
1 The definition of a planar algebra.

By “smooth disc” we will mean the image of the closed unit ball under a C∞ diffeo-
morphism of R2. By “smooth curve” we will mean the image of the unit circle or a
closed interval under a C∞ diffeomorphism of R2.

1.1 Planar tangles

Definition 1.1.1. A planar tangle T consists of the following data:
i) A smooth disc DT ⊂ R2

ii) A certain finite set DT of disjoint smooth discs in the interior of DT

iii) A finite number of disjoint smooth curves in DT (called the strings S(T ) of
T )which do not meet the interiors of the D in DT . The boundary points of a string
of T (if it has any) lie in the boundaries of either DT or the discs in DT . The strings
meet the boundaries of the discs transversally if they meet them at all.

The subset of R2 obtained by taking away from DT the strings of T and the
discs in DT is called the set subjacent to T and the connected components of the set
subjacent to T are called the regions of T .

The points at which a string meets a disc will be called the boundary points of
that disc. To each disc D of a planar tangle let nD be the number of boundary points
of D.

The boundary of a disc D of T consists of disjoint open curve segments together
with the boundary points of D. These open curve segments will be called the intervals
of D (if D does not meet the strings of T , its whole boundary will be the (only) interval
of D).

For each disc D ∈ D ∪ {DT } there will be chosen one of its intervals, called the
marked interval of D. The boundary points of D are then numbered 1, 2, · · ·nD in
clockwise order starting from the first one encountered after the marked interval.

If n
DT = n, T is called a “planar n-tangle”.

Here is a picture of a planar 4-tangle. We have drawn the discs as round circles to
clearly distinguish them from the strings of the tangle, and the marked intervals for
each disc have been indicated by placing a $ near them in the region whose boundary
they meet (a disc with one boundary interval needs no $):
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If θ is a diffeomorphism of R2 and T is a planar tangle then θ(T ) is also a planar
tangle where the marked intervals of θ(T ) are the images under θ of those of T .

Under certain special circumstances tangles may be "glued". For the following
definition note that a planar tangle is determined by its subjacent set and the marked
intervals. Any choice of marked intervals is allowed and different choices give different
tangles.

Definition 1.1.2. Let T and S be planar tangles. Suppose that the outer boundary
disc DS of S is the same set as some disc DS ∈ DT , and that the marked intervals
of this disc coming from S and T are the same.
Then if the union W of the subjacent sets of T and S is the set subjacent to a planar
tangle, the discs of such a tangle are DT and {DT ∪ DS} \ {DS}. We call T ◦ S
that planar tangle whose subjacent set is W and whose intervals are those of T and
S (except the intervals in DS).

The regions of T ◦ S are unions of regions of T and regions of S.

Note that the disk DS is not part of the glued tangle so that

DT◦S = DT and DT◦S = (DT \ {DS}) ∪DS .

Remark 1.1.3. More general notions.
The notion of planar tangle defined above could be altered/generalised in several

ways by adding structure, for instance:
i) The regions of the tangle could be labelled (“coloured").
ii) The strings of the tangle could be labelled.
iii) The strings of the tangle could be oriented.

Composition of tangles in all these cases would require also that the extra struc-
ture on the boundary of the disc DS as above be the same for both T and S. The
function nD should be modified so as to contain the information which the added
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structure gives to the boundary. We will call this the boundary condition of D and
write it ∂D. This extra structure is part of the tangle so tangles can only be com-
posed if ∂(DS) = ∂(DS) with notation as above, in which case the extra structure
of T and S should define extra structure on T ◦ S.

All these notions would lead to systems that should be called planar algebras.

We will treat explicitly the cases of shaded and oriented planar tangles.

Definition 1.1.4. Shaded planar tangle. A planar tangle T will be called shaded if
its regions are shaded with two colours so that if the closures of two regions meet,
then they are shaded differently. The shading is part of the data of the tangle. Note
that for a planar tangle to admit a shading all its discs must meet an even number
2n of strings, and discs will be of two kinds, + and − when the distinguished interval
meets the closure of an unshaded or shaded region respectively. Since the shadings
of the intervals on the boundary of a disc simply alternate, the extra boundary data
for the function ∂ is just the kind of disc it is. Thus for a disc D of kind ± with
nD = 2n we will write ∂(D) = (n,±).

Definition 1.1.5. Oriented planar tangle. A planar tangle T will be called ori-
ented if all the strings of T are oriented. Then the boundary points of each disc
inherit orientations. So for each n we define Bn to be the set of all functions from
{1, 2, ..., n} → {↑, ↓}. Then each disc D (with n boundary points) of T defines an
element ∂(D) ∈ Bn according to:

∂(D)(k) =↑ if the string meeting the kth boundary point of D exits D and ↓ other-
wise.

Remark 1.1.6. Observe that orientation-preserving diffeomorphisms of the plane
map shaded (oriented) tangles to shaded(oriented) tangles in the obvious way. It
is clear how orientation reversing diffeomorphisms should act on shaded tangles but
not entirely clear for oriented tangles.

Definition 1.1.7. If θ is an orientation-reversing diffeomorphism of the plane and
T is an oriented planar tangle with underlying unoriented tangle

◦
T , then θ(T ) is the

oriented tangle whose underlying non-oriented tangle is θ(
◦
T ) but whose strings are

oriented in the opposite way from their orientation as oriented images of the strings
of T .

1.2 Planar algebras.

For the definition of a planar algebra recall that if S is a set and Vs is a vector space
for each s ∈ S, the cartesian product "

s∈S
Vs is the vector space of functions f from

S to
⋃
s∈S

Vs with f(s) ∈ Vs ∀ s ∈ S.
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Definition 1.2.1. Planar algebra.
A planar algebra P will be a family Pn of vector spaces indexed by N∪{0} together

with multilinear maps
ZT : "

D ∈ DT

P∂(D) → P∂(DT )

for every planar tangle T with DT non-empty, satisfying the following two axioms.

1) If θ is an orientation preserving diffeomorphism of R2, then

Zθ(T )(f) = ZT (f ◦ θ).

2)(Naturality)
ZT◦S = ZT ◦ ZS

Where the right hand side of the equation is defined as follows: first recall that DT◦S
is (DT \ {DS}) ∪DS . Thus given a function f on DT◦S to the appropriate vector
spaces, we may define a function f̃ on DT by

f̃(D) =

{
f(D) if D 6= DS

ZS(f |DS
) if D = DS

then the formula ZT ◦ ZS(f) = ZT (f̃) defines the right hand side.

Lemma 1.2.2. Let T be the tangle with no strings DT = the unit circle and DT =
{A,B} where A = {(x, y)|(y + 1/2)2 + x2 ≤ 0.1} and B = {(x, y)|(y − 1/2)2 + x2 ≤
0.1}. If P is a planar algebra show that P0 becomes a commutative associative algebra
under the multiplication

ab = ZT (f) where f(A) = a and f(B) = b.

Proof. This is an important exercise in the definitions of naturality and diffeomor-
phism invariance.

Definition 1.2.3. (i) A sub planar algebra Q of a planar algebra P will be a family
Qn of subspaces of Pn such that ZT (f) ∈ Q∂(DT ) whenever f(D) ∈ Q∂(D) for all
D ∈ DT .
(ii) An ideal I of a planar algebra P will be a family In of subspaces of Pn such that
ZT (f) ∈ Q∂(DT ) whenever f(D) ∈ I∂(D) for some D ∈ DT .
(iii) A homomorphism θ : P → Q between planar algebras will be family θn : Pn →
Qn of linear maps such that θ(ZT (f)) = ZT (θ ◦ f). An isomorphism is a bijective
homomorphism.
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Exercise 1.2.4. If I is an ideal in P , show that the quotient P/I with (P/I)n =
Pn/In may be endowed with a planar algebra structure in the obvious way. If θ :
P → Q is a homomorphism then kerθ is an ideal, image(θ) is a subalgebra of Q and
image(θ) ∼= P/kerθ.

Remark 1.2.5. It may on occasion be convenient to refer to a planar algebra as
above as an unoriented planar algebra.

Definition 1.2.6. A shaded planar algebra will be a family Pn,± of vector spaces
indexed by

(
N∪{0}

)
×{+,−} together an action of shaded planar tangles as in 1.2.1

Definition 1.2.7. An oriented planar algebra will be a family Pα of vector spaces
where α ∈ Bn, for all n ≥ 0, together with an action of oriented planar tangles as in
1.2.1.

The notions of isomorphism, automorphism, subalgebra and ideal of oriented and
shaded planar algebras are the obvious extensions of 1.2.3.

Remark 1.2.8. Is this really true? Observe that a planar algebra defines a shaded
planar algebra by setting Pn,± = P2n and considering shaded planar tangles just
as planar tangles by forgetting the shading. Similarly a planar algebra defines an
oriented planar algebra.

An oriented planar algebra also defines a shaded planar algebra by orienting the
strings of a shaded tangle as the boundary of the shaded regions which are oriented
as subsets of R2. The Pn,± are then Pα and Pα′ where for i = 1, 2, · · · 2n,

α(i) =

{
↑ if i is odd
↓ if i is even and α′(i) =

{
↓ if i is odd
↑ if i is even

This shaded planar algebra actually forms a sub-planar algbera of
−→
P .

Moreover a central -(see 1.5.6) shaded planar algebra defines an oriented one by
setting

−→
P 0 = P0,+ = P0,− and

−→
P β =


Pn,+ if β = α as above
Pn,− if β = α′ as above
0 otherwise.

Note that this procedure does not work if the shaded planar algebra is not a
central one as we cannot identify P0,+ and P0,−.
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A natural notation for ZT (f) is to place f(D) in D for each D ∈ DT in D. This is
just like the notation "y(x1, x2, ..., xn)" for a function of several variables where the
f(D) correspond to the xi and the internal discs correspond to the spaces in between
the commas. (We also call the internal discs "input discs".) Thus if we are dealing
with a shaded planar algebra and if R1 is in P2,+, R2 and R4 are in P2,− and R3 is
in P3,+ then the following picture is an element of P4,−.

$

$

$

1

3

R2

R4$

$

R

R

With this in mind the following definition is natural:

Definition 1.2.9.
A constant tangle is a planar n-tangle with no input discs,

a linear tangle is a planar n-tangle with one input disc and
a quadratic tangle is a planar n-tangle with two input discs.
And in general the degree of a planar tangle is the number of input discs.

Remark 1.2.10. A useful convention for shaded planar algebras. For a shaded
planar algebra all discs in all relevant tangles have an even number of boundary
points. Thus the strings at each disc can canonically be split into two equal sets and
the diagrams isotoped into ones where the discs are visually indistinguishable from
horizontal rectangles, with the strings meeting the edges of the rectangle orthogonally
and half attached to the top and half to the bottom directly below the strings at the
top. The distinguished boundary interval is the one containing the left edge of the
rectangle.

Thus we replace
R

Q $

$

$

with
R

Q

There are many variations on the definition of planar tangles and planar algebra.
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Since the action of a tangle depends only on the tangle up to isotopy/diffeomorphism
it is possible to use tangles defined up to isotopy. But then one must keep track of the
input discs and choose representatives and the definition of gluing must be done much
more carefully. We have chosen the definition we have given to avoid these problems
and because we foresee a more general structure where the action of a tangle is not
simply invariant under isotopy. For instance the angles made by the strings where
they meet the boundary disc could play a role. In fact there is already a relevant
toy version of non-invariance under diffeomorphisms which is rather important, and
that is for *-structure.

Definition 1.2.11. We will say that a planar algebra P over C(oriented or shaded
planar algebra) is a planar *-algebra if each Pn (Pα or Pn,±) possesses a conjugate
linear involution * so that if θ is an orientation reversing diffeomorphism of R2, then

Zθ(T )(f)∗ = ZT ((f ◦ θ)∗).

Note that any two orientation reversing diffeomorphisms differ by an orientation
preserving one so it would suffice to take any orientation-reversing θ in the above
definition.

