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It should also be mentioned that many of these theorems in Nevanlinna theory
have been extended to holomorphic functions with domains other than C. In one
direction, one can replace the domain with Cm for some m > 0. While this is useful
from the point of view of pure Nevanlinna theory, it is less interesting from the point
of view of the analogy with number theory, since number rings are one-dimensional.
Moreover, in Nevanlinna theory, the proofs that correspond most closely to proofs
in number theory concern maps with domain C.

There is one other way to change the domain of a holomorphic function, though,
which is highly relevant to comparisons with number theory. Namely, one can re-
place the domain C with a ramified cover. Let B be a connected Riemann surface, let
π : B→C be a proper surjective holomorphic map, and let f : B→C be a meromor-
phic function. In place of Dr in the above discussion, one can work with π−1

(
Dr
)

and define the proximity, counting, and height functions accordingly. For detailed
definitions, see Section 26.

When working with a finite ramified covering, though, the Second Main Theorem
requires an additional term NRam(π)(r), which is a counting function for ramifica-
tion points of π (Definition 26.3c). The main inequality (4.7.1) of the Second Main
Theorem then becomes

q

∑
j=1

m f (a j,r)≤exc 2Tf (r)+NRam(π)(r)+O(log+ Tf (r))+o(logr)

in this context.
In number theory, the corresponding situation involves algebraic numbers of

bounded degree over k instead of elements of k itself. Again, the inequality in the
Second Main Theorem becomes weaker in this case, conjecturally by adding the
following term.

Definition 6.1. Let Dk denote the discriminant of a number field k, and for number
fields L⊇ k define

dk(L) =
1

[L : k]
log |DL|− log |Dk| .

For x ∈ k̄ we then define
dk(x) = dk(k(x)) .

It is then conjectured that Roth’s theorem for x ∈ k̄ of bounded degree over k still
holds, with inequality

(6.2)
q

∑
j=1

mS(a j,x)≤ (2+ ε)hk(x)+dk(x)+C .

For further discussion of this situation, including its relation to the abc conjecture,
see Sections 24–25.
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7 Cartan’s Theorem and Schmidt’s Subspace Theorem

In both Nevanlinna theory and number theory, the first extensions of the Second
Main Theorem and its counterpart to higher dimensions were theorems involving
approximation to hyperplanes in projective space.

We start with a definition needed for both theorems.

Definition 7.1. A collection of hyperplanes in Pn is in general position if for all
j ≤ n the intersection of any j of them has dimension n− j, and if the intersection
of any n+1 of them is empty.

The Second Main Theorem for approximation to hyperplanes in Pn was first
proved by Cartan [1933]. Before stating it, we need to define the proximity, count-
ing, and height functions.

Definition 7.2. Let H be a hyperplane in Pn(C) (n > 0), and let a0x0 + · · ·+ anxn
be a linear form defining it. Let P ∈ Pn \H be a point, and let [x0 : · · · : xn] be
homogeneous coordinates for P. We then define

(7.2.1) λH(P) =−1
2

log
|a0x0 + · · ·+anxn|2

|x0|2 + · · ·+ |xn|2

(this depends on a0, . . . ,an, but only up to an additive constant). It is independent of
the choice of homogeneous coordinates for P.

If n = 1 and H is a finite number a ∈ C (via the usual identification of C as a
subset of P1(C)), then

(7.3) λH(x) = log+
∣∣∣∣ 1
x−a

∣∣∣∣+O(1) .

Recall that a holomorphic curve in a complex variety X is a holomorphic func-
tion from C to X(C).

Definition 7.4. Let n, H, and λH be as in Definition 7.2, and let f : C→ Pn be a
holomorphic curve whose image is not contained in H. Then the proximity function
for H is

(7.4.1) m f (H,r) =
∫ 2π

0
λH( f (reiθ ))

dθ

2π
.

For the following, recall that an analytic divisor on C is a formal sum

∑
z∈C

nz · z ,

where nz ∈ Z for all z and the set {z ∈ C : nz 6= 0} is a discrete set (which may be
infinite).
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Definition 7.5. Let n, H, and f be as above. Then f ∗H is an analytic divisor on
C, and for z ∈ C we let ordz f ∗H denote its multiplicity at the point z. Then the
counting function for H is defined to be

(7.5.1) N f (H,r) = ∑
0<|z|<r

ordz f ∗H · log
r
|z|

+ord0 f ∗H · logr

Definition 7.6. Let f : C→ Pn(C) be a holomorphic curve (n > 0). We then define
the height of f to be

Tf (r) = m f (H,r)+N f (H,r)

for any hyperplane H not containing the image of f . The First Main Theorem can
be shown to hold in the context of hyperplanes in projective space, so the height
depends on H only up to O(1).

We may now state Cartan’s theorem.

Theorem 7.7. (Cartan) Let n > 0 and let H1, . . . ,Hq be hyperplanes in Pn in general
position. Let f : C→ Pn(C) be a holomorphic curve whose image is not contained
in any hyperplane. Then

(7.7.1)
q

∑
j=1

m f (H j,r)≤exc (n+1)Tf (r)+O(log+ Tf (r))+o(logr) .

If n = 1 then by (7.3) this reduces to the classical Second Main Theorem (Theo-
rem 4.7).

Inequality (7.7.1) can also be expressed using counting functions as

(7.8)
q

∑
j=1

N f (H j,r)≥exc (q−n−1)Tf (r)−O(log+ Tf (r))−o(logr)

(cf. (4.8)).
The corresponding definitions and theorem in number theory are as follows.

These will all assume that k is a number field, that S⊇ S∞ is a finite set of places of
k, and that n > 0.

Definition 7.9. Let H be a hyperplane in Pn
k and let a0x0 + · · ·+anxn = 0 be a linear

form defining it. (Since Pn
k is a scheme over k, this implies that a0, . . . ,an ∈ k.) For

all places v of k and all P ∈ Pn(k) not lying on H we then define

(7.9.1) λH,v(P) =− log
‖a0x0 + · · ·+anxn‖v

max{‖x0‖v, . . . ,‖xn‖v}
,

where [x0 : · · · : xn] are homogeneous coordinates for P. Again, this is independent
of the choice of homogeneous coordinates [x0 : · · · : xn] and depends on the choice
of a0, . . . ,an only up to a bounded function which is zero for almost all v.

These functions are special cases of Weil functions (Definition 8.6), with domain
restricted to Pn(k)\H.
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Definition 7.10. For H and P as above, the proximity function for H is defined to
be

(7.10.1) mS(H,P) = ∑
v∈S

λH,v(P) ,

and the counting function is defined by

(7.10.2) NS(H,P) = ∑
v/∈S

λH,v(P) .

We then note that

mS(H,P)+NS(H,P) = ∑
v∈Mk

− log
‖a0x0 + · · ·+anxn‖v

max{‖x0‖v, . . . ,‖xn‖v}

= ∑
v∈Mk

logmax{‖x0‖v, . . . ,‖xn‖v}

= hk(P)

by the Product Formula.
Although this equality holds exactly, the proximity and counting functions de-

pend (up to O(1)) on the choice of linear form a0x0 + · · ·+anxn describing D, so we
regard them as being defined only up to O(1).

The counterpart to Theorem 7.7 (with, of course, a weaker error term) is a slightly
weaker form of Schmidt’s Subspace Theorem.

Theorem 7.11. (Schmidt) Let k, S, and n be as above, let H1, . . . ,Hq be hyperplanes
in Pn

k in general position, let ε > 0, and let c ∈ R. Then

(7.11.1)
q

∑
j=1

mS(H j,x)≤ (n+1+ ε)hk(x)+ c

for all x∈Pn(k) outside of a finite union of proper linear subspaces of Pn
k . This latter

set depends on k, S, H1, . . . ,Hq, ε , c, and the choices used in defining the mS(H j,x),
but not on x.

When n = 1 this reduces to Roth’s theorem (in the form of Theorem 3.5).
Note, in particular, that the Hi are hyperplanes in the k-scheme Pn

k . This automat-
ically implies that they can be defined by linear forms with coefficients in k. This
corresponds to requiring the α j to lie in k in the case of Roth’s theorem. Schmidt’s
original formulation of his theorem allowed hyperplanes with algebraic coefficients;
the reduction to hyperplanes in Pn

k is similar to the reduction for Roth’s theorem and
is omitted here. Also, Schmidt’s original formulation was stated in terms of hyper-
planes in An+1

k passing through the origin and points in An+1
k with integral coeffi-

cients. He also used the size instead of the height. For details on the equivalence of
his original formulation and the form given here, see [Vojta, 1987, Ch. 2 § 2].
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Theorem 7.11 is described as a slight weakening of Schmidt’s Subspace Theorem
because Schmidt actually allowed the set of hyperplanes to vary with v. Thus, to get
a statement that was fully equivalent to Schmidt’s original theorem, (7.11.1) would
need to be replaced by

∑
v∈S

qv

∑
j=1

mS(Hv, j,x)≤ (n+1+ ε)hk(x)+ c ,

where for each v ∈ S, Hv,1, . . . ,Hv,qv are hyperplanes in general position (but in to-
tality the set {Hv, j : v ∈ S, 1 ≤ j ≤ qv} need not be in general position, even after
eliminating duplicates). Of course, at a given place v a point can be close to at most
n of the Hv, j, so we may assume qv = n for all v (or actually n+1 is somewhat easier
to work with).

Thus, a full statement of Schmidt’s Subspace Theorem, rendered using the nota-
tion of Section 5, is as follows. It has been stated in a form that most readily carries
over to Nevanlinna theory.

Theorem 7.12. (Schmidt’s Subspace Theorem [Schmidt, 1991, Ch. VIII, Thm. 7A])
Let k, S, and n be as above, and let H1, . . . ,Hq be distinct hyperplanes in Pn

k . Then
for all ε > 0 and all c ∈ R the inequality

(7.12.1) ∑
v∈S

max
J

∑
j∈J

λH j ,v(x)≤ (n+1+ ε)hk(x)+ c

holds for all x∈Pn(k) outside of a finite union of proper linear subspaces depending
only on k, S, H1, . . . ,Hq, ε , c, and the choices used in defining the λH j ,v. The max in
this inequality is taken over all subsets J of {1, . . . ,q} corresponding to subsets of
{H1, . . . ,Hq} in general position.

In Nevanlinna theory there are infinitely many angles θ , so if one allowed the
collection of hyperplanes to vary with θ without additional restriction, then the re-
sulting statement could involve infinitely many hyperplanes, and would therefore
likely be false (although this has not been proved). Therefore an overall restriction
on the set of hyperplanes is needed in the case of Cartan’s theorem, and is why
Theorem 7.12 was stated in the way that it was.

Cartan’s theorem itself can be generalized as follows.

Theorem 7.13. [Vojta, 1997] Let n ∈ Z>0, let H1, . . . ,Hq be hyperplanes in Pn
C, and

let f : C→ Pn(C) be a holomorphic curve whose image is not contained in a hy-
perplane. Then∫ 2π

0
max

J
∑
j∈J

λH j( f (reiθ ))
dθ

2π
≤exc (n+1)Tf (r)+O(log+ Tf (r))+o(logr) ,

where J varies over the same collection of sets as in Theorem 7.12.

This has proved to be a useful formulation for applications; see [Vojta, 1997] and
[Ru, 1997]. The latter reference also improves the error term in Theorem 7.13.
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Remark 7.14. It has been further shown that in Theorem 7.12, the finite set of lin-
ear subspaces can be taken to be the union of a finite number of points (depending
on the same data as given in the theorem), together with a finite union of linear
subspaces (of higher dimension) depending only on the collection of hyperplanes
[Vojta, 1989]. In other words, the higher-dimensional part of the exceptional set
depends only on the geometric data. Correspondingly, Theorem 7.13 holds for all
nonconstant holomorphic curves whose image is not contained in the union of this
latter set [Vojta, 1997]. For an example of the collection of higher dimensional sub-
spaces for a specific set of lines in P2, see Example 13.3.

8 Varieties and Weil Functions

The goal of this section and the next is to carry over the definitions of the proximity,
counting, and height functions to the context of varieties.

First it is necessary to define variety. Generally speaking, varieties and other
algebro-geometric objects are as defined in [Hartshorne, 1977], except that varieties
(when discussing number theory at least) may be defined over a field that is not
necessarily algebraically closed.

Definition 8.1. A variety over a field k, or a k-variety, is an integral separated
scheme of finite type over k (i.e., over Speck). A curve over k is a variety over
k of dimension 1. A morphism of varieties over k is a morphism of k-schemes.
Finally, a subvariety of a variety (resp. closed subvariety, open subvariety) is an
integral subscheme (resp. closed integral subscheme, open integral subscheme) of
that variety (with induced map to Speck).

As an example, X := SpecQ[x,y]/(y2−2x2) is a variety over Q. Indeed, it is an
integral scheme because the ring Q[x,y]/(y2−2x2) is entire. However, X×Q Q

(√
2
)

is not a variety over Q
(√

2
)
, since Q[x,y]/(y2− 2x2)⊗Q Q

(√
2
)

is not entire (the
polynomial y2− 2x2 is not irreducible over Q

(√
2
)
). Therefore, some authors re-

quire a variety to be geometrically integral, but we do not do so here. The advantage
of not requiring geometric integrality is that every reduced closed subset is a finite
union of closed subvarieties, without requiring base change to a larger field.

Many people would be tempted to say that the variety X := SpecQ[x,y]/(y2−2x2)
is not defined over Q. Such wording does not make sense in this context (the variety
is, after all, a Q-variety). This wording usually comes about because the variety (in
this instance) is associated to the line y =

√
2x in A2

Q, which does not come from

any subvariety of A2
Q (without also obtaining the conjugate y =−

√
2x). The correct

way to express this situation is to say that X is not geometrically irreducible (or not
geometrically integral).

Strictly speaking, if k ⊆ L are distinct fields, then X(k) and X(L) are disjoint
sets. However, we will at times identify X(k) with a subset of X(L) in the obvious
way. Following EGA, if x ∈ X is a point, then κ(x) will denote the residue field of
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the local ring at x. If x ∈ X(L), then it is technically a morphism, but by abuse of
notation κ(x) will refer to the corresponding point on X (so κ(x) may be smaller
than L).

We also recall that the function field of a variety X is denoted K(X). If ξ is the
generic point of X , then K(X) = κ(ξ ).

The next goal of this section is to introduce Weil functions. These functions were
introduced in Weil’s thesis [Weil, 1928] and further developed in a later paper [Weil,
1951]. Weil functions give a way to write the height as a sum over places of a
number field, and are exactly what is needed in order to generalize the proximity
and counting functions to the geometric setting.

The description provided here will be somewhat brief; for a fuller treatment, see
[Lang, 1983, Ch. 10].

We start with the very easy setting used in Nevanlinna theory.
Weil functions are best described using Cartier divisors.

Definition 8.2. Let D be a Cartier divisor on a complex variety X . Then a Weil func-
tion for D is a function λD : (X \SuppD)(C)→R such that for all x ∈ X there is an
open neighborhood U of x in X , a nonzero function f ∈ K(X) such that D

∣∣
U = ( f ),

and a continuous function α : U(C)→ R such that

(8.2.1) λD(x) =− log | f (x)|+α(x)

for all x ∈ (U \SuppD)(C). Here the topology on U(C) is the complex topology.

It is fairly easy to show that if λD is a Weil function, then the above condition is
satisfied for any open set U and any nonzero f ∈ OU satisfying D

∣∣
U = ( f ).

Recall that linear equivalence classes of Cartier divisors on a variety are in natu-
ral one-to-one correspondence with isomorphism classes of line sheaves (invertible
sheaves) on that variety. Moreover, for each divisor D on a variety X , if L is the
corresponding line sheaf, then there is a nonzero rational section s of L whose van-
ishing describes D: D = (s). As was noted by Néron, Weil functions on D correspond
to metrics on L .

Recall that if X is a complex variety and L is a line sheaf on X , then a metric on
L is a collection of norms on the fibers of the complex line bundle corresponding to
the sheaf L , varying smoothly or continuously with the point on X . Such a metric is
called a smooth metric or continuous metric, respectively. In these notes, smooth
means C∞. If X is singular, then we say that a function f : X(C)→C is C∞ at a point
P∈ X(C) if there is an open neighborhood U of P in X(C) in the complex topology,
a holomorphic function φ : U →Cn for some n, and a C∞ function g : Cn→C such
that f = g◦φ . This reduces to the usual concept of C∞ function at smooth points of
X .

To describe a metric on L in concrete terms, let U be an open subset of X and let
φU : OU

∼→L
∣∣
U be a local trivialization. Then the function ρU : U(C)→R>0 given

by ρU (x) = |φU (1)(x)| is smooth (resp. continuous), and for any section s ∈L (U)
and any x ∈U(C), we have |s(x)| = ρU (x) · |φ−1

U (s)(x)|. Moreover, if V is another
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open set in X and φV : OV
∼→L

∣∣
V is a local trivialization on V , then φ

−1
U ◦φV (ap-

propriately restricted) is an automorphism of OU∩V corresponding to multiplication
by a function αUV ∈ O∗U∩V . Again letting ρV (x) = |φV (1)(x)|, we see that ρU and
ρV are related by ρV (x) = |αUV (x)|ρU (x) for all x ∈ (U ∩V )(C).

Conversely, an isomorphism class of line sheaves on X can be uniquely specified
by giving an open cover U of X and αUV ∈ O∗U∩V for all U,V ∈ U satisfying
αUU = 1 and αUW = αUV αVW on U ∩V ∩W for all U,V,W ∈ U . Moreover, with
these data, one can specify a metric on the associated line sheaf by giving smooth or
continuous functions ρU : U(C)→ R>0 for each U ∈U that satisfy ρV = |αUV |ρU
on U ∩V for all U,V ∈U .

A continuous metric on a line sheaf L determines a Weil function for any as-
sociated Cartier divisor D. Indeed, if s is a nonzero rational section of L such that
D = (s), then λD(x) =− log |s(x)| is a Weil function for D. Conversely, a Weil func-
tion for D determines a continuous metric on L .

In Nevanlinna theory it is customary to work only with smooth metrics, and
hence it is often better to work with Weil functions associated to smooth metrics
(equivalently, to Weil functions for which the functions α in (8.2.1) are all smooth).

An example of a Weil function in Nevanlinna theory (and perhaps the primary
example) is the function λH of Definition 7.2 used in Cartan’s theorem.

Likewise, the function λH,v of Definition 7.9 is an example of a Weil function in
number theory. In this case, it is no longer sufficient to say that two Weil functions
agree up to O(1): the implied constant also has to vanish for almost all v. For exam-
ple, Lemma 5.4 compares the difference of two Weil functions, and shows that the
difference is bounded by a bound that vanishes for almost all v. A plain bound of
O(1) would not suffice to give a finite bound in Theorem 5.5.

Before defining Weil functions in the number theory case, we first give some
definitions relevant to the domains of Weil functions.

Definition 8.3. Let v be a place of a number field k. Then Cv is the completion of
the algebraic closure k̄v of the completion kv of k at v.

Recall [Koblitz, 1984, Ch. III, § 3–4] that if v is non-archimedean then k̄v is not
complete, but its completion Cv is algebraically closed. If v is archimedean, then
Cv is isomorphic to the field of complex numbers (as is k̄v). The norm ‖ · ‖v on k
extends uniquely to norms on kv, on k̄v, and on Cv. If X is a variety, then the norm
on Cv defines a topology on X(Cv), called the v-topology. It is defined to be the
coarsest topology such that for all open U ⊆ X and all f ∈ O(U), U(Cv) is open
and f : U(Cv)→ Cv is continuous.

One can also work just with the algebraic closure k̄v when defining Weil func-
tions, without any essential difference.

Definition 8.4. Let X be a variety over a number field k. Then X(Mk) is the disjoint
union

X(Mk) =
∐

v∈Mk

X(Cv) .

This set is given a topology defined by the condition that A⊆ X(Mk) is open if and
only if A∩X(Cv) is open in the v-topology for all v.
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Definition 8.5. Let k be a number field. Then an Mk-constant is a collection (cv) of
constants cv ∈ R for each v ∈Mk, such that cv = 0 for almost all v. If X is a variety
over k, then a function α : X(Mk)→R is said to be OMk(1) if there is an Mk-constant
(cv) such that |α(x)| ≤ cv for all x ∈ X(Cv) and all v ∈Mk.

We may then define Weil functions as follows.

Definition 8.6. Let X be a variety over a number field k, and let D be a Cartier
divisor on X . Then a Weil function for D is a function λD : (X \SuppD)(Mk)→ R
that satisfies the following condition. For each x ∈ X there is an open neighborhood
U of x, a nonzero function f ∈O(U) such that D

∣∣
U = ( f ), and a continuous locally

Mk-bounded function α : U(Mk)→ R satisfying

(8.6.1) λD(x) =− log‖ f (x)‖v +α(x)

for all v ∈Mk and all x ∈ (U \SuppD)(Cv).

For the definition of locally Mk-bounded function, see [Lang, 1983, Ch. 10, § 1].
The definition is more complicated than one would naively expect, stemming from
the fact that Cv is totally disconnected, and not locally compact. For our purposes,
though, it suffices to note that if X is a complete variety then such a function is
OMk(1). (In other contexts, these problems are dealt with by using Berkovich spaces,
but Weil’s work does not use them, not least because it came much earlier.)

As with Definition 8.2, if λ is a Weil function for D, then it can be shown that the
above condition is true for all open U ⊆ X and all f ∈ O(U) for which D

∣∣
U = ( f ).

If λD is a Weil function for D, then we write

λD,v = λD
∣∣
(X\SuppD)(Cv)

for all places v of k. If v is an archimedean place, then Cv ∼= C, and λD,v is a Weil
function for D in the sense of Definition 8.2 (up to a factor 1/2 if v is a complex
place).

In the future, if x ∈ X(Mk) and f is a function on X , then ‖ f (x)‖ will mean
‖ f (x)‖v for the (unique) place v such that x ∈ X(Cv). Thus, (8.6.1) could be short-
ened to λ (x) =− log‖ f (x)‖+α(x) for all x ∈ (U \SuppD)(Mk).

Of course, this discussion would be academic without the following theorem.

Theorem 8.7. Let k be a number field, let X be a projective variety over k, and let
D be a Cartier divisor on X. Then there exists a Weil function for D.

For the proof, see [Lang, 1983, Ch. 10]. This is also true for complete vari-
eties, using Nagata’s embedding theorem to construct a model for X and then using
Arakelov theory to define the Weil function. But, again, the details are beyond the
scope of these notes.

Weil functions have the following properties.

Theorem 8.8. Let X be a complete variety over a number field k. Then
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(a). Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2 on
X, respectively, then λ1 +λ2 extends uniquely to a Weil function for D1 +D2.

(b). Functoriality: If λ is a Weil function for a Cartier divisor D on X, and
if f : X ′ → X is a morphism of k-varieties such that f (X ′) * SuppD, then
x 7→ λ ( f (x)) is a Weil function for the Cartier divisor f ∗D on X ′.

(c). Normalization: If X = Pn
k , and if D is the hyperplane at infinity, then the

function

(8.8.1) λD,v([x0 : · · · : xn]) :=− log
‖x0‖v

max{‖x0‖v, . . . ,‖xn‖v}

is a Weil function for D.
(d). Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor D on

X, then λ1 = λ2 +OMk(1).
(e). Boundedness from below: If D is an effective Cartier divisor and λ is a Weil

function for D, then λ is bounded from below by an Mk-constant.
(f). Principal divisors: If D is a principal divisor ( f ), then − log‖ f‖ is a Weil

function for D.

The proofs of these properties are left to the reader (modulo the properties of
locally Mk-bounded functions).

Parts (b) and (c) of the above theorem combine to give a way of computing Weil
functions for effective very ample divisors. This, in turn, gives rise to the “max-min”
method for computing Weil functions for arbitrary Cartier divisors on projective
varieties.

Lemma 8.9. Let λ1, . . . ,λn be Weil functions for Cartier divisors D1, . . . ,Dn, respec-
tively, on a complete variety X over a number field k. Assume that the divisors Di
are of the form Di = D0 +Ei, where D0 is a fixed Cartier divisor and Ei are effective
for all i. Assume also that SuppE1∩·· ·∩SuppEn = /0. Then the function

λ (x) = min{λi(x) : x /∈ SuppEi}

is defined everywhere on (X \SuppD0)(Mk), and is a Weil function for D0.

Proof. See [Lang, 1983, Ch. 10, Prop. 3.2]. ut

Theorem 8.10. (Max-min) Let X be a projective variety over a number field k, and
let D be a Cartier divisor on X. Then there are positive integers m and n, and
nonzero rational functions fi j on X, 1 = 1, . . . ,n, j = 1, . . . ,m, such that

λ (x) := max
1≤i≤n

min
1≤ j≤m

(
− log‖ fi j‖

)
defines a Weil function for D.

Proof. We may write D as a difference E−F of very ample divisors. Let E1, . . . ,En
be effective Cartier divisors linearly equivalent to E such that

⋂
SuppEi = /0 (for
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example, pull-backs of hyperplane sections via a projective embedding associated
to E). Likewise, let F1, . . . ,Fm be effective Cartier divisors linearly equivalent to F
with

⋂
SuppFj = /0. Then D−Ei +Fj is a principal divisor for all i and j; hence

D−Ei +Fj = ( fi j)

for some fi j ∈ K(X)∗ and all i and j. Applying Lemma 8.9 to − log‖ fi j‖ then im-
plies that min1≤ j≤m

(
− log‖ fi j‖

)
is a Weil function for D−Ei for all i. Applying

Lemma 8.9 again to the negatives of these Weil functions then gives the theorem.
ut

To conclude the section, we give some notation that will be useful for working
with rational and algebraic points.

Definition 8.11. Let X be a variety over a number field k, let D be a Cartier divisor
on X , and let λD be a Weil function for D. If L is a number field containing k, and
if w is a place of L lying over a place v of k, then we identify Cw with Cv in the
obvious manner, and write

(8.11.1) λD,w = [Lw : kv]λD,v .

(Recall that ‖x‖w = ‖x‖[Lw:kv]
v for all x ∈ Cv, by (1.4).) Finally, each point x ∈ X(L)

gives rise to points xw ∈ X(Cw) for all w ∈ML, and we define

(8.11.2) λD,w(x) = λD,w(xw)

if x /∈ SuppD.

Note that, if x ∈ (X \SuppD)(L), if L′ is a number field containing L, if w is a
place of L, and if w′ is a place of L′ lying over w, then

(8.12) λD,w′(x) = [L′w′ : Lw]λD,w(x) ,

regardless of whether the left-hand side is defined using (8.11.1) or (8.11.2) (by
regarding X(L) as a subset of X(L′) for the latter).

