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1 Introduction.

This is a series of 8 lectures designed to introduce someone with a certain amount of
mathematical knowledge to the Jones polynomial of knots and links in 3 dimensions.
The amount of mathematical knowledge required will increase from high school math-
ematics in the first two lectures to at least graduate student level in the last lecture,
which will be a survey of developments of the Jones polynomial. A particular aim of
the course will be to obtain the Jones polynomial for torus knots. This will require
a little representation theory. In general proofs will be discussed rather than given
as it is easy to find proofs with the help of google.

2 Knots, links braids and tangles.

A knot is a smooth closed curve in three dimensional space R3. As such it is an
object of topology, two knots are "the same" if one can be obtained by the other by
smooth deformations of R3. A link is a disjoint union of several knots.

Two fortunate features make the theory of knots particularly accessible and al-
low us to actually forget the analysis underlying the word "smooth". The first is
that knots are perfectly adequately modeled by bits of string and the "smooth defor-
mations" are modeled by manual manipulation of the strings (without ever cutting
them). Thus the question "is this knot the same as that knot" can be approached
quite experimentally by tying the knots and seeing if the first can be manipulated
to look like the other. One immediately meets the necessity of mathematical proof -
how can one be sure that a little more manipulation would not have turned the first
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knot (the "trefoil") below into the second (the "figure 8"):

or indeed that either of them can be converted into the "unknot":
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Whatever sense one may attach to the word "topology", knot theory fits into
topology and one should search for ways of distinguishing knots from topology.

Moreover the second fortunate feature of knot theory is now visible: although
knots are inherently 3 dimensional, they can be faithfully represented by two dimen-
sional pictures such as the ones we have seen above, all the 3 dimensionality being
reduced to whether the crossings in the picture are over or under. And the funda-
mental question of knot theory becomes: when do two pictures of knots represent
the same knot?

This question was answered in the early twentieth century by Reidemeister.
There are three "Reidemeister moves" which act locally on pictures, only chang-
ing that part included in the move. We draw the Reidemeister moves below:
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The theorem is that any two pictures of the same knot can be obtained from one
another by two dimensional deformations (called isotopies) and Reidemeister moves.
It is in fact not too hard to convince oneself of this but the proof is really a four
dimensional thing-one considers a "movie" of pictures and one must arrange for the
simplest possible things to happen when crossings meet one another.

The Reidemester moves reduce knots to objects of planar combinatorics! This
does not however necessarily simplify matters. But one can search for combinatorial
formulae that don’t change under the Reidemeister moves. For links one could give
the rather trivial example of the number of components.....The simplest example
which gives information about knots is the number of Fox 3-colourings explained in
the picture below:
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One can check without much pain that the number of three colourings is invariant
under the Reidemeister moves.

Knots and links may or may not be the same as their mirror images (=all crossings
reversed). If they are they are called amphicheiral and sometimes called chiral if they
are not. The trefoil is chiral, the figure 8 is amphicheiral. The first fact is not obvious,
the second can be easily demonstrated.

A simple measure of the complexity of a knot is the number of crossings required
to draw a picture of it. This number is obviously an invariant but is not always
easy to compute. Tables of knots are arranged by the crossing number. All knots
have been classified by Morwen Thistlethwaite up to 16 crossings. Up to 10 crossings
there are about 200 different ones (not counting chirality) and they were classified,
almost entirely correctly, by Tait and Little in the 19th century. They are referred
to by some standard numbering as in Rolfsen’s book "Knots and Links" so that 84
for instance is the knot:

The knot atlas: katlas.math.toronto.edu/wiki/ is a mine of information.
Gauss code:
Links present knottedness of a different kind from knots. The extreme is the

"Borromean Rings" which consists of three unknotted circles which come apart if
any of the three is removed:
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Links with this property are called "Brunnian"
Knots and links may be oriented. In pictures this is achieved simply by giving a

direction to the components thus:
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For oriented links one needs to consider the Reidemeister moves with all possible
orientations. The "reverse" of a knot is the same knot with opposite orientation. A
knot may or may not be the same as its reverse, if it is it is called reversible. It is
somewhat surprising that small knots tend to be reversible. in fact the smallest knot
that is not reversible has 8 crossings.

Once oriented, a crossing has a sign. By convention the following crossing is
positive:
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One may think of a screwdriver going "into" the crossing with its extremities on
the strings and turning in the positive direction (tightening up the screw).

For links, the number of crossings counted with signs is invariant under the
Reidemeister moves. It is called the linking number. Gauss obtained a beautiful
integral formula for it given the knot as a subset of R3.

Braids are links with a rather organized boundary. Informally speaking a braid
consists of two bars which may be assumed to be top and bottom, and strings which
tie the top bar two the bottom bar. The rule about braids is that the strings never
have a horizontal tangent vector so once they start going up they keep going up.
Here is an example of a braid:
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Like links, braids are considered to be the same if, after making sure the top and
bottom points of contact between the bar and the strings are the same, they can be
deformed to one another by smooth deformations happening entirely in the region
between the bars. We will return to braids in some detail later.