1.3 Unital Planar algebras.

The mathematical structure which a planar algebra seems to most strongly resemble
is that of an algebra over an operad. According to [], given a monoidal symmetric
category with product ⊗ and unit object κ an operad C is a collection of objects
C(j) for j = 0, 1, 2, 3, ..., a unit map η : κ→ C(1) and product maps

γ : C(k)⊗ C(j1)⊗ C(j2)⊗ · · · ⊗ C(jk)→ C(

k∑
i=1

ji)

for k ≥ 1 and ji ≥ 0. Satisfying a bunch of axioms. The idea is that the elements of
C(k) will paramatrise k−ary operations on objects of the category so that an algebra
over an operad is an object A together with maps

θ : C(j)⊗Aj → A

that satisfy a bunch of axioms similar to those of γ.
There are also representations of the symmetric group to keep track of which

input goes where.
Since we have an explicit operad-like object the detailed axioms of an operad

need not concern us, but it is of considerable interest to investigate the meaning
of operadic notions in our context. First we describe how the ingredients of May’s
definition line up with planar algbebras.
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The planar tangles of course correspond to the elements of an operad. To get
the category stuff right we could easily linearise and consider linear combinations
of tangles with identical boundary disc structure. The underlying category would
then be vector spaces under tensor product with the unit object being the field itself.
The map γ in May’s definition corresponds to the gluing operation on tangles. In
the definition we have given of an operad all the internal discs would be glued at
once but May points out that one can also use individual ◦i operations to define
an operad. The main thing preventing the planar tangles from being an operad on
the nose is the fact that not any tangle can be glued into any other. This is rather
extreme in our definition of tangles as subsets of the plane but could be allevitated
a little by considering tangles up to isotopy. Even so one could only glue one tangle
into another if the numbers of intersections of the boundaries with the strings line
up and the marked intervals have the same shading. So we have what should be
(and no doubt is) called an example of a "partial operad". It is now clear how
the definition of an algebra over an operad corresponds to our definition of planar
algebra. The map θ in operad theory is nothing but the partition function ZT (once
we have linearised the multilinear maps to the tensor product).

So what do the various bits and pieces of operad theory correspond to? The
identity κ in May’s definition would be a linear map from the ground field to C(1).
But C(1) corresponds to linear tangles (one input disc) which we will treat later but
we already have a lot to say about discs with no input discs which correspond to
elements of C(0). So let us pass to the next notion which is that of a unital operad.
Here May makes the assumption that C(0) = κ. For our planar operad nothing like
this can be true.

Definition 1.3.1. Let Ť0
n be the set of all planar n-tangles T (unoriented, oriented,

shaded) with DT = ∅, and Ť0 =
⋃
n
Ť0
n.

Here is a picture of an element of T0
6:

$

The set Ť0 has a lot of structure.
Just what might correpsond to May’s identity axiom is unclear but we would

surely be unwise to try to eliminate the richness of these input-free tangles.
Looking at the role of the identity for algebras over operads, the first thing we

encounter in [] is that of a unital algebra over an operad. This involves extending the
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action of the operad to C(0). The only thing that makes sense for a unital operad is
to suppose that there is a map from κ = C0 to the algebra A satisfying the obvious
axioms extending those of θ. In particular if κ is a field and algebras over the unital
operad Ass whose algebras are precisely the associative algebras, unital algebras over
the operad are unital associative algebras in the usual sense. For planar tangles the
unital structure has been enriched by all TL diagrams so we see that the notion of a
unital planar algebra will be correspondingly enriched.

Definition 1.3.2. We say the planar algebra P is unital if for each S ∈ Ť0
n there is

an element Z(S) ∈ Ppartial(DT ) such that
(i) If θ is an orientation preserving diffeomorphism of R2 then

Z(θ(S)) = Z(S)

(ii) (naturality)
ZT ◦ S = ZT ◦ ZS

where ZT ◦ ZS(f) is defined to be ZT (f̃) with

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS

Thus in a unital planar algebra the isotopy class of every such picture defines an
element of the planar algebra.

Definition 1.3.3. Let T0
n be the set of all isotopy classes of planar n-tangles T

(unoriented, oriented, shaded) with DT = ∅, and T0 =
⋃
n
T0
n.

The set of all such diagrams is infinite because of the presence of an arbitrary

number of closed strings. But there are exactly
1

n+ 1

(
2n

n

)
connected such diagrams

in T0
2n (and none in T0

2n+1). So if we want P0 to be as close as possible to a unital
algebra over the operad of planar 0− tangles we would require that {Z(S)|S ∈ T0

0}
be all linearly dependent.

Definition 1.3.4.
(i) The connected elements of T 0

2n will be called the Temperley-Lieb diagrams or TL
diagrams for short. Their images in a unital planar algebra will be called the TL
elements.
(ii) O will denote the unique connected element of T0

0 with one string.
(iii) Ω will denote the unique element of T0

0 with a single closed string.

We will often leave out the output disc for a 0-tangle.

Proposition 1.3.5. Let P be a planar algebra and suppose that Z(Ω) = δZ(O) for
some scalar δ. Then all the {Z(S)|S ∈ T0

0} are linearly dependent.
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Proof. This follows immediately by using naturality to remove the closed strings of
S one at a time.

Remark 1.3.6. The proof actually shows that if a planar tangle T contains k closed
strings which are contractible in DT \

⋃
D∈DT

D, ZT is the same as δkZŤ where Ť is T

from which those k closed strings have been removed.

Definition 1.3.7. A planar algebra satisfying Z(Ω) = δZ(O) for some scalar δ will
be called a reduced (temporary terminology) planar algebra with (loop) parameter δ

Remark 1.3.8. Note that reduced oriented planar algebras will require two δ’s, one
for each orientation of the closed string in Ω and reduced shaded planar algebras will
require two δ’s according to the shading (δ+ for a closed string enclosing a shaded
region and δ− for the other shading). However we have the following:

Lemma 1.3.9. If P is a shaded reduced planar with non-zero loop parameters δ0
+

and δ0
− we may alter the action of planar tangles on P by scalars (multiplicatively)

to obtain a new planar algebra with δ+ = δ− =
√
δ0

+δ
0
−.

Proof. Define a function ν(T ) on shaded planar tangles as follows. Construct a (not
necessarily connected) TL tangle from T by "smoothing" all the internal discs, that is
smoothly joining the string meeting boundary point j to the string meeting boundary
point 2n−j+1 for j = 1, 2, · · ·n. Orient the strings so that shaded regions are always
on the left. Let k+ be the number of closed positively oriented strings and k− be the
number of closed negatively oriented strings. Now throw away “through” strings that
connect the first n boundary points (of DT ) to the last n boundary points. Form
closed loops with the remaining strings and the part of the boundary of DT joining
their ends. Let `+ be the number of positively oriented such loops and `− be the
number of negatively oriented ones.Then set ν(T ) = 2(k+ − k−) + `+ − `−. ν(T ) is
obviously an isotopy invariant of T . I further claim that ν(T ◦S) = ν(T )+ν(S). This
is readily seen by isotoping T to the “boxes” form of 1.2.10. For then ν(T ) is nothing

but
1

2π

∫
strings of T

dθ where dθ is the change of angle form. This is manifestly

additive under gluing. With these properties it is clear that renormalising Z by
ZrT = rν(T )ZT (for any invertible r in the ground field) defines a planar algebra
structure with the same vector spaces as P , which is reduced if P is. The effect on
the loop parameters is to change δ+ to rδ+ and δ− to r−1δ−. Choosing r =

√
δ−
δ+

gives the conclusion.

Thus each Pn in a unital planar algebra will contain a quotient of the vector space
of linear combinations of TL diagrams. This quotient can be strict - consider the
trivial planar algebra or for a (much) more interesting example the spin model planar
algebra of 2.9 when n = 2 and n = 3. The dimension growth of these algebras is as
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2n/2 and 3n/2 respectively whereas the growth of the Catalan numbers is something
like 2n so there are linear dependences between the various Temperley-Lieb diagrams.
These are very interesting relations.

1.4 More operadic considerations.

(i) May’s definition in [] requires an operad to have an "identity". This is a map
from κ to C(1) for which the image ι of 1 acts by the identity on operad elements.
In the axioms for an algebra over an operad ι is also required to act by the identity.
There is a very natural analogue of ι in the planar operad and that is the element:

ιn =

$

$

In a planar algebra there is no particular reason why these elements should act
by the identity. For instance in zero planar algebras it does not. On the other hand
we can take the subspaces ιn(Pn) and observed that they form a planar algebra on
which ιn is the identity. Hence the following.

Definition 1.4.1. A planar algebra P will be called nondegenerate if Zιn is the
identity map for all n ≥ 0.

(ii) If one considers planar tanges with only closed strings, i.e. no disc has
boundary points, one is very close to an operad, on the nose. If, instead of our
concrete tangles where the input discs label themselves, we choose isotopy classes of
tangles with labelled internal discs, and define gluing in the obvious way, we obtain a
non-Σ operad in the sense of []. We have seen that a unital algebra over this operad
is a commutative associative unital algebra A. The extral structure imposed by the
closed loops is a linear map L : A→ A defined by the formula below.

L(x) = x

Closed contractible loops may be removed provided we multiply by L(1). A and
L completely define the action of planar tangles and conversely any such A and L

11



can be used to construct an algebra over this operad. It is not entirely clear that
algebra over this operad can be extended to a planar algebra.

Note the subtle difference here between the oriented and shaded versions of this
structure. The shaded version will have two algebras A+ and A− for the two shadings
and L will be a map between them (the operad will still be partial), whereas in the
oriented case there is one algebra A but two maps L according to the orientations
on the string in the above figure.

(iii) One of the uses of the unital structure in [] is to provide "augmentations".
Given and element of Cj , and the identification of C0 with κ, the structural map γ
for an operad gives a map from each C(j) (∼= C(j)⊗ C0 ⊗ C0 ⊗ · · · ⊗ C0) to κ.

It is not so clear how one should augment planar tangles. Any input discs with
no boundary points can be augmented as for operads but what should one do with
a disc with lots of boundary points. I propose the following definition:

Definition 1.4.2. If T is a planar n-tangle define the augmentation ε(T ) to be
the linear combination of constant n-tangles obtained by summing over all ways of
inserting Temperley-Lieb diagrams into the internal discs of T .

Thus for instance ε( ) = + .

1.5 Measured planar algebras.

Definition 1.5.1. A planar algebra P with boundary data BP will be called measured
if there is a non-zero linear function µ : Pσ → F (called the measure) for each
α ∈ BP

0 , which is compatible with the gluing in the obvious way.

Definition 1.5.2. If P is a measured planar algebra (resp. *-planar algebra) we
define the canonical bilinear form (, ) (resp. the inner product 〈, 〉) on each Pn to be:

(x, y) = µ(

$

x y

$

) resp. 〈x, y〉 = µ( y*x

$ $

).

We would have obtained different bilinear and sesquilinear forms by different
placement of the $’s above. The next condition eliminates that possibility.

Definition 1.5.3. A measured planar algebra is called spherical if the multilinear
function µ ◦ZT defined for every T with no strings connected to DT depends only on
the isotopy class of T on the 2-sphere compactification of R2.

Definition 1.5.4. A measured planar *-algebra (over R or C) will be called positive
definite if the inner product above is positive definite.
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Proposition 1.5.5. A positive definite measured planar algebra (or a measured pla-
nar algebra with non-degenerate canonical bilinear form) is nondegenerate.

Proof. An element in the kernel of ιn is necessarily orthogonal to everything for (, )
and 〈, 〉.

A planar algebra may possess a canonical measure.

Definition 1.5.6. A planar algebra P will be called a central planar algebra if
dimPα = 1 for each α ∈ B0.

Proposition 1.5.7. A unital central planar algebra is a measured planar algebra in
a unique way.

Proof. There is a unique way to identify labelled 0-tangles with the scalars compat-
ible with the gluing.

1.6 Summary

There have been an unfortunately large number of adjectives to be applied to the
term planar algebra. For the convenience of the reader we list them all here.

(1)V anilla 1.2.5
(2)Oriented 1.2.7
(3)Shaded 1.2.6
(4)Star 1.2.11
(5)Unital 1.3.2
(6)Reduced 1.3.7
(7)Measured 1.5
(8)Nondegenerate 1.4.1
(9)Central 1.5.6
(10)Positive definite 1.5.4
(11)Spherical 1.5.3
(12)Finite dimensional if Pα is finite dimensional for every α.

