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MSRI 1984-1985
Operator algebras year side by side with Low dimensional topology
year.
Many themes, subfactors N ⊆ M being one of them.

Before the MSRI year: Rediscovery in subfactors of the
"Temperley-Lieb" Algebra.

e2i = e∗i = ei , i = 1, 2, · · · , n

(n orthogonal projections onto subspaces of Hilbert Space.)

eiej = ejei if |i − j | ≥ 2

(subspaces orthogonal modulo their intersection if |i − j | ≥ 2)

eiei±1ei = τei for 1 ≤ i < n

("angle" between ith. and (i + 1)th. subspaces determined by the
number τ ∈ R.)
And a trace tr on the algebra generated by the e ′i s uniquely de�ned
by

tr(wen+1) = τ tr(w) if w is a word on e1, e2, ..., en.
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Restrictions on τ

For in�nitely many ei 's to exist as above, 1

τ must be either ≥ 4 or
one of the numbers

4 cos2 π/k for k = 3, 4, 5, · · ·

Wenzl- these restrictions apply even without the trace.
Implications for subfactors:
1) index [M : N] must be ≥ 4 or in the above set of numbers.
2)Subfactors exist with all these index values (constructed from the
ei 's and the trace).

Representation theory of the ei 's.
Given by the following diagram:
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For 0 < τ < 1/4 :

or for 1/τ = 4 cos2 π/k :
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or for 1/τ = 4 cos2 π/k :



(here 1/τ = 4 cos2 π/7)



Braid group: on generators σ1, σ2, · · · , σn−1,

σiσj = σjσi if |i − j | ≥ 2

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n

Compare:
eiej = ejei if |i − j | ≥ 2

eiei±1ei = τei for 1 ≤ i < n

To get a representation of the braid group send σi to

tei − (1− ei )

With τ =
t

(1 + t)2
. If ei were diagonalised, σi look like:
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0 t 0 · · ·
0 0 t

· · · −1 0
0 −1



Note: 0 < τ ≤ 1/4 means 0 < t < ∞ while

1/τ = 4 cos2 π/k means t = e
2πi

k

So these braid group representations are manifestly unitary if

t = e
2πi

k and not otherwise.
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Braids to knots:

α ∈ Bn → α

Observation: If α is represented in the Temperley-Lieb algebra as
above, by a theorem of Markov,

(normalisation)tr(α)

gives an invariant of the knot (or link) alpha. It's a Laurent
polynomial in t, written VL(t) for a link L.
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For the trefoil knot K =

VK (t) = t + t3 − t4

This summarises what was known going into the year 1984-1985.
Then things moved FAST.
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1) The polynomial VL(t) was extended to a two variable
generalisation , the HOMFLYPT polynomial, which also contained
the Alexander polynomial.
2)Several applications including braid index estimates and answers
to some questions about Conway's "skein theory".
3) Observation from stat mechanical models that VL(t) is
essentially independent of the orientation of L. Followed within a
few weeks by Kau�man's great diagrammatic insights:
a) VL(t) is simply the result of replacing a crossing by no crossing
in both ways:
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b) The Temperley-Lieb algebra can be realised entirely
diagrammatically as pictures like:

With braid-like concatenation as multiplication.
In particular the generator ei is represented by:

And in the same breath Kau�man discovered another 2-variable
knot polynomial. His diagrammatics soon led to the solution of a
Tait conjecture about alternating knots. The Tait conjectures were
completely solved more recently by Menasco and Thistlethwaite.
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On the subfactor side progress was made by Ocneanu and Wenzl.
Ocneanu's approach to the HOMFLYPT polynomial saw it as
coming from the Hecke algebra and isolated a sequence of
1-variable polynomials understood to have something to do with
SU(n), the polynomial VL(t) being the case n = 2. Used the
corresponding Hecke algebras to construct new subfactors.

The
principal graph of a subfactor emerged, being the graph An for the
subfactors constructed from the Temperley-Lieb algebra. It encodes
induction-restriction of bimodules between N and M. Ocneanu
gave a complete classi�cation of subfactors in index < 4 by Coxeter
graphs of types An, D2n, E6 and E8.