If (cv) is an Mk-constant, if w is a place of a number field L containing k, and if
v is the place of k lying under w, then we write

(8.13) cw = [Lw : kv]cv ,

so that the condition λD,w ≤ cw will be equivalent to λD,v ≤ cv, by (8.11.1).
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9 Height Functions on Varieties in Number Theory

Weil functions can be used to generalize the height hk (defined in Section 2) to
arbitrary complete varieties over k. This can also be done by working directly with
heights; see [Lang, 1983, Ch. 3] or [Silverman, 1986].

Throughout this section, k is a number field, X is a complete variety over k,
and D is a Cartier divisor on X , unless otherwise specified.

Definition 9.1. Let λ be a Weil function for D, and let x ∈ X(k̄) be an algebraic
point with x /∈ SuppD. Then the height of x relative to λ and k is defined as

(9.1.1) hλ ,k(x) =
1

[L : k] ∑
w∈ML

λw(x)

for any number field L⊇ κ(x). It is independent of the choice of L by (8.12).

In particular, if x ∈ X(k), then

hλ ,k(x) = ∑
v∈Mk

λv(x) .

Specializing in a different direction, if X = Pn
k , if D is the hyperplane at infinity,

and if λ is the Weil function (8.8.1), then

hλ ,k([x0 : · · · : xn]) =− 1
[L : k] ∑

w∈ML

log
‖x0‖v

max{‖x0‖v, . . . ,‖xn‖v}

=
1

[L : k] ∑
w∈ML

logmax{‖x0‖v, . . . ,‖xn‖v}

= hk([x0 : · · · : xn])

(9.2)

for all [x0 : · · · : xn] ∈ Pn(k̄) with x0 6= 0, where L is any number field containing the
field of definition of this point.

The restriction x /∈ SuppD can be eliminated as follows.
Let D′ be another Cartier divisor on X linearly equivalent to D, say D′ = D+( f );

then λ ′ := λ − log‖ f‖ is a Weil function for D′. If x ∈ X(k̄) does not lie on
SuppD∪SuppD′, and if L is a number field containing κ(x), then

hλ ′,k(x) =
1

[L : k] ∑
w∈ML

λ
′
v(x)

=
1

[L : k] ∑
w∈ML

λv(x)−
1

[L : k] ∑
w∈ML

log‖ f (x)‖w

= hλ ,k(x)

(9.3)
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by the Product Formula (1.6). Thus we have:

Definition 9.4. Let λ be a Weil function for D, and let x ∈ X(k̄). Then, for any
f ∈ K(X)∗ such that the support of D+( f ) does not contain x, we define

hλ ,k(x) = hλ−log‖ f‖,k(x) ,

where hλ−log‖ f‖,k on the right-hand side is defined using Definition 9.1. This ex-
pression is independent of the choice of f by (9.3), and agrees with Definition 9.1
when x /∈ SuppD since we can take f = 1 in that case.

With this definition, (9.2) holds without the restriction x0 6= 0.

Proposition 9.5. If both λ and λ ′ are Weil functions for D, then

hλ ′,k = hλ ,k +O(1) .

Proof. Indeed, this is immediate from Theorem 8.8d. ut

Thus, the height function defined above depends only on the divisor; moreover,
by (9.3) it depends only on the linear equivalence class of the divisor.

Definition 9.6. The height hD,k(x) for points x ∈ X(k̄) is defined, up to O(1), as

hD,k(x) = hλ ,k(x)

for any Weil function λ for D. If L is a line sheaf on X , then we define

hL ,k(x) = hD,k(x)

for points x ∈ X(k̄), where D is any Cartier divisor for which O(D)∼= L . Again, it
is only defined up to O(1).

By (9.2), we then have
hO(1),k = hk +O(1)

on Pn
k for all n > 0. Since the automorphism group of Pn

k is transitive on the set of ra-
tional points, and since automorphisms preserve the line sheaf O(1), the term O(1)
in the above formula cannot be eliminated without additional structure. Thus, Defi-
nition 9.6 cannot give an exact definition for the height without additional structure.
(This additional structure can be given using Arakelov theory.)

Theorem 8.8 and (8.12) also immediately imply the following properties of
heights:

Theorem 9.7. (a). Functoriality: if f : X ′→ X is a morphism of k-varieties, and
if L is a line sheaf on X, then

h f ∗L ,k(x) = hL ,k( f (x))+O(1)

for all x ∈ X ′(k̄), where the implied constant depends only on f , L , and the
choices of the height functions.
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(b). Additivity: if L1 and L2 are line sheaves on X, then

hL1⊗L2,k(x) = hL1,k(x)+hL2,k(x)+O(1)

for all x∈ X(k̄), where the implied constant depends only on L1, L2, and the
choices of the height functions.

(c). Base locus: If hD,k is a height function for D, then it is bounded from below
outside of the base locus of the complete linear system |D|.

(d). Globally generated line sheaves: If L is a line sheaf on X, and is generated
by its global sections, then hL ,k(x) is bounded from below for all x ∈ X(k̄),
by a bound depending only on L and the choice of height function.

(e). Change of number field: If L⊇ k then

hL ,L(x) = [L : k]hL ,k(x)

for all line sheaves L on X and all x∈ X(k̄). (Strictly speaking, the left-hand
side should be hL ′,L(x′), where L ′ is the pull-back of L to XL := X×k L and
x′ is the point in XL(k̄) corresponding to x ∈ X(k̄).)

Corollary 9.8. If L is an ample line sheaf on X, then hL ,k(x) is bounded from
below for all x ∈ X(k̄), by a bound depending only on L and the choice of height
function.

Proof. By Theorem 9.7b, we may replace L with L ⊗n for any positive integer
n, and therefore may assume that L is very ample. Then the result follows from
Theorem 9.7d. ut

The following result shows that heights relative to ample line sheaves are the
largest possible heights, up to a constant multiple.

Proposition 9.9. Let L and M be line sheaves on X, with L ample. Then there is
a constant C, depending only on L and M , such that

hM ,k(x)≤C hL ,k(x)+O(1)

for all x∈X(k̄), where the implied constant depends only on L , M , and the choices
of height functions.

Proof. By the definition of ampleness, there is an integer n such that the line sheaf
L ⊗n⊗M ∨ is generated by global sections. Therefore an associated height function

hL⊗n⊗M∨,k = nhL ,k−hM ,k +O(1)

is bounded from below, giving the result with C = n. ut

For projective varieties, Northcott’s finiteness theorem can be carried over.

Theorem 9.10. (Northcott) Assume that X is projective, and let L be an ample line
sheaf on X. Then, for all integers d and all c ∈ R, the set
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(9.10.1) {x ∈ X(k̄) : [κ(x) : k]≤ d and hL ,k(x)≤ c}

is finite.

Proof. First, if X = Pn
k and L = O(1), then the result follows by bounding the

heights of [xi : x0] (if x0 6= 0, which we assume without loss of generality), and
applying Theorem 2.7 to these points for each i. The general case then follows by
replacing L with a very ample positive multiple and using an associated projective
embedding and functoriality of heights. ut

Of course, if X is not projective then it has no ample divisors, making the above
two statements vacuous. Complete varieties have a notion that is almost as good,
though.

Definition 9.11. Let X be a complete variety over an arbitrary field. A line sheaf L
on X is big if there is a constant c > 0 such that

h0(X ,L ⊗n)≥ cndimX

for all sufficiently large and divisible n. A Cartier divisor D on X is big if O(D) is
big.

If X is a complete variety over an arbitrary field, then by Chow’s lemma there is
a projective variety X ′ and a proper birational morphism π : X ′→ X . If L is a big
line sheaf on X , then π∗L is big on X ′. Therefore, it makes some sense to compare
big line sheaves with ample ones.

Proposition 9.12. (Kodaira’s lemma) Let X be a projective variety over an arbitrary
field, and let L and A be line sheaves on X, with A ample. Then L is big if and
only if there is a positive integer n such that H0(X ,L ⊗n⊗A ∨) 6= 0. Equivalently,
if D and A are Cartier divisors on X, with A ample, then D is big if and only if some
positive multiple of it is linearly equivalent to the sum of A and an effective divisor.

Proof. See [Vojta, 1987, Prop. 1.2.7]. ut

The above allows us to show that heights relative to big line sheaves are also,
well, big.

Proposition 9.13. Let X be a complete variety over a number field. Let L and M
be line sheaves on X, with L big. Then there is a constant C and a proper Zariski-
closed subset Z of X, depending only on L and M , such that

hM ,k(x)≤C hL ,k(x)+O(1)

for all x ∈ X(k̄) outside of Z, where the implied constant depends only on L , M ,
and the choices of height functions.
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Proof. After applying Chow’s lemma and pulling back L and M , we may assume
that X is projective. We may also replace L with a positive multiple, and hence may
assume that L is isomorphic to A ⊗O(D), where A is an ample line sheaf and
D is an effective Cartier divisor. Then the result follows from Proposition 9.9, with
Z = SuppD, by Theorem 9.7. ut

Unfortunately, it is still not true that an arbitrary complete variety must have a
big line sheaf. But it is true if the variety is nonsingular, since one can then take the
complement of any open affine subset.

For general complete varieties, we can do the following.

Remark 9.14. For a general complete variety X over k, we can define a big height
to be a function h : X(k̄)→ R for which there exist disjoint subvarieties U1, . . . ,Un
of X (not necessarily open or closed), with

⋃
Ui = X ; and for each i = 1, . . . ,n a

projective embedding Ui ↪→ U i, an ample line sheaf Li on U i, and real constants
ci > 0 and Ci such that h(x)≥ ci hLi,k(x)+Ci for all x ∈Ui(k̄). One can then show:

• every complete variety over k has a big height;
• any two big heights on a given complete variety are bounded from above by

linear functions of each other;
• if X is a projective variety and L is an ample line sheaf on X then hL ,k is a big

height on X ;
• if L is a line sheaf on X then there are real constants c and C such that

hL ,k(x)≤ ch(x)+C for all x ∈ X(k̄);
• the restriction of a big height to a closed subvariety is a big height on that subva-

riety; and
• a counterpart to Proposition 9.15 (below) holds for big heights on complete vari-

eties.

Details of these assertions are left to the reader.
Big heights are useful for error terms: the conjectures and theorems that follow

are generally stated for projective varieties, with an error term involving a height
relative to an ample divisor. However, they can also be stated more generally for
complete varieties if the height is changed to a big height. For concreteness, though,
the more restricted setting of projective varieties is used.

Finally, we note a case in which Z can be bounded explicitly. This will be used
in the proof of Proposition 29.3.

Proposition 9.15. Let f : X1→X2 be a morphism of projective varieties over a num-
ber field, and let A1 and A2 be ample line sheaves on X1 and X2, respectively. Then
there is a constant C, depending only on f , A1, and A2 such that

(9.15.1) hA1,k(x)≤C hA2,k( f (x))+O(1)

for all points x ∈ X1(k̄) that are isolated in their fibers of f , where the implied
constant depends only on f , A1, A2, and the choices of height functions.
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Proof. If no closed points x of X1 are isolated in their fibers of f , then there is
nothing to prove. If there is at least one such point x, then dim f (X1) = dimX1, so
f ∗A2 is big. The result then follows by Proposition 9.13 and noetherian induction
applied to the irreducible components of the set Z in that proposition ut

Note that if any fiber component of f has dimension > 0, then it contains alge-
braic points of arbitrarily large height, so (9.15.1) cannot possibly hold for all such
points.

10 Proximity and Counting Functions on Varieties in Number
Theory

The definitions of proximity and counting functions given in Sections 5 and 7 also
generalize readily to points on varieties.

Throughout this section, k is a number field, S is a finite set of places of k
containing S∞, and X is a complete variety over k.

Definition 10.1. Let D be a Cartier divisor on X , let λD be a Weil function for D, let
x ∈ X(k̄) with x /∈ SuppD, let L ⊇ k be a number field such that x ∈ X(L), and let
T be the set of places of L lying over places in S. Then the proximity function and
counting function in this setting are defined up to O(1) by

mS(D,x) =
1

[L : k] ∑
w∈T

λD,w(x) and NS(D,x) =
1

[L : k] ∑
w/∈T

λD,w(x) .

These expressions are independent of the choice of L, by (8.11.1). They depend on
the choice of λD only up to O(1).

Unlike the height, the proximity and counting functions depend on D, even within
a linear equivalence class. Therefore the restriction x /∈ SuppD cannot be eliminated.

By (9.1.1) and Definition 9.6, we have

hD,k(x) = mS(D,x)+NS(D,x)

for all x ∈ X(k̄) outside of the support of D. This is, basically, the First Main The-
orem. The Second Main Theorem in this context is still a conjecture (Conjecture
14.6).

Theorem 8.8 immediately implies the following properties of proximity and
counting functions.

Proposition 10.2. In number theory, proximity and counting functions have the fol-
lowing properties.
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(a). Additivity: If D1 and D2 are Cartier divisors on X, then

mS(D1 +D2,x) = mS(D1,x)+mS(D2,x)+O(1)

and

NS(D1 +D2,x) = NS(D1,x)+NS(D2,x)+O(1)

for all x ∈ X(k̄) outside of the supports of D1 and D2.
(b). Functoriality: If f : X ′→ X is a morphism of complete k-varieties and D is

a divisor on X whose support does not contain the image of f , then

mS( f ∗D,x) = mS(D, f (x))+O(1)

and

NS( f ∗D,x) = NS(D, f (x))+O(1)

for all x ∈ X ′(k̄) outside of the support of f ∗D.
(c). Effective divisors: If D is an effective Cartier divisor on X, then mS(D,x) and

NS(D,x) are bounded from below for all x ∈ X(k̄) outside of the support of
D.

(d). Change of number field: If L is a number field containing k and if T is the
set of places of L lying over places in S, then

mT (D,x) = [L : k]mS(D,x)+O(1)

and

NT (D,x) = [L : k]NS(D,x)+O(1)

for all x ∈ X(k̄) outside of the support of D (with the same abuse of notation
as in Theorem 9.7e).

In each of the above cases, the implied constant in O(1) depends on the varieties,
divisors, and morphisms, but not on x.

When working with proximity and height functions, the divisor D is almost al-
ways assumed to be effective.

11 Height, Proximity, and Counting Functions in Nevanlinna
Theory

The height, proximity, and counting functions of Nevanlinna theory can also be
generalized to the context of a divisor on a complete complex variety.
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In this section, X is a complete complex variety, D is a Cartier divisor on
X , and f : C→ X is a holomorphic curve whose image is not contained in
the support of D. Throughout these notes, we will often implicitly think of a
complex variety X as a complex analytic space [Hartshorne, 1977, App. B].

We begin with the proximity and counting functions.

Definition 11.1. Let λ be a Weil function for D. Then the proximity function for f
relative to D is the function

m f (D,r) =
∫ 2π

0
λ ( f (reiθ ))

dθ

2π
.

It is defined only up to O(1).

If λ ′ is another Weil function for D, then |λ −λ ′| is bounded, so the proximity
function is independent of D (up to O(1)).

Definition 11.2. The counting function for f relative to D is the function

N f (D,r) = ∑
0<|z|<r

ordz f ∗D · log
r
|z|

+ord0 f ∗D · logr .

Unlike the proximity function and the counting function in Nevanlinna theory,
this function is defined exactly.

Corresponding to Proposition 10.2, we then have

Proposition 11.3. In Nevanlinna theory, proximity and counting functions have the
following properties.

(a). Additivity: If D1 and D2 are Cartier divisors on X, then

m f (D1 +D2,r) = m f (D1,r)+m f (D2,r)+O(1)

and

N f (D1 +D2,r) = N f (D1,r)+N f (D2,r) .

(b). Functoriality: If φ : X → X ′ is a morphism of complete complex varieties
and D′ is a Cartier divisor on X ′ whose support does not contain the image
of φ ◦ f , then

m f (φ ∗D′,r) = mφ◦ f (D′,r)+O(1) and N f (φ ∗D′,r) = Nφ◦ f (D′,r) .

(c). Effective divisors: If D is effective, then m f (D,r) is bounded from below and
N f (D,r) is nonnegative.
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In each of the above cases, the implied constant in O(1) depends on the varieties,
divisors, and morphisms, but not on f or r.

We can now define the height.

Definition 11.4. The height function relative to D is defined, up to O(1), as

TD, f (r) = m f (D,r)+N f (D,r) .

Proposition 11.5. The height function TD, f is additive in D, is functorial, and is
bounded from below if D is effective, as in Proposition 11.3.

Proof. Immediate from Proposition 11.3. ut

Proposition 11.6. (First Main Theorem) Let D′ be another Cartier divisor on X
whose support does not contain the image of f , and assume that D′ is linearly equiv-
alent to D. Then

(11.6.1) TD′, f (r) = TD, f (r)+O(1) .

Proof. We first consider the special case X = P1
C, D = [0] (the image of the

point 0 under the injection A1 ↪→ P1), and D′ = [∞] (the point at infinity, with
multiplicity one). Then TD′, f (r) = Tf (r) + O(1), m f (D,r) = m f (0,r) + O(1), and
N f (D,r) = N f (0,r) (where Tf (r), m f (0,r), and N f (0,r) are as defined in Section
4). The result then follows by Theorem 4.6 (the First Main Theorem for meromor-
phic functions).

In the general case, write D−D′ = (g) for some g ∈ K(X)∗. Then g defines
a rational map X 99K P1

C. Let X ′ be the closure of the graph, with projections
p : X ′→ X and q : X ′→ P1

C. By the additivity property of heights, (11.6.1) is equiv-
alent to TD−D′, f (r) being bounded. By the special case proved already, T[0]−[∞],g◦ f (r)
is bounded. The holomorphic curve f : C→ X lifts to a function f ′ : C→ X ′ that
satisfies p◦ f ′ = f and q◦ f ′ = g◦ f . By functoriality, we then have

TD−D′, f (r) = Tp∗(D−D′), f ′(r)+O(1)

= Tq∗([0]−[∞]), f ′(r)+O(1)

= T[0]−[∞],q◦ f ′(r)+O(1)

= T[0]−[∞],g◦ f (r)+O(1)

= O(1) ,

which implies the proposition. ut

Definition 11.7. The height function of f relative to a line sheaf L on X is defined
to be TL , f (r) = TD, f (r)+O(1) for any divisor D such that O(D)∼= L and such that
the support of D does not contain the image of f . It is defined only up to O(1).

One can obtain a precise height function (defined exactly, not up to O(1)), by fix-
ing a Weil function for any such D, or by choosing a metric on L . It is also possible
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to use a (1,1)-form associated to such a metric (the Ahlfors-Shimizu height), but
this will not be used in these notes.

Continuing on with the development of the height, we have the following coun-
terpart to Theorem 9.7.

Theorem 11.8. (a). Functoriality: if φ : X→ X ′ is a morphism of complete com-
plex varieties and if L is a line sheaf on X ′, then

Tφ∗L , f (r) = TL ,φ◦ f (r)+O(1) .

(b). Additivity: if L1 and L2 are line sheaves on X, then

TL1⊗L2, f (r) = TL1, f (r)+TL2, f (r)+O(1) .

(c). Base locus: If the image of f is not contained in the base locus of the com-
plete linear system |D|, then TD, f (r) is bounded from below.

(d). Globally generated line sheaves: If L is a line sheaf on X, and is generated
by its global sections, then TL , f (r) is bounded from below.

The implicit constants can probably also be made to depend only on the geo-
metric data and the choice of height functions (and not on f ), but this is not very
important since it is the independence of r that is useful.

The following three results correspond to similar results in the end of Section 9.

Corollary 11.9. If L is an ample line sheaf on X, then TL , f (r) is bounded from
below, is bounded from above if and only if f is constant, and is O(logr) if and only
if f is algebraic.

Proof. When X = P1, see [Goldberg and Ostrovskii, 2008, Ch 1, Thm. 6.4] for the
second assertion. The general case is left as an exercise for the reader. ut

Proposition 11.10. Let L and M be line sheaves on X, with L ample. Then there
is a constant C, depending only on L and M , such that

TM , f (r)≤C TL , f (r)+O(1) .

Proof. This is true for essentially the same reasons as Proposition 9.9. The details
are left to the reader. ut

Proposition 11.11. Let L and M be line sheaves on X, with L big. Then there is
a constant C and a proper Zariski-closed subset Z of X, depending only on L and
M , such that

TM , f (r)≤C TL , f (r)+O(1) ,

provided that the image of f is not contained in Z.

Proof. Similar to the proof of Proposition 9.13; details are again left to the reader.
ut
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Remark 11.12. For an arbitrary complete variety X over C and a holomorphic curve
f : C→ X , one can define a big height to be a real-valued function Tbig, f (r) with
the property that if Z is the Zariski closure of the image of f , if Z̃ → Z is a
proper birational morphism with Z̃ projective, if L is an ample line sheaf on Z̃,
and if f̃ : C→ Z̃ is a lifting of f , then there are constants c > 0 and C such that
Tbig, f (r)≥ cTL , f (r)+C for all r > 0. This condition is independent of the choices
of L and Z̃. This height satisfies the same properties as in Remark 9.14. (There is
no list of subvarieties in this case since in Nevanlinna theory f is usually fixed;
however, one could define the big height instead by using the same U1, . . . ,Un,
U1, . . . ,Un, and L1, . . . ,Ln as in Remark 9.14; then extend f−1(Ui)→Ui to a map
C→U i for i such that Ui contains the generic point of Z.)

12 Integral Points

Weil functions can be used to study integral points on varieties. This includes not
only affine varieties, but also non-affine varieties. Integral points on non-affine va-
rieties come up in some important applications, such as moduli spaces of abelian
varieties.

To begin, let k be a number field and recall that a point (x1, . . . ,xn) ∈ An(k) is an
integral point if all xi lie in Ok. More generally, if S⊇ S∞ is a finite set of places of
k, then (x1, . . . ,xn) as above is an S-integral point if all xi lie in the ring

(12.1) Ok,S := {x ∈ k : ‖x‖v ≤ 1 for all v /∈ S}

of S-integers. Algebraic points (x1, . . . ,xn) ∈ An(k̄) are integral (resp. S-integral)
if all of the xi are integral over Ok (resp. Ok,S). (Of course, Ok = Ok,S∞

, so only one
definition is really needed.) These definitions are inherited by points on a closed
subvariety X of An

k .
Given an abstract affine variety X over k, however, the situation becomes a little

more complicated. Indeed, for any rational point x ∈ X(k), there is a closed em-
bedding into An

k for some n that takes x to an integral point. The same is true for
algebraic points.

Instead, therefore, we refer to integrality of a set of points [Serre, 1989, § 1.3]:
Let X be an affine variety over k. Then a set Σ ⊆ X(k) (resp. Σ ⊆ X(k̄)) is S-integral
if there is a closed immersion i : X ↪→ An

k for some n and a nonzero element a ∈ k
such that, for all x ∈ Σ , all coordinates of i(x) lie in (1/a)Ok,S (resp. a times all
coordinates are integral over Ok,S).

As noted above, this definition is meaningful only if Σ is an infinite set.
This definition can be phrased in geometric terms using Weil functions. Indeed,

we identify An
k with the complement of the hyperplane x0 = 0 in Pn

k , by identifying
(x1, . . . ,xn) ∈ An

k with the point [1 : x1 : · · · : xn] ∈ Pn
k . Let H denote the hyperplane

x0 = 0 at infinity, and let λH be the Weil function (8.8.1):
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λH,v([1 : x1 : · · · : xn]) =− log
‖1‖v

max{‖1‖v,‖x1‖v, . . . ,‖xn‖v}
= logmax{‖1‖v,‖x1‖v, . . . ,‖xn‖v} .

(12.2)

Now let a be a nonzero element of k, let x∈ k̄, and let L be a number field containing
k(x). Then ax is integral over Ok,S if and only if ‖ax‖w ≤ 1 for all places w of ML
lying over places in Mk \S, which holds if and only if ‖x‖w ≤ ‖a‖−1

w for all such w.
Thus, by (12.2), Σ ⊆ X(k̄) is S-integral if and only if there is a closed immersion
i : X ↪→ An

k for some n and an Mk-constant (cv) with the following property. For all
x ∈ Σ , λH,w(x) ≤ cw for all places w of Mk(x) lying over places not in S. (Here, as
above, we identify An

k with Pn
k \H.)

By functoriality of Weil functions (Theorem 8.8b), this leads to the following
definition.

Definition 12.3. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a complete variety over k, and let D be an effective Cartier divisor on X .
Then a set Σ ⊆ X(k̄) is a (D,S)-integral set of points if (i) no point x ∈ Σ lies in
the support of D, and (ii) there is a Weil function λD for D and an Mk-constant (cv)
such that

λD,w(x)≤ cw

for all x ∈ Σ and all places w of Mk(x) not lying over places in S.

We may eliminate S from the notation if it is clear from the context, and refer to
a D-integral set of points.

From the above discussion, it follows that the condition in the earlier definition
of integrality holds for some closed immersion into An

k , then it holds for all such
closed immersions (with varying n).

Similarly, by Theorem 8.8d, one can use a fixed Weil function λD in Definition
12.3 (after adjusting (cv)). One can also vary the divisor, as follows.

Proposition 12.4. If k, S, and X are as above, and if D1 and D2 are effective Cartier
divisors on X with the same support, then a set Σ ⊆ X(k̄) is D1-integral if and only
if it is D2-integral.

Proof. This follows from Theorems 8.8a and 8.8e (additivity and boundedness of
Weil functions). Details are left to the reader. ut

Thus, D-integrality depends only on the support of D. In fact, one can go further:
It depends only on the open subvariety X \SuppD:

Proposition 12.5. Let k and S be as above, let X1 and X2 be complete k-varieties,
and let D1 and D2 be effective Cartier divisors on X1 and X2, respectively. Assume
that

φ : X1 \SuppD1
∼→ X2 \SuppD2

is an isomorphism. Then a set Σ ⊆ X1(k̄) is a D1-integral set on X1 if and only if

φ(Σ) := {φ(x) : x ∈ Σ}
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is a D2-integral set on X2.

Proof. By working with the closure of the graph, we may assume that φ extends to
a morphism from X1 to X2. In that case, it follows from Theorems 8.8a and 8.8e. ut

Definition 12.6. Let k and S be as above, and let U be a variety over k. A set
Σ ⊆U(k̄) is integral if there is an open immersion i : U → X of U into a complete
variety X over k and an effective Cartier divisor D on X such that i(U) = X \SuppD
and i(Σ) is a D-integral set on X .

Proposition 12.7. Let φ : X1 → X2 be a morphism of complete k-varieties, and let
D1 and D2 be effective Cartier divisors on X1 and X2, respectively. Assume that the
support of D2 does not contain the image of φ , and that the support of D1 contains
the support of φ ∗D2. If Σ is a D1-integral set on X1, then

φ(Σ) := {φ(x) : x ∈ Σ}

is a D2-integral set on X2.

Proof. By Proposition 12.4, we may assume that D1−φ ∗D2 is effective, and then
the result follows by Theorems 8.8a and 8.8e. ut

If we let U1 = X1 \SuppD1 and U2 = X2 \SuppD2, then the above conditions on
the supports of D1 and D2 are equivalent to φ(U1)⊆U2. Therefore Proposition 12.7
says that integral sets of points on varieties are preserved by morphisms of those
varieties. This phenomenon is more obvious when using models over SpecOk to
work with integral points, but this will not be explored in these notes.