Putting most of these together we get the kinds of planar algebras we are most
interested in:

Definition 1.6.1. A positive planar algebra is a positive definite unital finite di-
mensional planar *-algebra. A subfactor planar algebra is a central spherical positive
shaded planar algebra. A correpsondence planar algebra is a positive oriented planar
algebra.

If we drop the sphericality condition from a subfactor planar algebra we will
refer to a “non-spherical” planar algebra. Observe that loop parameters are positive
in positive planar algebras.
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2 Examples

2.1 The trivial examples.

(i) The zero planar algebras.
If one chooses Pn to be arbitrary vector spaces and one sets all the maps ZT to be
zero one obtains a derisory planar algebra.

Perhaps the only thing to say about them is that they can obviously be made
unital and any unital planar algebra for which Z(Ω) = 0 is a zero planar algebra.
(ii) The trivial planar algebra.
If F is the ground field and we set Pn = F for all n, and ZT to be the product map
then we get a planar algebra. It is furthermore untial and reduced if we define the
images of all the TL tangles to be 1 ∈ F , and the loop parameter δ is equal to 1.
The oriented and shaded versions are obvious.

This planar algebra is of little interest though it will furnish us with a subfactor
planar algebra-1.6.1.

2.2 Tensors-P⊗

We will give unoriented, oriented and shaded versions.

(i) The unoriented case.

Suppose we have a finite dimensional vector space V with a basis v1, v2, ..., vk.
Then elements of the tensor powers ⊗nV can be concretely represented by arrays of
numbers Ri1,i2,...,in which are the coefficients of the elementary basis tensors vi1 ⊗
vi2 ⊗ · · · ⊗ vin .

In order to define a planar algebra we need to give vector spaces Pn and the
action of planar tangles. For the tensor planar algebra, P⊗n will be ⊗nV .

To define the multilinear map of a planar n-tangle T we may suppose that a tensor
has been assigned to every D ∈ DT . Then we have to create an element of ⊗nV .
This means assigning a number Ri1,i2,··· ,in to every n-tuple of integers between 1 and
k. To do this, we begin to define a function from the strings of T to {1, 2, · · · , k} by
assigning the indices i1, i2, ..., in to the boundary points of DT .

If the ath. and bth. boundary points are connected by a string of T and ia 6= ib
then we set Ri1,i2,··· ,in = 0

So we can suppose the assignment of indices can be extended from the points
on the boundary disc to the strings meeting those points. Call a "state" σ of T
any extension of this function to all the strings of T . Then each σ assigns, for each
D ∈ DT , indices to the nD boundary points of D. Thus for each such disc there is
a number RDσ given by the tensor that is allotted to D.

We now define
Ri1,i2,··· ,in =

∑
σ

∏
D∈DT

RDσ
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This R obviously depends multilinearly on the tensors assigned to each D ∈ D
and it is a simple matter to check the gluing axiom. Diffeomorphism invariance is
obvious. Thus we have a planar algebra P⊗.

P⊗ becomes a planar *-algebra under the operation of complex conjugation and
reversing the order of the indices of tensors. It is also a central planar algebra and
the canonical sesquilinear form is positive definite.

One might wonder why we are only allowing planar systems of contractions for
tensors. It was Penrose ([]) who invented a diagrammatic notation for tensor con-
tractions which allowed for arbitrary pairings of the indices. We contend that the
planar restriction is significant as there are important examples of sub planar alge-
bras of P⊗ that are not closed under all contraction systems. Also just the problem
of determining the dimensions of a sub planar algebra of P⊗ (given generators of it)
is undecidable whereas if one allows arbitrary contractions it is probably algorith-
mically possible (there is a closely related family of planar algebras where the same
problem is algorithmically decidable).

Observe that this planar algebra can immediately be extended to a unital reduced
one by using the convention that an empty product is equal to 1. Note also that
the loop parameter of this planar algebra is k, the dimension of the auxiliary vector
space V . This is because if we are given a closed string then it is not connected
to the outside boundary so we must sum over the k possible index values for that
string, all other index values being held fixed.

We see immediately a shortcoming of the unoriented tangles-the only obvious
symmetry group of the algebra is the permutation group of the basis vectors, and
the idea of covariant and contravariant indices is absent.

(ii) The oriented version.

Again V is a finite dimensional vector space of dimension k. In order to give an
oriented planar algebra we must assign a vector space to every α ∈ Bn for every n.
That is simple enough:

Pα =
n
⊗
i=1

V α(i)

where V ↑ is V and V ↓ = the dual V † of V .
A multilinear map from "

D ∈ DT

P∂(D) is the same thing as a vector in P∂(DT )⊗

( ⊗
D∈DT

P∂(D))
†. This may be written as a tensor product of V ’s and V †’s over the set

of all boundary points of discs in T . The tangle gives a pairing between all these
boundary points with V always paired with V †. So we may rearrange the the tensor
product as

⊗
non-closed strings of T

(V ⊗ V †).

But there is a canonical element of V ⊗ V † so taking the tensor product of it over
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the non-closed strings of T we get a multilinear map from "
D ∈ DT

P∂(D) to P∂(DT ).

ZT is just this map times k`, ` being the number of closed strings in T .
Note how this definition works for tangles without input discs as well so that this

planar algebra is a reduced unital one.
If V is a Hiilbert space then there is a conjugate-linear isomorphsims between V

and V † which allows us to make
−→
P ⊗ into a planar *-algebra in the obvious way. The

resulting 〈, 〉 is positive definite so we get a correspondence planar algebra.
Diffeomorphism invariance and naturality are easy, and if one chose a basis of

V and the dual basis for V † one would obtain explicit formulae just like in the
unoriented case.

Remark 2.2.1. Observe that the group GL(k) acts in a canonical way on
−→
P ⊗. This

means that for every subgroup of GL(k) there is a planar algebra for which Pα is the
invariant tensors in the tensor power of V and V † defined by α.

(iii) The shaded version. As we have observed in 1.2.8, an oriented planar algebra
defines a shaded one.If V is a Hilbert space then we get a subfactor planar algebra.
There is a far more interesting way to make tensors into a shaded planar algebra
defined below in 2.9

2.3 The Temperley-Lieb planar algebra P TL.

(i) Unoriented version.
The vector space P TL2n+1 is zero and P TL2n+1 is the vector space of formal linear combi-
nations of connected TL diagrams with 2n boundary points. The loop parameter δ
may be assigned arbitrarily so there is one TL planar algebra for each δ. The action
of planar tangles is obvious, just insert the TL diagrams into the internal discs, lining
up the distinguished intervals. Then remove any closed loops that are formed one at
a time, each time multiplying by δ. This construction would be hard to miss from
the operadic standpoint as C0 is always an algebra over the operad C.

P TL also extends to a unital planar algebra (in the obvious way). Moreover the
maps defining the unital structure of any planar algebra endow it with a quotient of
P TL as a planar subalgebra.

(ii) Oriented version.

The strings of a connected TL diagram D may be oriented to give a diagram
−→
D .

If
−→
D has 2n boundary points there is an element α−→

D
∈ B2n given by the orientation

of the boundary points. The vector space P TLα is the set of formal linear combinations
of such tangles (and is zero for B2n+1). Oriented planar tangles act in the obvious
way, with closed strings being removed with a multiplicative factor of δ± according
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to their orientation. It is clear that this oriented planar algebra is reduced and is
unital in the obvious way.

Note that for α ∈ B2n, dimP TLα (i.e. the number of oriented connect TL dia-
grams) is no longer simply the Catalan number. It is a complicated function of α
for which we will soon give an "explicit" formula.

Proposition 2.3.1. dimP TLα = 0 ⇐⇒ |α−1(↑)| 6= |α−1(↓)|.

Proof. The only non-obvious thing to prove is that if |α−1(↑)| = |α−1(↓)| then there
is an oriented TL diagram having α as its boundary data. This follows by induction-
if not all boundary arrows are the same there must be a pair of consecutive boundary
points which have different orientations. These two points can be connected by an
oriented edge. The remainder of the diagram can be completed induction.

Now if α ∈ B2n we define a word on the letters X an Y as follows:
Let

fα(i) =

{
X if i is odd and α =↑ or i is even and α(i) =↓
Y if i is odd and α =↓ or i is even and α(i) =↑

Now let wα be the word whose ith. letter is fα(i).
Recall the Voiculescu trace trV of [] on the algebra of non-commutative polyno-

mials in X and Y which, on a monomial, is the number of planar pairings between
the letters of the word, where X must be paired with X and Y with Y .

Proposition 2.3.2. dimP TLα = trV (wα).

Proof. wα was designed so that a pairing contributing to the Voiculescu trace is the
same thing as an oriented TL diagram.

3) Shaded version.

Do ei’s []

2.4 Van Kampen diagrams and P Γ.

Let Γ be a (countable discrete) group with a finite generating set Gen. Let V be the
vector space having Gen as a basis. We will construct a planar subalgebra of the−→
P ⊗ built on V . Functions from {1, 2, · · · , n} to Gen give tensors in

−→
P ⊗α by choosing

g ∈ Gen to be a basis element for V for ↑ and the dual basis element for ↓. The
space PΓ

α is the vector subspace of
−→
P ⊗α spanned by all tensors Rf , f being a function

from {1, 2, · · · , n} to Gen such that
n∏
i=1
f(i)α(i) = 1 where g↑ = g and g↓ = g−1.

We leave it as an exercise to show that the PΓ
α form a planar subalgebra of

−→
P ⊗.

As a planar *-subalgebra of
−→
P ⊗, PΓ is a correspondence planar algebra.[]?? Check

* property.
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The natural subfactor planar algebra defined by the induced shaded planar al-
gebra consists of all words of even length in the generators such that the product of
the letters in the word, with alternating exponents ±1, is equal to the identity.

2.5 Ice

This planar algebra is implicit in Lieb’s ice-type model.[] It is an oriented planar
algebra. For α ∈ Bn we let P Iceα be the vector space whose basis is the set of all
functions ι : {1, 2, · · · , n} → {±1} such that

∑n
i=1(−1)α(i)ι(i) = 0. Clearly P Icen = 0

for n odd and
dim(P Ice2r ) =

(
2r

r

)
.

(Here (−1)↑ = 0, (−1)↓ = 1.)
For every real number λ we now define a structure of a reduced central unital

planar algebra P Ice(= P Ice,λ) with P Iceα defined above.
So suppose T is an oriented planar n-tangle with n even and we are given a

function ι from the boundary points of DT to {±1}, and an element R(D) ∈ P Ice∂(D)

for every D ∈ DT . As for P⊗, we have to come up with a number Rι so that
ZT (R) =

∑
ιRιι. Define a state σ of T to be any extension of ι to the strings of T

(so there are no states if two boundary points of DT are connected by a string of
T and ι is different on those boundary points). A state induces for each D ∈ DT a
function σD from its boundary points to {±1} so we can talk about R(D)σD . We
then let

Rι =
∑
σ

∏
D∈DT

R(D)σDf(σ)

where f(σ) is calculated in a similar way to 1.3.9: first isotope T so that all discs
are horizontal rectangles with their distinguished intervals to the left, and all strings
meet all rectangles at right angles, half at the top and half at the bottom. Then
define

f(σ) = λ
∫
S(T ) σdθ

where dθ is the angle 1-form on R2 normalised so that the integral over a positively
oriented circle is equal to 1.

Note that we do not really use the real numbers in the definition since once the
tangle is in its standard form the contribution of each string to the integral is at
worst a half integer.

Isotopy invariance of ZT as defined is not quite obvious because of the fac-
tors f(σ), indeed the formula would not be isotopy invariant without the condition∑n

i=1(−1)α(i)ι(i) = 0. But, as explained in []burnsthesis, any two planar isotopies
of a tangle into the required form can be supposed to produce the same result, up
to rotations of the internal rectangles by 2π. For each state σ it is clear that the
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rotations do not affect f(σ). Thus ZT is isotopy invariant. The naturality of ZT
follows from the obvious additivity of f(σ) under gluing of tangles.