Tangles are the full Monty-links with boundary, which may be considered to be
a ball or a box, or ever something more exotic, with no restriction on what happens
to the (smooth) strings inside. The only obvious restriction is that the number of
boundary points must be even-but is not necessarily divided into two equal halves
like a braid. Here is a picture of a tangle:

11



3 The Jones polynomial.

Second definition of the Jones polynomial. (The first will be last...)
The Jones polynomial is an assignment of Laurent polynomials VL(t) in the vari-

able
√
t to oriented links L subject to the following three axioms.

(a) Two equal links have the same polynomial.
(b) The polynomial of the unknot is equal to 1
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(c) (The skein relation) If three links L+, L− and L0 have pictures which are identical
apart from within a region where they are as below:

then
1/tVL+ − tVL− = (

√
t− 1/

√
t)VL0

This is less a definition than a calculational method. There is no guarantee at
this stage that such an invariant exists. I want to convince you though, right away,
that the "skein" formula suffices to calculate VL(t), inductively on all links. We begin
with two unlinked circles. Call that link C. Then consider the following picture:
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Clearly we may apply axiom (c) with both L+ and L− being the unknot and L0

being C. So we have
1/tVL+ − tVL− = (

√
t− 1/

√
t)VC

which gives
VC = −(

√
t+ 1/

√
t)

Now consider the link called H in the following picture (sometimes called the
Hopf link):

14



again by axiom (c) we have:

1/tVH − tVL− = (
√
t− 1/

√
t)VL0

which by our previous calculation gives

VH = −
√
t(1 + t2)

Now finally we can calculate the polynomial of the trefoil:
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We have
1/tVT − tVL− = (

√
t− 1/

√
t)VL0

and since L− is the unknot and L0 is now H we get:

VT = t+ t3 − t4

We invite the reader to try his/her hand at the figure 8 knot, the answer is

V8 = t−2 − t−1 + 1− t+ t2

It should now be fairly obvious that the axioms for the Jones polynomial suffice
to calculate it. The point is that any knot/link can certainly be untied by changing
enough crossings. So there must be, somewhere in any picture, a crossing that
"simplifies" the knot if it is changed. If one makes this crossing the L+ part (or L−
as the case may be) then L− is simpler and L0 has one less crossing so is way simpler.
This argument can be made to work by introducing the right notion of complexity
for pictures of links.
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Some observations are immediate:
(1)

VL′(t) = VL(1/t)

if L and L′ are mirror images of one another.
(2) So the mirror image of the trefoil is not the same as the trefoil.
(3) The polynomial of a link with an odd number of components is a (Laurent)
polynomial in t and the polynomial of a link with an even number of components is√
t times a (Laurent) polynomial in t. (4) The polynomial of the "connected sum"

of two two is the product of their polynomials.
One may wonder what is special about the choice of coefficients in the skein

relation for VL. The answer is absolutely nothing-there is a polynomial in 3 variables
(only two really by an obvious normalization) called the HOMFLYPT polynomial
defined by the first formula below:

The second formula is a skein relation noticed by Conway for the "classical"
Alexander polynomial which came originally from algebraic topology.

There are pairs of different knots with equal Jones, indeed HOMFLYPT, polyno-
mials though they are not particularly easy to find. There are non-trivial knots with
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trivial Alexander polynomials and devices for producing such. But the existence
of knots with trivial Jones polynomial remains an unsolved problem 30 years after
the discovery of the polynomial. Remarkably, Thistelthwaite, or more correctly his
computer, discovered a two-component link whose Jones polynomial is −(

√
t+1/

√
t)

- the same as that of the two-component unlink. We have drawn this link above as
our first example of an oriented link.

Third definition of the Jones polynomial (due to Kauffman).
It is a surprising property of the Jones polynomial, from the above definition,

that it only changes by a power of t if one changes the orientation of any component
of a link. This is certainly not true of the Alexander polynomial even. This was
observed by myself using the Temperley-Lieb algebra below, and fully explained and
exploited by Kauffman.

Definition 3.1. Two unoriented link diagrams are said to be "regular isotopic" if
they can be converted one to another by Reidemeister moves of types II and III.

Kauffman defined an invariant of regular isotopy of a link L, the Kauffman
bracket, 〈L〉 by the following skein relation:
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The meaning of this elegant notation should be clear. Unlike the first skein
relation for the Jones polynomial, this one is particularly simple since the number of
crossings is strictly reduced when it is applied. This means that there is a completely
explicit formula for the Kauffman bracket as a sum over all 2n ways of "smoothing"
all the n crossings of the product over all the crossings of a factor A±1 depending
on how that particular crossing was smoothed, times a factor which accounts for the
number of (disjoint) closed curves formed when all the crossings are smoothed. It
follows easily from the bracket skein relation that a closed curve must count for a
factor δ = −A2 −A−2.