We also note that Definition 12.6 does not require U to be affine. Indeed, many
moduli spaces are neither affine nor projective, and it is often useful to work with
integral points on those moduli spaces (although this is usually done using models).
In an extreme case, U can be a complete variety. This corresponds to taking D = 0
in Definition 12.3, and the integrality condition is therefore vacuous in that case.

When working with rational points, Definition 12.3 can be stated using counting
functions instead: Σ ⊆ X(k) is integral if and only if NS(D,x) is bounded for x ∈ Σ .
This is no longer equivalent when working with algebraic points, or when working
over function fields, though.

The discussion of the corresponding notion in Nevanlinna theory is quite short:
an (infinite) D-integral set of rational points on a complete k-variety X corresponds
to a holomorphic curve f in a complete complex variety X whose image is disjoint
from the support of a given Cartier divisor D on X . (In other words, N f (D,r) = 0
for all r.) The next section will discuss an example of this comparison.

Of course, holomorphic curves omitting divisors also behave as in Proposition
12.5: Let φ : X1→ X2 be a morphism of complete complex varieties, let D1 and D2
be effective Cartier divisors on X1 and X2, respectively, with

φ
−1(SuppD2)⊆ SuppD1 ,
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and let f : C→ X1 be a holomorphic curve which omits D1. Then φ ◦ f : C→ X2
omits D2, for trivial reasons.

Now consider the situation where φ : X ′ → X is a morphism of complete com-
plex varieties, D is an effective Cartier divisor on X , and D′ is an effective Cartier
divisor on X ′ with SuppD′ = φ−1(SuppD). Assume that φ is étale outside of
SuppD′. Then any holomorphic curve f : C→ X \ SuppD lifts to a holomorphic
curve f ′ : C→ X ′ \SuppD′ such that φ ◦ f ′ = f , essentially for topological reasons.

What is surprising is that this situation carries over to the number field case.
Indeed, let φ : X ′ → X be a morphism of complete k-varieties, and let D and D′

be as above, with φ étale outside of SuppD′. If Σ is a set of D-integral points in
X(k), then φ−1(Σ) is a set of integral points in X ′(k̄). The Chevalley-Weil theorem
extends to integral points by Serre [1989, § 4.2] or Vojta [1987, § 5.1], and implies
that although the points of Σ ′ may not lie in X ′(k), the ramification of the fields k(x)
over k is bounded uniformly for all x ∈ X ′(k). Combining this with the Hermite-
Minkowski theorem, it then follows that there is a number field L ⊇ k such that
Σ ′ ⊆ X ′(L).

13 Units and the Borel Lemma

Units in a number field k can be related to integral points on the affine variety xy = 1
in P2

k : u is a unit if and only if there is a point (u,v) on this variety with u,v ∈ Ok.
This variety is isomorphic to P1 minus two points, which we may take to be 0 and
∞. More generally, a set of rational points on P1 \{0,∞} is integral if and only if it
is contained in finitely many cosets of the units in the group k∗.

Units therefore correspond to entire functions that never vanish. An entire func-
tion f never vanishes if and only if it can be written as eg for an entire function g.
This leads to what is called the “Borel lemma” in Nevanlinna theory.

Theorem 13.1. [Borel, 1897] If g1, . . . ,gn are entire functions such that

(13.1.1) eg1 + · · ·+ egn = 1 ,

then some g j is constant.

Proof. We may assume that n ≥ 2. The homogeneous coordinates [eg1 : · · · : egn ]
define a holomorphic curve f : C→ Pn−1(C). The image of this map omits the n
coordinate hyperplanes, and also omits the hyperplane x1 + · · ·+xn = 0 (expressed in
homogeneous coordinates [x1 : · · · : xn]). Therefore N f (H j,r) = 0, as H j varies over
these n+1 hyperplanes. This contradicts (7.8) unless the image of f is contained in
a hyperplane (note that n is different in (7.8)). One can then use the linear relation
between the coordinates of f to eliminate one of the terms eg j and then conclude by
induction. ut

In fact, by induction, it can be shown that some nontrivial subsum of the terms
on the left-hand side of (13.1.1) must vanish.
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To find the counterpart of this result in number theory, change the eg j to units.
This theorem is due to van der Poorten and Schlickewei [1982], and independently
to Evertse [1984].

Theorem 13.2. (Unit Theorem) Let k be a number field and let S ⊇ S∞ be a finite
set of places of k. Let U be a collection of n-tuples (u1, . . . ,un) of S-units in k that
satisfy the equation

(13.2.1) a1u1 + · · ·+anun = 1 ,

where a1, . . . ,an are fixed nonzero elements of k. Then all but finitely many elements
of U have the property that there is a nonempty proper subset J of {1,2, . . . ,n} such
that ∑ j∈J a ju j = 0.

Proof. Assume that the theorem is false, and let U ′ be the set of all (u1, . . . ,un) for
which there is no such J as above. Then U ′ is infinite.

If we regard each (u1, . . . ,un) ∈ U ′ as a point [u1 : · · · : un] ∈ Pn−1
k , then by

looking directly at the formula (7.9.1) for Weil functions, we see that NS(H j,x) is
bounded as x varies over U ′, for the same set of n+1 hyperplanes as in the previous
proof. This gives mS(H j,x) = hk(x) + O(1) for all x ∈ U ′ and all j, contradicting
Theorem 7.11 unless all points in Pn−1 corresponding to points in U ′ lie in a finite
union of proper linear subspaces.

Consider one of those linear subspaces containing infinitely many points of U ′.
Combining the equation of some hyperplane containing that subspace with (13.2.1)
allows one to eliminate one or more of the u j, since by assumption there is no set
J as in the statement of the theorem. We then proceed by induction on n (the base
case n = 1 is trivial). ut

Example 13.3. The condition with the set J is essential because, for example, the
unit equation (13.2.1) with n = 3 and a1 = a2 = a3 = 1 has solutions u+(−u)+1 = 1
for infinitely many units u (if k or S is large enough). Geometrically, if H1, . . . ,H4
are the hyperplanes in Pn

k occurring in the proofs of Theorems 13.1 and 13.2, then
the possible sets J = {1,2}, J = {1,3}, and J = {2,3} correspond to the line joining
the points H1∩H2 and H3∩H4, the line joining the points H1∩H3 and H2∩H4 and
the line joining the points H1 ∩H4 and H2 ∩H3. Each such line meets the divisor
D := ∑H j in only two points, so if we map P1 to that line in such a way that 0 and
∞ are taken to those two points, then integral points on P1

k \ {0,∞} (i.e., units) are
taken to integral points on P2

k \D.

Finally, we note that theorems on exponentials of entire functions that can be
reduced to Theorem 13.1 by elementary geometric arguments can be readily trans-
lated to theorems on units, by replacing the use of Theorem 13.1 with Theorem 13.2.
For example, Theorem 13.4 below leads directly to Theorem 13.5.

Theorem 13.4. [Dufresnoy, 1944, Théorème XVI]; see also [Fujimoto, 1972] and
[Green, 1972]. Let f : C→ Pn be a holomorphic curve that omits n+m hyperplanes
in general position, m≥ 1. Then the image of f is contained in a linear subspace of
dimension ≤ [n/m], where [ · ] denotes the greatest integer function.
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Theorem 13.5. [Levin, 2008, Cor. 3] Let Σ ⊆ Pn(k) be a set of D-integral points,
where D is the sum of n + m hyperplanes in general position, m ≥ 1. Then Σ is
contained in a finite union of linear subspaces of dimension ≤ [n/m].

14 Conjectures in Nevanlinna Theory and Number Theory

Since the canonical line sheaf K of P1 is O(−2), the main inequality of Theorem
4.7 can be stated in the form

m f (D,r)+TK , f (r)≤exc O(log+ Tf (r))+o(logr) ,

leading to a general conjecture in Nevanlinna theory. This first requires a definition.

Definition 14.1. A subset Z of a smooth complex variety X is said to have normal
crossings if each P ∈ X(C) has an open neighborhood U and holomorphic local
coordinates z1, . . . ,zn in U such that Z∩U is given by z1 = · · ·= zr = 0 for some r
(0≤ r ≤ n). A divisor on X is reduced if all multiplicities occurring in it are either
0 or 1. Finally, a normal crossings divisor on X is a reduced divisor whose support
has normal crossings.

(Note that not all authors assume that a normal crossings divisor is reduced.)

Conjecture 14.2. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X , let K be the canonical line sheaf on X , and let A be an
ample line sheaf on X . Then:

(a). The inequality

(14.2.1) m f (D,r)+TK , f (r)≤exc O(log+ TA , f (r))+o(logr)

holds for all holomorphic curves f : C→ X with Zariski-dense image.
(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only

on X , D, A , and ε , such that the inequality

(14.2.2) m f (D,r)+TK , f (r)≤exc ε TA , f (r)+C

holds for all nonconstant holomorphic curves f : C→ X whose image is not
contained in Z, and for all C ∈ R.

The form of this conjecture is the same as the (known) theorem for holomorphic
maps to Riemann surfaces. It has also been shown to hold, with a possibly weaker
error term, for holomorphic maps Cd→X if d = dimX and the jacobian determinant
of the map is not identically zero; see [Stoll, 1970] and [Carlson and Griffiths, 1972].
The conjecture itself is attributed to Griffiths, although he seems not to have put it
in print anywhere.
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Conjecture 14.2 has been proved for curves (Theorem 22.2 and Corollary 28.7),
but in higher dimensions very little is known. If X = Pn and D is a sum of hyper-
planes, then the normal crossings condition is equivalent to the hyperplanes being in
general position, and in that case the first part of the conjecture reduces to Cartan’s
theorem (Theorem 7.7). The second part is also known in this case [Vojta, 1997].

A consequence of Conjecture 14.2 concerns holomorphic curves in varieties of
general type, or of log general type.

Proposition 14.3. Assume that either part of Conjecture 14.2 is true. If X is a
smooth variety of general type, then a holomorphic curve f : C→ X cannot have
Zariski-dense image. More generally, if X is a smooth variety, D is a normal cross-
ings divisor on X, and X \D is a variety of log general type, then a holomorphic
curve f : C→ X \D cannot have Zariski-dense image.

Proof. Assume that part (a) of the conjecture is true. The proof for (b) is similar and
is left to the reader.

As was the case with (4.8) and (7.8), (14.2.1) can be rephrased as

(14.3.1) N f (D,r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr) .

In this case, since f misses D, the left-hand side is zero. By the definition of log
general type, the line sheaf K (D) := K ⊗O(D) is big. Therefore, this inequality
contradicts Proposition 11.11. ut

This consequence is also unknown in general. It is known, however, in the special
case where X is a closed subvariety of a semiabelian variety and D = 0. Indeed, if X
is a closed subvariety of a semiabelian variety and is not a translate of a semiabelian
subvariety, then a holomorphic curve f : C→ X cannot have Zariski-dense image.
See [Kawamata, 1980], [Green and Griffiths, 1980], and [Siu, 1995] for the case
of abelian varieties, and [Noguchi, 1981] for the more general case of semiabelian
varieties. All of these references build on work of A. Bloch [1926].

Conjecture 14.2b is also known if X is an abelian variety and D is ample [Siu
and Yeung, 1996]. The theorem has been extended to semiabelian varieties again
by Noguchi [1998], but only applies to holomorphic curves whose image does not
meet the divisor at infinity. Again, these proofs build on work of Bloch [1926].

Conjecture 14.2 will be discussed further once its counterpart in number theory
has been introduced. This, in turn, requires some definitions.

Definition 14.4. Let X be a nonsingular variety. A divisor D on X is said to have
strict normal crossings if it is reduced, if each irreducible component of its support
is nonsingular, and if those irreducible components meet transversally (i.e., their
defining equations are linearly independent in the Zariski cotangent space at each
point). We say that D has normal crossings if it has strict normal crossings locally
in the étale topology. This means that for each P ∈ X there is an étale morphism
φ : X ′→ X with image containing P such that φ ∗D has strict normal crossings.

This definition is discussed more in [Vojta, 2007a, § 7].
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Definition 14.5. [Szpiro, Ullmo, and Zhang, 1997] Let X be a variety. A subset of
X(k̄) is generic if all infinite subsets are Zariski-dense in X .

The number-theoretic counterpart to Conjecture 14.2 is then the following.

Conjecture 14.6. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a smooth projective variety over k, let D be a normal crossings divisor on
X , let K be the canonical line sheaf on X , and let A be an ample line sheaf on X .
Then:

(a). Let Σ be a generic subset of X(k)\SuppD. Then the inequality

(14.6.1) mS(D,x)+hK ,k(x)≤ O(log+ hA ,k(x))

holds for all x ∈ Σ .
(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only

on X , D, A , and ε , such that for all C ∈ R the inequality

(14.6.2) mS(D,x)+hK ,k(x)≤ ε hA ,k(x)+C

holds for almost all x ∈ (X \Z)(k).

By Remark 9.14, one can replace hA ,k in this conjecture with a big height (after
possibly adjusting Z and ε in part (b)). One can then relax the condition on X to
be just a smooth complete variety. The resulting conjecture actually would follow
from the original Conjecture 14.6 by Chow’s lemma, resolution of singularities, and
Proposition 24.2 (without reference to dS(x) in the latter, since lifting a rational point
to the cover does not involve passing to a larger number field in this case). This can
also be done for Conjecture 14.2.

Except for error terms, the cases in which Conjecture 14.6 is known correspond
closely to those cases for which Conjecture 14.2 is known. Indeed, Conjecture 14.6b
is known for curves by Roth’s theorem, by a theorem of Lang [1960, Thm. 2], and
by Faltings’s theorem on the Mordell conjecture [Faltings, 1983, 1986], for genus
0, 1, and > 1, respectively. For curves, part (a) of the conjecture is identical to part
(b) except for the error term. Also, Schmidt’s Subspace Theorem (Theorem 7.12)
proves Conjecture 14.6 except for the error term in part (a), and the assertion on the
dependence of the set Z in part (b). As noted earlier, however, the latter assertion is
also known (without the dependence on A and ε).

Remark 14.7. Conjecture 14.6 (and also Conjecture 14.2) are compatible with tak-
ing products. Indeed, let X = X1×k X2 be the product of two smooth projective va-
rieties, with projection morphisms pi : X → Xi (i = 1,2). Let D1 and D2 be normal
crossings divisors on X1 and X2, respectively, and let K , K1 and K2 be the canoni-
cal line sheaves on X , X1, and X2, respectively. We have K ∼= p∗1K1⊗ p∗2K2. Then
the conjecture for D1 on X1 and for D2 on X2 imply the conjecture for p∗1D1 + p∗2D2
on X .
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Remark 14.8. One may ask whether one can make the same change to this conjec-
ture as was done in going from Theorem 7.11 to 7.12 (and likewise in the Nevanlinna
case). One can, but it would not make the conjecture any stronger. Indeed, suppose
that D1, . . . ,Dq are normal crossings divisors on X . There exists a smooth projective
variety X ′ over k and a proper birational morphism π : X ′→ X such that the support
of the divisor ∑π∗Di has normal crossings. Let D′ be the reduced divisor on X ′ for
which SuppD′ = Supp∑π∗Di, and let K ′ and K be the canonical line sheaves of
X ′ and X , respectively. By Proposition 24.2, we have

(14.8.1) ∑
v∈S

max{λDi,v(x) : i = 1, . . . ,q}+hK ,k(x)≤mS(D′,x′)+hK ′,k(x
′)+O(1)

for all x′ ∈ X ′(k), where x = π(x′). Therefore, if the left-hand side of (14.6.1) or
(14.6.2) were replaced by the left-hand side of (14.8.1), then the resulting conjecture
would be a consequence of Conjecture 14.6 applied to D′ on X ′.

Theorems 7.12 and 7.13 are still needed, though, because Conjectures 14.6 and
14.2 have not been proved for blowings-up of Pn.

Corresponding to Proposition 14.3, we also have

Proposition 14.9. Assume that either part of Conjecture 14.6 is true. Let k and S be
as in Conjecture 14.6, let X be a smooth projective variety over k, and let D be a
normal crossings divisor on X. Assume that X \D is of log general type. Then no
set of S-integral k-rational points on X \D is Zariski dense.

Proof. As in the earlier proof, (14.6.1) is equivalent to

NS(D,x)≥ hK (D),k(x)−O(log+ hA ,k(x)) ,

and (14.6.2) can be rephrased similarly. For points x in a Zariski-dense set of k-
rational S-integral points, NS(D,x) would be bounded, contradicting Proposition
9.13 since K (D) is big. ut

This proof shows how Conjecture 14.6 is tied to the Mordell conjecture.
As was the case in Nevanlinna theory, the conclusion of Proposition 14.9 has

been shown to hold for closed subvarieties of semiabelian varieties, by Faltings
[1994] in the abelian case and Vojta [1996] in the semiabelian case.

In addition, Conjecture 14.6b has been proved when X is an abelian variety and
D is ample [Faltings, 1991]. This has been extended to semiabelian varieties [Vojta,
1999], but in that case (14.6.2) was shown only to hold for sets of integral points on
the semiabelian variety.

In parts (b) of Conjectures 14.2 and 14.6, the exceptional set Z must depend on
ε; this is because of the following theorem.

Theorem 14.10. [Levin, McKinnon, and Winkelmann, 2008] There are examples of
smooth projective surfaces X containing infinitely many rational curves Zi for which
the restrictions of (14.2.1) and (14.6.1) fail to hold.
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These examples do not contradict parts (b) of the conjectures of this section, since
the degrees of the curves increase to infinity. Nor do they preclude the sharper error
terms in parts (a) of the conjectures. However, they do prevent one from combining
the two halves of each conjecture.

Lang [1991, Ch. I, § 3] has an extensive conjectural framework concerning how
the exceptional set in part (b) of Conjectures 14.2 and 14.6 may behave, especially
for varieties of general type (which would not include the examples of Theorem
14.10). See also Section 16. Note, however, that the exceptional sets of that section
refer only to integral points (or holomorphic curves missing D), so the exceptional
sets referenced here are more general.

As a converse of sorts, there are numerous examples of theorems in analysis
that apply only to “very generic” situations; i.e., they exclude a countable union of
proper analytic subsets. One could pose Conjecture 14.2a in such a setting as well.
Such a change would not be meaningful for Conjecture 14.6a, however, since the
set of rational (and even algebraic) points on a variety is at most countable.

The formulation of Conjecture 14.6 suggests that, in a higher-dimensional set-
ting, the correct counterpart in number theory for a holomorphic curve with Zariski-
dense image is not just an infinite set of rational (or algebraic) points, but an infi-
nite generic set. Corresponding to holomorphic curves whose images need not be
Zariski-dense, we also make the following definition.

Definition 14.11. Let X be a variety over a number field k. If Z is a closed subvariety
of X , then a Z-generic subset of X(k̄) is a generic subset of Z(k̄). Also, a semi-
generic subset of X(k̄) is a Z-generic subset of X(k̄) for some closed subvariety Z
of X .

A version of Conjecture 14.6 has also been posed for algebraic points. See Con-
jecture 24.1.

15 Function Fields

Although function fields are not emphasized in these lectures, they provide useful
insights, especially when discussing Arakelov theory or use of models. They are
briefly introduced in this section. Most results are stated without proof.

Mahler [1949] and Osgood [1975] showed that Roth’s theorem is false for func-
tion fields of positive characteristic. Therefore these notes will discuss only function
fields of characteristic zero.

For the purposes of these notes, a function field is a finitely-generated field ex-
tension of a “ground field” F , of transcendence degree 1. Such a field is called a
“function field over F .”

If k is a function field over F , it is the function field K(B) for a unique (up to
isomorphism) nonsingular projective curve B over F . For each closed point b on B,
the local ring OB,b is a discrete valuation ring whose valuation v determines a non-
archimedean place of k with a corresponding norm given by ‖x‖v = 0 if x = 0 and
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by the formula
‖x‖v = e−[κ(b):F ]v(x)

if x 6= 0. Here v is assumed to be normalized so that its image is Z. We set Nv = 0,
so that axioms (1.3) hold.

Let L be a finite extension of k. Then it, too, is a function field over F , and
equations (1.4) and (1.5) hold in this context. If B′ is the nonsingular projective
curve over F corresponding to L, then the inclusion k ⊆ L uniquely determines a
finite morphism B′→ B over F .

The field F is not assumed to be algebraically closed. In this context, note that
the degree of a divisor on B is defined to be

(15.1) deg∑nb ·b = ∑nb[κ(b) : F ] .

This degree depends on F , since if F ⊆ F ′ ⊆ k and k is also of transcendence degree
1 over F ′, then F ′ is necessarily finite over F ,1 and the degree is divided by [F ′ : F ]
if it is taken relative to F ′ instead of to F .

With this definition of degree, principal divisors have degree 0, which implies
that the Product Formula (1.6) holds, where the set Mk is the set of closed points on
the corresponding nonsingular curve B. The Product Formula is the primary con-
dition for k to be a global field (for the full set of conditions, see [Artin, 1967,
Ch. 12]). There are many other commonalities between function fields and number
fields; for example, the affine ring of any nonempty open affine subset of B is a
Dedekind ring.

A function field is always implicitly assumed to be given with the subfield F ,
since (for example) C(x,y) can be viewed as a function field with either F = C(x)
or F = C(y), with very different results.

For the remainder of this section, k is a function field of characteristic 0 over
a field F , and B is a nonsingular projective curve over F with k = K(B).

A key benefit of working over function fields is the ability to explore diophantine
questions using standard tools of algebraic geometry, using the notion of a model.

Definition 15.2. A model for a variety X over k is an integral scheme X , given with
a flat morphism π : X → B of finite type and an isomorphism X ×B Speck∼= X of
schemes over k. The model is said to be projective (resp. proper) if the morphism
π is projective (resp. proper).

If X is a projective variety over k, then a projective model can be constructed
for it by taking the closure in PN

B . Likewise, a proper model for a complete variety
exists, by Nagata’s embedding theorem. In either case the model may be constructed

1 Let t ∈ k be transcendental over F . Then F(t) and F ′ are linearly disjoint over F , and therefore
[F ′ : F ] = [F ′(t) : F(t)]≤ [k : F(t)] < ∞.
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so that any given finite collection of Cartier divisors and line sheaves extends to the
same sorts of objects on the model [Vojta, 2007b].

If X is a proper model over B for a complete variety X over k, then ratio-
nal points in X(k) correspond naturally and bijectively to sections i : B→ X of
π : X → B. Indeed, if i is such a section then it takes the generic point of B to a
point on the generic fiber of π , which is X . Conversely, given a point in X(k), one
can take its closure to get a curve in X ; it is then possible to show that the restriction
of π to this curve is an isomorphism.

More generally, if L is a finite extension of k, and B′ is the nonsingular projective
curve over F corresponding to L, then points in X(L) correspond naturally and bijec-
tively to morphisms B′→X over B. This follows by applying the above argument
to X ×B B′, which is a proper model for X×k L over B′.

With this notation, we can define Weil functions in the function field case as
follows.

Definition 15.3. Let X be a complete variety over k, let D be a Cartier divisor on
X , and let π : X → B be a proper model for X . Assume that D extends to a Cartier
divisor on X , also denoted by D. Let L be a finite extension of k, let x ∈ X(L) be a
point not lying on SuppD, let i : B′→X be the corresponding morphism, as above,
and let w be a place of L, corresponding to a closed point b′ of B′. Then the image
of i is not contained in SuppD on X , so i∗D is a Cartier divisor on B′. Let nw be the
multiplicity of b′ in i∗D. We then define

λD,w(x) = nw[κ(b′) : F ] .

(One may be tempted to require the notation to indicate the choice of F , but this
is not necessary since the choice of F is encapsulated in the place w, which comes
with a norm ‖ · ‖w that depends on F .)

It is possible to show that this definition satisfies the conditions of Definition
8.6 (where now k is a function field). Consequently, Theorems 8.8 and 8.10 hold in
this context. Moreover, this definition is compatible with (8.12) (corresponding to
changing B′).

In the case of Theorem 8.8, though, a bit more is true: the Mk-constants are not
necessary when one works with Cartier divisors on the model. Indeed, if D is an
effective Cartier divisor on a model X of a k-variety X , then (in the notation of Def-
inition 15.3) i∗D is an effective divisor on B′, so nb ≥ 0 for all b, hence λD,w(x)≥ 0
for all w and all x /∈ SuppD. Similarly, suppose that D is a Cartier divisor on X ,
and that λD and λ ′D are two Weil functions obtained from extensions D and D′ of
D to models X and X ′, respectively, using Definition 15.3. We may reduce to the
situation where the two models are the same: let X ′′ be the closure of the graph of
the birational map between X and X ′, and pull back D and D′ to X ′′. But now
the difference D−D′ is a divisor on X which does not meet the generic fiber, so
it is supported only on a finite sum of closed fibers of π : X → B. Therefore the
Weil function associated to D−D′, and hence the difference between λD and λ ′D, is
bounded by an Mk-constant.
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Following Section 9, one can then define the height of points x /∈ SuppD, starting
from a model X for X over B and a Cartier divisor D on X : with notation as in
Definition 15.3, we have

hD,k(x) =
1

[L : k] ∑
w∈ML

λD,w(x)

=
1

[L : k] ∑
w∈ML

nw[κ(b′) : F ]

=
deg i∗D
[L : k]

(15.4)

by (15.1).
Therefore, heights can be expressed using intersection numbers. It is this obser-

vation that led to the development of Arakelov theory, which defines models over Ok
of varieties over number fields k, with additional information at archimedean places
which again allows heights to be described using suitable intersection numbers.

Returning to function fields, heights defined as in (15.4) are defined exactly
(given a model of the variety and an extension of the Cartier divisor to that model).
Except for Theorem 9.10 (Northcott’s theorem), all of the results of Section 9 ex-
tend to the case of heights defined as in (15.4). In particular, if L is a line sheaf on
a model X for X , then

(15.5) hL ,k(x) =
deg i∗L
[L : k]

.

Northcott’s theorem is false over function fields (unless F is finite). Instead, how-
ever, it is true that the set (9.10.1) is parametrized by a scheme of finite type over
F .

Models also provide a very geometric way of looking at integral points. For ex-
ample, consider the situation with rational points. Let S be a finite set of places of k;
this corresponds to a proper Zariski-closed subset of B, which we also denote by S.
Let X , π : X → B, x ∈ X(k), and i : B→X be as in Definition 15.3 (with L = k),
let D be an effective Cartier divisor on X , and let λD be the corresponding Weil
function as in Definition 15.3. Then, for any place v ∈ Mk, we have λD,v(x) > 0 if
and only if i(b) lies in the support of D, where b∈ B is the closed point associated to
v. Thus, a rational point satisfies the condition of Definition 12.3 with λD as above
and cv = 0 if and only if it corresponds to a section of the map π−1(B\S)→ B\S. A
similar situation holds with algebraic points, which then correspond to multisections
of π−1(B\S)→ B\S.