The unital structure on P Ice is clear. Once a TL tangle T with boundary function
α) is isotoped so that the outside disc is a rectangle and the strings meet the boundary
orthogonally one defines

Z(T )ι =
∑
σ

f(σ)

with σ and ι defined exactly as above.
The reduced property for P Ice is obvious with δ+ = δ− = λ+ λ−1.
Note that for λ = 1 this planar algebra structure is exactly what would be defined

by using a basis in the oriented version
−→
P ⊗ for a two dimensional auxiliary vector

space V .

Definition 2.5.1. Let α± ∈ B2 be defined by α+(1) =↑, α+(2) =↓ , α1(1) =↓ and
α−(2) =↑. Then define u± ∈ P Iceα± by

u±i,j =

{
1 if i = −j
0 otherwise

These elements u± are obviously in P Ice and allow us to change the orientation
of a string. Observe the relation:

−

u
+

u

=

We can now define Temperley-Lieb like elements in P ice:

Definition 2.5.2. Let E ∈ P Iceα be the element

$

u+

u−

where α ∈ B4 is defined by the picture.

Note that with this choice of α, P Ice is an algebra as in 6.1.1.

Proposition 2.5.3. For this algebra structure E2 = δE.

The reason for insisting on the relation
∑n

i=1(−1)α(i)ι(i) = 0 in the definition
of P Ice was to ensure invariance under all planar isotopies. But we could easily
define operads based on planar tangles with horizontal rectangles instead of discs
and “rigid” planar algebras where we only require invariance of Z under isotopies
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during which the horizontal rectangles stay horizontal rectangles. Then one could
proceed exactly as in the definition of the basis dependent version of P⊗ except that
in the definition of ZT , the contribution of each state would be multiplied by a factor
f(σ) = λ

∫
S(T ) σdθ.

Note that the multiplication tangle of 6.1.1 works just as well in rigid planar
algebras to give each P2n and algebra structure. Applying this to P Ice we see that
each time α is such that P Iceα is an algebra, it is in fact a subalgebra of the 2n × 2n

matrices. We record here the matrix for E in the obvious basis:

E =


0 0 0 0
0 λ−1 1 0
0 1 λ 0
0 0 0 0


[]Do Kauffman diagrams, Jones braid group rep and polynomial.

Let us agree that for any oriented planar algebra P , Pn will be Pα where α :
{1, 2 · · · , 2n} → {↑, ↓} is α(i) =↑ for 1 ≤ i ≤ n and α(i) =↓ for n + 1 ≤ i ≤ 2n.
Observe that Pn is a unital algebra unitally embedded in Pn+1 via the appropriately
oriented tangles id⊗ 1 and 1⊗ id of 5.1.2.

Definition 2.5.4. For any X in P2 as above inductively define X1 = E and Xn+1 =
(1⊗ id)(X).

All the Xn can be considered as elements of the same algebra.

Proposition 2.5.5. We have
(i) E2

n = δEn
(ii) EnEn±1En = En
(iii) EnEm = EmEn if |m− n| > 1

These are the famous Temperley Lieb relations of [],[],[]. Given any element
X ∈ P Ice2 as above, Xn makes sense using the

Definition 2.5.6. Let g = E − λ1.

Lemma 2.5.7. We have the braid relations
(i) gngn+1gn = gn+1gngn+1

(ii) gngm = gmgn if |m− n| > 1
together with the (Hecke) relation
(iii) gn − g−1

n = (λ−1 − λ)1.

Lemma 2.5.8. If we define R(x) = exg − e−xg−1 then

Rn(x)Rn+1(x+ y)Rn(y) = Rn+1(y)Rn(x+ y)Rn+1(x)
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Proof. This is an exercise, using only the relations of the previous lemma. There
are 8 terms on each side of the relation. 6 of these are equal using just the braid
relations. Using (iii) and the braid relation, the others reduce to g2

n − g−2
n on one

side and g2
n+1 − g

−2
n+1 on the other. But squaring (iii) shows that both of these are

the same multiple of the identity.

Let us now write out the matrices for g and R(θ) explicitly. From the definition
of g and the matrix for E we have

g =


−λ 0 0 0
0 λ−1 − λ 1 0
0 1 0 0
0 0 0 −λ

 and g−1 =


−λ−1 0 0 0

0 0 1 0
0 1 λ− λ−1 0
0 0 0 −λ−1


From which we get immediately up to a global factor of 2, with e−φ = λ,

R(θ) =


sinh(φ− θ) 0 0 0

0 eθ sinhφ sinh θ 0
0 sinh θ eθ sinhφ 0
0 0 0 sinh(φ− θ)


In section 8 we will see that the entries of R(θ) supply the Boltzmann weights for
a statistical mechanical model called the "Ice-type" model. We see that provided
φ ≥ θ ≥ 0 these Boltzmann weights are positive and so make physical sense.

2.6 The Motzkin planar algebra

We describe only the unoriented version, the modifications necessary for the other
versions are now obvious. By definition PMotz

n is the vector space spanned by iso-
topy classes of connected planar n-tangles with no closed strings and and all input
discs having exactly one boundary point. By connectedness any input disc must be
connected to the boundary disc by a string so PMotz

n is finite dimensional. Here is a
picture of an element in PMotz

5 where we have shrunk the input discs down to dots:

$

We will call such a tangle a "Motzkin diagram". Counting the Motzkin diagrams
is similar to counting TL diagrams. Note that the 1-discs and their strings could
be shrunk to the boundary points and one obtains the standard objects counted
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by the Motzkin numbers-see []. The first few Motzkin numbers (and therefore the
dimensions of the PMotz

n ) are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835.

If we write an for the nth. Motzkin number (with a0 = 1) then it is obvious that

an+2 = an+1 +

n∑
j=0

ajan−j

so that the generating function
∞∑
n=0

anz
n satisfies

z2A2 + (z − 1)A+ 1 = 0.

Solving the quadratic gives explicit expressions for an as sums of products of binomial
coefficients.

The planar algebra structure on the Motzkin algebra is defined exactly as for
TL. Besides closed strings one inevitably encouters strings ended by dots. These are
handled like closed strings by removal with another multiplicative constant. But in
fact we may as well assume that this constant is 1, by multiplying each basis element
by a constant depending on its number of dots.

Exercise: In the oriented version of Motzkin, interpret the dimensions of the Pα
as a Voiculescu-type trace.

2.7 Knots and links.

The planar algebra we are about to define was implicitly present in Conway’s paper
[]. We do the oriented and unoriented definitions together.

For each even n let PConwayn (resp.
−→
P Conway
α ) be the vector space of formal linear

combinations of (3-dimensional) isotopy classes of link diagrams (resp. oriented link
diagrams) with the 2nth. roots of unity as boundary points and the interval on the
unit circle preceding 1 in clockwise order as the distinguished boundary interval.
By three dimensional isotopy class we mean that two link diagrams are identified if
they can be obtained one from another by the three Reidemeister moves and planar
isotopy.

The action of planar tangles on the vector spaces PConwayn is just as in TL, with-
out removal of closed strings, by gluing in tangles using an appropriate orientation
preserving diffeomorphism of the unit disc to the relevant disc in the planar tangle.
[]MAKE THIS MORE EXPLICIT FOR TL. The unital structure is obvious.

Proposition 2.7.1. The algebra PConway0 (resp.
−→
P Conway

0 ) is the polynomial algebra
with one generator for each non-split link (resp. oriented link) in R3.
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Note that this planar algebra is non-degenerate but not reduced. Each Pn is
infinite dimensional even as a module over P0. Conway’s "linear skein theory" for−→
P Conway
α was to take the quotient of this planar algebra by the ideal generated by

the element:

z
_

−

(where z is either an indeterminate or a fixed element of the field according to
context).

Conway showed that the quotient
−→
P Alexander of this planar algebra satisfies

dim
−→
P Alexander

0 = 2 and that if the oriented link L is considered as an element

of
−→
P Alexander

0 then it is equal to ∆L(
√
t − 1√

t
) times the the tangle O (with either

orientation) where ∆L is the Alexander polynomial of L and z =
√
t− 1√

t
.

It was observed in [] that the Jones polynomial can be defined by changing
the coefficients slightly in the Alexander polynomial skein relation above and in
[],[] it was shown that arbitrary coefficents may be used to obtain what is now
called the HOMFLYPT polynomial. it is worth observing that the Alexander skein
relation implies that the Alexander polynomial of a split link is zero so that although−→
P Alexander is not strictly speaking reduced it does have the property that it is almost
so, with loop parameter zero, since O2 = 0 so that any closed string may be removed
and the tangle multiplied by zero, provided there is something else to the tangle.
For the Jones and many other such invariants one my further quotient by a relation
to make the planar algebra reduced.

Kauffman observed in [] that if one leaves out the first Reidemeister move one
obtains a theory which works also in the unoriented case, obtaining a version of the
Jones polynomial called the Kauffman bracket ([]) and a two variable polynomial
invariant of oriented links called the Kauffman polynomial.

2.8 The BMW algebra

2.9 Spin models

Spin models only exist for shaded planar algebras.
As for vertex models we take an auxiliary Q-dimensional vector space V with

basis S = {s}. The vector spaces for P spin are:
P0,+= the ground field, P0,− = V and Pn,± = ⊗nV (recall that for shaded planar
algebras “n′’ means half the number of boundary points for a disc). The action of
the operad is defined as follows:
Observe first the the shaded intervals of an n-disc can be numbered 1, 2, · · · , n so that
we can identity basis elements of ⊗nV and functions ψ from the shaded boundary
intervals of an n-disc to S. As for vertex models, given a shaded planar tangle n-
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tangle T and a function f from DT to the appropriate tensor powers of V , we will
give the coefficients Rs1,s2,··· ,snof ZT (f) in this basis of functions.

If two shaded intervals i and j of DT are part of the boundary of some shaded
region of T , and si 6= sj, put Rs1,s2,··· ,sn = 0.

Otherwise we may extend the function i 7→ si from the shaded intervals of DT

to all the shaded regions meeting the shaded intervals of DT . Call a “state” σ of T
any extension of this function to all the shaded regions of T . Then each σ assigns,
for each D ∈ D, indices to the shaded boundary intervals of D. Thus for each such
disc there is a number RDσ given by the tensor that f assigns to D.

We now define
Rs1,s2,··· ,sn =

∑
σ

∏
D∈DT

RDσ

This R obviously depends multilinearly on the tensors assigned to each D ∈ D
and it is a simple matter to check the gluing axiom. Diffeomorphism invariance is
obvious. Thus we have a planar algebra P spin. Below is a picture of a state on a
shaded planar tangle T where S = {1, 2, 3}.

$

$
$

$

1

3

2

2

1

We see that P spin is reduced with loop parameters δ+ = Q (closed string around
a shaded region) and δ− = 1 (closed string around an unshaded region).

Remark 2.9.1. Sometimes it is advantageous to change the values of δ so that P spin

becomes spherical. This is possible by 1.3.9. We will call the resulting plana algebra
PSpin. The only difference between P spin and PSpin is in the action of the tangles
which differ by the combinatorial multiplicative factor of 1.3.9

The spin planar algebra is not a central planar algebra. It is however a measured
planar algebra with µ assigning 1/3 to each of the minimal projections in P spin0,−

Also P spin is clearly acted upon by any group of permutations of the set S of
spins. If this action is transitive the fixed points are a central planar algebra.

Definition 2.9.2. If G acts transitively on S as above with point stabiliser H, we
call PG,H the planar algebra of fixed points for the action on P spin. The special case
when G is finite and |H| = 1 will be called the group planar algebra PG.
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This gives interesting examples. It was shown by Izumi ([]) that under favourable
circumstances, for instance if the action is primitive, that G and H can be recovered
from PG,H .

A central planar *-subalgebra of P spin (such as those coming from transitive
group actions) defines an association scheme. To see this in detail we will use the
following:

Proposition 2.9.3. If P is a central planar subalgebra of P spin then dimP1,+ = 1 =
dimP1,−.

Proof. There is a unique connected annular tangle which maps P spin1,+ to P0,− which
is the identity when both these spaces are identified with V . So if P0,− is one
dimensional, so is P1,+.