With this formula the Kauffman bracket is simply defined for any link diagram.
It is a surprisingly easy exercise to check that the bracket thus defined is invariant
under the type II and III Reidemeister moves!!

In fact regular isotopy is not very far from isotopy. The type I move is quite
innocent and all the simple twists involved can be concentrated in one little region
of the knot that does not see the II and III moves. To obtain the Jones polynomial
from the Kauffman bracket one orients the link L to obtain

→
L and multiplies the

Kauffman bracket by a factor

A−3wr(
→
L)

where wr(
→
L) is the number of crossings, counted with their signs. It is not difficult

to show that this is invariant under all the Reidemeister moves and satisfies the skein
relation of definition 2 of V→

L
, with t = A4. One must also divide by a factor of δ to

account for the normalization of the unknot.
Here is the Kauffman bracket calculation for the Hopf link:

19



which gives

〈H〉 = (A2 +A−2)(A4 +A−4)

If the link is oriented appropriately the writhe is 2 so after dividing by δ one
obtains −A6(A4 + A−4) = −A2(1 + A8) = −

√
t(1 + t2), agreeing with our previous

calculation.
What is extremely useful about the Kauffman bracket is that one can under

certain circumstances, locate the terms of highest and lowest degree. One obtains
immediately that deg(VL(t)), defined as the difference between the highest and lowest
powers of t is ≤ the number of crossings! And things are particularly simple for
"alternating" links where the crossings alternate over and under as one goes around
the components of the link. In this case the term of highest degree comes from
smoothing all the crossings the same way (A smoothing) and the lowest degree
comes from smoothing them all with the A−1 smoothing. (One has to be a bit
careful because one may form the connected sum of two links in an alternating way
by adding a crossing where the two links are joined, but magically this problem takes
care of itself.) Putting the two results together one obtains that, for an alternating n-
crossing link (that does not have a crossing splitting it as above), degVL(t) is actually
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equal to the number of crossings! Thus L has no picture whatsoever with less than
n crossings. This had been a conjecture for over a century when it was proved by
Kauffman, Murasugi and Thistlethwaite in the mid 1980’s.

By either the Kauffman bracket or the first skein definition the Jones polynomial
is inherently exponential time to compute. It is known to be NP-hard but not known
to be NP.

4 The braid group and links.

4.1 Definition of the braid groups.

The set of all braids on n strings forms a group Bn. The group multiplication is
defined by concatenation as in the picture below:

The identity braid is the braid which consists of
n vertical straight lines. The inverse of a braid can be seen by looking at it in a
mirror, or bit by bit as below. Note that a braid defines a permutation of its end
points. Thus there is a homomorphism from Bn onto the symmetric group Sn. The
kernel of this homomorphism is called the pure braid group Pn.

With a little nudging, all the crossings in a braid can be assumed to occur on
different horizontal levels. This means that any braid can be written as a word on
the generators σ1, σ2, ...., σn−1 depicted below:
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The relations
σ1σj = σjσi if |i− j| ≥ 2 and

σiσi+1σi = σi+1σiσi+1

follow immediately from the pictures below:

22



It is a result of E. Artin that Bn is actually presented on these generators and
relations so Bn has a separate life as a finitely presented discrete group. This has
great significance - for instance if one wants to find a representation of the braid
group it suffices to find matrices satisfying the appropriate relations.

Note that if one adds σ2i = 1 to the braid group relations one obtains a well
known presentation of Sn. This corresponds to the action of the braid group on the
end points of the braid.

Here is a potpourri of elementary facts about the braid group (all more or less
true):
0) The braid group Bn is embedded as a subgroup of Bn+1 by adding a vertical
string to the right of the braid. 1) The braid group B2 is isomorphic to Z.
2) The element ζ = (σ1σ2σ3...σn−1)

n generates the centre of the braid group. (Geo-
metrically it is a full twist so clearly in the centre.)
3) The quotient of B3 by its centre is the modular group PSL2(Z).
4)B3 itself is the inverse image of SL2(Z) in the universal covering group ˜SL2(R)
(under the covering map).
5) Bn acts on the free group Fn in an obvious way when Fn is realized as π1 of R2

minus n points. This action is faithful.
6)The pure braid group Pn+1 is the semi direct product of the free group Fn and Pn.
7)The braid groups are not amenable but they do not have Kazhdan’s property T.
8) Any braid can be written as a power of ζ times a "negative" braid- word in the
inverses of the σi. 9) The braid groups are known to be linear (∼= a subgroup of
GLm(R) via a representation that came out of the knot polynomials.

4.2 Closing a braid.

There is a powerful way to form a link α̂ from a braid α. It is given by the following
picture:
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Note that the closure of a braid is a knot iff the element of Sn determined by
the braid is an n-cycle. In general the number of components of the closure is the
number of orbits of the permutation on the end points.