Conversely, given a set of integral points as in Definition 12.3, by performing
some blowings-up one can construct a model and an effective Cartier divisor on
that model for which each of the given integral points corresponds to a section (or
multisection) as above.

This formalism works also over number fields, without the need for Arakelov
theory.
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16 The Exceptional Set

The exceptional set mentioned in Conjectures 14.2b and 14.6b leads to interest-
ing questions of its own, even when working only with rational points (or integral
points) in the contexts of Propositions 14.3 or 14.9. This question has been explored
in more detail by S. Lang; this is the main topic of this section. For references, see
[Lang, 1986], [Lang, 1991, Ch. I § 3], and [Levin, 2009].

Definition 16.1. Let X be a complete variety over a field k.

(a). The exceptional set Exc(X) is the Zariski closure of the union of the images
of all nonconstant rational maps G 99K X , where G is a group variety over an
extension field of k.

(b). If k is a finitely generated extension field of Q, then the diophantine excep-
tional set Excdio(X) is the smallest Zariski-closed subset Z of X such that
(X \Z)(L) is finite for all fields L finitely generated over k.

(c). If k = C then the holomorphic exceptional set Exchol(X) is the Zariski clo-
sure of the union of the images of all nonconstant holomorphic curves C→X .

Each of these sets (when defined) may be empty, all of X , or something in
between. For each of these types of exceptional set, Lang has conjectured that
the exceptional set is a proper subset if the variety X is of general type (but not
conversely—see below). He also has conjectured that Excdio(X) = Exc(X) if k is
a finitely-generated extension of Q, and that Exchol(X) = Exc(X) if k = C. And,
finally, if k is finitely generated over Q, then he conjectured that

Excdio(X)×k C = Exchol(X×k C)

for all embeddings k ↪→ C.
The main example in which this conjecture is known is in the context of closed

subvarieties of abelian varieties [Kawamata, 1980]:

Theorem 16.2. (Kawamata Structure Theorem) Let X be a closed subvariety of
an abelian variety A over C. The Kawamata locus of X is the union Z(X) of all
translated abelian subvarieties of A contained in X. It is a Zariski-closed subset
of X, and is a proper subset if and only if X is not fibered by (nontrivial) abelian
subvarieties of A.

This theorem is also true for semiabelian varieties, and by induction on dimen-
sion it follows from [Noguchi, 1981] that the image of a nonconstant holomorphic
curve C→ X must be contained in Z(X). Similarly, if X is a closed subvariety of
a semiabelian variety A over a number field k, then any set of integral points on X
can contain only finitely many points outside of Z(X). It is also known that a closed
subvariety X of a semiabelian variety A is of log general type if and only if it is not
fibered by nontrivial semiabelian subvarieties of A. Thus, (restricting to A abelian)
Lang’s conjectures have been verified for closed subvarieties of abelian varieties.
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In a similar vein, the finite collections of proper linear subspaces of positive
dimension in Remark 7.14 are the same in Theorems 7.12 and 7.13.

In the context of integral points or holomorphic curves missing divisors, one can
also define the same three types of exceptional sets. The changes are obvious, except
possibly for Exc(X \D): In this case it should be the Zariski closure of the union of
the images of all non-constant strictly rational maps G 99K X \D, where G is a group
variety. A strictly rational map [Iitaka, 1982, §2.12] is a rational map X 99KY such
that the closure of the graph is proper over X . This variation has not been studied
much, though.

More conjectures relating the geometry of a variety and its diophantine prop-
erties are described by Campana [2004]. He further classifies varieties in terms of
fibrations. For example, let X = C×P1 where C is a smooth projective curve of
genus ≥ 2. This is an example of a variety which is not of general type, but for
which all of Lang’s exceptional sets are the entire variety. Yet, for any given number
field, X(k) is not Zariski dense, and there are no Zariski-dense holomorphic curves
in X . Campana’s framework singles out the projection X →C. This projection has
general type base, and fibers have Zariski-dense sets of rational points over a large
enough field (depending on the fiber).

For varieties of negative Kodaira dimension, the diophantine properties are stud-
ied in conjectures of Manin concerning the rate of growth of sets of rational points
of height≤ B, as B varies. This is a very active area of number theory, but is beyond
the scope of these notes.

17 Comparison of Problem Types

Before the analogy with Nevanlinna theory came on the scene, things were quite
simple: You tried to prove something over number fields, and if you got stuck you
tried function fields. If you succeeded over function fields, then you tried to trans-
late the proof over to the number field case. For example, the Mordell conjecture
was first proved for function fields by Manin, then Grauert modified his proof. But,
those proofs used the absolute tangent bundle, which has no known counterpart
over number fields. Ultimately, though, Faltings’ proof of the Mordell conjecture
did draw upon work over function fields, of Tate, Szpiro, and others.

The analogy with Nevanlinna theory gives a second way of working by analogy,
although it is more distant. Also, more recent work has placed more emphasis on
higher dimensional varieties, lending more importance to the exceptional set. Thus,
a particular diophantine problem leads one to a number of related problems which
may be easier and whose solutions may provide some insight into the original prob-
lem. These can be (approximately) linearly ordered, as follows. In each case, one
looks at a class of pairs (X ,D) consisting of a smooth complete variety X over the
appropriate field and a normal crossings divisor D on X . Each class has been split
into a qualitative part (A) and a quantitative part (B).

1A: Find the exceptional set Exc(X \D).
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B: For each ε > 0, find the exceptional subset Z in Conjectures 14.2 and 14.6.
This should be the Zariski closure of the union of all closed subvarieties
Y ⊆ X such that, after resolving singularities of Y and of D

∣∣
Y , the main in-

equality (14.2.2) or (14.6.2) on Y is weaker than that obtained by restricting
the same inequality on X .

2A: Prove that, given any smooth projective curve Y over a field of characteristic
zero, and any finite subset S⊆Y , the set of maps Y \S→ X \D whose image
is not contained in the exceptional set, is parametrized by a finite union of
varieties.

B: Prove Conjecture 14.6 in the split function field case of characteristic zero.
3A: Prove that all holomorphic curves C→ X \D must lie in the exceptional set.

B: Prove Conjecture 14.2 for holomorphic curves C→ X .
4A: In the (general) function field case of characteristic zero, prove that the set of

integral points on X \D outside of the exceptional set is finite.
B: Prove Conjecture 14.6 over function fields of characteristic zero.

5A: Prove over number fields that the set of integral points on X \D outside of
the exceptional set is finite.

B: Prove Conjecture 14.6 (in the number field case).

In the case of the Mordell conjecture, for example, X would lie in the class of
smooth projective curves of genus > 1 over the appropriate field, and D would be
zero.

As another example, see Corollary 28.9, in going from 2A or 2B to 3A or 3B.
In each of the above items except 1A and 1B, one might also consider algebraic

points of bounded degree (or holomorphic functions from a finite ramified covering
of C). See Sections 24 and 26.

18 Embeddings

A major goal of these lectures is to describe recent work on partial proofs of Conjec-
ture 14.6 (as well as Conjecture 14.2). One general approach is to use embeddings
into larger varieties to sharpen the inequalities. This can only work if the conjec-
ture is known on the larger variety, and if the exceptional set is also known. At the
present time, all work on this has used Schmidt’s Subspace Theorem (and Cartan’s
theorem).

This section will discuss some of the issues involved, before delving into some
of the specific methods in following sections.

We begin by considering the example where X = P2
k and D is a normal crossings

divisor of degree ≥ 4. Then X \D is of log general type, and therefore (if k is a
number field) integral sets of points on X \D cannot be Zariski dense, or (if k = C)
holomorphic curves C→ X \D cannot have Zariski-dense image. From now on we
will refer only to the number-theoretic case; the version in Nevanlinna theory is
similar.
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If D is a smooth divisor, then there is no clue on how to proceed. In the other
extreme, if D is a sum of at least four lines (in general position), then Schmidt’s
Theorem gives the answer; see Section 13.

If D is a sum of three lines and a conic, some results are known. For example, if
L1, L2, and L3 are linear forms defining the lines and Q is a homogeneous quadratic
polynomial defining the conic, then all L2

i /Q must be units (or nearly so) at integral
points. Since they are algebraically dependent, we can apply the unit theorem; see
[Green, 1975] and [Vojta, 1987, Cor. 2.4.3].

More recently, nontrivial approximation results have been obtained for conics
and higher-degree divisors in projective space by using r-uple embeddings.

For example, under the 2-uple embedding P2 ↪→ P5, the image of a conic is
contained in a hyperplane. Therefore Schmidt’s Subspace Theorem can be applied
to P5 to give an approximation result (provided there are sufficiently many other
components in the divisor). Under the 3-uple embedding P2 ↪→ P9, things are better:
the image of a conic spans a linear subspace of codimension 3, so there are 3 linearly
independent hyperplanes containing it.

More generally, suppose D is a divisor of degree d in Pn. We consider its image
under the r-uple embedding Pn ↪→ P(r+n

n )−1. This image spans a linear subspace of
codimension

(r+n−d
n

)
, because there are that many monomials of degree r− d in

n+1 variables (they then get multiplied by the form defining D to get homogeneous
polynomials of degree r in the homogeneous coordinate variables in Pn, hence hy-
perplanes in the image space).

Applying Schmidt’s Subspace Theorem to P(r+n
n )−1 would would then give an

inequality of the form(
r +n−d

n

)
m(D,x)+ · · · ≤

((
r +n

n

)
· r + ε

)
hk(x)+O(1)

for x ∈ Pn(k) outside of a finite union of proper subvarieties of degree ≤ r. The idea
is to take r large. As r→∞, the ratio of the coefficients in the above inequality tends
to 0, because

(18.1)

(r+n−d
n

)(r+n
n

)
· r

=
(r−d +n) · · ·(r−d +1)

(r +n) · · ·(r +1)r
=

rn +O(rn−1)
r(rn +O(rn−1))

→ 1
r
→ 0 .

This is not useful, but we can try harder. Some hyperplanes in the image space can
be made to contain D twice, or three times, etc. After taking this into account, the
inequality improves to((

r +n−d
n

)
+
(

r +n−2d
n

)
+ . . .

)
m(D,x)+ . . .

≤
((

r +n
n

)
· r + ε

)
hk(x)+O(1) .

To estimate the factor in front of m(D,x), we have



170 Paul Vojta(
r− kd +n

n

)
=

(r− kd +n) · · ·(r− kd +1)
n!

=
(r− kd)n +On((r− kd)n−1)

n!

and therefore the coefficient in front of the proximity term is

[r/d]

∑
k=1

(
r− kd +n

n

)
=

(r−d)n + · · ·+(r− [r/d]d)n +On,d(rn)
n!

.

As r→ ∞, the ratio of this coefficient to the one in front of the height term now
converges to

(18.2)
∑

[r/d]
k=1

(r−kd+n
n

)
r
(r+n

n

) ≈
rn+1

(n+1)d·n!
rn+1

n!

→ 1
(n+1)d

.

This indeed gives a nontrivial inequality

(18.3)
1
d

mS(D,x)+ · · · ≤ (n+1+ ε)hk(x)+O(1) .

If d = 1 then this is best possible (but of course is not new, since then D is already a
hyperplane in Pn). If d > 1 then it is less than ideal, but is still new and noteworthy.

If D is the only component in the divisor, then (18.3) will never lead to a use-
ful inequality, however, since the left-hand side is always bounded by hk(x). This
approach only works if the divisor in question has more than one irreducible com-
ponent. Having more than one component in the divisor, however, introduces some
additional complications.

Suppose, for example, that there are two divisor components D1 and D2, and
their images under the r-uple embedding span linear subspaces L1 and L2 of codi-
mensions ρ1 and ρ2, respectively. We have

(18.4) codim(L1∩L2)≤ ρ1 +ρ2

(assuming L1∩L2 6= /0). If this inequality is strict then this causes problems. Indeed,
let y denote the image of x under the d-uple embedding. If y is close to L1 at some
place v ∈ S, and also close to L2 at that same place, then it is necessarily close to
L1 ∩L2. If L1 ∩L2 is too large, though, then we will not be able to choose enough
hyperplanes containing it to fully utilize both m(D1,x) and m(D2,x).

Indeed, choose ρ1 generic hyperplanes containing L1 and ρ2 generic hyperplanes
containing L2. If these ρ1 +ρ2 hyperplanes are in general position then this implies

codim(L1∩L2)≥ ρ1 +ρ2 .

So if this inequality does not hold, then the ρ1 +ρ2 hyperplanes cannot (collectively)
be in general position, and the max on the left-hand side of (7.12.1) will not be as
large as one would hope.
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So, in order to apply the reasoning leading up to (18.3) independently for each
irreducible component of the divisor, equality must hold in (18.4) for each pair of
components. (Similar considerations also apply to triples of components, etc.)

However, the standard computation of Hilbert functions using short exact se-
quences gives (for sufficiently large n) that the codimension of the linear span of
D1∩D2 is (

n−d1 + r
n

)
+
(

n−d2 + r
n

)
−
(

n−d1−d2 + r
n

)
.

This is too small by
(n−d1−d2+r

n

)
. So, any use of this approach would have to take

this into account, and would also have to incorporate the changes made in going
from (18.1) to (18.2).

As noted earlier, the purpose of this section is not to actually prove anything, but
merely to highlight the general idea, together with some of the stumbling blocks.

19 Schmidt’s Subspace Theorem implies Siegel’s Theorem

One way to avoid the difficulties mentioned in the last section is to restrict to curves,
since in that case irreducible divisors are just points, so they do not intersect. Of
course, using Schmidt’s theorem to imply Roth’s theorem would not be interest-
ing, since the latter is already a special case. However, if one restricts to a curve
contained in projective space, then one can get a nontrivial result by applying the
methods of Section 18. This was done by Corvaja and Zannier [2002], and gave a
new proof of Siegel’s theorem.

Theorem 19.1. (Siegel) Let C be a smooth affine curve over a number field k. As-
sume that C has at least 3 points at infinity (i.e., at least three points need to be
added to obtain a nonsingular projective curve). Then all sets of integral points on
C are finite.

Proof. By expanding k, if necessary, we may assume that the points at infinity are
k-rational. Let C be the nonsingular projective closure of C, let g be its genus, let
Q1, . . . ,Qr be the points at infinity, and let D be the divisor Q1 + · · ·+ Qr. Pick
N large, and embed C into PM−1 by the complete linear system |ND|; we have
M = Nr+1−g. Assume that {P1,P2, . . .} is an infinite S-integral set of points on C,
for some finite set S ⊇ S∞ of places of k. After passing to an infinite subsequence,
we may assume that for each v ∈ S there is an index j(v) ∈ {1, . . . ,r} such that each
Pi is at least as close to Q j(v) as to any other Q j in the v-adic topology.

For all ` ∈ N, we have h0(C,O(ND− `Q j))≥ Nr− `+1−g, so we can choose
Nr− `+ 1−g linearly independent hyperplanes in PM−1 vanishing to order ≥ ` at
Q j. For each v ∈ S, do this with j = j(v), obtaining one hyperplane vanishing to
order Nr−g, a second vanishing to order Nr−g−1, etc. Obtaining M hyperplanes
in this way for each v, and applying Schmidt’s Subspace Theorem, we obtain
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(19.1.1) ∑
v∈S

Nr−g

∑
`=0

`λQ j(v),v(Pi)≤ (M + ε)hk(Pi)+O(1)

outside of a finite union of proper linear subspaces of PM−1. Here the height hk(Pi)
is taken in PM−1. The finitely many linear subspaces correspond to only finitely
many points on C, and they can be removed from the set of integral points.

By the assumption on the distance from Pi to Q j(v) (and the fact that the points
Q j are separated by a distance independent of i), we have λQ j ,v(Pi) = O(1) for all
j 6= j(v) and all v ∈ S. Therefore

λQ j(v),v(Pi) = λD,v(Pi)+O(1)

for all v ∈ S, with the constant independent of i. Also, since the embedding in PM−1

is obtained from the complete linear system |ND|, we have hk(Pi)= hND,k(Pi)+O(1).
Therefore (19.1.1) becomes

(Nr−g)(Nr−g+1)
2

mS(D,Pi)≤ N(Nr−g+1+ ε)hD,k(Pi)+O(1) .

Since the Pi are integral points, though, we have mS(D,Pi) = hD,k(Pi)+ O(1), and
the inequality becomes(

(Nr−g)(Nr−g+1)
2

−N(Nr−g+1)−Nε

)
hD,k(Pi)≤ O(1) .

If N is large and ε is small, then the quantity in parentheses is negative (since r≥ 2),
leading to a contradiction since D is ample. ut

Of course, if g≥ 1 then Siegel only required r > 0. This can be proved by reduc-
ing to the above case. Indeed, embed C in its Jacobian and pull back by multiplica-
tion by 2. This gives an étale cover of C of degree at least 4, so the pull-back of D
will have at least three points. Integral points on C will pull back to integral points
on the pull-back of C in the étale cover, by the Chevalley-Weil theorem for integral
points (see the end of Section 12).

20 The Corvaja-Zannier Method in Higher Dimensions

Corvaja and Zannier further developed their method to higher dimensions; see for
example [Corvaja and Zannier, 2004]. It did not provide the full strength of Conjec-
ture 14.6, even when X = Pn, but it did provide noteworthy new answers. The key
to their method can be summarized in the following definition, which is due to A.
Levin [2009].

Definition 20.1. Let X be a nonsingular complete variety over a field. A divisor D
on X is very large if D is effective and, for all P∈ X , there is a basis B of L(D) such
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that

(20.1.1) ∑
f∈B

ordE f > 0

for all irreducible components E of D passing through P. A divisor D is large if it
is effective and has the same support as some very large divisor.

In the following discussion, it will be useful to have the following functoriality
property of large divisors.

Proposition 20.2. Let X ′ and X be nonsingular complete varieties over fields L and
k, respectively, with L ⊇ k, and let φ : X ′→ X be a morphism of schemes such that
the diagram

X ′
φ−−−−→ Xy y

SpecL −−−−→ Speck

commutes. Let D be a very large divisor on X, and let D′ = φ ∗D be the correspond-
ing divisor on X ′. Assume that the natural map

(20.2.1) α : H0(X ,O(D))⊗k L→ H0(X ′,O(D′))

is an isomorphism. Then D′ is very large.

Proof. Let P′ be a point on X ′, and let B be a basis for L(D) that satisfies (20.1.1)
for D at φ(P′) ∈ X . We have a commutative diagram

L(D)⊗k L
(·1D)⊗kL−−−−−→ H0(X ,O(D))⊗k Lyβ

yα

L(D′)
·1D′−−−−→ H0(X ′,O(D′))

in which β is an isomorphism because the other three arrows are isomorphisms.
Therefore we let B′ = {β ( f ⊗1) : f ∈ B}; it is a basis of L(D′).

Now let E ′ be an irreducible component of D′ passing through P′. For each irre-
ducible component E of D passing through φ(P′), let nE be the multiplicity of E ′ in
φ ∗E. For all nonzero f ∈ L(D), we have

(20.2.2) ordE ′ β ( f ⊗1)≥∑
E

nE ordE f ,

where the sum is over all irreducible components E of D passing through φ(P′)
(and in particular it includes all irreducible components of D containing φ(E ′)).
Indeed, to verify (20.2.2), note that if s is a nonzero element of H0(X ,O(D)), then
ordE ′ α(s⊗1)≥∑E nE ordE s, with equality if (s) = D. (Strictness may arise if E ′ is
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exceptional for φ and s vanishes along prime divisors containing φ(E ′) that do not
occur in D.)

By (20.2.2), we then have

∑
f ′∈B′

ordE ′ f ′ ≥∑
E

nE ∑
f∈B

ordE f > 0

(since at least one nE is strictly positive). Thus B′ satisfies (20.1.1) for E ′. ut

Corollary 20.3. Let X be a nonsingular complete variety over a field k, let D be a di-
visor on X, let L be a field containing k, let XL = X×k L with projection φ : XL→ X,
and let DL = φ ∗D. If D is large (resp. very large), then so is DL.

Proof. Indeed, we may assume that D is very large, and note that (20.2.1) is an
isomorphism because L is flat over k [Hartshorne, 1977, III Prop. 9.3]. ut

Corollary 20.4. Let φ : X ′ → X be a proper birational morphism2 of nonsingular
complete varieties over a field, and let D be a divisor on X. If D is large (resp. very
large), then φ ∗D is a large (resp. very large) divisor on X ′.

Proof. Again, we may assume that D is very large. In this case (20.2.1) is an iso-
morphism because φ∗OX ′ = OX ; see [Hartshorne, 1977, proof of III Cor. 11.4 and
III Remark 8.8.1]. ut

Remark 20.5. More generally, for a linear subspace V of L(D), one may define V -
very large. For this definition, Proposition 20.2 holds with the weaker assumption
that (20.2.1) is injective.

We also note that the definition of largeness is (vacuously) true for D = 0.
Having discussed the definition of large divisor, the theorem that makes the defi-

nition useful is the following.

Theorem 20.6. (Corvaja-Zannier) Let k be a number field, let S⊇ S∞ be a finite set
of places of k, let X be a nonsingular complete variety over k, and let D be a nonzero
large divisor on X. Then any set of (D,S)-integral points on X is not Zariski-dense.

Proof. By Proposition 12.4, we may assume that D is very large.
Since D 6= 0, there is a component E as in the definition of very large, so `(D) > 1.

Therefore there is a nontrivial rational map Φ : X 99K P`(D)−1
k .

We may assume that Φ is a morphism. Indeed, let X ′ be a desingularization of
the closure of the graph of Φ . Replace X with X ′ and D with its pull-back. By
Corollary 20.4 the pull-back remains very large. Moreover, the notion of integral set
of points remains unchanged, by functoriality of Weil functions (or by the fact that
the desingularization may be chosen such that the map X ′→ X is an isomorphism
away from the support of D).

Now suppose that there is a Zariski-dense set {Pi} of integral points. After pass-
ing to a Zariski-dense subset, we may assume that for each v ∈ S there is a point

2 This requires φ to be a morphism, not just a rational map
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Pv ∈ X(kv) such that the Pi converge to Pv in the v-topology. For each such v, let
Bv = { fv,1, . . . , fv,`(D)} be a basis for L(D) that satisfies (20.1.1) at the point Pv. Let

Hv,1, . . . ,Hv,`(D) be the corresponding hyperplanes in P`(D)−1
k . (Corollary 20.3 is not

really needed here, but can be used if the reader prefers. When finding Pv, one should
think of Pv and the Pi as points on the (complex, real, or p-adic) manifold X(kv), and
when defining Bv one should realize that Pv is a morphism from Speckv to X , whose
image is a point in X (which may be the generic point).)

To obtain a contradiction, it will suffice to find an ε > 0 such that

(20.6.1) ∑
v∈S

`(D)

∑
j=1

λHv, j ,v(Φ(Pi))≥ (`(D)+ ε)hk(Φ(Pi))+O(1)

for all i. Indeed, Schmidt’s Subspace Theorem would then imply that the Φ(Pi) are
contained in a finite union of proper linear subspaces of P`(D)−1

k , contradicting the
fact that the Pi are Zariski-dense in X and that Φ(X) is not contained in any proper
linear subspace of P`(D)−1

k .
Let µ be the largest multiplicity of a component of D, and let ε = 1/µ , so that

ε ordE D≤ 1 for all irreducible components E of D.
Let v ∈ S, and let E be an irreducible component of D. First suppose that E

contains Pv. Then ∑ordE Φ∗Hv, j > `(D)ordE D (by (20.1.1)), so

`(D)

∑
j=1

ordE Φ
∗Hv, j ≥ `(D)ordE D+1≥ (`(D)+ ε)ordE D

and therefore

`(D)

∑
j=1

(ordE Φ
∗Hv, j)λE,v(Pi)≥ (`(D)+ ε)(ordE D)λE,v(Pi)+O(1)

since λE,v(Pi) ≥ O(1). This latter inequality also holds if E does not contain Pv,
since in that case λE,v(Pi) = O(1). Therefore, we have

`(D)

∑
j=1

λHv, j ,v(Φ(Pi))≥
`(D)

∑
j=1

∑
E

(ordE Φ
∗Hv, j)λE,v(Pi)+O(1)

≥ (`(D)+ ε)∑
E

(ordE D)λE,v(Pi)+O(1)

= (`(D)+ ε)λD,v(Pi)+O(1) ,

where the sums over E are sums over all irreducible components E of D.
Summing over v ∈ S then gives

∑
v∈S

`(D)

∑
j=1

λHv, j ,v(Φ(Pi))≥ (`(D)+ ε)mS(D,Pi)+O(1) = (`(D)+ ε)hD,k(Pi)+O(1)
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since the Pi are (D,S)-integral. This is equivalent to (20.6.1) by functoriality of
heights. ut

This proof does not carry over directly to Nevanlinna theory, because it relies on
the finiteness of S; moreover, the whole idea of passing to a subsequence is unsuited
to Nevanlinna theory. In fact, the proof does not even work for function fields over
infinite fields, since in such cases the local fields are not locally compact.

The following lemma, essentially due to A. Levin [2009], works around this
problem. The key idea is that it suffices to use only finitely many bases in Definition
20.1.

Lemma 20.7. Let X be a nonsingular complete variety over C, and let D be an
effective divisor on X. Let σ0 be the set of prime divisors occurring in D, and let Σ

be the set of subsets σ of σ0 for which
⋂

E∈σ E is nonempty. For each σ ∈ Σ let Dσ

be the sum of those components of D not lying in σ , with the same multiplicities as
they have in D. Pick a Weil function for each such Dσ . Then there is a constant C,
depending only on X and D, such that

(20.7.1) min
σ∈Σ

λDσ
(P)≤C

for all P ∈ X(C).

Proof. The conditions imply that⋂
σ∈Σ

SuppDσ = /0 ,

since for all P ∈ X the set σ := {E ∈ σ0 : E 3 P} is an element of Σ , and then
P /∈ SuppDσ . The lemma then follows from Lemma 8.9, since Σ is a finite set. ut

Lemma 20.8. Let X be a nonsingular complete variety over C, let D be a very large
divisor on X whose complete linear system is base-point free, and let Φ : X→P`(D)−1

be a corresponding morphism to projective space. Then there is a finite collection
H1, . . . ,Hq of hyperplanes and ε > 0 such that, given choices λH1 , . . . ,λHq and λD

of Weil functions on P`(D)−1 and X, respectively, we have

(20.8.1) max
J

∑
j∈J

λH j(Φ(P))≥ (`(D)+ ε)λD(P)+O(1) ,

where the implicit constant in O(1) is independent of P∈X(C). Here, as in Theorem
7.13, J varies over all subsets of {1, . . . ,q} corresponding to subsets of {H1, . . . ,Hq}
that lie in general position.