Exercise 2.9.4. If P is a central planar subalgebra of P spin then the identity of P1,+

is a minimal projection for comultiplication.

Now to see how to get an association scheme, observe that P2,− is an abelian
C∗-algebra which is thus spanned by its minimal projections. Each such projection
corresponds to a subset of {1, 2, · · · , Q}. From the above exercise the identity of
P2,+ is such a minimal projection. This, and the closure of P2,+ under multiplication,
comultiplication and * are precisely the conditions of an association scheme ([]). The
algebra P2,+ is called the Bose-Mesner algebra of the association scheme. It would
be interesting to find obstructions that prevent an association scheme from coming
thus from a spin model planar algebra.

Exercise 2.9.5. Show that if Pi,j is a minimal projection in P2,− then |{j : Pi,j = 1}|
is independent of j.

This fact is true for an association scheme. Note that it implies dimP2,+ ≤ Q.
Given a group action as above one may consider another planar algebra which is

the one generated by the association scheme (i.e. generated by P2,+). ln general this
is different from the fixed points under G. A case where they are the same is for the
dihedral group on a set with five elements (see []). They are different for Jaeger’s
Higman-Sims model ([],[]) — although the dimensions of the two planar algebras
agree for a while, they have different asymptotic growth rates, one being that of the
commutant of Sp(4) on (C4)⊗k and the other being 100k.

Here is an interesting example for a doubly transitive group. It connects with Ex-
ample [] and gives a new kind of “spin model" for link invariants from links projected
with only triple point singularities.

The alternating group G = A4 is doubly transitive on the set {1, 2, 3, 4} with
point stabiliser H but there are two orbits on the set of ordered triples (a, b, c)
of distinct elements according to whether 1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d (with
{a, b, c, d} = {1, 2, 3, 4}) is an even or odd permutation. Let e ∈ PG,H3,+ be the
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characteristic function of the even orbit. Define a mapping from the free shaded

planar algebra on the generator (the position of the $ is immaterial) to

PG,H by sending to e − 1
2 . To prove that this map passes to the

quotient PH (the planar algebra of []) with parameters t = i = x( 1,–1 in ` − m
variables) it would suffice to show that twice the value of the homfly polynomial of
the link obtained from the free planar algebra above is the partition function in P spin

(with Q = 4) given by filling the discs in the free planar algebra with e− 1
2 .

We give a sample calculation below which illustrates all the considerations. Note
that, for t = i = x, the value of a single circle in the homfly skein is 2.

#

d

c

c

c

a

d

Smoothing all the 3-boxes leads to a single negatively oriented circle so we must

divide the final partition function by 2. Replacing the 3-boxes by e − 1
2 we

look for spin states, i.e. functions from the shaded regions to {1, 2, 3, 4} for which
each 3-box yields a non-zero contribution to the partition function. Around each
3-box this means that either the three spin values are in the even orbit under A4, or
they are all the same. The first case contributes +1 to the product over boxes, the
second case contributes –1 (not −1

2 because of the maxima and minima in the box).
If the box labeled (†) is surrounded by the same spin value, all the spin states must
be the same for a nonzero contribution to Z. This gives a factor 4× (−1)5. On the
other hand, if the spins at (†) are as in Figure 2.8.3 with (a, b, c) in the even orbit,
the other spin choices are forced (where {a, b, c, d} = {1, 2, 3, 4}), for a contribution
of –1. The orbit is of size 12 so the partition function is 1

2(−12 − 4) = −8. For
this link the value of the homfly polynomial PL(1,−1) is –4. The factor of 2 is
accounted for by the fact that our partition function is 2 on the unknot. Thus our
answer is correct. Note how few spin patterns actually contributed to Z!

If we wanted to use non-alternating 3-boxes we could simply use the homfly
skein relation to modify the 3-box. For instance
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e−
2

−− = −  1
+=

In general by [LM], PL(1,−1) is (−1)c−1(−2)
1
2
d where c is the number of components

of L and d is the dimension of the first homology group (with Z/2Z coefficients) of
the triple branched cover of S3, branched over L. It would be reassuring to be able
to see directly why our formula gives this value. This would also prove directly that

the map 7→ e− 1
2 passes to the homfly quotient. Our derivation

of this is a little indirect — one may show that the planar subalgebras [] and PG,H

are the same by showing they arise as centralizer towers from the same subfactor

(constructed in []). Thus there must be a 3-box corresponding to: and we

obtained the explicit expression for it by solving an obvious set of equations.
As far as we know, this is the first genuine “3-spin interaction" statistical me-

chanical model for a link invariant. Of course one may produce 3-spin interaction
models by taking a 2-spin one and summing over the internal spin σ in the picture

1

23

σ

σ σ

σ

but that is of little interest. One may check quite easily that the above model
does not factorize in this way.

2.10 Fuss Catalan.

This planar algebra was discovered by Bisch and the author in their explorations
of intermediate subfactors. We will first give the original definition as a shaded
planar algebra then show it can be extended to a coloured planar algebra (with
three colours).

Definition 2.10.1. A (positive) Fuss Catalan basis tangle will be the planar isotopy
class of a planar 4n TL tangle whose boundary points are labelled by a and b, in
clockwise order starting from the first one after $ in the sequence abbaabbaa....bba
in such a way that strings only connect boundary points with the same label (so that
the labelling extends to the strings themselves). A negative basis tangle is the same
except that the $ lies between two b’s.
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A positive Fuss-Catalan basis tangle
$

(red=a, blue=b)

To define the operad action, take a shaded tangle T and add to each string a red
one which is a close parallel in the unshaded region to obtain FC(T ) thus:

T =

$

$

$

FC(T ) =

$

$

$

The action of T is now clear - take appropriately isotoped Fuss Catalan basis
tangles and glue them into the input discs of FC(T ). Any closed strings are removed
counting a multiplicative factor of δa for an a loop and δb for a b string.

Thus we obtain a shaded planar algebra PFC which is unital nondegenerate,
reduced, central with loop parameter δaδb, spherical and may be given *-structure
in the obvious way. The dimension of PFCn,± is the second Fuss-Catalan number

1

2n+ 1

(
3n

n

)
.

It is a subfactor planar algebra for δa, δb ≥ 2. This follows from []. If δa =
2 cosπ/m or ≥ 2 and δb = 2 cosπ/n or ≥ 2 the kernel of the canonical inner
product 1.5.2 is an ideal and the quotient is a subfactor planar algebra. A subfactor
N ⊆ M has PFC as a sub planar algebra of its canonical planar algebra 9.0.1 iff it
has an intermediate subfactor N ⊆ P ⊆M . The shadings of a shaded planar algebra
are naturally by N andM so in this case it is natural to consider the coloured planar
algebra over tangles whose regions are coloured N , P and M , the restrictions on the
colouring (corresponding to the shading conditions) being that N and M can only
be adjacent to P and P cannot be adjacent to itself.

Exercise 2.10.2. There is a bijection between Fuss-Catalan basis tangles and con-
nected planar tangles with no input discs, whose boundary interval colouring pattern
is NPMPMPNP....MP , coloured by N,P and M with the above adjacency rules.

We will see the virtue of this picture when we analyse the algebra structure of
PFC .

The above idea has been noticed by many people, it was Dylan Thurston who
first explained it to the author.
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2.11 Quantum groups.

2.12 The planar algebra of a graph.

3 Presentations of planar algebras

3.1 The free planar algebra on a set of generators

3.2 Planar skein theory

3.3 Knot skein theory

3.4 The exchange relation

3.5 Yang Baxter skein relations

3.6 Jellyfish

4 Operations on planar algebras.

4.1 Cabling

4.2 Direct sum

4.3 Tensor product

4.4 Stitching

4.5 Free product

4.6 Free stitching

4.7 duality

5 Linear tangles

5.1 Annular categories.

Definition 5.1.1. The rotation will be the element of AnnTLn,n for n > 0 defined by
the following linear tangle:

$

$
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The meaning of ρ in the oriented case is obvious. For shaded planar algebras it
is a pair of maps from Pn,± to Pn,∓ given by the figure 5.1.1 with the two possible
shadings.

Definition 5.1.2. The id⊗ 1 and 1⊗ id from Pn to Pn+2 will be the maps defined
as follows:

(id⊗ 1)(x) = x$ $ (1⊗ id)(x) = x$ $

In the oriented case there are two versions of both id⊗ 1 and 1⊗ id according to
the orientation of the string going from the outside boundary to itself. In the shaded
case id⊗ 1 goes from Pn,± to Pn+1,± and 1⊗ id goes from Pn,± to Pn+1,∓.

6 Algebra structures.

Certain tangles define associative multiplications on planar algebras. We have not
yet been able to list all such structures and the problem is a bit open-ended as the
multiplications may not be defined on all elements etc. But in this section we record
the main algebras we have investigated.

6.1 Inductive limit algebra.

Proposition 6.1.1. If P is a planar algebra then any labelled tangle isotopic to the
one drawn below defines an associative algebra structure on P2n for each n ≥ 0.

ab =

$

$

$ a

b

If P is unital, so is P2n for every n, the identity being given by $ .

Proof. This is the same as exercise 1.2.2

Remark 6.1.2. Whenever we refer to P2n as an algebra this is the structure we
mean.
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If P is a shaded planar algebra the above tangle defines algebra structures on
both Pn,+ and Pn,−. When we write Pn for a shaded planar algebra we will mean
Pn,+.

The oriented case is more intersting. If the above tangle is to define an algebra
structure on Pα then α, thought of as a word on ↑ and ↓, must be of the form ww∗

where w∗ is w read backwards and with the arrows reversed. If we refer to Pα as an
algebra it is this structure we will mean.

Proposition 6.1.3. Both id ⊗ 1 and 1 ⊗ id (of 5.1.2) define unital algebra homo-
morphisms from P2n to P2n+2 and (id⊗ 1)(1⊗ id) = (1⊗ id)(id⊗ 1).

Proof. Simple pictures.

Definition 6.1.4. We call P∞ the inductive limit algebra for the maps id ⊗ 1 and
Pr,∞ for the subalgebra which is the image of (1⊗ id)r.

Theorem 6.1.5. Let P be a unital nondegenerate reduced planar algebra with δ a
non-zero scalar. Then the centraliser ZP∞ (Pr,∞) of Pr,∞ in P∞ is P2r.

Proof. A simple diagram shows that P2r ⊆ ZP∞ (Pr,∞).
Now suppose that x ∈ P∞ commutes with Pr,∞. Then x must be in Pm for

some m. If m ≤ r then x ∈ Pr and there is nothing to prove. So suppose x ∈ Pm
with m > r. We will show that this implies x ∈ Pm−1 so that iterating, x in
fact belongs to Pr. To see this consider id ⊗ 1(x) which is of course the same

element in P∞ as x. Since m > r, the element E = $ with m − 1 vertical

strings (illustrated with m = 5), is in Pr,∞ so we must have xE = $$ x =

$ $ x = Ex. Surrounding both these pictures by an obvious annular tangle

we get x = δ $ $ x . Thus x ∈ Pm−1 as claimed.

Corollary 6.1.6. If P is as in the previous theorem then P∞ is a central algebra iff
P is a central planar algebra.
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It is clear what P∞,± means in the shaded case-note that 1⊗ id goes from Pn,± to
Pn+1,∓ and defines an algebra embedding. The above theorem is true for both P∞,±
but care is needed with the corollary. The oriented case is more exciting. There will
be inductive limit algebras as above for every infinite sequence of ↑’s and ↓’s.

6.2 Comultiplication.

Proposition 6.2.1. If P is a planar algebra then any labelled tangle isotopic to the
one drawn below (for n = 4)defines an associative algebra structure on P4n for each
n ≥ 0.

a ◦ b = $ $ $a b

If P is unital, so is (P4n, ◦) for every n, the identity being given by $ .

The corresponding definitions for the shaded and oriented cases are clear though
note that in the oriented case comultiplication, just like multiplication, can only be
defined on certain Pα’s.