To see the principal graph arising look again at :
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At the end of the MSRI year 1984-1985 there was plenty of action
in this area but the following aspects were unsatisfactory:

i) A "context" was needed for subfactors.

ii) A topological interpretation was needed for VL(t) and the other
polynomials.
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1985− 1988

Organisational period. Jimbo,Woronowicz, Drinfeld - quantum
group.
Picture emerged:

To every irreducible �nite dimensional representation of a simple lie
group/algebra there is
1) A one parameter family of subfactors. (Sawin)
2) A knot polynomial with direct statistical mechanical sum
formula. For links can put representations on individual
components.
3) A braid group representation with Markov trace.
Roots of unity:
Tricky in quantum group world but here the subfactor picture
reigns supreme (Wenzl, Feng Xu) as all the non semi-simple clutter
is pared away by positivity.
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To jump ahead into the '90s, it was in the subfactor arena that
enduring "sporadic" objects were discovered by Haagerup (and

Asaeda). Index 5+
√
13

2
and principal graphs :

These objects remain "exotic" creatures in the zoo.
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The 600 pound gorilla: CONFORMAL FIELD THEORY
Belavin Polyakov Zamolodchikov.
A paper by Tsuchiya and Kanie obtaining the braid group reps (at
roots of unity) in a WZW model.

Even more murky, Fredenhagen, Rehren, Schroer, and Longo,
suggesting that braid groups and subfactors should crop up in
general low dimensional QFT in the Haag-Kastler algebraic QFT
framework following Dopplicher, Haag, Roberts.
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1988: Witten- TQFT (Atiyah)
An interpretation of VL(t), at t = e2πi/k , as a functional integral in
a 2+1 dimensional gauge theory, gauge group SU(2) (as expected),
with Chern -Simons action, the knot invariant being the expected
value of the trace of the monodromy along the components of the
link which now became known as "Wilson loops".

EXPLICIT formula for links in an arbitrary 3-manifold via surgery
on links or Heegard splitting!
Complete veri�caiton by Reshetikhin-Turaev.
Turaev-Viro Ocneanu-3 manifold invariants from general categorical
data as provided for instance by a subfactor.
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MSRI meeting January 1989. Lots of key actors present, Atiyah,
Bott, Witten, Jimbo, Miwa, Kau�man, Faddeev, Wassermann....
Greatly clari�ed the situation. Finally got over the feeling that the
Russians and the Japanese knew something that we didn't.

Subfactor outcome: Wassermann's construction of subfactors from
loop group representations:
take positive energy projective representations of LSU(2),
parametrized by a central extension (level) and an irrep of SU(2),
then if I is an interval in the circle with I c the complementary
interval,

LISU(2)′′ ⊆ LI cSU(2)′

is a subfactor realising the indices 4 cos2 π/(level) (more generally
sin

2(kπ/`)
sin2π/`

).

And in fact this is an instance of the Fredenhagen-Rehren-Schroer
theory, with braiding as predicted!
The main technical and conceptual tool used by Wassermann is the
Connes tensor product of bimodules over a von Neumann algebra,
which in turn relies on the Tomita-Takesaki theory.
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Turning again to topology, a new ingredient entered the game in
the early 1990's - Vassiliev theory.
Thinking of knots as smooth functions from S1 to R3, Vassiliev
began the study of the algebraic topology of this space and
obtained new knot invariants. Birman and Lin furthered their study
and the concept of "�nite type invariant" emerged. The idea is to
extend any additive knot invariant Inv to an invariant of immersed
curves with at worst double point singularities by locally setting

Inv = Inv − Inv

Then Inv is of �nite type n if it vanishes on immersed curves with n

double points.
The knot polynomials are a source of �nite type invariants but it
was shown by Vogel that there are others. Kontsevich discovered a
beautiful general integral formula for �nite type invariants, thinking
of them more as a perturbative expansion of a functional integral.