Proof. Let Σ be the (finite) set of Lemma 20.7, and for each σ ∈ Σ let Bσ be a
basis for L(D) that satisfies (20.1.1) at some (and hence all) points P ∈

⋂
E∈σ E. Let

H1, . . . ,Hq be the distinct hyperplanes in P`(D)−1 corresponding to elements of the
union

⋃
σ∈Σ Bσ , and choose Weil functions λH j for them. For each σ ∈ Σ let Dσ

be as in Lemma 20.7, and choose a Weil function λDσ
for it. Let C be a constant
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that satisfies (20.7.1). Finally, choose Weil functions λE for each prime divisor E
occurring in D.

Let µ be the largest multiplicity of a component of D, and let ε = 1/µ .
Now let P ∈ X(C). Pick σ ∈ Σ for which

(20.8.2) λDσ
≤C ,

and let J ⊆ {1, . . . ,q} be the subset for which {H j : j ∈ J} are the hyperplanes
corresponding to the elements of Bσ . As before, (20.1.1) applied to Bσ implies that
∑ j∈J ordE Φ∗H j > `(D)ordE D for all E ∈ σ ; hence

∑
j∈J

ordE Φ
∗H j ≥ (`(D)+ ε)ordE D ,

and therefore

(20.8.3) ∑
j∈J

(ordE Φ
∗H j)λE(P)≥ (`(D)+ ε)(ordE D)λE(P)+O(1)

since λE(P)≥ O(1). Also

(20.8.4) D = Dσ + ∑
E∈σ

(ordE D) ·E .

By (20.8.3), (20.8.2), and (20.8.4), we then have

∑
j∈J

λH j(Φ(P))≥∑
j∈J

∑
E∈σ

(ordE Φ
∗H j)λE(P)+O(1)

≥ (`(D)+ ε)(λDσ
(P)−C)+(`(D)+ ε) ∑

E∈σ

(ordE D)λE(P)+O(1)

= (`(D)+ ε)λD(P)+O(1) .

In the above, the constants in O(1) depend only on the choices of Bσ and the choices
of Weil functions, and on σ (which has only finitely many choices). Since J is one
of the sets in (20.8.1), the lemma then follows. ut

This then leads to the theorem in Nevanlinna theory corresponding to Theorem
20.6:

Theorem 20.9. [Levin, 2009] Let X be a nonsingular complete variety over C, let
D be a nonzero large divisor on X, and let f : C→ X be a holomorphic curve whose
image is disjoint from D. Then the image of f is not Zariski dense.

Proof. As in the proof of Theorem 20.6, we may assume that D is very large and
base point free. Let Φ : X → P`(D)−1

C be a morphism corresponding to a complete
linear system of D. Let f : C→ X be a holomorphic curve whose image does not
meet D. Let H1, . . . ,Hq and ε be as in Lemma 20.8. By that lemma, we then have
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0
max

J
∑
j∈J

λH j(Φ( f (reiθ )))
dθ

2π
≥ (`(D)+ ε)m f (D,r)+O(1)

= (`(D)+ ε)TΦ◦ f (r)+O(1)

for all r > 0. This contradicts Theorem 7.13 unless the image of Φ ◦ f is contained
in a proper linear subspace of P`(D)−1

C (since `(D) > 1). This in turn implies that the
image of f cannot be Zariski dense. ut

This proof can also be adapted back to the number field case, and it also works
over function fields.

Some concrete examples of large divisors follow. First, in order to show that
Theorem 19.1 is a consequence of Theorem 20.6, we have the following.

Proposition 20.10. Let C be a smooth projective curve over a field k, and let D be
an effective divisor supported on (distinct) rational points Q1, . . . ,Qr. If r = 0 or
r ≥ 3 then D is large.

Proof. If r = 0 then D = 0, which is already known to be large.
Assume r ≥ 3. It will suffice to show that if D = N(Q1 + · · ·+Qr) then D is very

large for sufficiently large integers N. As in the proof of Theorem 19.1, we have
h0(C,O(D− `Q j)) ≥ Nr− ` + 1− g for all ` ∈ N and all j = 1, . . . ,r, where g is
the genus of C. For each such j there is a basis (s1, . . . ,sNr+1−g) of H0(C,O(D))
such that s` vanishes to order ≥ `−1 at Q j. Dividing each such s` by the canonical
section 1D then gives a basis ( f1, . . . , fNr+1−g) of L(D) such that ordQ j f`≥ `−1−N
for all `. Thus

Nr+1−g

∑
`=1

ordQ j f` ≥ (Nr +1−g)
(

Nr−g
2
−N

)
if N > (g−1)/r, and is strictly positive if also N > g/(r−2). ut

Proposition 20.11. Let X1 and X2 be smooth complete varieties over a field k, and
let D1 and D2 be divisors on X1 and X2, respectively. If D1 and D2 are large (resp.
very large), then p∗1D1 + p∗2D2 is a large (resp. very large) divisor on X1 ×k X2,
where pi : X1×k X2→ Xi is the projection (i = 1,2).

Proof. It will suffice to show that if D1 and D2 are very large, then so is p∗1D1 + p∗2D2.
Write D = p∗1D1 + p∗2D2.

We first claim that the natural map

(20.11.1) H0(X1,O(D1))⊗k H0(X2,O(D2))−→ H0(X1×k X2,O(D))

is an isomorphism. Indeed, the projection formula [Hartshorne, 1977, II Ex. 5.1d]
gives an isomorphism

O(D1)⊗k H0(X2,O(D2))
∼−→ (p1)∗O(p∗1D1 + p∗2D2) ,

of sheaves on X1, and taking global sections gives (20.11.1).
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To show that D is very large, let P ∈ X1×k X2. Let B1 and B2 be bases of L(D1)
and L(D2) satisfying (20.1.1) with respect to the points p1(P) and p2(P), respec-
tively. By (20.11.1), {p∗1 f1 · p∗2 f2 : f1 ∈ B1, f2 ∈ B2} is a basis for L(D); call it B.
Let E be an irreducible component of D passing through P. If E = p∗1E1 for a com-
ponent E1 of D1, then

∑
h∈B

ordE h = `(D2) ∑
f∈B1

ordE1 f > 0 ,

so (20.1.1) is satisfied for E. Otherwise, we must have E = p∗2E2 for an irreducible
component E2 of D2, and (20.1.1) is satisfied for a symmetrical reason. Thus D is
very large. ut

The following gives a slightly more complicated example of large divisors. For
this example, recall that a Cartier divisor D on a complete variety X over a field k is
nef (“numerically effective”) if deg j∗O(D)≥ 0 for all maps j : C→ X from a curve
C over k to X .

Theorem 20.12. [Levin, 2009, Thm. 9.2] Let X be a nonsingular projective variety
of dimension q, and let D = ∑Di be a divisor on X for which all Di are effective
and nef. Assume also that all irreducible components of D are nonsingular, and that
Dq > 2qDq−1DP for all P ∈ SuppD, where DP = ∑{i:Di3P}Di. Then D is large.

For the proof, see [Levin, 2009]. Note that this generalizes Proposition 20.10.
As another example of this method, we note another theorem of Levin.

Definition 20.13. A variety V over a number field k is Mordellic if for all number
fields L ⊇ k and all finite sets S ⊇ S∞ of places of L, there are no infinite sets of
S-integral L-rational points on VL := V ×k L. A variety V over k is quasi-Mordellic
if there is a proper Zariski-closed subset Z of V such that, for all L and S as above,
and for all S-integral sets of L-rational points on VL, almost all points in the set are
contained in ZL.

Theorem 20.14. [Levin, 2009, Thm. 9.11A] Let X be a projective variety over a
number field k. Let D = ∑

r
i=1 Di be a divisor on X such that each Di is an effective

Cartier divisor, and the intersection of any m+1 of the supports of the Di is empty.
Then:

(a). If Di is big for all i and r > 2mdimX then X \D is quasi-Mordellic.
(b). If Di is ample for all i and r > 2mdimX then X \D is Mordellic.

The proof of this theorem, as well as its counterpart in Nevanlinna theory, appear
in [Levin, 2009].

Again, we note that if X is a nonsingular curve, then this reduces to the combi-
nation of Theorem 20.6 and Proposition 20.10.
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21 Work of Evertse and Ferretti

Evertse and Ferretti also found a way of using Schmidt’s Subspace Theorem in
combination with d-uple embeddings to get partial results on more general vari-
eties, with respect to more general divisors. Their method is based on using Mum-
ford’s degree of contact, which was originally developed to study moduli spaces,
but which is also well suited for this application. It uses a bit more machinery than
the method of Corvaja and Zannier, and this machinery makes direct comparisons
more difficult.

Because of the machinery, we offer here only a sketch of the methods, without
proofs.

The idea originated from a paper of Ferretti [2000], and was further developed
jointly with Evertse; see for example [Evertse and Ferretti, 2008]. This work was
translated into Nevanlinna theory by Ru [2009], solving a conjecture of Shiffman.

Throughout this section, k is a field of characteristic 0 and X ⊆ PN
k is a pro-

jective variety over k of dimension n and degree ∆ .

Definition 21.1. The Chow form of X is the unique (up to scalar multiple) polyno-
mial

FX ∈ k[u0, . . . ,un] = k[u00, . . . ,u0N ,u10, . . . ,unN ] ,

homogeneous of degree ∆ in each block ui, characterized by the condition

FX (u0, . . . ,un) = 0 ⇐⇒ X ∩Hu0 ∩·· ·∩Hun 6= /0 ,

where Hui is the hyperplane in PN
k corresponding to ui ∈ (PN

k )∗.

For more details on Chow forms, see Hodge and Pedoe [1952, Vol. II, Ch. X,
§§ 6–8].

Definition 21.2. Let c = (c0, . . . ,cN) ∈RN+1 and let FX be as above. For an indeter-
minate t, write

FX (tc0u00, . . . , tcN u0N , . . . , tcN unN) = te0G0(u0, . . . ,un)+ · · ·+ ter Gr(u0, . . . ,un) ,

where G0, . . . ,Gr are nonzero polynomials in k[u00, . . . ,unN ] and e0 > · · ·> er. Then
the Chow weight of X with respect to c is eX (c) = e0.

If I is the (prime) homogeneous ideal in k[x0, . . . ,xN ] corresponding to X ⊆ PN
k ,

then recall that the Hilbert function HX (m) for m ∈ N is defined by

HX (m) = dimk k[x0, . . . ,xN ]m/Im ,

where the subscript m denotes the homogeneous part of degree m. Recall also that
the Hilbert polynomial of X (which agrees with the Hilbert function for m� 0) has
leading term ∆mn/n!.
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Definition 21.3. Let I be as above, and let c ∈ RN+1. The the Hilbert weight of X
with respect to c is

SX (m,c) = max

(
HX (m)

∑
`=1

a` · c

)
,

where the max is taken over all collections (a1, . . . ,aHX (m)) with a` ∈NN+1 for all `,
whose corresponding monomials xa1 , . . . ,xaHX (m) give a basis (over k) when mapped
to k[x0, . . . ,xN ]m/Im. (Here xa` denotes xa`0

0 · · ·x
a`N
N , and the conditions necessarily

imply that a`0 + · · ·+a`N = m for all `.)

Mumford showed that

SX (m,c) = eX (c) · mn+1

(n+1)!
+O(mn) ,

and Evertse and Ferretti showed further that if m > ∆ then

(21.4)
SX (m,c)
HX (m)

≥ m
(n+1)∆

eX (c)− (2n+1)∆ max
0≤ j≤N

c j

[Evertse and Ferretti, 2008, Prop. 3.2]. (To compare these two inequalities, note that
HX (m)∼ ∆mn/n!.)

In diophantine applications, k is a number field and S ⊇ S∞ is a finite set of
places of k. The following is a slight simplification of the main theorem of Evertse
and Ferretti [2008].

Theorem 21.5. Assume that n = dimX > 0. For each v ∈ S let D(v)
0 , . . . ,D(v)

n be a
system of effective divisors on PN

k satisfying

X ∩
n⋂

j=0

SuppD(v)
j = /0 .

Then for all ε with 0 < ε ≤ 1, there are hypersurfaces G1, . . . ,Gu in PN , not con-
taining X and of degree

(21.5.1) degGi ≤ 2(n+1)(2n+1)(n+2)∆dn+1
ε
−1 ,

where d is the least common multiple of the degrees of the D(v)
j , such that all solu-

tions x ∈ X(k) of the inequality

(21.5.2) ∑
v∈S

n

∑
j=0

λ
D(v)

j ,v
(x)

degD(v)
j

≥ (n+1+ ε)hk(x)+O(1)

lie in the union of the Gi. In particular, these solutions are not Zariski-dense.

(Evertse and Ferretti also prove a more quantitative version of this theorem,
which gives explicit bounds on u, if one ignores solutions of (21.5.2) of height be-
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low a given explicit bound. They obtain a weaker bound than (21.5.1), because of
this added strength.)

Note that this result is weaker than Conjecture 14.6, since the latter conjecture
does not divide the Weil functions by the degrees of the divisors. It is also stronger,
though, in the sense that the sum of the divisors does not have to have normal cross-
ings.

Here we will restate this theorem in a way that translates more readily into
Nevanlinna theory. The proof will roughly follow Evertse and Ferretti [2008], with
substantial simplifications since we are not bounding u. In particular, the “twisted
heights” (which are related to the first successive minima in Schmidt’s original
proof) are not needed here. Because of these simplifications, it may be easier to
follow Ru [2009], even though he is working in Nevanlinna theory.

Theorem 21.6. Assume that n = dimX > 0. Let D0, . . . ,Dq be effective divisors on
PN

k , whose supports do not contain X. Let J be the set of all (n+1)-element subsets
J of {0, . . . ,q} for which

(21.6.1) X ∩
⋂
j∈J

SuppD j = /0 ,

and assume that J is not empty. Then for all ε with 0 < ε ≤ 1, all constants C ∈R,
and all choices of Weil functions λD j ,v, there are hypersurfaces G1, . . . ,Gu, as before,
such that all solutions x ∈ X(k) of the inequality

(21.6.2) ∑
v∈S

max
J∈J

∑
j∈J

λD j ,v(x)
degD j

≥ (n+1+ ε)hk(x)+C

lie in the union of the Gi.

Proof (sketch). First, by replacing each D j with a suitable positive integer multiple,
we may assume that all of the D j have the same degree d.

Next, we reduce to d = 1, as follows. Let φ : PN
k → PM

k be the d-uple embedding,
where M =

(N+d
N

)
−1, and let Y = φ(X). Then Y has dimension n, degree ∆dn, and

φ multiplies the projective height by d. Moreover, there are hyperplanes E0, . . . ,Eq
on PM

k such that φ ∗E j = D j for all j. Thus if y = φ(x) then (21.6.2) is equivalent to

(21.6.3) ∑
v∈S

max
J

∑
j∈J

λE j ,v(y)≥ (n+1+ ε)hk(y)+C′

for a suitable constant C′ independent of x. Applying Theorem 21.6 with d = 1 to
Y and E0, . . . ,Eq then gives hypersurfaces G′1, . . . ,G

′
u in PM

k , of degrees bounded
by (8n+6)(n+2)2∆dnε−1, not containing Y , but containing all solutions y ∈ Y (k)
of the inequality (21.6.3). Pulling these hypersurfaces back to PN

k multiplies their
degrees by d, so these pull-backs satisfy (21.6.3).

By a further linear embedding of PN
k , we may assume that D0, . . . ,Dq are the

coordinate hyperplanes x0 = 0, . . . ,xq = 0, respectively. We may also assume that
all of the Weil functions occurring in (21.6.2) are nonnegative.
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Now assume, by way of contradiction, that the set of solutions of (21.6.2) is not
contained in a finite union of hypersurfaces Gi satisfying (21.5.1). By a partitioning
argument [Evertse and Ferretti, 2008, Lemma 5.3] there is a subset Σ of X(k), not
contained in a finite union of hypersurfaces Gi as before, (n+1)-element subsets Jv
of {0, . . . ,q} satisfying (21.6.1) for each v ∈ S, and nonnegative real constants c j,v
for all v ∈ S and all j ∈ Jv, such that

(21.6.4) ∑
v∈S

∑
j∈Jv

c j,v = 1

and such that the inequality

(21.6.5) λD j ,v(x)≥ c j,v

(
n+1+

ε

2

)
hk(x)

holds for all v ∈ S, all j ∈ Jv, and all x ∈ Σ . Also let c j,v = 0 if v ∈ S and j /∈ Jv, so
that (21.6.5) holds for all v ∈ S and all j = 0, . . . ,q.

Now for some m > ∆ (its exact value is given by (21.6.15)), let

φm : PN
k → PRm

k

be the m-uple embedding; here Rm =
(N+m

m

)
− 1. Let Xm be the linear subspace of

PRm
k spanned by φm(X). We have

dimXm = HX (m)−1 .

For each v ∈ S let

cv = (c0,v, . . . ,cq,v,0, . . . ,0) ∈ RN+1
≥0 ,

and let a1,v, . . . ,aHX (m),v be the elements of NN+1 for which the monomials xa`,v ,
` = 1, . . . ,HX (m), give a basis for k[x0, . . . ,xN ]m/Im satisfying

(21.6.6) SX (m,cv) =
HX (m)

∑
`=1

a`,v · cv .

For each v the monomials xa`,v , ` = 1, . . . ,HX (m), define linear forms L`,v in the
homogeneous coordinates on PRm

k which are linearly independent on φm(X), and
therefore on Xm. For each v and ` choose Weil functions λL`,v on PRm

k . We have

λL`,v,v(φm(x))≥
q

∑
j=0

a`,v, jλD j ,v(x)+O(1)

for all v and `. After adjusting the Weil function, we may assume that the O(1) term
is not necessary.

By (21.6.5) and (21.6.6), we then have
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(21.6.7)
HX (m)

∑
`=1

λL`,v,v(φm(x))≥ SX (m,cv)
(

n+1+
ε

2

)
hk(x)

for all x ∈ Σ and all v ∈ S. Assume for now that there is an integer m≥ ∆ such that

(21.6.8) m≤ 2(n+1)(2n+1)(n+2)∆
ε

and such that

(21.6.9)
(

n+1+
ε

2

)
∑
v∈S

SX (m,cv) > mHX (m) .

Then, for sufficiently small ε ′ > 0, (21.6.7) will imply

(21.6.10) ∑
v∈S

HX (m)

∑
`=1

λL`,v,v(φm(x))≥ (Hm(x)+ ε
′)mhk(x)+O(1)

for all x ∈ Σ . Note that hk(φm(x)) = mhk(x)+ O(1). Applying Schmidt’s Subspace
Theorem to Xm (via some chosen isomorphism Xm ∼= PHX (m)−1

k ) it follows that there
is a finite union of hyperplanes in Xm, and hence in PRm

k , containing φm(Σ). These
pull back to give homogeneous polynomials Gi of degree m on PN

k ; they satisfy
(21.5.1) by (21.6.8).

We now show that (21.6.9) holds for some m satisfying (21.6.8).
By (21.4), we have

(21.6.11) ∑
v∈S

SX (m,cv)≥ HX (m) ∑
v∈S

(
m

(n+1)∆
eX (cv)− (2n+1)∆ max

j∈Jv
c j,v

)
.

By [Evertse and Ferretti, 2008, Lemma 5.1], we have

(21.6.12) eX (cv)≥ ∆ ∑
j∈Jv

c j,v ,

and therefore

(21.6.13) ∑
v∈S

eX (cv)≥ ∆ ∑
v∈S

∑
j∈Jv

c j,v = ∆

by (21.6.4). Thus (21.6.11) becomes

∑
v∈S

SX (m,cv)≥ HX (m)

(
m

n+1
− (2n+1)∆ ∑

v∈S
max
j∈Jv

c j,v

)

≥ HX (m)
(

m
n+1

− (2n+1)∆
)

.

(21.6.14)

Now let
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(21.6.15) m =
⌊

2(n+1)(2n+1)(n+2)∆
ε

⌋
.

This clearly satisfies (21.6.8); in addition, we have

(21.6.16) m <
(

n+1+
ε

2

)( m
n+1

− (2n+1)∆
)

.

Thus (21.6.14) becomes(
n+1+

ε

2

)
∑
v∈S

SX (m,cv) > mHX (m) ,

which is (21.6.9). ut

In Nevanlinna theory, the counterpart to Theorem 21.6 was proved by Ru [2009].
Here we give a slightly stronger version of his theorem: X is not required to be
nonsingular, and we incorporate the set J . This stronger version still follows from
his proof without essential changes, though.

Theorem 21.7. Let k = C and assume that n = dimX > 0. Let D0, . . . ,Dq be ef-
fective divisors on PN

C, whose supports do not contain X. Let J be the set of all
(n+1)-element subsets J of {0, . . . ,q} for which

X ∩
⋂
j∈J

SuppD j = /0 ,

and assume that J is not empty. Fix ε ∈ R with 0 < ε ≤ 1, fix C ∈ R, and
choose Weil functions λD j for all j. Let f : C → X(C) be a holomorphic curve
whose image is not contained in any hypersurface in PN not containing X of degree
≤ 2(n+1)(2n+1)(n+2)∆dn+1ε−1. Then

(21.7.1)
∫ 2π

0
max
J∈J

∑
j∈J

λD j( f (reiθ ))
degD j

dθ

2π
≤exc (n+1+ ε)Tf (r)+C .

Proof (sketch). This proof uses the same general outline as the proof of Theorem
21.6, but there is an essential difference in that one cannot take a subsequence in
order to define constants c j,v, since the interval [0,2π] is not a finite set. Instead,
however, it is possible to drop the condition (21.6.4); then (21.6.13) is no longer
valid. However, (21.6.12) still holds, and is homogeneous in the components of c.
Therefore, we may omit the step of dividing by the height, and just let the compo-
nents of c be the Weil functions themselves (assumed nonnegative).

In detail, as before we assume that D0, . . . ,Dq are restrictions of the coordinate
hyperplanes x0 = 0, . . . , xq = 0, and that the Weil functions λD j are nonnegative.

For each r > 0 and θ ∈ [0,2π] let Jr,θ be an element of J for which

∑
j∈Jr,θ

λD j( f (reiθ ))
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is maximal, for each j ∈ Jr,θ let

c j,r,θ = λD j( f (reiθ )) ,

and for each j ∈ {0, . . . ,N}\ Jr,θ let c j,r,θ = 0. Let

cr,θ = (c0,r,θ , . . . ,cN,r,θ ) ∈ RN+1
≥0 .

Then, as before, [Evertse and Ferretti, 2008, Lemma 5.1] gives

(21.7.2) eX (cr,θ )≥ ∆ ∑
j∈Jr,θ

c j,r,θ .

Let m be as in (21.6.15). By (21.4), (21.7.2), and nonnegativity of c j,r,θ , we have

1
HX (m)

∫ 2π

0
SX (m,cr,θ )

dθ

2π
≥
∫ 2π

0

(
m

(n+1)∆
eX (cr,θ )− (2n+1)∆ max

j∈Jr,θ
c j,r,θ

)
dθ

2π

≥
∫ 2π

0

(
m

n+1 ∑
j∈Jr,θ

c j,r,θ − (2n+1)∆ max
j∈Jr,θ

c j,r,θ

)
dθ

2π

≥
(

m
n+1

− (2n+1)∆
)∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ

2π
.

(21.7.3)

By (21.6.16) there is an ε ′ > 0 such that

m
n+1

− (2n+1)∆ ≥ m
n+1+ ε/2

· HX (m)+ ε ′

HX (m)
;

hence (21.7.3) becomes
(21.7.4)(

n+1+
ε

2

)∫ 2π

0
SX (m,cr,θ )

dθ

2π
≥ m(HX (m)+ ε

′)
∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ

2π
.

This corresponds to (21.6.9) in the earlier proof.
Now let φm : PN

C → PRm
C be the m-uple embedding. Then the image of φm ◦ f is

not contained in any hyperplane not also containing φm(X). As before, let Xm be the
linear subspace of PRm

C spanned by φm(X).
As before, for each r and θ there are a1,r,θ , . . . ,aHX (m),r,θ ∈NN+1, corresponding

to a basis of C[x0, . . . ,xN ]m/Im, such that

(21.7.5) SX (m,cr,θ ) =
HX (m)

∑
`=1

a`,r,θ · cr,θ .

These correspond to linear forms L`,r,θ on PRm
C , ` = 1, . . . ,HX (m), which are linearly

independent on Xm for each r and θ , and which satisfy
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(21.7.6) λL`,r,θ (φm( f (reiθ )))≥
q

∑
j=0

a`,r,θ , jλD j( f (reiθ ))

for suitable choices of Weil functions λL`,r,θ .
By the definitions of Jr,θ and of c j,r,θ , by (21.7.4), by (21.7.5), by (21.7.6), and

by applying Cartan’s Theorem 7.13 to Xm, we then have∫ 2π

0
max
J∈J

∑
j∈J

λD j( f (reiθ ))
dθ

2π

=
∫ 2π

0
∑

j∈Jr,θ

λD j( f (reiθ ))
dθ

2π

=
∫ 2π

0

(
∑

j∈Jr,θ

c j,r,θ

)
dθ

2π

≤ n+1+ ε/2
m(HX (m)+ ε ′)

∫ 2π

0
SX (m,cr,θ )

dθ

2π

=
n+1+ ε/2

m(HX (m)+ ε ′)

∫ 2π

0

(HX (m)

∑
`=1

a`,r,θ · cr,θ

)
dθ

2π

≤ n+1+ ε/2
m(HX (m)+ ε ′)

∫ 2π

0

(HX (m)

∑
`=1

λL`,r,θ (φm( f (reiθ )))
)

dθ

2π

≤exc
n+1+ ε/2

m
Tφm◦ f (r)+C′

≤
(

n+1+
ε

2

)
Tf (r)+C ,

where C′ is chosen so that the last inequality holds. ut

(This is better than (21.7.1) by ε/2, since we have removed the partitioning argu-
ment. Thus, the bound (21.5.1) can be improved by a factor of 2. This can be done
in the number field case too, also by eliminating the partitioning argument there. We
decided to keep the partitioning argument in that case, though, since such arguments
are common in number theory and it is useful to know how to translate them into
Nevanlinna theory.)

22 Truncated Counting Functions and the abc Conjecture

Many results in Nevanlinna theory, when expressed in terms of counting functions
instead of proximity functions, hold also in strengthened form using what are called
truncated counting functions. As usual, one can define truncated counting functions
in the number field case as well, and this leads to deep conjectures of high current
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interest. Perhaps the best-known such conjecture is the abc conjecture of Masser
and Oesterlé.

Definition 22.1. Let X be a complete complex variety, let D be an effective Cartier
divisor on X , let f : C→ X be a holomorphic curve whose image is not contained
in the support of D, and let n ∈ Z>0. Then the n-truncated counting function with
respect to D is

N(n)
f (D,r) = ∑

0<|z|<r
min{ordz f ∗D,n} log

r
|z|

+min{ord0 f ∗D,n} logr .

As with the earlier counting function, the n-truncated counting function is func-
torial and nonnegative. It is not additive in D, though, due to the truncation. We only
have an inequality: If D1 and D2 are effective, then

N(n)
f (D1 +D2,r)≤ N(n)

f (D1,r)+N(n)
f (D2,r) .