Closed braids are naturally oriented, say from the bottom to the top of the braid.
It is a theorem of Alexander that any oriented link can be obtained as the closure of
the braid. Several cunning algorithms have surfaced recently, e.g. one by Vogel, for
turning a link into a closed braid, but the procedure is simple enough-one only has
to find a point in the plane about which the strings of the link always turn in the
same direction. By "opening up" as below one sees a closed braid:
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Of course there may not be a point about which the strings all travel clockwise
or anticlockwise. But this can always be achieved by "throwing the bad parts over
one’s shoulder" as below:

Thus we have a surjective map from braids to links. This raises the question as
to the "kernel" of this map, i.e. when do two braids represent the same link? The
answer to this is provided by the Markov moves:
Type I: conjugation within Bn
Type II: If α ∈ Bn then replace α by ασ±1n ∈ Bn+1 (And inversely.) Markov’s
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theorem asserts that two braids represent the same link iff they can be transformed
from one to another by a sequence of Markov moves.

Here are some diagrams showing the "if" direction of Markov’s theorem:

Conjugation in a group is a rather natural operation which occurs everywhere in
representation theory so Markov’s theorem strongly suggests looking at representa-
tions of groups for invariants of links. Going between different braid groups means
one will have to have coherent representations of all the braid groups at once to be
able to use Markov’s theorem.

4.3 The torus knots.

The torus link of type (p, q) is the closure of the braid (σ1σ2...σp−1)
q ∈ Bq. If p and

q are relatively prime this is a knot. Thus the trefoil is the (2, 3) trefoil knot. Our
goal in these lectures is to calculate the Jones polynomial of the (p, q) torus knot.

4.4 Representations.

Very few (linear) representations of the braid groups had been considered before
1984. There was only really the Burau representation which we describe from the
combinatorial point of view. It suffices to construct matrices S1, S2, ...., Sn−1 satis-
fying the braid relations. Here is a family of such matrices:
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The above matrices are row-stochastic (at least for 0 ≤ t ≤ 1) so the represen-
tation is not irreducible. The quotient by the one-dimensional invariant subspace is
called the "reduced Burau representation". It has a simple interpretation in terms
of algebraic topology and is intimately related to the Alexander polynomial. In fact
the determinant of 1−Burau(a braid) is a multiple of the Alexander polynomial of
that braid.

The Burau representation is faithful for n = 3 and not faithful for n ≥ 5. Its
faithfulness for n = 4 is a major open question.

Note how the Burau representation becomes a permutation representation when
t = 1.

5 The Temperley Lieb algebra.

5.1 First definition of the Temperley-Lieb algebra.

Definition 5.1. For τ ∈ C TLn+1(τ) is the associative unital (i.e. has an identity)
*-algebra with generators e1, e2, ..., en and relations
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(a) e2i = ei = e∗i
(b) eiej = ejei for |i− j| ≥ 2
(c) eiei±1ei = τei.

This algebra was first encountered by Temperley and Lieb in work on statisti-
cal mechanics. It was rediscovered as a von Neumann algebra involving index for
subfactors and its structure was given for all relevant values of τ .

Let us warm up by figuring out the structure of TL1, TL2 and TL3. Let us
assume they are semisimple. Since we are working over the complex numbers this
just means they are direct sums of matrix algebras of various sizes. Semisimplicity
is a "generic" condition- it is true whenever the "Killing form" is non-singular so
for an algebra depending on a parameter like TL, it will be semisimple for all but a
finite number of values of τ provided it is semisimple for a single value. We will later
see why it is semisimple for τ = 1

4 for all n. One may suppose that ∗ is conjugate
transpose.

TL1: No ei’s at all, just the identity so ∼= C

TL2 : 1− e1 is also idempotent and e1(1− e1) = 0 so ∼= C⊕ C
TL3: Spanned by 1, e1, e2, e1e2, e2e1, and non abelian so ∼=M2(C)⊕ C

Counting words on e1, e2 and e3 and a little wishful thinking gives dimTL4 = 14
and the observation that e1 = e3 gives a representation of TL4 onto TL3 more or
less forces:

TL4
∼=M2(C)⊕M3(C)⊕ C

We can deduce that the obvious "inclusion" maps between TL1, TL2, TL3 and
TL4 are actually injective and thus genuine inclusions. And we can schematically
begin the structure of all TLn with the diagram:
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Note that there is a problem with TL3 if τ = 1 (or zero). For in the 2x2 matrix
part, e1 and e2 will be rank one projections and e1e2e1 = e1 forces e1 = e2 and
e1e2e1 = 0 forces e1 and e2 to commute! For these values of τ the algebra is not
semisimple. The problem gets worse for n = 4 where the value 1

2 causes problems.
This can actually be seen geometrically. Once again in the M2(C) part, e1, e2 and
e3 are rank one projections, and we might as well be working over R. The relation
e1e2e1 = τe1 determines the angle between the subspaces onto which the ei’s project.
For τ = 1

2 this angle is π
4 for e1, e2 and e2, e3 and by e1e3 = e3e1, it is π

2 for e1 and e3.
Thus all three subspaces live in a plane, so projections onto them cannot generate a
3x3 matrix algebra!