Bar-Natan put everything together in a stunningly comprehensible
paper which made the whole theory broadly accessible and showed
that one could construct knot invariants by studying "chord
diagrams" modulo certain linear relations.
There emerged a basic relationship with (not necessarily simple) Lie
algebras and understanding of how these invariants �t together,
even for the simplest knots, gives information about Lie algebras.
(Bar-Natan, Le, Thurston-Alexeev.) Vogel showed that not all
�nite type invariants come from Lie algebras.
All this has to a certain extent been extended to knots and links in
arbitrary 3-manifolds though I believe that, beyond homology
3-spheres, things remain a little murky.
Another major problem in this area is to understand how the
Witten-Reshetikhin-Turaev invariant depends on the root of unity.
In the best of all worlds there would be a holomorphic function of q
of which it is the boundary value but this is appears to be too
naive. Recent progress by Garoufalidis.



There are various conjectures concerning the asymptotic behaviour
of the WRT invariants and how they relate to other geometric or
topological invariants. Let me mention Kashaev's volume
conjecture (just for knots). If K is a knot with hyperbolic
complement, one looks at

VSU2,kdimensionalrepresentation(e
πi/k)

(the value of t is the value for which the invariant of an unknot is
zero (!))

Then as k →∞, the asymptotic growth of this number is
controlled by the hyperbolic volume.
Result is known for some small knots by explicit computations. The
experts are not entirely in agreement as to whether it should be
true.
Other asymptotic expansions proved recently by J. Anderson.
Marcos Marino, Aganagic, Klemm, Vafa and others made
connections with Calabi-Yau three-folds via matrix models.
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A more recent development has been Khovanov homology. This

uses the basic Kau�man resolution of a crossing

but "categori�es" it in that the basic invariant associated to a link
is a graded complex and the relation between the complexes at a
crossing is an exact sequence between the three complexes. The
invariant ends up, at least in the hands of Bar-Natan, being a
complex up to homotopy equivalence. The Euler characteristic of
the complex is VL(t). Bar-Natan's version is highly calculable by a
"planar algebra" approach.
Khovanov and others have extended categori�cation to many other
knot invariants and beyond.
Khovanov homology has yielded proofs of topological results
(Rasmussen), it is strictly more powerful than the corresponding
Euler Characteristic polynomials, and it looks like it is the arena for
connections with gauge theory, e.g. Floer homology.



What about subfactors?
The 90's saw deep classi�cation results by Sorin Popa who showed
that in "amenable" cases (both the factor, the subfactor and the
principal graph), the subfactor is completely classi�ed by what is
known as the "standard invariant" (an enrichment of the principal
graphs containing not just the bimodules and their tensor powers
but intertwiners between them). These results extend Connes'
breakthrough results from the 70's classifying automorphisms and
group actions.



An Einstein manifold is one for which the Ricci tensor is a constant
multiple of the metric. The constant is called the cosmological
constant and Einstein stated at one point that it was the greatest
mistake in his career....

An attempt to use subfactors to provide information on a huge
variety of combinatorial problems. Di�culty: Compute the principal
graph.
May eventually prove fruitful though no doubt less universal than
hoped, but one thing it did lead to was the development of planar
algebras which provided a very convenient axiomatisation of the
standard invariant of a subfactor and a useful technique for
analysing their structure. Similar in spirit to Conway's "skein
theory".
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A tangle:



Given A,B,C in the standard invariant,

Gives D also in the standard invariant. Recent interaction with
random matrices and free probability (Voiculescu). (with Guionnet
and Shlyakhtenko.)



Freedman et al approach to quantum computer.
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The idea is to spread out the quantum system in some
2-dimensional quantum �uid.
The qbits are then replaced by quasiparticles. According to FRS, if
one carries out a motion in such a �uid, returning n points to their
original position, the Hilbert space should evolve according to a
braid group representation. The ones described at the beginning of
this talk are precisely those one would expect for such a system.
One could then encode a calculation as a braid.

Freedman et al have shown that for the value t = e2πi/5 such a
computer would be "Universal for quantum computation". The
problem then is to �nd a physical system obeying such non-abelian
statistics. Hopes are pinned on the fractional quantum hall e�ect at
very low temperature.
Freedman's Navier Stokes on Mars analogy.
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