In Nevanlinna theory, the Second Main Theorem for curves has been extended to
truncated counting functions:

Theorem 22.2. Let X be a smooth complex projective curve, let D be a reduced
effective divisor on X, let K be the canonical line sheaf on X, and let A be an
ample line sheaf on X. Then the inequality

N(1)
f (D,r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr)

holds for all nonconstant holomorphic curves f : C→ X.

Of course, X needs to be a curve of genus ≤ 1 for this to be meaningful, since
otherwise there is no function f . However, if the domain is a finite ramified covering
of C, then X can have large genus; see Conjecture 26.7 and the discussion following
it.

Also, in Theorem 7.7, the counting functions in (7.8) can be replaced by n-
truncated counting functions:

(22.3)
q

∑
j=1

N(n)
f (H j,r)≥exc (q−n−1)Tf (r)−O(log+ Tf (r))−o(logr)

Theorem 7.13 is not suitable for using truncated counting functions, though, due to
its emphasis on the proximity function.

Conjecture 14.2, though, should also be true with counting functions. The ques-
tion arises, however: truncation to what? Note that (22.3) is false if the terms
N(n)

f (H j,r) are replaced by N(1)
f (H j,r), unless one allows the exceptional set to con-

tain hypersurfaces of degree greater than 1 (see Example 22.8). I do believe that
Conjecture 14.2 should be true with 1-truncated counting functions, though, even
though it would involve substantial complications.
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The translation of the above into number theory is straightforward (except that
the counterparts to Theorem 22.2 and (22.3) are only conjectural).

Definition 22.4. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a complete variety over k, let D be an effective Cartier divisor on X , and
let n ∈ Z>0. For every place v /∈ S (necessarily non-archimedean), let pv denote the
corresponding prime ideal in Ok. Then the n-truncated counting function with
respect to D is

N(n)
S (D,x) = ∑

v/∈S
min{λD,v(x),n log(Ok : pv)}

for all x ∈ X(k) not lying in the support of D. If x ∈ X(k̄) lies outside the support of
D, then we let L = κ(x), let T be the set of places of L lying over S, and define

(22.4.1) N(n)
S (D,x) =

1
[L : k] ∑

w/∈T
min{λD,v(x),n log(OL : pw)} .

Truncation does not respect (8.11.1) at ramified places, so (22.4.1) is not inde-
pendent of the choice of L. It is independent of the choice of Weil function, up
to O(1). As in the case of Nevanlinna theory, this truncated counting function is
functorial and nonnegative, and obeys an inequality

N(n)
S (D1 +D2,x)≤ N(n)

S (D1,x)+N(n)
S (D2,x)

if D1 and D2 are effective.
We conjecture that a counterpart to Conjecture 14.6 holds with truncated count-

ing functions:

Conjecture 22.5. Let k be a number field, let S ⊇ S∞ be a finite set of places of k,
let X be a smooth projective variety over k, let D be a normal crossings divisor on
X , let K be the canonical line sheaf on X , and let A be an ample line sheaf on X .
Then:

(a). Let Σ be a generic subset of X(k)\SuppD. Then the inequality

(22.5.1) N(1)
S (D,x)≥ hK (D),k(x)−O

(√
hA ,k(x)

)
holds for all x ∈ Σ .

(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only
on X , D, A , and ε , such that for all C ∈ R the inequality

(22.5.2) N(1)
S (D,x)≥ hK (D),k(x)− ε hA ,k(x)−C

holds for almost all x ∈ (X \Z)(k).

Note that the error term in (22.5.1) is weaker than in (14.6.1); see Stewart and
Tijdeman [1986] and van Frankenhuijsen [2007].
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Unlike the situation in Nevanlinna theory, this conjecture is not known in any
case over number fields (other than those for which X(k) is not Zariski dense).
The simplest (nontrivial) case of this conjecture is when X = P1

k and D is a divisor
consisting of three points, say D = [0]+ [1]+ [∞]. In that case, it is equivalent to the
“abc conjecture” of Masser and Oesterlé [Noguchi, 1996, (9.5)]. This conjecture
can be stated (over Q for simplicity, and with a weaker error term) as follows.

Conjecture 22.6. Fix ε > 0. Then there is a constant Cε such that there are only
finitely many triples (a,b,c) ∈ Z3 satisfying a+b+ c = 0, gcd(a,b,c) = 1, and

(22.6.1) logmax{|a|, |b|, |c|} ≤ (1+ ε) ∑
p|abc

log p+Cε .

To see the equivalence with the above-mentioned special case of Conjecture 22.5,
let (a,b,c) be a triple of relatively prime rational integers satisfying a + b + c = 0,
and let x ∈ P2

Q be the corresponding point with homogeneous coordinates [a : b : c].
Then the left-hand side of (22.6.1) is just the height hQ(x).

Now let D be the divisor consisting of the coordinate hyperplanes H0, H1, and H2
in P2

Q (defined respectively by x0 = 0, x1 = 0, and x2 = 0). Since gcd(a,b,c) = 1,
we have

λH0,p(x) =− log
‖a‖p

max{‖a‖p,‖b‖p,‖c‖p}
= ordp(a) log p ,

for all (finite) rational primes p, where ordp(a) denotes the largest integer m for
which pm | a. Thus

N(1)
{∞}(H0,x) = ∑

p|a
log p .

Similarly

N(1)
{∞}(H1,x) = ∑

p|b
log p and N(1)

{∞}(H2,x) = ∑
p|c

log p .

Therefore, by relative primeness,

N(1)
{∞}(D,x) = ∑

p|abc
log p ,

so (22.6.1) is equivalent to

hQ(x)≤ (1+ ε)N(1)
{∞}(D,x)+Cε .

Since a + b + c = 0, the points [a : b : c] all lie on the line x0 + x1 + x2 = 0 in
P2

Q. Choosing an isomorphism of this line with P1
Q such that the restriction of D

corresponds to the divisor [0]+[1]+[∞] on P1
Q, it follows by functoriality of hQ and
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N(1)
{∞}(D,x) that Conjecture 22.6 is equivalent to the special case of Conjecture 22.5

with k = Q, S = {∞}, X = P1
Q, D = [0]+ [1]+ [∞], and with a weaker error term.

Some effort has been expended on finding a higher-dimensional counterpart to
the abc conjecture (in the spirit of Cartan’s and Schmidt’s theorems). One major
decision, for example, is how to extend the condition on relative primeness. For
the equation a + b + c = 0, the condition gcd(a,b,c) = 1 is equivalent to pairwise
relative primeness, since p | a and p | b easily implies p | c. With more terms, such as
a+b+ c+d = 0, though, the two variants are no longer equivalent. For the sake of
the present discussion, we use weaker condition of overall relative primeness. This is
all that is needed for the largest absolute value to be equivalent to the (multiplicative)
height.

So let a0, . . . ,an+1 be integers with gcd(a0, . . . ,an+1) = 1 and a0 + · · ·+an+1 = 0.
Such an (n+2)-tuple gives a point x := [a0 : · · · : an] ∈ Pn

Q with

h(x) = logmax{|a0|, . . . , |an+1|}+O(1) .

Let D be the divisor on Pn consisting of the sum of the coordinate hyperplanes and
the hyperplane x0 + · · ·+ xn = 0. Then we have

N(1)
{∞}(D,x) = ∑

p|a0···an+1

p+O(1) .

Since the canonical line sheaf K on Pn is O(−n− 1) and D has degree n + 2, we
have K (D)∼= O(1) and therefore (22.5.2) would (if true) give

(22.7) ∑
p|a0···an+1

log p≥ (1− ε) logmax{|a0|, . . . , |an+1|}−C

for all ε > 0 and all C, for almost all rational points x = [a0 : · · · : an] outside of some
proper Zariski-closed subset of Pn

Q depending on ε .
The following example, due to Brownawell and Masser [1986, p. 430], then

shows that an obvious extension of the abc conjecture to hyperplanes in Pn is false
with 1-truncated counting functions, unless one allows exceptional hypersurfaces of
degree > 1.

Example 22.8. Let n ∈ Z>0, and consider the map φ : P1
Q→ Pn

Q given by

φ([x0 : x1]) =
[

xn
0 :
(

n
1

)
xn−1

0 x1 :
(

n
2

)
xn−2

0 x2
1 : · · · : xn

1

]
.

Let D be the divisor (x0x1(x0 + x1)) = [0] + [−1] + [∞] on P1
Q and let D′ be the

(similar) divisor (y0 · · ·yn(y0 + · · ·+ yn)) on Pn
Q. Note that Suppφ ∗D′ = SuppD, so

that
N(1)
{∞}(D

′,φ([x0 : x1])) = N(1)
{∞}(D, [x0 : x1])

if x0 6= 0 and x1 6= 0, and that hQ(φ([x0 : x1])) = nhQ([x0 : x1])+O(1). It is known
that there are infinitely many pairs (a,b) of relatively prime integers for which
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N(1)
{∞}(D, [a : b])≤ hQ([a : b]) ;

therefore we have

N(1)
{∞}(D

′,φ([a : b]))≤ 1
n

hQ(φ([a : b]))+O(1) ,

contrary to (22.7). The points φ([a : b]) are not contained in any hyperplane in Pn
Q.

They are, of course, contained in the image of φ , hence are not Zariski dense.

The abc conjecture is still unsolved, and is regarded to be quite deep. This is so
even though its counterpart in Nevanlinna theory is already known (and has been
known for decades). The remainder of these notes discuss extensions of Conjecture
14.6 that all have the property of implying the abc conjecture.

23 On Discriminants

This section discusses some facts about discriminants of number fields. These will
be used to formulate a diophantine conjecture for algebraic points in Section 24.

Definition 23.1. Let L⊇ k be number fields, and let DL denote the absolute discrim-
inant of L. Then the logarithmic discriminant of L (relative to k) is

dk(L) =
1

[L : k]
log |DL|− log |Dk| .

Also, if X is a variety over k and x ∈ X(k̄), then let

dk(x) = dk(κ(x)) .

The discriminant of a number field k is related to the different Dk/Q of k over Q
by the formulas

|Dk|= (Z : Nk
QDk/Q) = (Ok : Dk/Q) .

By multiplicativity of the different in towers, we therefore have

dk(L) =
1

[L : k]
log(OL : DL/k)

=
1

[L : k] ∑
q∈SpecOL

q6=(0)

ordq DL/k · log(OL : q)
(23.2)

for number fields L⊇ k.
This expression can be used to define a “localized” log discriminant term:

Definition 23.3. Let L⊇ k be number fields, and let S ⊇ S∞ be a finite set of places
of k. Let OL,S denote the localization of OL away from (finite) places of L lying over
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places in S; note that OL,S = OL⊗Ok Ok,S (cf. (12.1)). Then we define

(23.3.1) dS(L) =
1

[L : k] ∑
q∈SpecOL,S

q6=(0)

ordq DL/k · log(OL,S : q) .

Also, if X is a variety over k and x ∈ X(k̄), then let

dS(x) = dS(κ(x)) .

By (23.2), if S = S∞ ⊆Mk then dS(L) = dk(L). Other than in this section, these
notes will be concerned only with dk(·). In fact, for any rational prime p the portion
of (log |Dk|)/[k : Q] coming from primes over p is bounded by (1+ logp[k : Q]) log p
[Serre, 1968, Ch. III, Remark 1 following Prop. 13]. These notes will be primarily
concerned with number fields of bounded degree over Q, so the difference between
dS and dk is bounded and can be ignored. However, for this section (only) the general
situation will be considered, since the results may be useful elsewhere and may not
be available elsewhere.

For the remainder of this section, k is a number field and S⊇ S∞ is a finite set
of places of k.

The following lemma shows that the discriminant is not increased by taking the
compositum with a given field.

Lemma 23.4. Let
LE

L E

k

be a diagram of number fields. Then

dS(LE)−dS(E)≤ dS(L) .

Proof. We first show that

(23.4.1) DLE/E |DL/k ·OLE ,

which really amounts to showing that DL/k ⊆ DLE/E . Recall that DL/k is the ideal
in OL generated by all elements f ′(α), as α varies over the set {α ∈OL : L = k(α)}
and f is the (monic) irreducible polynomial for α over k. Such α also lie in OLE ,
and generate LE over E. Let g be the irreducible polynomial for α over E; we note
that g | f and therefore f = gh for a monic polynomial h ∈ OE [t]. We also have
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f ′(α) = g′(α)h(α). Since h(α) ∈ OLE , it then follows that f ′(α) ∈ DLE/E , which
then implies (23.4.1).

It then suffices to show that

ordq DL/k · log(OL : q) =
1

[LE : L] ∑
Q∈SpecOLE

Q|q

ordQ(DL/kOLE) · log(OLE : Q)

for all nonzero q ∈ SpecOL. But this follows immediately from the classical fact
that [LE : L] = ∑eQ/q fQ/q. ut

The Chevalley-Weil theorem may be generalized to a situation where ramifi-
cation is allowed. This involves a proximity function for the ramification divisor,
which is defined as follows.

Definition 23.5. Let φ : X → Y be a generically finite, dominant morphism of non-
singular complete varieties over a field k. Assume that the function field extension
K(X)/K(Y ) is separable. Then the natural map φ ∗ΩY/k → ΩX/k induces a natu-
ral map φ ∗KY → KX of canonical sheaves, which in turn defines a natural map
OX →KX ⊗φ ∗K ∨

Y . This latter map defines a section of KX ⊗φ ∗K ∨
Y , whose divi-

sor is the ramification divisor of X over Y . It is an effective divisor R, and we have
KX ∼= KY (R).

(The remainder of this section will be quite technical. Most readers will likely
be interested only in the statement of Theorem 23.15, and should now skip to the
statement of that theorem and to Theorem 23.17.)

The following definition will also be needed to generalize Chevalley-Weil.

Definition 23.6. Let M be a finitely generated module over a noetherian ring R, and
let

(23.6.1) Rm f−→ Rn −→M −→ 0

be a presentation of M. Then the 0th Fitting ideal of M is the ideal F0(M) in R gener-
ated by the determinants of all n×n submatrices of the n×m matrix representing f .
It is independent of the presentation [Eisenbud, 1995, 20.4]. This globalizes: if F is
a coherent sheaf on a noetherian scheme X , then locally one can form presentations
(23.6.1) and glue them to give a sheaf of ideals F0(F ).

Lemma 23.7. Let F be a coherent sheaf on a noetherian scheme X.

(a). Forming the Fitting ideal commutes with pull-back: Let φ : X ′→ X be a mor-
phism of noetherian schemes. Then

(23.7.1) F0(φ ∗F ) = φ
∗F0(F ) ·OX ′ .

(b). If F �F ′ is a surjection, then

F0(F ′)⊇ F0(F ) .



Diophantine Approximation and Nevanlinna Theory 195

Proof. Let φ : X ′→ X be as in (a). Since tensoring is right exact, a presentation of
F pulls back to give a presentation of φ ∗F on X ′, and (23.7.1) follows directly.

If F �F ′ is a surjection, then one can use the same middle terms in the local
presentations of F and of F ′, and the first term in the presentation of F can be a
direct summand of the first term in the presentation of F ′. In this case, the resulting
generators of F0(F ) are a subset of the generators of F0(F ′). This gives (b). ut

The ramification divisor can be described using a Fitting ideal.

Lemma 23.8. Let φ : X → Y be as in Definition 23.5. Then F0(ΩX/Y ) is a sheaf of
ideals, locally principal and generated by functions f which locally generate the
ramification divisor as a Cartier divisor.

Proof. Indeed, the first exact sequence of differentials

φ
∗
ΩY/k −→ΩX/k −→ΩX/Y −→ 0

gives a locally free presentation of ΩX/Y , and the two initial terms have the same
rank. ut

The proof of Theorem 23.15 will also need the notion of a model of a variety
over a number field (corresponding to Definition 15.2 in the function field case).

Definition 23.9. Let X be a variety over a number field k. A model for X over Ok is
an integral scheme X , flat over Ok, together with an isomorphism X ∼= X ×Ok k.

If X is a complete variety, then a model X can be constructed using Nagata’s em-
bedding theorem. Moreover, X can be chosen to be proper over SpecOk. On such a
model, rational points correspond naturally and bijectively to sections Ok→X by
the valuative criterion of properness, and algebraic points SpecL→ X correspond
naturally and bijectively to morphisms SpecOL→X over Ok.

As is the case over function fields, a key benefit of working with models is the
fact that Weil functions, and therefore the proximity, counting, and height functions,
can be defined exactly once one has chosen an extension of the given Cartier divisor
D to the model. (Such an extension may not always exist, but the model can be
chosen so that it does exist.) At archimedean places, these definitions rely on the
additional data specified in Arakelov theory. These definitions, however, will not be
described in these notes.

For the purposes of this section, however, we do need to define the proximity
function relative to a sheaf of ideals.

Definition 23.10. Let X be a complete variety over a number field k, let X be a
proper model for X over Ok, let I be a sheaf of ideals on X , and let S ⊇ S∞ be a
finite set of places of k. Let x ∈ X(k̄), and assume that x does not lie in the closed
subscheme of X defined by I . Then the counting function NS(I ,x) is defined as
follows. Let L be some number field containing κ(x), let i : SpecOL →X be the
morphism over SpecOk corresponding to x, and let I be the ideal in OL correspond-
ing to the ideal sheaf i∗I ·OSpecOL on SpecOL. Then we define
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NS(I ,x) =
1

[L : k]
log(OL,S : IOL,S)

=
1

[L : k] ∑
q∈SpecOL,S

q 6=(0)

ordq I · log(OL,S : q) .

It can be shown (although we will not do so here) that if X is a proper model
over SpecOk for a complete variety X over k, if I is an ideal sheaf on X , and if
the restriction of I to X corresponds to a Cartier divisor D, then

(23.11) NS(I ,x) = NS(D,x)+O(1)

for all x ∈ X(k̄) not lying in SuppD.
Counting (and proximity and height) functions relative to sheaves of ideals were

first introduced by Yamanoi [2004a], in the context of Nevanlinna theory.
The different can be described via differentials as well. Indeed, DL/k is the anni-

hilator of the sheaf of relative differentials:

(23.12) DL/k = AnnΩOL/Ok
.

In this case ΩOL/Ok
is a torsion sheaf locally generated by one element; hence

(23.3.1) can be rewritten as

dS(L) =
1

[L : k] ∑
q∈SpecOL,S

q6=(0)

lengthq ΩOL/Ok
· log(OL,S : q)

=
1

[L : k]
log#H0(OL,S,ΩOL,S/Ok,S

) .

(23.13)

The following lemma does most of the work in generalizing the Chevalley-Weil
theorem. It has been stated as a separate lemma because it will also be used in the
Nevanlinna case.

Lemma 23.14. Let A→ B be a local homomorphism of discrete valuation rings,
with B finite over A, let φ : X → Y be a generically finite morphism of schemes, and
let

(23.14.1)

SpecB
j−−−−→ Xy yφ

SpecA −−−−→ Y

be a commutative diagram. Assume also that the image of j is not contained in the
support of ΩX/Y , that j∗OX generates the fraction field of B over the fraction field
of A, and that the fraction field of B is separable over the fraction field of A. Then

(23.14.2) DB/A ⊇ j∗F0(ΩX/Y ) ·B .
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Proof. The map j factors through the product SpecA×Y X :

SpecB
j′′−−−−→ SpecA×Y X

q−−−−→ Xy y
SpecA −−−−→ Y ;

here j = q ◦ j′′. We may replace SpecA×Y X in this diagram with an open affine
neighborhood SpecB′′ of j′′(b), where b denotes the closed point of SpecB. By
Lemma 23.7a, we have

(23.14.3) j∗F0(ΩX/Y ) ·B = ( j′′)∗F0(ΩB′′/A) ·B .

The map SpecB→ SpecB′′ corresponds to a ring homomorphism B′′ → B; let B′

denote its image. Then j′′ factors through j′ : SpecB→ SpecB′ and a closed im-
mersion SpecB′→ SpecB′′. By the second exact sequence for differentials, the map
ΩB′′/A

∣∣
B′ →ΩB′/A is surjective, and by Lemma 23.7b

(23.14.4) ( j′′)∗F0(ΩB′′/A) ·B⊆ ( j′)∗F0(ΩB′/A) ·B .

By [Kunz, 1986, Def. 10.1 and p. 166], F0(ΩB′/A) is the Kähler different dK(B′/A).
Since B′ is finite over A and the fraction field of B′ is separable over the fraction field
of A, [Kunz, 1986, Prop. 10.22] gives

(23.14.5) F0(ΩB′/A)⊆DB′/A

(note that DB′/A is dD(B′/A) in Kunz’s notation). Finally, since B′ ⊆ B, it follows
directly from the definition (see for example [Kunz, 1986, G.9a]) that

(23.14.6) DB′/A ⊆DB/A .

Combining (23.14.3)–(23.14.6) then gives (23.14.2). ut

The generalized Chevalley-Weil theorem can now be stated as follows. This was
originally proved in [Vojta, 1987, Thm. 5.1.6], but the proof there is only valid if
X and Y have good reduction everywhere, or if the points x ∈ X(k̄) have bounded
degree over k. Therefore we will give a general proof here.

Theorem 23.15. Let φ : X → Y be a generically finite, dominant morphism of non-
singular complete varieties over k, with ramification divisor R. Then for all x∈ X(k̄)
not lying on SuppR, we have

(23.15.1) dS(x)−dS(φ(x))≤ NS(R,x)+O(1) .

Proof. Let X and Y be models for X and Y over Ok, respectively. By replacing X
with the closure of the graph of the rational map φ : X → Y if necessary, we may
assume that φ extends to a morphism X → Y over SpecOk. By Lemma 23.8 and
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(23.11), it will then suffice to show that

(23.15.2) dS(x)−dS(φ(x))≤ NS(F0(ΩX /Y ),x) .

Fix x ∈ X(k̄) as above, and let E = κ(x) and L = κ(φ(x)). Then dS(x) = dS(E)
and dS(φ(x)) = dS(L). Let w be a place of E with w - S, and let v be a place of L
lying under w. Let Ow and Ov denote the localizations of OE and OL at the primes
corresponding to w and v, respectively. Let j : SpecOw →X be the restriction of
the map SpecOE →X over Ok corresponding to x. By (23.3.1), multiplicativity of
the different in towers, Definition 23.10, and compatibility of various things with
localization, it suffices to show that

(23.15.3) DOw/Ov ⊇ j∗F0(ΩX /Y ) ·Ow .

The point φ(x) ∈ Y (L) determines a map SpecOv→ Y , so there is a diagram

SpecOw
j−−−−→ Xy y

SpecOv −−−−→ Y .

This satisfies the conditions of Lemma 23.14, which implies (23.15.3). ut

Remark 23.16. More generally, the above proof shows that if one replaces (23.15.1)
with (23.15.2), then Theorem 23.15 still holds without the assumptions that X and
Y are nonsingular.

The counterpart to this theorem in Nevanlinna theory is the following. (This is
much easier in the special case dimX = dimY = 1. The general case is more com-
plicated because then the ramification divisor may not be easy to describe.)

Theorem 23.17. Let B be a connected (nonempty) Riemann surface, let φ : X → Y
be a generically finite, dominant morphism of smooth complete complex varieties,
with ramification divisor R, and let f : B→ X be a holomorphic function whose im-
age is not contained in φ(SuppR). Then there is a connected Riemann surface B′, a
proper surjective holomorphic map π : B′→ B of degree bounded by [K(X) : K(Y )],
and a holomorphic function g : B′→ X such that the diagram

(23.17.1)

B′
g−−−−→ Xyπ

yφ

B
f−−−−→ Y

commutes. Moreover, if e is the ramification index of B′ over B at at any given point
of B′, then e− 1 is bounded by the multiplicity of the analytic divisor g∗R at that
point. (In other words, the ramification divisor of π is bounded by g∗R, relative to
the cone of effective analytic divisors.)
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Proof. Let d = [K(X) : K(Y )]. Let B0 = {(b,x) ∈ B×X : f (b) = φ(x)}; it is an
analytic variety, of degree d over B (i.e., fibers of the projection B0 → B have at
most d points, and some fibers have exactly d points). Let B′ be the normalization
of B0 [Gunning, 1990, R13]; again B′ is of degree d over B. After replacing B′ with
one of its connected components, we may assume that B′ is connected (of degree
≤ d over B). We then have holomorphic functions π : B′→ B and g : B′→ X as in
(23.17.1). Also, B′ is a Riemann surface [Gunning, 1990, Q13].

Now fix b′ ∈ B′, and let b = π(b′) ∈ B. Fix holomorphic local coordinates z′ at b′

and z at b, vanishing at the respective points. Via the local coordinate z, we identify
an open neighborhood of b in B with an open neighborhood of 0 in C, and identify
the ring O of germs of holomorphic functions on B at b with the ring of germs of
holomorphic functions on C at 0. Also let O ′ be the ring of germs of holomorphic
functions on B′ at b′, and let e be the ramification index of π at b′. Then the germ
of the analytic variety B′ at b′ is a finite branched covering of the germ of B at b, of
covering order e, and we identify O with a subring of O ′ via π . By [Gunning, 1990,
C5 and C8], there is a canonically defined monic polynomial P ∈ O[t] of degree e
such that P(z′) = 0, and

O ′ ∼= O[t]/P(t) .

Since B′ is regular at b′, the germ of the variety B′ at b′ is irreducible, so O ′ is
an entire ring [Gunning, 1990, B6]. Therefore P(t) is irreducible, and by the Weier-
strass Preparation Theorem [Gunning, 1990, A4] it is a Weierstrass polynomial. This
means that all non-leading coefficients vanish at b. A straightforward computation
then gives

ΩO′/O = O ′/(z′)e−1 .

By [Gunning, 1990, A8 and G20], O and O ′ are discrete valuation rings, hence
Dedekind, and then (23.12) gives

DO′/O = (z′)e−1 .

Moreover, we have a commutative diagram

SpecO ′
j−−−−→ Xy yφ

SpecO −−−−→ Y

which satisfies the conditions of Lemma 23.14. Therefore,

DO′/O ⊇ j∗F0(ΩX/Y ) ·O ′ .

This, together with Lemma 23.8, implies the theorem. ut

Remark 23.18. As was the case in Remark 23.16, Theorem 23.17 remains true when
X and Y are allowed to be singular, provided that the conclusion is replaced by
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the assertion that the ramification divisor of π is bounded by the analytic divisor
associated to g∗F0(ΩX/Y ).

24 A Diophantine Conjecture for Algebraic Points

This section describes an extension of Conjecture 14.6 to allow algebraic points
instead of rational points. This comes at a cost of adding a discriminant term to the
inequality.

This conjecture is subject to some doubt: see Remark 26.8.