This nuts and bolts approach would start to become difficult for larger n.

5.2 Some easy facts.

1) Any reduced word (after applying the relations in the definition) on e1, e2, ...en
contains en at most once.

Proof. Write a word as w1enw2enw3. If we can get rid of one of the en’s we are done.
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First we may suppose that w2 does not contain en by taking a nearest pair of en’s.
By induction we may write w2 = xen−1y or w2 = x where x and y do not contain
en or en−1. In the first case use relations (b) and (c) of TL and in the second case
relations (b) and (a) to get rid of one of the two en’s.

2) Corollary: dimTLn <∞.
3) Corollary: dimTLn ≤ 1

n+1

(
2n
n

)
Proof. By pushing emax to the right as much as possible any word on e1, e2, ...., en
is proportional to a product of strings of ei’s with indexes decreasing by one, with
the beginning and end of each string strictly increasing, such as

(e5e4e3)(e6e5)(e8e7e6)

It is an exercise to show that such words are counted by the famous Catalan numbers
1

n+1

(
2n
n

)
.

5.3 Second definition of Temperley Lieb, due to Kauffman.

Definition 5.2. For δ ∈ C tln(δ) is the algebra whose basis is the set of (planar
isotopy classes of) tangles without crossings (called planar tangles) with 2n boundary
points, divided into top and bottom, and no closed loops. Thus an example of a tl5

basis element is:
Basis elements are multiplied by concatenation, like braids, with the (inevitable)
closed loops being removed, each one giving a multiplicative factor of δ. Thus:
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If we define Ei by the tangle:

then the following relations are shown by simple diagrams:
(a)E2

i = δEi
(b)EiEj = EjEi if |i− j| ≥ 2
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(c)EiEi±1Ei = Ei.
Thus if τ = δ−2 there is an algebra (*-algebra if obvious * structure on tl)

homomorphism ι : TLn → tln given by ι(ei) = 1
δEi.

Proposition 5.1. ι is an isomorphim of *-algebras.

Proof. It is well known that the dimension of tln is 1
n+1

(
2n
n

)
(e.g. by generating

functions). So it clearly suffices by fact (3) concerning TL to show that ι is surjective,
i.e. any tl basis element is 1 or a product of ei’s. This is not hard. If One takes a
tln+1 diagram and moves all local minima close to the top and all local maxima close
to the bottom one is left with a picture that decomposes into a top part, a bottom
part and n− p "through strings" in between. If the element is not the identity there
have to be local maxima and minima. This is illustrated in the top part of the
following picture:

The second diagram above is the same picture after an isotopy which exhibits the
original element as T2EnT1 with T1 and T2 both in tln (embedded in tln+1 via a
vertical string on the right). By induction we are through.

As corollaries we have that the inclusion maps between the TLn are indeed all
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inclusions and that the dimension of TLn is 1
n+1

(
2n
n

)
(independent of semi simplicity

but provided τ 6= 0).

5.4 Representations and restricition.

The decomposition above of an arbitrary tl element into a top and a bottom suggests
one should focus on the top and bottom parts separately.

Definition 5.3. The set Kn,p, for n ≡ p mod 2, is the set of all planar tangles
(no crossings) with n strings on the top and p strings on the bottom which are all
connected to the top (and no closed loops). Kn,p is the vector space having Kn,p as
a basis.

Definition 5.4. The representation πn,p of TLn (identified with tln) on Kn,p is
defined by concatenation and removing closed loops as in the Kauffman definition of
TL, but the answer is zero if there are less than p through strings in the concatenated
tangle.

This representation can actually be deduced from a filtration of tln according to
the number of through strings in a natural way. We leave the details to the reader.

The following observation highly illuminates the structure of the Temperley-Lieb
algebra.

Let K+
n,p be the set of all Kn,p elements such that the top right string is a through

string and K−n,p be the complement. K+
n,p is in obvious bijection with Kn−1 ,p−1 .

Moreover moving the string attached to the top right point down to the bottom
gives a bijection from K−n,p to Kn−1 ,p−1 , as illustrated in the picture below:
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Linearising we see that

Kn,p
∼= Kn−1,p−1 ⊕Kn−1,p+1

It is a simple observation that this map intertwines the actions of TLn−1, on Kn,p

by the inclusion of TLn−1 in TLn and on Kn−1,p−1 ⊕Kn−1,p+1 as the direct sum of
modules.

Corollary 5.1. dimKn,n−2r =
(
n
r

)
−
(
n
r−1
)

Proof. By the above, both the left and right hand sides satisfy the same recurrence
relation and boundary conditions.