Proposition 6.2.2. The map ρn gives an isomorphism between P4n and (P4n, ◦) in
the unoriented case. In the shaded case it gives an isomorphism between P2n,+ and
(P2n,−, ◦).
Exercise 6.2.3. What does ρn do in the oriented case? When do multiplication and
comultiplication coexist?

Proof. In fact we could have defined a ◦ b as ρ−n(ρn(a)ρn(b)), the pull back of mul-
tiplication

Remark 6.2.4. Note that this does not mean that Pn,+ and Pn,− are isomorphic!
For a counterexample one may take the PG of 2.9.2 when G is not abelian:

Exercise 6.2.5. Show that PG2,+ ∼= CG and PG2,− ∼= `∞(G).

Exercise 6.2.6. For a subfactor planar algebra (or more generally for a central
planar algebra for which the canonical bilinear form is non-degenerate) there is a
canonical isomorphism between P2 and its dual. Show that comultiplication as defined
above can be dualised to obtain what is normally called a comultiplication on P2,
i.e. a map from P2 to P2 ⊗ P2 satisfing the dual of associativity. Show that this
comultiplication is an algebra homomorphism for PG. Find an example where it is
not.
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6.3 The Markov trace

If P is a measured planar algebra we may define a map Tr : P2n → F by the following
diagram:

Tr(x) = µ( $ x ) where we have as usual suppressed the outsideboundary disc

when there are no strings meeting it.

Proposition 6.3.1. Tr(ab) = Tr(ba) = (a, b) so if P is unital, Tr(x) = (x, 1), and
in the planar *-algebra case 〈x, y〉 = tr(xy∗).

Definition 6.3.2. If A ⊆ B are finite dimensional algebras and φ : B → F is a linear
function for which the bilinear forms [a, b] 7→ φ(ab) on B and A are nondegenerate,
then the unique map EA : B → A for which φ(EA(b)a) = φ(ba) for all b ∈ B, a ∈ A
is called the conditional expectation from B to A. (Similarly for sesquilinear forms
and *-algebras.)

Proposition 6.3.3. If P is a central spherical planar algebra with nondegenerate
canonical bilinear form and δ 6= 0, then if B = P2n and A = (1 ⊗ id)(P2n−2) or
A = (id⊗1)(P2n−2) then A,B and Tr satisfy the hypothesis of the previous definition

and EA is the linear tangle 1
δ

$ $ in the first case and 1
δ

$ $ in

the second.

Proof. Just draw the pictures for Tr(Ea(b)a) etc.

Corollary 6.3.4. If we write P1,n−1,1 for (id⊗ 1)(1⊗ id)(P2n+2) then the following
algebras form a commuting square in the sense of []:

(id⊗ 1)(P2n) ⊂ P2n+2

∪ ∪
P1,n−1,1 ⊂ (1⊗ id)(P2n)

Remark 6.3.5. For a positive planar algebra the Markov trace may be renormalised
as tr = δ−nTr on Pn,±. Then we get a positive definite trace on P∞. One may
perform the GNS constuction [] since left multiplication operators are bounded by
finite dimensionality. The resulting von Neumann algebra will be called MP . MP

may or may not be a factor even when P is central. Since 1 ⊗ id preserves tr it
extends to MP and we will call the resulting von Neumann subalgebra NP . The
commuting square property above shows that the inclusion NP ⊆ MP is proper
unless dimPα = 1∀α. MP will always be hyperfinite in the sense of [].

33



6.4 The inductive limit structure of the P2n, Bratteli diagrams.

We are most interested in cases where P2n is semisimple, and to simplify the pre-
sentation we will assume it is a direct sum of matrix algebras over F. Any unital
inclusion A ⊆ B of such algebras is completely given by a simple matrix ΛBA which
describes the inclusion map on K0 or alternatively how the minimal idempotents of
P2n decompose as sums of minimal idempotents of P2n+2. Thus for instance if we
were considering the inclusion of group algebras CS2 ⊆ CS3 (for symmetric groups)

we would find the matrix:
(

1 1 0
0 1 1

)
. This is most conveniently represented by a

bipartite graph whose vertices are the matrix algebra summands, remembered by
their size, and the number of edges between vertices is the entry of the matrix for
the inculsion. Thus in the above example we would get:

1          1

1          2         1

For towers of inclusions of algebras one just stacks graphs as above to obtain
what is called the Bratteli diagram ([]) for the inductive limit algebra. The unital
property of the inclusions is reflected in the propery of the Bratteli diagram that the
number at each vertex is the sum of the numbers connected to it on the next row.

In general it is quite difficult to calculate the algebra structure of P2n but it is
known in most cases simply because they occurred first as inductive limit algebras
and then the algebra structure was observed to extend to that of a planar algebra.
Planar algebra structure is most useful when the identity structure is richest, i.e. for
shaded and vanilla planar algebras. When this is not available the algebra structure
can be known from outside the theory.

Example 6.4.1. The Hecke algebra.
The term Hecke algebra here refers to the algebras one would get as the Hecke

algebras of double cosets for group/subroup pairs when the group is GL(n) over a
finite field and the subgroup is that of upper triangular matrices. For fixed n, if q is
the order of the field, this algebra has presentation on generators gi, i = 1, 2, · · ·n−1
(see [])
g2
i = (q − 1)gi + q
gigi+1gi = gi+1gigi+1

gigj = gjgi if |i− j| > 1.
This algebra can be obtained from knot theory. Indeed PHomflypt is up to a

change of variables the quotient of
−→
P Conway by the first relation above where g is

a positive crossing in
−→
P Conway
↑,↑,↓,↓ . So PHomflyptα (with α(i) =↑ for i = 1, 2, · · ·n and

↓ for i = n + 1, · · · 2n) is the same algebra as the Hecke algebra with n as above.
A deformation argument allows one to obtain the structure of the Hecke algebra for
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generic values of q, since for q = 1 the algebra is semisimple for each n the structure
is that of the of the group algebra CSn. The Bratteli diagram for this algebra is
well known to be the Young lattice whose vertices are Young diagrams connected by
the induction-restriction rule for representations of the symmetric group, see []. For
special values of q degenerations occur and quantum invariant theory sees the Young
lattice as the large N limit of the algebra tower PUq(slN )

α . For different choices of α
the Bratteli diagrams will be different but may always be calculated using the tensor
powers of the N dimensional representation of slN and its dual, and a deformation
argument. This will not work as easily for knot invariants obtained from higher
dimensional representations and I know of no general recipe for calculating these
algebra structures even for the adjoint representation of sln where the corresponding
knot theory planar algebra does not generated the invariants for the tensor powers.

6.5 The Temperley Lieb algebra

A unital planar algebra P contains by definition a planar subalgebra spanned by TL
diagrams. We will call it the TL subalgebra of P . If P is nondegenerate, its TL
subalgebra depends only on δ. So the term “TL planar algebra” has two meanings,
one the planar algebra defined in 2.3 and the other its quotient by the kernel of the
canonical bilinear form which is the same as the one we have just defined.

In this section we will always be referring to the nondegenerate version of TL.
We will determine the inductive limit algebra structure in the shaded version

(which also determines the vanilla version and the oriented version with alternating
boundary orientations). We will write TLn for the algebra P TLn (shaded).

Exercise 6.5.1. TLn is generated as an algebra by {Ei, i = 1, 2, .., n − 1} where

Ei = (1 ⊗ id)i−1(E1), E1 being the tangle $ where the shading is implicit.

Show that the Ei satisfy the relations
(i) E2

i = δEi and E∗i = Ei in the planar *-algebra case.
(ii) EiEi±1Ei = Ei
(iii) EiEj = EjEi if |i− j| ≥ 2.

Suppose δ is such that P TL is a positive definite planar algebra, we will deter-
mine the Bratteli diagram for TLn and the possible values of δ. This argument is
well known so we limit ourselves to a sketch. We will rely heavily on the “basic
construction” where for simplicity we limit ourselves to multimatrix algebras.

Definition 6.5.2. If A ⊆ B is a unital inclusion of multimatrix algebras, A =
⊕ni=1Mki , B = ⊕mi=1Mli with m×n inculsion matrix ΛBA and a trace tr on B which is
nondegenerate on both A and B then the basic construction < B, eA > is the algebra
of linear transformations on B generated by B (acting by left multiplication) and the
conditional expectation eA (see 6.3.2).
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Theorem 6.5.3. The basic construction < B, eA > is equal to the algebra End−A(B)
of all right A-linear maps on B and
(i) < B, eA > is a multimatrix algebra and if p is a minimal idempotent in A then
peA is a minimal idempotent of < B, eA >, canonically defining a bijection between
the set of simple summands of A and those of < B, eA >.
(ii) Λ<B,eA>B is the transpose of ΛBA.
(iii) eAbeA = eA(b)eA for b ∈ B
(iv) For b ∈ B, b ∈ A ⇐⇒ beA = eAb
(v) The map B ⊗A B →< B, eA > defined by x ⊗ y 7→ xeAy is a B − B bimodule
isomorphism.
(vi) If C is any unital algebra generated by B and an idempotent e with ebe = eA(b)e
for b ∈ B then xeAy 7→ xey is an algebra homomorphism onto a 2-sided ideal of C.

Proof. See [],[].

Thus for instance in the example A = CS2 ⊆ CS3 = B as above, the Bratteli
diagram for A ⊆ B ⊆< B, eA >, for any suitably nondegenerate trace, is

3          3

1          1

1          2         1

Theorem 6.5.4. Suppose P is a positive definite planar algebra. Then either δ =
2 cosπ/n for some integer n ≥ 3 or δ > 2. Moreover if δ > 2 the tower of algebras
defined by the inductive limit TL planar subalgebra of P has the following Bratteli
diagram:

.......

2          1

1

1

1 1

2          3           1

5          4           1

5           9          5           1

14         14         6          1

where the kth row (starting with k = 0) gives the sizes of the matrix summands of
the algebra TLk. There are [n+1

2 ] such summands and if we number them with i

starting from 0 from right to left, they are then numbers
(
k
i

)
−
(
k
i−1

)
, and the trace of
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a minimal projection in the corresponding summand is Tk−2i+1(δ)δ−k, Tk being the
Tchebychev polynomial defined by Tk = qk−q−k

q−q−1 with δ = q − q−1.
If δ = 2 cosπ/n the Bratteli diagram is obtained from the one above by eliminat-

ing the last matrix summand of TLn−2 and all those vertically below it, and adjusting
the sizes of the matrix summands to account for unitality of the inclusions. Thus for
δ = 4, 5 and 6 we obtain the following Bratteli diagrams:

.......

1

1

1 1

2          2

4

4          4

2

.......

2          1

1

1

1 1

2          3           

5          3

5           8

13         8

.......

2          1

1

1

1 1

2          3           1

5          4           

5           9          4

14         13

Proof. (sketch). One proceeds indcutively. First suppose δ > 2. Verifying the
relationship between TL0 and TL1 is trivial. Now suppose we know the inclusion
matrix for TLn ⊆ TLn+1, together with the weights giving the normalised Markov
trace tr as a weighted sum of traces. On TLn this may be thought of as a vector −→t n
whose indices are the central summands of TLn, thus ranging from 0 to [n+1

2 ] and if
−−→
dimn is the vector whose entries are the sizes of matrix algebras, the condition

〈−→t n,
−−→
dimn〉 = 1

expresses precisely the normalisation tr(1) = 1.And of course dimTLn = ||
−−→
dimn||2.

By (vi) of 6.5.3 we know there is an algebra homomorphism φ from < TLn+1, eTLn >
to a 2-sided ideal of TLn+2 where as e we take en+1 of 2.3 and use a diagram to obtain
the condition of (vi) from 6.3.3. We claim that φ is injective. Since < TLn+1, eTLn >
is multimatrix, it suffices to check that φ(q) 6= 0 for some element q in each matrix
summand of < TLn+1, eTLn >. Thus by 6.5.3, it suffices to show that φ(peTLn) 6= 0
for any minimal projection p ∈ TLn. But the Markov trace of such an element is
equal to δ−2tr(p) which is non-zero by induction (the Tchebychev polynomials are
never zero for δ ≥ 2).

But now binomial identities show that the sizes of the matrix algebras in φ(<
TLn+1, eTLn >) are as required and the sum of their squares is equal to 1

n+3

(
2n+4
n+2

)
−1.