Conjecture 24.1. Let k be a number field, let S⊇ S∞ be a finite set of places of k, let
X be a smooth projective variety over k, let D be a normal crossings divisor on X ,
let K be the canonical line sheaf on X , let A be an ample line sheaf on X , and let
r be a positive integer. Then:

(a). Let Σ be a generic subset of X(k̄) \ SuppD such that [κ(x) : k] ≤ r for all
x ∈ Σ . Then the inequality

(24.1.1) mS(D,x)+hK ,k(x)≤ dk(x)+O(log+ hA ,k(x))

holds for all x ∈ Σ .
(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only

on X , D, A , and ε , such that for all C ∈ R the inequality

(24.1.2) mS(D,x)+hK ,k(x)≤ dk(x)+ ε hA ,k(x)+C

holds for almost all x ∈ (X \Z)(k̄) with [κ(x) : k]≤ r.

When r = 1, this just reduces to Conjecture 14.6, since then κ(x) = k for all x.
Other than with r = 1, no case of this conjecture is known (for number fields). Over
function fields, some parts are known.

One may also ask if the conjecture is true without the bound on r. This would
require changing the quantization of C in part (b): for example, there are infinitely
many roots of unity, which all have height zero. It would also require changing the
dk(x) terms to dS(x). Other than that, though, it seems to be a reasonable conjecture.

As with any mathematical statement, it is often useful to be aware of how its
strength varies with the parameters. For this conjecture, replacing k with a larger
number field (and S with the corresponding set), adding places to S, increasing D,
increasing r, or (in the case of part (b)) decreasing ε results in a stronger statement.

As was the case with Conjecture 14.6, this Conjecture 24.1 can also be posed for
smooth complete varieties X , provided that hA ,k is replaced by a big height.

Remark 14.7 does not extend trivially to Conjecture 24.1, though, since the dis-
criminant terms may not add up.
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By [Vojta, 1987, Prop. 5.4.1],3 Conjecture 24.1b with D = 0 implies the full
Conjecture 24.1b. This uses a covering construction.

Next, we show how Conjecture 24.1 relates to generically finite ramified covers.

Proposition 24.2. Let k and S be as in Conjecture 24.1, let π : X ′→ X be a surjec-
tive generically finite morphism of complete nonsingular varieties over k, and let
D be a normal crossings divisor on X. Let D′ = (π∗D)red (this means the reduced
divisor with the same support as π∗D), and assume that it too has normal crossings.
Let K and K ′ denote the canonical line sheaves on X and X ′, respectively. Then,
for all x ∈ X ′(k̄) not lying on SuppD′ or on the support of the ramification divisor,
(24.2.1)

mS(D,π(x))+hK ,k(π(x))−dS(π(x))≤ mS(D′,x)+hK ′,k(x)−dS(x)+O(1) .

In particular, since the pull-back of any big line sheaf on X to X ′ remains big, either
part of Conjecture 24.1 for D′ on X ′ implies that same part for D on X.

Proof. Let R be the ramification divisor for X ′ over X ; since K ′ ∼= π∗K ⊗O(R),
we then have

hK ,k(π(x))−hK ′,k(x) =−mS(R,x)−NS(R,x)+O(1) .

Also, Theorem 23.15 gives

dS(x)−dS(π(x))≤ NS(R,x)+O(1) .

Finally, by [Vojta, 1987, Lemma 5.2.2], π∗D− (π∗D)red ≤ R (relative to the cone of
effective divisors). Therefore

mS(D,π(x))−mS(D′,x)≤ mS(R,x)+O(1) .

Adding this equation and the two inequalities then gives (24.2.1). ut

It was this proposition that motivated the original version of Conjecture 24.1
[Vojta, 1987, p. 63].

Finally, we note that Conjecture 24.1 can also be posed with truncated counting
functions.

Conjecture 24.3. Let k, S, X , D, K , A , and r be as in Conjecture 24.1. Then:

(a). Let Σ be a generic subset of X(k̄) \ SuppD such that [κ(x) : k] ≤ r for all
x ∈ Σ . Then the inequality

(24.3.1) N(1)
S (D,x)+dk(x)≥ hK (D),k(x)−O(log+ hA ,k(x))

holds for all x ∈ Σ .

3 The proposition is actually valid in more generality than its statement indicates. However, the
proof has an error. The functions f1, . . . , fn must be chosen such that each point of SuppD has an
open neighborhood U such that D = ( fi) on U for some i.
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(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only
on X , D, A , and ε , such that for all C ∈ R the inequality

(24.3.2) N(1)
S (D,x)+dk(x)≥ hK (D),k(x)− ε hA ,k(x)−C

holds for almost all x ∈ (X \Z)(k̄) with [κ(x) : k]≤ r.

Remark 24.4. Using a covering construction, it has been shown that Conjecture
24.3b would follow from Conjecture 24.1b [Vojta, 1998]. As noted earlier in this
section, the latter would then follow from Conjecture 24.1b with D = 0, again using
a covering construction. In both of these cases, the coverings involved are generi-
cally finite, so the implication holds for varieties of any given dimension. Thus, as
is noted in the next section, Conjecture 24.3b has been fully proved for curves over
function fields of characteristic 0.

Proposition 24.2 does not extend to the situation of truncated counting functions,
though.

25 The 1+ ε Conjecture and the abc Conjecture

The special case of Conjecture 24.1 in which dimX = 1 and D = 0 is perhaps the
most approachable unsolved special case, and has drawn some attention. It is called
the “1+ ε conjecture.”

Conjecture 25.1. Let k be a number field, let X be a smooth projective curve over k,
let K denote the canonical line sheaf on X , let r be a positive integer, let ε > 0, and
let C ∈ R. Then

hK ,k(x)≤ (1+ ε)dk(x)+C

for almost all x ∈ X(k̄) with [κ(x) : k]≤ r.

This conjecture was recently proved over function fields of characteristic 0 by
McQuillan [2008] and (independently) by Yamanoi [2004b]. See also McQuil-
lan [2009] and Gasbarri [2008]. Thus, Conjectures 24.1 and 24.3 hold for curves
over function fields of characteristic 0, by Remark 24.4; see also [Yamanoi, 2004b,
Thm. 5]

Conjecture 25.1 is known to imply the abc conjecture [Vojta, 1987, pp. 71–72].

Proposition 25.2. If Conjecture 25.1 holds, then so does the abc conjecture.

Proof. Let ε > 0, and let a,b,c be relatively prime integers with a+b+ c = 0. For
large integers n, there is an associated point

Pn =
[

n
√

a : n√b : n
√

c
]
∈ Xn(Q) ,

where Xn is the nonsingular curve xn
0 + xn

1 + xn
2 = 0 in P2

Q. This point has height
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hK ,Q(Pn) =
n−3

n
logmax{|a|, |b|, |c|}+O(1) ,

since the canonical line sheaf K on Xn is the restriction of O(n− 3). Here the
implicit constant depends only on n. We also have

dQ(Pn)≤
n−1

n ∑
p|abc

log p+O(1) ,

where the implicit constant depends only on n. Therefore, applying Conjecture 25.1
to points Pn on Xn gives, for all n and all ε ′ > 0 a constant Cn,ε ′ ∈ R such that

n−3
n

logmax{|a|, |b|, |c|} ≤
(

n−1
n

+ ε
′
)

∑
p|abc

log p+Cn,ε ′ .

The proof concludes by taking n sufficiently large and ε ′ sufficiently small so that(
n−1

n
+ ε
′
)/ n−3

n
< 1+ ε ,

and noting that the constants in the above discussion are independent of the triple
(a,b,c). ut

26 Nevanlinna Theory of Finite Ramified Coverings

In Nevanlinna theory, changing the domain of the holomorphic function from C
to a finite ramified covering is the counterpart to working with algebraic points of
bounded degree.

References on finite ramified coverings include Lang and Cherry [1990, Ch. III]
and Yamanoi [2004b].

Throughout this section, B is a connected Riemann surface, π : B→ C is a
proper surjective holomorphic map, X is a smooth complete complex variety,
and f : B→ X is a holomorphic function.

Note that π has a well-defined, finite degree, denoted degπ .
We again refer to f as a holomorphic curve.

Definition 26.1. Define

B[r] = {b ∈ B : |π(b)| ≤ r} ,

B(r) = {b ∈ B : |π(b)|< r} , and
B〈r〉= {b ∈ B : |π(b)|= r} .
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On B〈r〉, let σ be the measure

σ =
1

degπ
π
∗
(

dθ

2π

)
.

Definition 26.2. Let D be an effective divisor on X whose support does not contain
the image of f , and let λD be a Weil function for D. Then the proximity function
of f with respect to D is

m f (D,r) =
∫

B〈r〉
λD ◦ f ·σ .

Definition 26.3. (a). The counting function for an analytic divisor ∆ = ∑
b∈B

nb ·b

on B is

N∆ (r) =
1

degπ

 ∑
b∈B(r)\π−1(0)

nb log
r

|π(b)|
+ ∑

b∈π−1(0)

nb logr

 .

(b). If D is a divisor on X whose support does not contain the image of f , then
the counting function for D is the function

N f (D,r) = N f ∗D(r) .

(c). The ramification counting function for π is the counting function for the
ramification divisor of π . It is denoted NRam(π)(r).

If B = C and π is the identity mapping, then the proximity function of Definition
26.2 and the counting function of Definition 26.3b extend those of Definitions 11.1
and 11.2, respectively. They also satisfy additivity, functoriality, and boundedness
properties, as in Proposition 11.3.

If B′ is another connected Riemann surface and π ′ : B′ → B is another proper
surjective holomorphic map, then

(26.4) m f◦π ′(D,r) = m f (D,r) and N f◦π ′(D,r) = N f (D,r) .

This holds in particular if B = C and π is the identity map. It is the counterpart to
the fact that the proximity and counting functions in number theory are independent
of the choice of number field used in Definition 10.1.

In this situation (but without the assumption B = C), we also have

(26.5) NRam(π◦π ′)(r) = NRam(π)(r)+NRam(π ′)(r) .

(Note that the first term on the right-hand side is a counting function on B, while
the others are on B′.) This corresponds to multiplicativity of the different in towers.
Note also that, although in general Ram(π) has infinite support, its support in any
given set B(r) is finite, in parallel with the fact that any given extension of number
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fields has only finitely many ramified primes. However, given a sequence of alge-
braic points of bounded degree, the corresponding sequence of number fields will in
general have no bound on the number of ramified primes, corresponding to the fact
that Ram(π) may have infinite support.

The height is defined similarly to Definitions 11.4 and 11.7:

Definition 26.6. If D is an effective divisor on X whose support does not contain
the image of f , then the height of f relative to D is defined up to O(1) by

TD, f (r) = m f (D,r)+N f (D,r) .

If L is a line sheaf on X , then the height TL , f (r) is defined to be TD, f (r) for any
divisor D on X for which O(D)∼= L and whose support does not contain the image
of f .

A First Main Theorem holds for the height as defined here, so the height relative
to a line sheaf is well defined [Lang and Cherry, 1990, III Thm. 2.1]. Theorem 11.8
also holds for heights in this context, as do Propositions 11.10 and 11.11. Corollary
11.9 is not meaningful in this context, since B need not be algebraic.

If π ′ : B′→ B is as in (26.4) and D and L are as in Definition 26.6, then

TD, f◦π ′(r) = TD, f (r)+O(1) and TL , f◦π ′(r) = TL , f (r)+O(1) .

Griffiths’ conjecture (Conjecture 14.2) can be posed in this context, without
any changes other than the domain of the holomorphic curve f , and adding terms
NRam(π)(r) to the right-hand sides of (14.2.1) and (14.2.2). It will not be repeated
here.

The variant with truncated counting functions reads as follows.

Conjecture 26.7. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X , let K be the canonical line sheaf on X , and let A be an
ample line sheaf on X . Then:

(a). The inequality
(26.7.1)

N(1)
f (D,r)+NRam(π)(r)≥exc TK (D), f (r)−O(log+ TA , f (r))−o(logr)

holds for all holomorphic curves f : B→ X with Zariski-dense image.
(b). For any ε > 0 there is a proper Zariski-closed subset Z of X , depending only

on X , D, A , and ε , such that the inequality

(26.7.2) N(1)
f (D,r)+NRam(π)(r)≥exc TK (D), f (r)− ε TA , f (r)−C

holds for all nonconstant holomorphic curves f : B→ X whose image is not
contained in Z, and for all C ∈ R.

This is proved in many of the same situations where Conjecture 14.2 is proved
(except possibly for the level of truncation of the counting functions). See for exam-
ple [Lang and Cherry, 1990], and also Corollary 28.7 for the case when dimX = 1.
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Remark 26.8. This conjecture, and therefore also Conjecture 24.1, is doubted by
some. For example, McQuillan [2000, Example V.1.5] notes that if X is a quotient
of the unit ball in C2, if f : B→ X is a one-dimensional geodesic, and if π : B→ C
is a proper surjective holomorphic map, then

TKX , f (r) = NRam(π)(r)+o(TKX , f (r)) .

However, loc. cit. does not address how to show that a suitable map π exists, and in
subsequent communications McQuillan has referred only to proper ramified cover-
ings of the unit disk. Therefore, this is not strictly speaking a counterexample, but
McQuillan finds it persuasive.

27 The 1+ ε Conjecture in the Split Function Field Case

This section describes how the 1 + ε conjecture can be easily proved in what is
called the “split function field case,” following early work of de Franchis [Lang,
1983, p. 223].

Throughout this section, F is a field, B is a smooth projective curve over F ,
and k = K(B) is the function field of B.

If L is a finite separable extension of k, corresponding to a smooth projective
curve B′ over F and a finite morphism B′→ B over F , then the logarithmic discrim-
inant term in the function field case is defined as

(27.1) dk(L) =
degK ′

[L : k]
−degK ,

where K ′ and K are the canonical line sheaves of B′ and B, respectively, and
degrees are taken relative to F . As before, we then define dk(x) = dk(κ(x)) for
x ∈ X(k̄). The discriminant can also be written

(27.2) dk(L) =
1

[L : k]
dimF H0(B′,ΩB′/B)

(cf. (23.13)).
This definition is valid for general function fields.
The remainder of this section will restrict to the split function field case. This

refers to the situation in which X is of the form X ∼= X0×F k for a smooth projective
curve X0 over F , the model X is a product X0×F B (so that the model splits into a
product), and π : X → B is the projection morphism to the second factor.

Following early work of de Franchis [Lang, 1983, p. 223], it is fairly easy to
prove the 1+ ε conjecture in the split function field case of characteristic 0.
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Theorem 27.3. Let F be a field of characteristic 0, let X0 be a smooth projective
curve over F, let X = X0×F k, and let X = X0×F B. Let K be the canonical line
sheaf on X0, and let A be an ample line sheaf on X0. View both of these line sheaves
as line sheaves on X or on X by pulling back via the projection morphisms. Then

(27.3.1) hK ,k(x)≤ dk(x)+degΩB/F

for all x ∈ X(k̄).

Proof. The proof is particularly easy if F is algebraically closed.
In that case, let q : X → X0 denote the projection morphism. If q◦ i is a constant

morphism, then by (15.5) the left-hand side of (27.3.1) is zero. Since the right-hand
side is nonnegative by (27.2), the inequality is true in this case.

If q◦ i is nonconstant, then it is finite and surjective, and we have

hK ,k(x) =
(2g(X0)−2)deg(q◦ i)

[K(B′) : k]
≤ 2g(B′)−2

[K(B′) : k]
= dk(x)+2g(B)−2 .

by (15.5), the Riemann-Hurwitz formula (twice), and by (27.1). (Here, as usual,
g(B), g(B′), and g(X0) denote the genera of these curves.)

The general case proceeds by reducing to the above special case. First, we may
assume that F is algebraically closed in k (i.e., that k/F is a regular field extension).
Indeed, replacing F with a finite extension divides both sides of (27.3.1) by the
degree of that extension, due to the fact that all quantities are expressed in terms of
degrees of line sheaves, which depend in that way on F .

Let x be an algebraic point on X , let B′ be the smooth projective curve over F
corresponding to κ(x), and let i : B′→X be the morphism over B corresponding to
x. Again, K(B′) need not be a regular extension of F ; let F ′ be the algebraic closure
of F in K(B′). We may replace X0 with X0×F F , B with B×F F , X with X ×F F ,
and B′ with B′×F ′ F . This again does not affect the validity of (27.3.1), since both
sides are divided by [F ′ : F ]. Indeed, replacing B′ with B′×F F would have left both
sides of the inequality unchanged, but B′ would now be a disjoint union of [F ′ : F ]
smooth projective curves. Choosing one of those curves amounts to taking B′×F ′ F
instead of B′×F F for some choice of embedding F ′ ↪→ F . Also, these changes do
not affect the fact that X = X0×F B.

This reduces to the case in which F is algebraically closed. ut

A way to look at this proof is to think of the derivative of the map i : B′→X . It
takes values in the absolute tangent bundle TX /F . Since X is a product, though, the
tangent bundle is also a product p∗TX0/F ×q∗TB/F , where p and q are the projection
morphisms. This allows us to project onto the second factor TX0/F , which gives a
way to bound TK ,k(x).

In the general (non-split) function field case, there is first of all no bundle TX0/F
to project to. Instead, we have only the relative tangent bundle TX /B. This is a
subbundle of the absolute tangent bundle, not a quotient, and there is no canonical
projection from TX /F to TX /B. McQuillan’s proof works mainly because, for points
of large height, the tangent vectors giving the derivative of i : B′ →X are “more
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vertical” than for points of smaller height. Therefore, two arbitrarily chosen ways of
projecting the absolute tangent bundle to the relative tangent bundle will differ by a
smaller amount, measured relative to the size of the tangent vector. This is sufficient
to make the argument carry over.

28 Derivatives in Nevanlinna Theory

Generally speaking, proofs of theorems in Nevanlinna theory rely upon either of
two methods for their basic proofs. Historically, the first was Nevanlinna’s “Lemma
on the Logarithmic Derivative” (Theorem 28.1). Slightly more recently, methods
using differential geometry, especially focusing on curvature, have also been used.
Although the latter has obvious geometric appeal, the method of the lemma on the
logarithmic derivative has also been phrased in geometric terms, and (at present) is
the preferred method for comparisons with number theory.

Throughout this section, B is a connected Riemann surface and π : B→ C is
a proper surjective holomorphic map.

Nevanlinna’s original Lemma on the Logarithmic Derivative (LLD) is the fol-
lowing.

Theorem 28.1. (Lemma on the Logarithmic Derivative) Let f be a meromorphic
function on C. Then

(28.1.1)
∫ 2π

0
log+

∣∣∣∣ f ′(reiθ )
f (reiθ )

∣∣∣∣ dθ

2π
≤exc O(log+ Tf (r))+o(logr) .

More generally, if f is a meromorphic function on B, then

(28.1.2)
∫

B〈r〉
log+

∣∣∣∣d f /π∗dz
f

∣∣∣∣σ ≤exc O(logTf (r)+ logr) .

Proof. For the first part, see [Nevanlinna, 1970, IX 3.3], or [Shiffman, 1983, Thm.
3.11] for the error term given here. The second part follows from [Ashline, 1999,
Thm. 2.2]. ut

A geometrical adaptation of this lemma has recently been discovered by R. Koba-
yashi, M. McQuillan, P.-M. Wong, and others. This first requires a definition.

Definition 28.2. Let X be a smooth complex projective variety, and let D be a nor-
mal crossings divisor on X . Then the sheaf Ω 1

X (logD) is the subsheaf of the sheaf of
meromorphic sections of Ω 1

X generated by the holomorphic sections and the local
sections of the form d f / f , where f is a local holomorphic function that vanishes
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only on D [Deligne, 1970, II 3.1]. This is locally free of rank dimX . The log tangent
sheaf TX (− logD) is its dual. There are corresponding vector bundles, of the same
names.

Theorem 28.3. (Geometric Lemma on the Logarithmic Derivative) Let X be a
smooth complex projective variety, let D be a normal crossings divisor on X, and let
f : B→ X be a holomorphic curve whose image is not contained in SuppD. Let A
be an ample line sheaf on X. Finally, let | · | be a hermitian metric on the log tangent
bundle TX (− logD), and let dD f : B→ TX (− logD) denote the canonical lifting of
f (as a meromorphic function). Then

(28.3.1)
∫

B〈r〉
log+∣∣dD f (reiθ )

∣∣σ ≤exc O(logTA , f (r)+ logr) .

Proof (Wong). The general idea of the proof is that one can work locally on finitely
many open sets to reduce the question to finitely many applications of the classical
LLD. This proof presents a geometric rendition of this idea.

We first note that the assertion is independent of the choice of metric, since by
compactness any two metrics are equivalent up to nonzero constant factors.

Next, note that the special case X = P1, D = [0]+[∞], is equivalent to the classical
Lemma on the Logarithmic Derivative. Indeed, in this case TX (− logD)∼= X ×C is
just the trivial vector bundle of rank 1. Choose the metric on TX (− logD) to be the
one corresponding to the obvious metric on X×C; then (28.3.1) reduces to (28.1.1).

The assertion of the theorem is preserved by taking products. Indeed, if it holds
for holomorphic curves f1 : B→ X1 and f2 : B→ X2 relative to normal crossings
divisors D1 and D2 on smooth complex projective varieties X1 and X2, respectively,
then it is true for the product ( f1, f2) : B→ X1×X2 relative to the normal crossings
divisor D := p∗1D1 + p∗2D2, where p j : X1×X2→ X j are the projection morphisms
( j = 1,2). This follows by choosing the obvious metric on TX1×X2(− logD) and
applying (5.4.2); details are left to the reader.

Finally, let D′ be a normal crossings divisor on a smooth complex projective
variety X ′, let Z be a closed subvariety of X that contains the image of f , and let
φ : Z 99K X ′ be a rational map. Assume that there is a nonempty Zariski-open subset
U of Z and a constant C > 0 such that |φ∗(v)| ≥C|v| for all v ∈ TX (− logD) lying
over U , that the holomorphic curve f meets U , and that Theorem 28.3 holds for
the holomorphic curve φ ◦ f in X ′ relative to D′. We then claim that the theorem
also holds for f . Indeed, the left-hand side of (28.3.1) does not decrease by more
than logC if f is replaced by φ ◦ f , and the right-hand sides in the two cases are
comparable by Proposition 11.11 and properties of big line sheaves.

Therefore, we may assume that the divisor D has strict normal crossings. In-
deed, there is a smooth complex projective variety X ′ and a birational morphism
π : X ′→ X , isomorphic over X \SuppD, such that D′ := (π∗D)red is a strict normal
crossings divisor. This is true because one can resolve the singularities of each com-
ponent of D. Since π∗ induces a holomorphic map TX ′(− logD′)→ TX (− logD), the
inverse rational map π−1 satisfies the conditions of the claim.
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Thus, to prove the theorem, it suffices to let Z be the Zariski closure of the image
of f , and find nonzero elements f1, . . . , fn ∈ K(Z) for which the corresponding ra-
tional map φ : Z 99K (P1)n satisfies the conditions of the claim (for suitable U ⊆ Z
and C > 0) relative to the divisor D′ = ∑

n
j=1 p∗j([0]+ [∞]), where p j : (P1)n→ P1 is

the projection morphism to the jth factor, 1≤ j ≤ n.
To satisfy the conditions of the claim, it suffices to find a finite set G of nonzero

functions in K(X) such that at each closed point z ∈ Z there is a subset Gz ⊆ G such
that for each g ∈ Gz the differential dg/g determines a regular section of Ω 1

X (logD)
in a neighborhood of z in X , and such that as g varies over Gz the differentials dg/g
generate Ω 1

X (logD) at z.
To construct G , let z be a closed point of Z. For some open neighborhood V

of z in X there are regular functions g1, . . . ,gr on V whose vanishing determines
the components of D passing through z in V . Letting m denote the maximal ideal
of z in X , the strict normal crossings condition implies that the g j are linearly in-
dependent in the complex vector space m/m2 (the Zariski cotangent space). After
shrinking V if necessary, we may choose regular functions gr+1, . . . ,gd on V , such
that the functions g1, . . . ,gr,gr+1− 1, . . . ,gd − 1 all vanish at z, and such that their
images in m/m2 form a basis. Then dg1/g1, . . . ,dgd/gd determine regular sections
of Ω 1

X (logD) in a neighborhood of z in X , and generate the sheaf on that neighbor-
hood. By a compactness argument, one then obtains a finite collection G satisfying
the condition everywhere on Z. ut

Remark 28.4. There is no NRam(π)(r) term in either of these theorems; it appears
subsequently. The same is true of the exceptional set (it appears later still).

Remark 28.5. When B = C and π is the identity map, the error term in (28.3.1) can
be sharpened to O(log+ TA , f (r)) + o(logr). This will also be true in subsequent
results, but will not be explicitly mentioned.

The Geometric LLD leads to an inequality, due originally to McQuillan [1998,
Thm. 0.2.5]. This inequality presently shows more promise for possible diophantine
analogies, since it omits some of the information on the derivative, and since it may
be related to parts of the proof of Schmidt’s Subspace Theorem.

Before stating the theorem, we note that for the purposes of these notes, if E is a
quasi-coherent sheaf on a scheme X , then

P(E ) = Proj
⊕
d≥0

SdE

(as in EGA). In particular, if E is a vector sheaf, then points on P(E ) correspond
bijectively to hyperplanes (not lines) in the fiber over the corresponding point on
X . This scheme comes with a tautological line sheaf O(1), which gives rise to the
name of McQuillan’s inequality.

If X and D are as in Theorem 28.3, then Ω 1
X (logD) is defined as a locally free

sheaf on X as an analytic space. This is a coherent sheaf, hence by GAGA [Serre,
1955–1956], it comes from a coherent sheaf on X as a scheme. This latter sheaf is
denoted ΩX/C(logD). In fact it is locally free—see the introduction to Section 29.
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Theorem 28.6. (McQuillan’s “Tautological Inequality”) Let X, D, f : B→ X, and
A be as in Theorem 28.3. Assume also that f is not constant. Let

f ′ : B→ P(ΩX/C(logD))

be the canonical lifting of f , associated to the nonzero map from f ∗Ω 1
X (logD) to

the cotangent sheaf of B. Then

(28.6.1) TO(1), f ′(r)≤exc N(1)
f (D,r)+NRam(π)(r)+O(logTA , f (r)+ logr) .

Proof. Let
V = V(ΩX/C(logD)) = Spec

⊕
d≥0

Sd
ΩX/C(logD) .

This is the total space of TX (− logD). Also let

V = P(ΩX/C(logD)⊕OX ) .

We have a natural embedding V ↪→ V that realizes V as the projective closure on
fibers of V .