Assume for the moment that all these representations are irreducible. We will
see that this happens for generic τ and the numerics are compelling:

1

n+ 1

(
2n

n

)
=

∞∑
r=0

(

(
n

r

)
−
(

n

r − 1

)
)2
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is an easy binomial identity (in Feller’s book for instance).
We can now complete the Bratteli diagram which we gave above, interpreting it

in terms of the irreducible representations of TLn for all n and how they restrict via
the inclusion of TLn in TLn+1. By what we have shown, the answer is:

The numbers appearing on each row are the dimensions of theKn,n−2r, numbered
with r = 0 on the right, increasing to the left. The diagonal lines indicate the
restriction of each representation to the previous TL. For semisimple (complex)
algebras is entirely equivalent to giving the structure of the TLn as sums of matrix
algebras and defining the inclusions between them.

One could describe the Bratteli diagram as Pascal’s triangle truncated to the
right of a vertical line, with the numbers adjusted so that the familiar addition rule
of Pascal’s triangle still holds.

So if TL is semisimple, we are done, we know its structure completely. We now
need to return to the thorny question of its semisimplicity which we can actually
address using the Kn,n−2r. For the structure of the algebra is remarkably simple by
decomposing into a top and bottom with through strings in between. In fact we see
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immediately that, as vector spaces, independent of any semisimplicity,

tln ∼=
[n
2
]

⊕
r=0

Kn,r ⊗Kn,r

To see the algebra structure we remind the reader of a very simple fact from
linear algebra:

If V is a finite dimensional vector space and 〈, 〉 is a nondegenerate bilinear form,
then the action of V ⊗ V on V given by

v ⊗ w(u) = 〈w, u〉v

establishes a linear isomorphism of V ⊗ V with End(V ), the algebra of all linear
transformations of V .

Moreover, the algebra strucure on End(V ), translated back to V ⊗ V is

(v1 ⊗ v2)(w1 ⊗ w2) = 〈v2, w1〉v1 ⊗ w2

But now consider the bilinear 〈, 〉 form on Kn,r defined by:

ST ∗ = 〈S, T 〉id

where id is the identity in TLn−2r mod the ideal spanned by diagrams with < n−2r
through strings. And ST ∗ is defined as follows:

with T ∗ being T reflected in a horizontal mirror.
It is clear that basis diagrams in TLn with exactly n− 2r through strings, span

the quotient Qn,r by the ideal spanned by diagrams with less than n − 2r though
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strings and that they multiply exactly as the multiplication in the isomorphism
above with Kn,n−2r ⊗ Kn,n−2r with our bilinear form 〈, 〉. The conclusion is that
Qn,r ∼= End(Kn,r) as soon as 〈, 〉 is non-degenerate. Which means that TL will be
semisimple as soon as all the 〈, 〉 (as r varies) are non-degenerate. But consider the
matrix of 〈, 〉. It consists of powers of δ and zeros. A moments thought suffices to
convince oneself that the highest power of δ is δr and that this occurs only on the
diagonal.

"Diagonal dominance" implies that the determinant of this matrix is non-zero
as soon as δ is sufficiently large. We conclude that all the πn,r are irreducible, and
tln(δ) is semisimple as soon as δ is large enough. (The exact determination of the
rank of 〈, 〉 for all δ is much more difficult but we will not need it.)

6 The Markov trace on the Temperley Lieb algebra.

6.1 The Markov trace, uniqueness and existence.

In [] the main object of study was in fact a trace

:
∞
∪
n=1

TLn(τ)

defined by the three properties:
(a)tr(ab) = tr(ba)
(b)tr(1) = 1
(c) tr(wen) = τtr(w) for w ∈ TLn(τ)

It is not hard to show, given what we did in the last section, that such a trace
exists and is uniquely defined by these properties. In fact existence is even easier via
the isomorphism with tl. If T is a basis diagram just define tr(T ) to be δ−n+k where
k is the number of closed loops formed when T is closed just as we closed braids
above. It is a simple exercise to prove properties (a),(b) and (c).

Now suppose TL(n) is semisimple so its structure is given by our demi-Pascal
Bratteli diagram. A trace on a direct sum of matrix algebras is a weighted sum of
the traces in the individual matrix algebras, the weight being the trace of a rank one
projection in that algebra.

6.2 The weights of the Markov trace

We will assume throughout this section that TL is semisimple, e.g. for large δ so
that our previous analysis of its structure holds. In particular we have an explicit

isomorphism T ln ∼=
[n
2
]

⊕
r=0

End(Kn,n−2r). So we can choose minimal projections pk,r
in End(Kn,n−2r) and view them as elements of TLn. As elements of TLn they are
characterized by the property that they are minimal projections on Kn,n−2r and zero
on Kn, ` for ` 6= n− 2r.
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Definition 6.1. The weights of the Markov trace are

wn,r = tr(pk,r)

Let us begin gently and calculate the weights of the trace for TL2, TL3 and TL4.
We know that TL2 is C ⊕ C, with the first summand being multiples of e1 and

the second being multiples of 1 − e1. Thus the weights are trivially τ and 1 − τ .
For TL3 e1 is a rank one projection inside M2(C) so the weight coresponding to the
representation on K3,1 is τ . Since the trace of the identity is 1 we conclude that the
weight of the trace for the representation K3,0 is 1 − 2τ . The argument for TL4 is
given in the next picture which also summarizes the results:

Definition 6.2.