Thus the ideal φ(< TLn+1, eTLn >) is of codimension at most 1 in TLn+2. A further
binomial identity shows that the sum of the traces of the central projections in
φ(< TLn+1, eTLn >) is equal to 1 − Tn+3(δ)δ−n−2. But Tn+3(δ) > 0 for all n for
δ ≥ 2. This exhibits TLn+2 with its subalgebra TLn+1 and trace −→t n+2 as required.
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Now suppose δ < 2. The method so far shows that the Bratteli diagram for
TL0 ⊆ TL1 ⊆ · · · ⊆ TLn+2 is identical to that for δ ≥ 2 as long as Tk(δ) > 0 for
k ≤ n + 3. Clearly if Tk(δ) > 0 for k ≤ n + 2 but Tn+3(δ) < 0 then the planar
algebra cannot be positive definite. It is easy to check that this rules out any value
of δ lying between the values 2 cosπ/r and 2 cosπ/(r + 1), for r = 3, 4, 5, · · · .

But if δ = 2 cosπ/r then Tk(δ) > 0 for k < r and Tr(δ) = 0. So there is no
contradiction but we conclude that the map φ is actually onto TLr−1! The relations
between the trace vector and the inclusion matrices show that the same is true for
all subsequent basic constructions in the TL tower and we are done.

Explicit formulae for the dimensions of the simple summands for δ = 2 cosπ/r
are available-[].

Remark 6.5.5. Note that the existence of a positive definite planar algebra, and
hence a positive definite TL quotient, for δ = 2 cosπ/n follows from 2.12 using the
An−1 Coxeter graph.

Remark 6.5.6. The above method of proof actually proves a lot more. For any
field, provided δ is not a zero of any of the Tchebychev polynomials T2, · · · , Tn+1 it
shows that TLn is in fact multimatrix and has a Bratteli diagram equal to the first
one in 6.5.4 up to the nth row.

Remark 6.5.7. The whole planar algebra structure was not used in the proof.
In fact we determined the structure of the C∗∗-algebra generated by e1, e2, e3, · · · en
satisfying the familiar relations e2

i = ei = e∗i , eiei±1ei = δ−2ei, eiej = ejei for |i−j| ≥
2 possessing a positive normalised trace tr such that

tr(wen+1) = δ−2trw where w is a word on e1, e2, · · · , en.

Remark 6.5.8. It is obvious that the ideal I in TLn+2 given by the basic construc-
tion is in fact the linear span of all non-empty words on the e′is. In the C∗-algebra
above this defines a canonical minimal, central projection fn+1 for which fn+1I = 0.
This is known as the Jones-Wenzl idempotent-see [],[].

6.6 Principal graphs.

If P is a positive definite shaded planar algebra, the method of proof of theorem
6.5.4 gives a particular structure to the Bratteli diagram of the Pn. Indeed if Λ

Pn+1

Pn

is known together with their trace vectors −→t n and −→t n+1 defined by the Markov
trace, the basic construction embeds via φ as an ideal in Pn+2 exactly as for TL
except of course that it is not necessarily of codimension 1.

Let us write en for ePn−1 ∈ Pn+1. Two cases arise:
Case (i) φ is surjective.
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This happens if the traces of the minimal central projections in φ(< Pn+1, en+1 >)
add up to 1. But the traces of minimal projections in φ(< Pn+1, en+1 >) are just
δ−2 times their values on the corresponding minimal projections in Pn so −→t n is a
positive eigenvector of Λ

Pn+1

Pn
(Λ

Pn+1

Pn
)t. This implies that the trace vector of Pn+1 is

a positive eigenvector of Λ
Pn+2

Pn+1
(Λ

Pn+2

Pn+1
)t so that the homomorphism φ is surjective at

all subsequent levels in the tower.
When this case arises we say that P is “finite depth” and the depth is defined to

be smallest value of n+ 1 for which the homomorphism φ is surjective.
Case (ii) φ(< Pn+1, en+1 >) is a proper ideal in Pn+2.
Then the Bratteli diagram for Pn+1 ⊆ Pn+2 contains two parts, the first being

the basic construction part and the second being “new stuff”. By semisimplicity the
new stuff is canonically a direct summand of Pn+2. We will denote this summand
by Kn+2 (for n = 0, 1, 2, · · · ). Thus Pn+2 = φ(< Pn+1, en+1 >)⊕Kn+2.

Lemma 6.6.1. φ(< Pn, en >)Kn+2 = 0.

Proof. Since Pn+2 is an ideal It suffices to show that Kn+2en = 0. But en is a
multiple of enen+1en and certainly Ken+1 = 0.

We thus see that the Bratteli diagram for Pn ⊆ Pn+1 ⊆ Pn+2 must look as below:

n+2

2          1

2          3           2      1

5          8         3      1   

n   n

n+1   n+1

K
<P   ,e  >

<P     ,e       >

n+1

K

Definition 6.6.2. The bipartite graph underlying that part of the Bratelli diagram
connecting < Pn, en > to < Pn+1, en+1 > is unaltered by Kn+1 and Kn+2 and so
converges as n → ∞ to a bipartite graph called the Principal graph ΓP of P .The
principal graph of the dual planar algebra to P is called the dual principal graph Γ̂P
of P .

Obviously to say that P is of finite depth is the same as saying that ΓP is finite.

Exercise 6.6.3. Show that P is of finite depth iff Γ̂P is finite.

6.7 Graded algebras.

There are many graded algebras defined by a planar algebra. We begin with the
simplest.
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Definition 6.7.1. If P is a planar algebras we call Gr(P ) the N∪{0}-graded algebra
whose degree n graded component is Pn and with multiplication ∧ : Pm×Pn → Pm+n

defined by:

a ∧ b = b

$

$ $a (here m = 3 and n = 4)

x 7→ x∗ makes Gr(P ) into a *-algbera if P is a planar *-algebra.

Thus
∞
⊕
n=0

Pn becomes an associative algebra Gr(P ) which is unital if P is, the

identity being given by Ω.

Remark 6.7.2. This algebra has a curious commutativity property- a picture shows
that a ∧ b = ρdeg(a)(b ∧ a)

Example 6.7.3. Gr(P⊗) is the algebra of non-commuting polynomials in as many
variables as the dimension of the auxiliary vector space V , or in other words the
tensor algebra of V .

If P is shaded, there are two graded algebras according to the shading, to be
unambiguous we call Gr(P ) the one for which the regions containing the $’s are
unshaded. The oriented case is more interesting as one must grade the algebra by
the semigroup of all words ↑ and ↓. In the case of

−→
P ⊗, and the subsemigroup of words

on just ↑, one obtains the tensor algebra of V and if one takes the fixed point planar
algebra for some group in GL(V ) one obtains thus the algebra of (non-commutative)
invariants of G.

For each k we can make {Pn+2k|n = 0, 1, 2, · · · } into a graded algebra (Gr(P ) =
Gr0(P )) with the multiplication ∧k : Pm+2k × Pn+2k → Pm+n+2k defined by (illus-
trated with m = 3, n = 4, k = 2):

a ∧k b =
$

$

a b

$

Thus for each k we have an associative algebra Grk(P ) =
∞
⊕
n=0

Pn+2k which is

unital if P is, the identity being the same as that of the algebra P2k (see 6.1.2)

Proposition 6.7.4. The map 1 ⊗ id defines an algebra homomorphism of Grk(P )
into Grk+1(P ).

Proof. Just draw the picture.
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Observe that the degree zero component of Grk(P ) is nothing but the algebra
P2k. Observe also that Grk(P ) is a *-algebra if P is a planar *-algebra.

Theorem 6.7.5. Let P be a unital nondegenerate reduced planar algebra with δ 6=
1, 0. Then the centraliser ZGrk(P )(Gr(P )) is P2k.

Proof. Suppose x ∈ Grk(P ) commutes with Gr(P ). We may suppose x ∈ Grk(P )n
for some n. There are two cases:
(i) n = 2r > 0. Call ∪ the TL basis element with one string (which is in Gr(P )

hence Grk(P )). Then x∪r =

  $

  $

x = ∪rx =
  $

  $

x (illustrated

with k = 2 and r = 3). Capping off the cups on one of these figures one gets

x = δ−r

  $

  $

x . Now taking the commutator with d =

  $

∈ Gr(P )

one gets
  $

  $

x =
  $

  $

x . Now cap off with d∪r to obtain

(δr+2 − δr)
  $

  $

x = 0. So either
  $

  $

x = 0 in which case x = 0 or

δ = 1, a contradiction.
(ii) n = 2r + 1. Proceeding as in (i) with ∪r one obtains (illustrated with r = 2)

x = δ−r
  $

  $

x . Taking the commutator with ∪ once again and capping off the

cup we get x = δx and argue as before.

Corollary 6.7.6. Let P be as in the previous theorem, then Gr(P ) is a central
algebra iff P is a central planar algebra.

Remark 6.7.7. For a subfactor planar algebra the Voiculescu trace on Gr(P ) is
defined by the augmentation. In [] it is shown to be positive definite and one may
perform the GNS constuction [] since left multiplication operators are bounded ([])
The resulting von Neumann algebra will be called NP . One may define traces on
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each Grk(P ) by augmenting a partial Markov trace as in []. Since 1 ⊗ id preserves
these traces these traces one obtains and embedding of NP inside MP , the GNS
closure of Gr1(P ). By orthogonality one can show that the inclusion NP ⊆ MP is
proper iff δ > 1. These considerations apply without centrality of P but of course
MP will not be a factor if P is not central-its centre will be P0,+. Unlike MP will
only be hyperfinite if δ = 1 ([]).

6.8 Fusion algebras.

7 Connections.

7.1 Bi-invertibles and Bi-unitaries

A bi-invertitble is an element of P4 in a given (unital) planar algebra P that satisfies
relations akin to the type II Reidemeister moves.

Definition 7.1.1. Let P be a unital vanilla finite dimensional planar algebra. An
element u ∈ P4 will be called bi-invertible if

uρ(u) = 1 in the algebra P4

(6.1.2) In a planar *-algebra the bi-invertible u will be called bi-unitary if it is unitary.

Remark 7.1.2. We adopt the diagrammatic convention that a double point should

be replaced by
$

u and the rest of the red string should become blue as well.

Bi-invertibility is thus equivalent to the following identity in P4:

$

=

$

and since uρ(u) = 1 is equivalent to ρ(u)u = 1 this in turn is equivalent to:

$

=

$

(The position of the $’s is immaterial as long as it is the same on both sides of
the equations.)
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Example 7.1.3. The bi-invertible par excellence is the crossing in knot theory. If

we consider the element $ in PConway2 . A single picture shows that this

element is biinvertible.

Example 7.1.4. In general we may choose an invertible (unitary in the * case)
element of P1

Example 7.1.5. In P⊗ the simplest example is the permutation tensor:

Ri,j,k,l =

{
1 if i = k and j = l
0 otherwise

This can be elaborated by choosing permuations πi for each i and setting

Ri,j,k,l =

{
1 if j = l and i = πl(k)
0 otherwise

(If the tensor indices are a finite group, ρg is conjugation by g and we map PConway

to P⊗ by sending a positive crossing to this R and a negative one to its inverse, the
element of P0 defined by a link is the number of homomorphisms of the fundamental
group of the link complement to the group.)

And further if we can find permuations πi and ρj with ρ2
k = 1 and πρk(l) = πl

Ri,j,k,l =

{
1 if i = πl(k) and j = ρk(l)
0 otherwise

(see [],[])

Exercise 7.1.6. Show that the only bi-invertibles in P TL are A $ +A−1 $

where A2 + A−2 = −δ. This is biunitary iff |A| = 1 and P TL is a subfactor pla-
nar algebra. Thus planar algebras may admit no bi-unitaries but any unital planar
algebra has bi-invertibles.

One use of a bi-invertible is to define an endomorphism of the algebra P∞ into
itself.