Let [∞] denote the (reduced) divisor V \V . The integrand of (28.3.1) can be
viewed as a proximity function for [∞], and the strategy of the proof is to use this to
get a bound on TO(1), f ′(r), via the rational map V 99K P(ΩX/C(logD)). To compare
the geometries of these two objects, we use the closure of the graph of this rational
map in V ×X P(ΩX/C(logD)), which is the blowing-up of V along the image [0] of
the zero section. Let p : P→ V be this blowing-up, let E be its exceptional divi-
sor. Let q : P→ P(ΩX/C(logD)) be the projection to the second factor. We have a
diagram

P

V P(ΩX/C(logD))

p q

B

C

π

φ

dD f

f ′

There is a unique lifting φ : B→ P that satisfies dD f = p◦φ and f ′ = q◦φ . We also
have

p∗O(1)∼= q∗O(1)⊗O(E)

(where the first O(1) is on V and the second one is on P(ΩX/C(logD))). This is
because any given nonzero rational section s of ΩX/C(logD) on X gives a rational
section (s,1) of O(1) on V , and also a rational section of O(1) on P(ΩX/C(logD)).
Their pull-backs to P coincide except that the first one also vanishes to first order
along E.

We also have O([∞]) ∼= O(1) on V , because the divisor [∞] is cut out by the
section (0,1) of ΩX/C(logD)⊕OX .

Thus, we have
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TO(1), f ′(r) = Tq∗O(1),φ (r)+O(1)

= TO(1),dD f (r)−TO(E),φ (r)+O(1)

= NdD f ([∞],r)−TO(E),φ (r)+mdD f ([∞],r)+O(1)

≤exc N(1)
f (D,r)+NRam(π)(r)+O(logTA , f (r)+ logr) .

To explain the last step above, mdD f ([∞],r) is bounded by Theorem 28.3. Since E
is effective and does not contain the image of φ (since f is not constant), TO(E),φ (r)
is bounded from below. (It can also be used to subtract a term NRam( f )(r) from the
right-hand side of (28.6.1).)

Now consider NdD f ([∞],r). Fix a point b ∈ B, let w be a local coordinate on B
at b, let z be the coordinate on C, and let z1, . . . ,zn be local coordinates on X at
f (b) such that D is locally given by z1 · · ·zr = 0 nearby. Then, near f (b), V has
homogeneous coordinate functions dz1/z1, . . . ,dzr/zr,dzr+1, . . . ,dzn,1. Relative to
these coordinates, the value of dD f in a punctured neighborhood of b is given by[

d(z1 ◦ f )/dz
z1 ◦ f

: · · · : d(zr ◦ f )/dz
zr ◦ f

:
d(zr+1 ◦ f )

dz
: · · · : d(zn ◦ f )

dz
: 1
]

=
[

d(z1 ◦ f )/dw
z1 ◦ f

: · · · : d(zr ◦ f )/dw
zr ◦ f

:
d(zr+1 ◦ f )

dw
: · · · : d(zn ◦ f )

dw
:

dz
dw

]
.

Then dD f will meet [∞] to the extent that there are poles among the first n coor-
dinates or a zero in the last coordinate. Poles among the first n coordinates can
only occur in the first r coordinates (using the second representation above), and in
that case they will at most be simple poles and will only occur if f (b) ∈ SuppD.
Thus the contribution to NdD f ([∞],r) from poles in these coordinates is bounded by
N(1)

f (D,r). The contribution coming from zeroes in the last coordinate is bounded
by NRam(π)(r). ut

As a sample application of this theorem, it implies the Second Main Theorem
with truncated counting functions for maps to Riemann surfaces, including the
case in which the domain is a finite ramified cover of C. This is the (proved) case
dimX = 1 of Conjecture 26.7.

Corollary 28.7. Let X be a smooth complex projective curve, let D be an effective
reduced divisor on X, and let f : B→ X be a non-constant holomorphic curve. Then

(28.7.1) N(1)
f (D,r)+NRam(π)(r)≥exc TK (D), f (r)−O(logTA , f (r)+ logr) .

Proof. Since X is a curve, the vector sheaf ΩX/C(logD) is isomorphic to the line
sheaf K (D). Therefore the canonical projection p : P(ΩX/C(logD))→ X is an iso-
morphism, O(1)∼= p∗K (D), and f ′ = p−1 ◦ f . Thus

TO(1), f ′(r) = TK (D), f (r)+O(1) ,

so (28.7.1) is equivalent to (28.6.1). ut
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Remark 28.8. In fact, when dimX = 1, McQuillan’s inequality is directly equivalent
to Conjecture 26.7, as can be seen from the above proof. This is not true in higher
dimension, though (McQuillan’s inequality is proved, but Conjecture 26.7 is not).

Cartan’s theorem (Theorem 7.7) can also be proved using McQuillan’s inequal-
ity, but this requires more work than can be included here. See [Vojta, 2008]. The
modified version (Theorem 7.13) requires a modified form of McQuillan’s inequal-
ity (involving the same type of change).

It is hoped that other key results in Nevanlinna theory can also be proved using
Theorem 28.6.

We end the section with another corollary, which often has applications in Nevan-
linna theory. It generalizes the Schwarz lemma, which has played an important role
in Nevanlinna theory for a long time; see [Siu and Yeung, 1997, Thm. 3], where it
is proved for jet differentials. The introduction of op. cit. also describes some of the
history of this result. See also [Lu, 1991, § 4], [Vojta, 2000, Cor. 5.2], and [Vojta,
2001].

Corollary 28.9. Let X be a smooth complex projective variety, let D be a normal
crossings divisor on X, let f : B→ X be a holomorphic map, let A be an ample line
sheaf on X, let L be a line sheaf on X, let d be a positive integer, and let ω be a
global section of SdΩX/C(logD). If f ∗ω 6= 0 (i.e., it does not vanish everywhere on
B), then

1
d

TL , f (r)≤exc N(1)
f (D,r)+NRam(π)(r)+O(logTA , f (r)+ logr) .

Proof. Let f ′ : B→ P(ΩX/C(logD)) be as in Theorem 28.6, and let

p : P(ΩX/C(logD))→ X

be the canonical projection. Then ω corresponds to a global section

ω
′ ∈ Γ

(
P(ΩX/C(logD)),O(d)⊗ p∗L ∨) ,

and ( f ′)∗ω ′ = f ∗ω . Thus the image of f ′ is not contained in the base locus of
O(d)⊗L ∨, so

TO(d), f ′(r)≥ TL , f (r)+O(1)

by Theorem 11.8c. The result then follows immediately from (28.6.1). ut

One can think of this result as a generalization of the fact that if f : C → X
is a nonconstant map from a nonsingular projective curve of genus g to a smooth
complete variety X , then deg f ∗KX ≤ 2g−2, where KX is the canonical line sheaf
of X . Thus, it is useful in carrying over results from the split function field case to
Nevanlinna theory (see Section 17). It is used in this manner in the proof of [Vojta,
2000, Thm. 5.3].
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29 Derivatives in Number Theory

Whether one uses the Lemma on the Logarithmic Derivative or curvature, Nevan-
linna theory depends in an essential way on the ability to take the derivative of a
holomorphic function. In the number field case, on the other hand, there is currently
no known counterpart to the derivative. Even in the function field case, the deriva-
tive lives in the absolute tangent bundle, but any counterpart to the derivative as in
Nevanlinna theory should live in the relative tangent bundle. McQuillan gets around
this in his proof of the 1+ ε conjecture, by noting that for points of large height the
derivative has an approximate projection to the relative tangent bundle that is pre-
cise enough to be useful (see the end of Section 27). Although this method shows a
great deal of promise, it will not be explored further here.

Instead, this section will describe a conjecture in number theory based on Mc-
Quillan’s tautological inequality. Because of its origin, the name “tautological con-
jecture” is too good to pass up.

If X is a smooth complete variety over a field k, and if D is a normal crossings
divisor on X , then an algebraic definition of ΩX/k(logD) is given in [Kato, 1989,
1.7]. Kato [1989, 1.8] also shows this to be locally free in the étale topology of rank
dimX . This then descends to a quasi-coherent sheaf on X in the Zariski topology by
[Grothendieck et al., 1971, VIII Thm. 1.1]. It is a vector sheaf (with non-obvious
generators) by [Grothendieck and Dieudonné, 1960–1967, IV 2.5.2].

Conjecture 29.1. (Tautological Conjecture) Let k be a number field, let S ⊇ S∞ be
a finite set of places of k, let X be a nonsingular complete variety over k with
dimX > 0, let D be a normal crossings divisor on X , let r be a positive integer,
let A be an ample line sheaf on X , and let ε > 0. Then, for all x ∈ X(k̄) \SuppD
with [κ(x) : k]≤ r, there is a closed point x′ ∈ P(ΩX/k(logD)) lying over x such that

(29.1.1) hO(1),k(x
′)≤ N(1)

S (D,x)+dk(x)+ ε hA ,k(x)+O(1) .

Moreover, given a finite collection of rational maps gi : X 99KWi to varieties Wi,
there are finite sets Σi of closed points on Wi for each i with the following prop-
erty. For each x as above, x′ may be chosen so that, for each i, if x lies in the do-
main of gi and if gi(x) /∈ Σi, then x′ lies in the domain of the induced rational map
P(ΩX/k(logD)) 99K P(ΩWi/k). Moreover, the constant implicit in the O(1) term de-
pends only on k, S, X , D, r, A , ε , the rational maps gi, and the choices of height
and counting functions.

This extra condition (involving the rational maps gi) should perhaps be explained
a bit. This condition seems to be necessary in order to ensure that the points x′

behave more like derivatives. For example, consider the special case in which r = 1,
D = 0, and X is a product X1×X2. Then the points x must be rational points, and
(29.1.1) for X is the sum of the same inequality for X1 and X2. But then, without
the last condition in the conjecture, the conjecture would hold if it held for either
factor, since one could take x′ tangent to the copy of X1 or X2 sitting inside of X .
This seems a bit unnatural. In addition, the last condition is useful for applications.
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McQuillan’s work is not the only support for this conjecture. For some time, it
has been known that parts of Schmidt’s proof of his Subspace Theorem correspond
to a proof of Cartan’s theorem due to H. and J. Weyl [Weyl and Weyl, 1938], fur-
ther developed by L. Ahlfors [1941]. Both of these proofs can be divided up into
an “old” part (corresponding to an extension to higher dimensions of the proofs of
Roth and Nevanlinna of the earlier case on P1), and a “new” part. In Ahlfors’ case,
the “new” part consists of working with the associated curves (Frenet formalism);
in Schmidt’s case, it consists of working with Minkowski’s theory of successive
minima. In either case, the proof involves geometric constructions on

∧p Cn+1 or∧p kn+1, respectively. This strongly suggested that the theory of successive min-
ima may be related to the use of derivatives in number theory [Vojta, 1987, Ch. 6].
This has been recently refined [Vojta, 2008] to more explicitly involve a variant of
Conjecture 29.1, and also to use the geometry of flag varieties.

The tie-in between successive minima and the tautological conjecture proceeds
as follows. Let X be a nonsingular complete variety over a number field k, let D be a
normal crossings divisor on X , let Y = SpecOk, and let X → Y be a proper model
for X . Then we have a relative tangent sheaf TX /Y (− logD) on X . This is not nec-
essarily a vector sheaf, since X need not be smooth over Y and D need not extend
as a normal crossings divisor. However, we shall ignore that distinction for the sake
of discussion. Via the mechanisms of Arakelov theory, one can assign a Hermitian
metric to the sheaf at all archimedean places. If i : SpecY →X is the section of
X → Y corresponding to a given rational point, then i∗TX /Y (− logD) is a vector
sheaf on Y = SpecOk, which can then be viewed as a lattice in Rn (if k = Q), or as a
lattice in (k⊗Q R)n (generally). Bounds on the metrics at archimedean places corre-
spond to giving a convex symmetric body in (k⊗Q R)n, and therefore Minkowski’s
theory of successive minima can be translated into Arakelov theory as a search for
linearly independent nonzero sections of i∗TX /Y (− logD), obeying certain upper
bounds on its metric at each infinite place. See, for example, [Gillet and Soulé,
1991]. Or, in the function field case, it is known that Minkowski’s theory corre-
sponds to a search for nonzero global sections with bounded poles at certain places
(an application of Riemann-Roch).

Giving a nonzero section as the first successive minimum is basically equivalent
to giving a line subsheaf of largest degree (unless the first two successive minima
are close). This corresponds to giving a quotient subbundle L of i∗ΩX /Y (logD)
of smallest degree. This, in turn, corresponds to giving a point x′ ∈ P(ΩX/Y (logD))
lying over the rational point in question [Hartshorne, 1977, II 7.12]. The sheaf L
is none other than the pull-back of the tautological bundle O(1) to Y via the section
i′ : Y → P(ΩX /Y (logd)) corrsponding to the point x′. Therefore, the degree of L
is the height hO(1),k(x′) (see (15.5)). This again leads to Conjecture 29.1.

We emphasize that specific bounds on the O(1) term in (29.1.1) are not given, so
Conjecture 29.1 is meaningful only for an infinite set of points—or, better yet, for a
generic or semi-generic set of points (Definitions 14.5 and 14.11).

Remark 29.2. The assertions of Remark 28.8 also apply in the arithmetic situation.
When dimX = 1, the extra conditions involving the rational functions gi in the Tau-
tological Conjecture are automatically satisfied. Therefore, in this case the Tautolog-
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ical Conjecture is equivalent to Conjecture 24.3b (for the same reasons as in Remark
28.8). Thus, by Remark 24.4, the Tautological Conjecture is proved for curves over
function fields of characteristic 0. As in Remark 28.8, though, Conjectures 29.1 and
24.3b are not as closely related when dimX > 1.

We also note that points of low height as in Conjecture 29.1 behave like deriva-
tives in the following sense.

Proposition 29.3. (Arithmetic Chain Rule) Let f : X1 → X2 be a morphism of
complete varieties over a number field k. Then, for all x ∈ X1(k̄) where f is
étale, and for all closed points x′ ∈ P(ΩX1/k) lying over x, the rational map
f∗ : P(ΩX1/k) 99K P(ΩX2/k) takes x′ to a point x′2 (lying over f (x)) for which

hO(1),k(x
′
2)≤ hO(1),k(x

′)+O(1) .

Moreover, assume that X1 and X2 are projective, with ample line sheaves A1 and
A2, respectively, and that ε1 > 0 is a positive number for which (29.1.1) holds for
all x in some set Σ ⊆ X1(k̄) (with respect to A1 and ε1). Then there is an ε2 > 0 such
that (29.1.1) holds for f (x) ∈ X2(k̄) for all x ∈ Σ , with respect to A2 and ε2.

Proof. Let X1 and X2 be models for X1 and X2 over Y := SpecOk, respectively,
chosen such that f extends as a morphism f : X1 → X2, let Y ′ = SpecOκ(x′),
and let i : Y ′ →X1 be the multisection corresponding to x (which factors through
SpecOκ(x)). Then x′ corresponds to a surjection i∗ΩX1/Y �L for a line sheaf L
on Y ′, and hO(1),k(x′) is the Arakelov degree of L divided by [κ(x′) : k]. We also
have a morphism f ∗ΩX2/Y → ΩX1/Y , isomorphic at x. This gives a nonzero map
( f ◦ i)∗ΩX2/Y →L , so hO(1),k(x′2) ≤ hO(1),k(x′) (with heights defined using these
models).

The second assertion is immediate from the first assertion, by Proposition 9.15.
ut

A similar result holds for closed immersions (but without the assumption on
étaleness).

The name “Arithmetic Chain Rule” comes from the fact that this result shows
that the “derivatives” x′ and x′2 are related in the expected way.

30 Another Conjecture Implies abc

Conjecture 22.5, involving truncated counting functions, is of course a vast general-
ization of the abc conjecture, and Conjecture 24.1, which involved algebraic points,
also rather easily implies abc. Actually, though, the (seemingly) weaker Conjec-
ture 14.6 has also been shown to imply the abc conjecture [Vojta, 2000]. This im-
plication, however, (necessarily) needs to use varieties of dimension > 1, whereas
knowing either of the former two conjectures even for curves would suffice.

This section sketches the proof of the implication mentioned above.
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Theorem 30.1. For any ε > 0 there is a nonsingular projective variety Xε over Q, a
normal crossings divisor Dε on Xε , and a real number ε ′> 0, such that if Conjecture
14.6b holds for Xε , Dε , and ε ′, then the abc conjecture (Conjecture 22.6) holds for
ε .

Proof (sketch). Fix an integer n > 3/ε +3. Let Xn be the closed subvariety in
(
P2
)n

in coordinates
([x1 : y1 : z1], . . . , [xn : yn : zn])

given by the equation
n

∏
i=1

xi
i +

n

∏
i=1

yi
i +

n

∏
i=1

zi
i = 0 .

There is a rational map Xn 99K P2 given by

(30.1.1) ([x1 : y1 : z1], . . . , [xn : yn : zn]) 7→
[
∏xi

i : ∏yi
i : ∏zi

i
]

.

Let Γn be the closure of the graph of this rational map in Xn×P2, and let φ : Γn→ P2

be the projection to the second factor. The image of φ is a line, which we identify
with P1.

Given relatively prime integers a,b,c with a+b+c = 0, define a point in Xn(Q)
as follows. Let

xn = ∏
p

p[(ordp a)/n] and xi = ∏
ordp a≡i (mod n)

p (i < n) .

(The brackets in the definition of xn denote the greatest integer function.) With these
definitions, we have a = ∏xi

i, with xn as large as possible subject to all xi being
integers. Similarly define y1, . . . ,yn using b and z1, . . . ,zn using c. This point lifts to
a unique point in Γn(Q), which we denote Pa,b,c.

Let D be the effective Cartier divisor on Γn obtained by pulling back the divisor
x1 · · ·xny1 · · ·ynz1 · · ·zn = 0 from Xn, and let E be the divisor on the image P1 of φ ,
obtained by restricting the coordinate hyperplanes on P2. The latter divisor is the
sum of the points [1 : −1 : 0], [0 : 1 :−1], and [−1 : 0 : 1]. Let S = {∞} ⊆MQ. It is
possible to show that if p is a rational prime and v is the corresponding place of Q,
then

λE,v([a : b : c]) = ordp(abc) log p

and
λD,v(Pa,b,c) = ordp(x1 · · ·xny1 · · ·ynz1 · · ·zn) log p ,

using Weil functions suitably defined using (7.9.1). It then follows that

NS(D,Pa,b,c)≤ ∑
p|abc

log p+
1
n

NS(E,φ(Pa,b,c)) .

One would like to apply Conjecture 14.6 to the divisor D on Γn, but this is not
possible since Γn is singular. However, there is a nonsingular projective variety Γ ′n ,
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a normal crossings divisor D′ on Γ ′n , and a proper birational morphism ψ : Γ ′n → Γn,
such that SuppD′ = ψ−1(SuppD), ψ is an isomorphism over a suitably large set,
and KΓ ′n (D′) ≥ ψ∗φ ∗O(1) relative to the cone of effective divisors. For details see
[Vojta, 2000, Lemma 3.9].

Let P′a,b,c be the point on Γ ′n lying over Pa,b,c. Then one can show that

hQ([a : b : c]) = hψ∗φ∗O(1),Q(P′a,b,c)+O(1)

≤ hK
Γ ′n

(D′),Q(P′a,b,c)+O(1)

≤ NS(D′,P′a,b,c)+ ε
′hA ,Q(P′a,b,c)+O(1)

≤ NS(D,Pa,b,c)+ ε
′hA ,Q(P′a,b,c)+O(1)

≤ ∑
p|abc

log p+
3
n

hQ([a : b : c])+ ε
′′hQ([a : b : c])+O(1)

≤ ∑
p|abc

log p+
ε

1+ ε
hQ([a : b : c])+O(1) ,

and therefore hQ([a : b : c]) ≤ (1 + ε)∑p|abc log p + O(1). Here we have used the
fact that NS(D′,P′a,b,c)≤ NS(D,Pa,b,c), which follows from the fact that ψ∗D−D′ is
effective.

This chain of inequalities holds outside of some proper Zariski-closed subset of
Γ ′n , but it is possible to show that this set can be chosen so that it only involves
finitely many triples (a,b,c). ut

The variety Xn admits a faithful action of G2n−2
m , by letting the first n− 1 coor-

dinates act by xi 7→ txi and x1 7→ t−ix1 for i = 2, . . . ,n, and letting the other n− 1
coordinates act similarly on the yi. This action respects fibers of the rational map
(30.1.1), so the action extends to Γn, and the construction of Γ ′n can be done so that
the group action extends there, too. Since dimXn = 2n− 1, the group acts transi-
tively on open dense subsets of suitably generic fibers of φ . It is this group action
that allows one to control the proper Zariski-closed subset of Γ ′n arising out of Con-
jecture 14.6b. The group action also provides some additional structure, and in fact
Conjecture 14.2 can be proved in this context [Vojta, 2000, Thm. 5.3].

31 An abc implication in the other direction

The preceding sections give a number of ways in which some conjectures imply
the abc conjecture. It is also true, however, that the abc conjecture implies parts
of the preceding conjectures. While this is mostly a curiousity, since the implied
special cases are known to be true whereas the abc conjecture is still a conjecture,
this provides some insight into the geometry of the situation.

The implications of this section were first observed by Elkies [1991], who
showed that “Mordell is as easy as abc,” i.e., the abc conjecture implies the Mordell
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conjecture. This was extended by Bombieri [1994], who showed that abc implies
Roth’s theorem, and then by van Frankenhuijsen [2002], who showed that the abc
conjecture implies Conjecture 14.6b for curves. In each of these cases, the abc con-
jecture for a number field k would be needed to imply any given instance of Con-
jecture 14.6b. Here “the abc conjecture for k” means Conjecture 22.5b over k with
X = P1

k and D = [0] + [1] + [∞]. It is further true that a “strong abc conjecture,”
namely Conjecture 24.3b with X = P1

k and D = [0] + [1] + [∞], would imply Con-
jecture 24.1b for curves; in other words van Frankenhuijsen’s implication holds also
for algebraic points of bounded degree.

This circle of ideas stems from two observations. The first of these is due to Belyı̆
[1979]. He showed that a smooth complex projective curve X comes from a curve
over Q (i.e., there is a curve X0 over Q such that X ∼= X0×Q C) if and only if there is
a finite morphism from X to P1

C ramified only over {0,1,∞}. For our purposes, this
can be adapted as follows.

Theorem 31.1. (Belyı̆) Let X be a smooth projective curve over a number field
k, and let S be a finite set of closed points on X. Then there is a finite morphism
f : X → P1

k which is ramified only over {0,1,∞}, and such that S⊆ f−1({0,1,∞}).

Proof. See Belyı̆ [1979] or Serre [1989]. ut

The other ingredient is a complement (and actually, a converse) to Proposition
24.2, using truncated counting functions.

Proposition 31.2. Let k be a number field or function field, let S ⊇ S∞ be a finite
set of places of k, let π : X ′ → X be a surjective generically finite morphism of
complete nonsingular varieties over k, and let D be a normal crossings divisor on
X. Let D′ = (π∗D)red, and assume that it too has normal crossings. Assume also that
the ramification divisor R of π satisfies

(31.2.1) R = π
∗D−D′

(and therefore that π is unramified outside of SuppD′).4 Let K and K ′ denote the
canonical line sheaves on X and X ′, respectively. Then, for all x ∈ X ′(k̄) not lying
on SuppD′,

N(1)
S (D′,x)+dS(x)−hK ′(D′),k(x)

≥ N(1)
S (D,π(x))+dS(π(x))−hK (D),k(π(x))+O(1) ,

(31.2.2)

with equality if [κ(x) : k] is bounded. In particular, either part of Conjecture 24.3
for D′ on X ′ is equivalent to that same part for D on X.

Proof. First, by (31.2.1), we have K ′(D′)∼= π∗(K (D)). Thus

4 This condition is equivalent to (X ′,D′) being log étale over (X ,D) by [Kato, 1989, (3.12)], using
the fact that (X ′,D′) is log smooth over Speck by (3.7)(1) of op. cit.
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hK ′(D′),k(x) = hK (D),k(π(x))+O(1) ,

so it suffices to show that

(31.2.3) N(1)
S (D′,x)+dS(x)≥ N(1)

S (D,π(x))+dS(π(x))+O(1) ,

with equality if [κ(x) : k] is bounded.
Now let YS = SpecOk,S (or, if S = /0, which can only happen in the function

field case, let YS be the smooth projective curve over the field of constants of k for
which K(YS) = k). Let X be a proper model for X over YS for which D extends
to an effective Cartier divisor, which will still be denoted D. (This can be obtained
by taking a proper model, extending D to it as a Weil divisor, and blowing up the
sheaf of ideals of the corresponding reduced closed subscheme.) Let X ′ be a proper
model for X ′ over YS. We may assume that π extends to a morphism π : X ′→X ,
and that D′ extends to an effective Cartier divisor on X ′. We assume further that
SuppD′ = π−1(SuppD) (on X ′). Indeed, one can obtain X ′ and D′ by blowing up
the reduced sheaf of ideals corresponding to π−1(SuppD).

For x ∈ X ′(k̄), let L = κ(π(x)), let L′ = κ(x), and let Y [
S and Y ′S be the normaliza-

tions of YS in L and L′, respectively. Then we have a commutative diagram

(31.2.4)

Y ′S
i′−−−−→ X ′yp

yπ

Y [
S

i−−−−→ X

in which the maps i′ and i correspond to the algebraic points x and π(x), respectively.
We use the divisors D and D′ to define N(1)

S (D,π(x)) and N(1)
S (D′,x), respectively.

Then a place w of L contributes to N(1)
S (D,π(x)) if and only if the corresponding

closed point of Y [
S lies in i−1(SuppD), and similarly for places w′ of L′. By commu-

tativity of (31.2.4) and the condition SuppD′ = π−1(SuppD), it follows that

N(1)
S (D,π(x))−N(1)

S (D′,x) =
1

[L′ : k] ∑w′
(ew′/w−1) log#Fw′ ,

where the sum is over places w′ of L′ corresponding to points in (i′)∗(SuppD′), w is
the place of L lying under w′, ew′/w is the ramification index of w′ over w, and Fw′

is the residue field of w′. (In the function field case, replace log#Fw′ with [Fw′ : F ].)
We also have

dS(x)−dS(π(x)) =
1

[L′ : k] ∑Q′
ordQ′DL′/L · log#Fw′ ,

where the sum is over nonzero prime ideals Q′ of OL′,S, and w′ is the correspond-
ing place of L′. This sum can be restricted to primes corresponding to points in
(i′)∗(SuppD′), since the other primes are unramified over L by Lemma 23.14 ap-
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plied to π : X ′→X and the relevant local rings. Therefore the inequality (31.2.3)
follows from the elementary fact that

(31.2.5) ordQ′DL′/L ≥ eQ′/Q−1 ,

where Q = Q′∩OL,S. (This inequality may be strict if Q′ is wildly ramified over Q.)
Now if [L′ : k] is bounded, then the differences in (31.2.5) add up to at most a

bounded amount, so (31.2.3) holds up to O(1) in that case.
The last assertion of the proposition follows trivially from (31.2.2). ut

The implications mentioned in the beginning of this section then follow imme-
diately from Theorem 31.1 and Proposition 31.2, upon noting that (31.2.1) always
holds for finite morphisms of nonsingular curves.
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