We could get a bit further with this ad hoc approach but for an elegant deriva-
tion of the weights of the trace we need two more ingredients, the first is a simple
observation:
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Proposition 6.1. wn,r = τwn+2,r+1

Proof. This will follow immediately from property (c) of the Markov trace and the
fact that en+1pn,r is a minimal projection in End(Kn+2,r+1). This follows from the
corresponding property of pn,r and the following picture:

Looking at the Bratteli diagram this shows that wn,r is determined from wn− 2, r − 1
so inductively all we need to know is wn, n. So we need to know about pn,n. Note
that dimKn,n = 1 so there is a unique choice of minimal projection pn,n.

Definition 6.3. pn,n ∈ TLn is called the nth. Jones-Wenzl idempotent, written fn
for short.

Let Pn be the polynomials in τ defined by P0 = 0, P1 = 1 and Pn+1 = Pn−τPn−1.

Lemma 6.1. (Wenzl) Suppose τ is such that Pn(τ) 6= 0 for all n ≥ 1, then

fn+1 = fn −
Pnτ

Pn+1(τ)
fnenfn

and
tr(fn) = Pn+1(τ)

39



Proof. We have to show that eifn = 0 = fnei for 1 ≤ i ≤ n− 1, which identifies fn
as a multiple of pn,n, that fn is non-zero and that f2n = fn. These follow easily by
induction- the formula

enfnen =
Pn+1

Pn
fn−1en

is useful to carry along.

We have thus completely calculated the wn,n−2r. They are

wn,n−2r = τ rPn+1−2r(τ)

We record them for the first 6 values of n below:

Solving the difference equation for P one readily gets

Pn(τ) =
sn − s−n

(s− s−1)(s+ s−1)n−1

where δ = (s+ s−1) and s2 = t (so τ = 1
(s+s−1)2

).
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7 First definition of the Jones polynomial, The Jones
polynomial of torus knots.

7.1 Representations of the braid group into the TL algebra.

A similarity between the Temperley-Lieb presentation and that of the braid group
will not have escaped the reader’s notice. One can use this as follows:

Proposition 7.1. If t is a complex number then if we define

ψi = −tei + (1− ei) ∈ TLn(τ)

for i = 1, 2, ..., n− 1 then

ψiψi+1ψi = ψi+1ψiψi+1 iff τ−1 = 2 + t+ t−1

.

We leave this easy computation to the reader.

Definition 7.1. For t and ψ as above we define βt : Bn → TLn(τ) by βt(σi) = ψi.

Now all the representations we have defined of TL become representations of the
braid groups, with restriction rules exactly as those of the TL representations. We
call them βn,p(= πn,p ◦ βn

The 1-dimensional representations βn,n send all the σi to 1.
The n− 1 dimensional representations βn,n−2 are the reduced Burau representa-

tions.
β4 is faithful iff the Burau representation of B4 is faithful.

7.2 First definition of the Jones polynomial.

Observe that for a braid α ∈ Bn the Markov trace of βn(α) is invariant under the
type I Markov move. It is obvious that it only changes by a simple factor under the
second Markov move. Thus we have:

Definition 7.2. If L is an oriented link realized as α̂ for α ∈ Bn, the Jones polyno-
mial of L is

(−1)number of components−1 t
wr(α̂)

2 (
√
t+

1√
t
)n−1tr(βn(α))

We need to see that the normalization of the trace is invariant under the type II
Markov move. For this it suffices to calculate tr(βn(σ±1i )). We have

βn(σ1) = 1 − (1 + t)e1 so tr(βn(σi)) = 1
1+t =

t−
1
2√

t+ 1√
t

and tr(βn(σ−1i ) = t
1
2√

t+ 1√
t

. So
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the normalization factor exactly cancels the change under the type II move and we
have a link invariant.

To check that it is the same as the second definition, one has simply to check that
the first definition satisfies the skein relation. This is true by focusing on a single
crossing and turning the link into a braid without changing that crossing. Then the
three members of the skein relation become closed braids and the skein relation is
simple algebra since t−1/2βn(σi)− t1/2β(σi) = 1 (or something).

7.3 Representations of Sn

The group algebra of a finite group (over C) is semisimple so any finite dimensional
representation is a direct sum of irreducible ones.

The irreducible representations of Sn are indexed by Young diagrams-partitions
of n written as rows of boxes aligned on the left, with non-increasing length as one
goes down thus:

is the Young diagram for the partition {4, 3, 3, 2, 1, 1} of 14.
The restriction to Sn−1 of an irrep πY given by a Young diagram Y is the direct

sum of all irreps πY ′ for all Young diagrams Y ′ that can be formed from Y by remov-
ing a single box. Thus the Bratteli diagram for these representations (alternatively
that of the group algebras of the Sn is the "Young’s lattice":
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In particular the dimension of
the representation πY is the number of descending paths on the Young lattice begin-
ning with the one box and ending with Y . These paths are called Young tableaux.

Conjugacy classes in Sn are also given by partitions and there is a rule, called
the Murnaghan-Nakayama rule for calculating the character of πY in terms of ways
of displaying the partition of a conjugacy class inside the Young diagram. There
is also an elegant formula of Frobenius in terms of symmetric polynomials with as
many variables as there are rows in the Young diagram.

The only result we will need, which is a very simple example of these character
computations, is the following:

Proposition 7.2. (a) If Y is the Young diagram with two rows, the first with n −
1 boxes and the second with 1 box, and g ∈ Sn is an n-cycle, then the character
trace(πY (g)) = −1.
(b) If Y is any other 2-row Young diagram then trace(πY (g)) = 0.
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7.4 τ = 1
4

Our calculation of the Jones polynomial of torus knots involves identifying βt when
t = 1. We know that for this value the braid group representations factor through
the symmetric group and since the ei’s can be recovered from the braid generators
we know that TL is semisimple (since a group algebra always is) so that our analysis
of its representations holds (small justification required here) so that the symmetric
group representations obtained from the β|n, p are irreducible and satisfy the same
restriction rules as the irreps of TL. There are only two systems of Young diagrams
that satisfy these restriction rules-ones with two rows and ones with two columns.
This is a matter of convention so we may assume that our Sn representations coming
from TL at τ = 1

4 are the πY for Y a Young diagram with two rows. Note that the
dimensions necessarily agree.

(There is another way to see this via an action of TLn on ⊗nC2 whose commutant
for τ = 1

4 is the algebra generated by the tensor product action of SU(2), a special
case of what is called "Schur-Weyl" duality.)

7.5 The Jones polynomial of a torus knot.

All the ingredients bar one are now in place for the calculation.
The main observation is that ζ = (σ1σ2σ3...σn−1)

n is in the centre of the braid
group, hence in the centre of TLn hence equal to a scalar in any irreducible rep-
resentation such as βn,p. We want to know what scalar it is and a determinant
argument will give that to us. To get det(ζ) we need to know det(βn,p(σi). Since
β(σ) = te − (1 − e) it suffices to know the rank of the ei on Kn,p. But if we return
to the argument that gave minimal projections in Kn,p from ones on Kn−2,p, we see
that in fact the rank of en on Kn, p is exactly dimKn−2,p so equal to

(
n−2
r−1
)
−
(
n−2
r−2
)
.

Whatever it is, we have that βn,p(ζ) = xid. So taking an nth root of x we find
a scalar so that (yβn,p(σ1σ2σ3...σn−1))

n = id. Now if we put τ = 1
4 we have that

the trace of βn,p(σ1σ2σ3...σn−1)b = 0 for any relatively prime to n, except when
p = n − 2 or p = n. Now the trace of the bth power of an n-cycle depends only on
the dimensions of the eigenspaces of the various nth roots of unity and these vary
continuously with τ . We conclude that:

The trace of βn,p(σ1σ2σ3...σn−1)b is zero unless p = n or p = n− 2.
Thus to calculate the Markov trace of βn,p(σ1σ2σ3...σn−1)b we only need to figure

out the trace in the two representations βn,n and βn,n−2 and add them up with their
weights! For βn,n this is trivial since βn,n(σi) = 1 and the weight is sn+1−s−n−1

(s−s−1)(s+s−1)n
.

For βn,n−2 the rank of the β(ei) is one so

det(βn,n−2(ζ) = tn(n−1)

Looking explicitly at the representation (Burau) we see that βn,n−2(ζ) must be a sign
time tn. But putting t = 1 that sign must be 1. We conclude that t−1βn,p(σ1σ2σ3...σn−1)
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is a root of unity varying continuously with t. By the deformation argument it has
the same trace of as what it does when t = 1 so the trace of (t−1βn,p(σ1σ2σ3...σn−1))b

is −1 and the trace of βn,p(σ1σ2σ3...σn−1)b is −tb. The weight of the trace is
τPn−2(τ) =

sn−1−s−n+1

(s−s−1)(s+s−1)n
.

So altogether we get the Markov trace of βn,p(σ1σ2σ3...σn−1)b to be

−s2b sn−1 − s−n+1

(s− s−1)(s+ s−1)n
+

sn+1 − s−n−1

(s− s−1)(s+ s−1)n

The normalization factor to get the Jones polynomial is −sb(n−1)(s + s−1)n−1

(the minus sign coming from changing s2 − s−2) so altogether we get V (s2) =

−s
(n−1)(b−1)+n+1

1− s4
(−sn−1+2b + s−n+1+2b + sn+1 − s−n−1) and, if p and q are rela-

tively prime, the Jones polynomial of the (p, q) torus knot is

t
(p−1)(q−1)

2

1− t2
(1− tp+1 − tq+1 + tp+q)

8 Other polynomials and their algebras.

9 More recent developments and approaches.
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