Definition 7.1.7. If u ∈ P2 is bi-invertible, define the map ψu : P2n → P2n+2 by
the following annular tangle:
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$ $

Proposition 7.1.8. ψ defines a unital algebra embedding of P2n into P2n+2 which
is compatible with the inclusions Pk ⊆ Pk+1 and so defines an endomorphism of P∞.
If u is biunitary then ψ is a *-algebra embedding/endomorphism.

Proof. Just draw the pictures and use the bi-invertible property.

Biinvertibles and biunitaries are intimately related with “commuting squares” or
“orthogonal pairs” ([]) of algebras.

Proposition 7.1.9. Suppose P is central, finite dimensional, with nondegenerate
canonical bilinear form, and δ 6= 0 Fix n and put C = P2n+2, A = (id⊗ 1)(P2n) and
B = ψu(P2n). Then the bilinear form defined by tr is nondegenerate on B and A∩B
and EAEB = EBEA = EA∩B.

Proof. Non-degeneracy of tr on B follows from the fact that ψ preserves the Markov
trace. Consider the following map from P2n+2 to itself:

E = 1
δ

$ $ To show that E is the conditional expectation onto

B one needs to show that tr(E(x)ψ(b)) = tr(xψ(b))∀x ∈ C and b ∈ P2n. But the

left hand side of this equation is 1
δ

$

$ x

b

and the right hand side is
$

$ x

b

.

After a little isotopy and moves as in 7.1.2 we see that these two numbers are equal.
To complete the proof is a matter of composing the annular tangles for EA and EB
in both orders. Non-degeneracy on A ∩B is immediate.

So A,B,C and A ∩B forming a commuting square.

Corollary 7.1.10. The map on P∞ defined by E above gives a conditional expectation
from P∞ onto ψ(P∞).

44



We see that 7.1.9 Allows us to control the inclusion ψ(P∞) ⊆ P∞. In particular
it is proper. In the von Neumann algebra case this will be particularly useful. But
of more interest is the situation concerning ψ(P2n) (= B) and (1⊗ id)(P2n)( = D).

Proposition 7.1.11. Identifiying P2n with ψ(P2n) using ψ, the “angle operator”
EBEDEB is given by the following diagram:

1

δ2
$ $

(And of course if we identify D with P2n using 1⊗ id we get the same picture for
EDEBED with the orientations reversed.)

7.2 Flatness.

Definition 7.2.1. Suppose we are given a planar algebra P and a bi-invertible ele-
ment u in P4. An element R ∈ Pn is said to be flat for u if there is a Q ∈ Pn so
that the following holds in Pn+2:

R$$
=

$

Q$

Remark 7.2.2. Note that if n is even this is equivalent to saying that ψu(R) ∈
(1⊗ id)(R)

Proposition 7.2.3. R ∈ Pn is flat iff for any integer p, 0 ≤ p ≤ n there is a Q ∈ Pn
with

$

R$
=

$

Q$

where the red string crosses p strings in the picture containing R.

Proof. Just surround the flatness picture by an appropriate annular tangle and use
7.1.2 to obtain the pictures above.

Lemma 7.2.4. If P is a positive planar algebra, an element is flat iff it is a fixed
vector for the angle operator (7.1.11).
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Proof. The angle operator is indeed the angle operator for the two subspaces D
and B. The eigenspace with eigenvalue 1 is precisely the intersection of the two
subspaces.

We see that the union of the eigenvalues of the angle operator as n varies forms
the pure point spectrum of the angle operator ([]) between the two von Neumann
subalgebras ψ(MP ) and NP of 6.3.5. This is very interesting in light of [] where
it is proved that the intersection of finite index subfactors is of finite index iff the
spectrum of the angle operator is finite. But the intersection of ψ(MP ) and NP

is just the closure of the flat elements so the multiplicity of the eigenvalue 1 of the
angle operator actually influences the number of its eigenvalues.

Perhaps the main interest in biinvertibles and their flat elements is the following:

Theorem 7.2.5. If P is a unital vanilla finite dimensional planar algebra and u ∈ P4

is bi-invertible, then the flat elements for u form a planar subalgebra of P which is
unital if P is and a planar *-subalgebra if P is a planar *-algebra and u is biunitary.

Proof. We have to show that any planar tangle labelled with flat elements is again
flat. This is not hard-draw the diagram of the left hand side of flatness. The red string
can then be moved through the labelled tangle to the bottom, passing through any
blue strings by 7.1.2 and any labelled discs by 7.2.3. Unitality follows from 7.1.2 and
the *-algebra property follows from applying an orientation reversing diffeomorphism
to the picture in 7.2.1 and using ρ(u) = u∗.

Definition 7.2.6. If u is a biinvertible or biunitary in P we call P u the planar
subalgebra (sub *-algebra) of flat elements for u.

7.3 The shaded case, Hadamard matrices.

Consider now the case of shaded (not necessarily spherical) unital reduced planar

algebras. There are two possible shadings for the picture . So we define

in this case a biinvertible to be a pair u, v of elements in P2,+ such that uv = 1

and ρ(u)ρ−1(v) = δ+
δ−

1 (in P2,−). Now we adopt the convention that is

to be replaced by
$

u and is to be replaced by
$

w (with

w = ρ−1(v)). For u to be biunitary (when P is a planar *-algebra) means that u
itself is unitary. This is equivalent to ρ(u) being a multiple of a unitary in P2,−.
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With these conventions all the definitions and results of this section apply in the
shaded case.

Proposition 7.3.1. Choose invertibles (resp. unitaries) x, y ∈ P1,+ and define

w(x, y) = x y .

Then if u is biinvertible (resp. biunitary), so are uw(x, y) and wu(x, y).

Proof. This follows immediately from pictures.

We see that the set of biinvertibles (resp. biunitaries) is a union of double cosets
for the subgroup of invertibles (unitatries) of the form w(x, y) above. Changing u
by w’s is called a gauge transformation.

Of considerable interest is the case of P spin. In this case a biunitary element is
precisely the same as a unitary matrix ui,j with |ui,j | = 1√

Q
∀i, j = 1, 2, · · ·Q. If

the field is R this is precisely the same notion as a Hadamard matrix -[] (after multi-
plication by

√
Q). In the complex case such matrices are called complex Hadamard

matrices.
Note that the biunitarity condition translated into diagrams is just:

$

=

$

and $ = 1
Q

$

with both orientations allowed on the red line.
An element R of P2,+ is flat in this case if there is a S ∈ P2,− such that

$

$ R
= $

$

S

This is a version of what is known as the “star-triangle” equation. Written out
in algebraic notation it becomes, according to our conventions,∑

a

ua,iua,jRk,a = uk,juk,iSi,j ∀i, j, k = 1, 2, · · ·Q

These equations apply no matter how the action of tangles in P spin is normalised.
See 1.3.9. The only effect of changing the values of δ on closed loops will be to change
the S corresponding to a given R by a scalar.

Elements of TL are always flat. Let us record in detail the flatness relation for
TL elements in PSpin2,+ . It also applies to any biinvertible in a spherical shaded planar
algebra. (see 2.9.1).
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Definition 7.3.2. For an invertible scalar A let

R(A) =

$

+A $ ∈ PSpin

Proposition 7.3.3. The star triangle equation is satisfied for

R = R(A) and S = AR(
1

A
)

.

Proof. This is easy to check from the star triangle equation and biinvertibility.

Hadamard matrices have been intensively studied. Apart from an obvious exam-
ple when Q = 2, they only exist for Q a multiple of 4. For information on Hadamard
matrices see [].

Gauge transformations alter a complex Hadamard matrix by multiplying rows
and columns by scalars of modulus one (±1 in the real case). This, together with
permutations of the rows and columns, gives what is called Hadamard equivalence
of (generalized) Hadamard matrices. Row and column permutations produce equiv-
alent P u’s so any information about u obtained from P u alone will be invariant
under Hadamard equivalence. (The endomorphism ψu of 7.1.7 itself contains more
information than just P u.)

Proposition 7.3.4. If u is a complex Hadamard matrix, P u is central. Moreover,
dimP u1 = 1, and P u2,+ and P u2,− are abelian.

Proof. We have dimP0,+ = 1. Here is the equation for flatness of x ∈ P1,+.

x = y .

If the bottom shaded region is assigned a spin a, and the top region a spin b, the
left-hand side gives ub,axa and the right-hand side gives ub,ayb, so xa is independent
of a, and dim P u1,+ = 1. It follows that dimP0,+ = 1.

P u2,+ is abelian because P2,− obviously is and ρ3ψ defines an antiisomorphism
between P u2,+ and P u2,−.

So a complex Hadamard matrix u yields a subfactor planar algebra. In fact the
corresponding subfactor was the starting point of the theory of planar algebras, as the
equations for P u are those for the relative commutants of a spin model commuting
square given in []. We now determine P u2,± for a complex Hadamard matrix u.

48



Definition 7.3.5. Given a Q × Q complex Hadamard matrix ua,b we define the
Q2 ×Q2 profile matrix Prof(u) by

Prof(u)c,da,b =
∑
x

ux,aux,bux,cux,d.

The profile matrix is used in the theory of Hadamard matrices. We will see that it
determines P u.

Definition 7.3.6. Given the Q2×Q2 matrix Prof(u), define the directed graph Gu

on Q2 vertices by (a, b)→ (c, d) iff Prof(u)c,da,b 6= 0.

The isomorphism class of Gu is an invariant of Hadamard equivalence.

Theorem 7.3.7. If u is a Q × Q generalized Hadamard matrix thought of as a
biunitary for the spin planar algebra P = P spin, then the minimal projections of the
abelian C∗-algebra P u2,+ are in bijection with the connected components of the graph

Gu. Moreover the (normalized) trace of such a projection is
n

Q2
where n is the size

of the connected component, which is necessarily a multiple of Q.

Proof. For matrices Ra,b, Sa,b, the flatness equations of the star-triangle equations
above amount to saying that, for each (i, j), the vector v(i,j) whose xth component
is ux,jux,i is an eigenvector of the matrix R with eigenvalue Si,j . The profile matrix
is just the matrix of inner products of these eigenvectors, 〈v(d,c), v(a,b)〉. The v(i,j)

span the space since, for fixed i, the biunitary equations show that the v(i,j) are
orthogonal. So let p be a nonzero proection in P u2,+. For each (i, j) either pv(i,j) = 0
or pv(i,j) = v(i,j). If pv(i,j) = v(i,j) and there is an edge between (i, j) and (k, `) on
GU then pv(k,`) = v(k,`). Hence the image of p is spanned by the v(i,j)’s with (i, j)
in a union of connected components of Gu. The orthogonal projection pC onto the
linear span of v(i,j)’s with (i, j) in a connected component C is in P u2,+ since all the
v(i,j)’s are eigenvectors for this projection. Such a pC is clearly minimal.

If the matrix R is a minimal projection, Sa,b is either 1 or 0 depending on whether
(a, b) is in the connected component or not. Consider the picture below where the
shadings are implicit using R ∈ P u2,+ and S ∈ P u2,−.

R = S

Applying Reidemeister type II moves and summing we obtain the assertion about
the trace. (It is a multiple of 1/Q since x is a Q×Q matrix.)

If G is a finite abelian group and g 7→ ĝ is an isomorphism of G with its dual
Ĝ (=Hom(G,C∗)), we obtain a generalized Hadamard matrix u, with Q = |G|, by
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setting uh, g = 1√
Q
ĥ(g). We call this a standard generalized Hadamard matrix. It

is Hadamard if G = (Z/2Z)n for some n.

Exercise 7.3.8. Show that if u is standard P u is exactly the planar algebra PG of
2.9.2. In particular dim(P uk±) = Qk.

Exercise 7.3.9. Show that if dimP u2,± = 2 then u is gauge equivalent to a standard
complex Hadamard matrix.

(Hint. Being Abelian, P u2,+ is `∞(X) with |X| = Q. Use comultipilcation to
define a group structure on X.)

We have, together with R. Bacher, P. de la Harpe, and M.G.V. Bogle performed
many computer calculations. So far we have not found a generalized Hadamard
matrix u for which dim(P u2,±) = 2 but dim(P u3,±) > 5. The five 16 × 16 Hadamard
matrices have dimP u2,± = 16,8,5,3 and 3, and are completely distinguished by the
trace. There are group-like symmetries in all cases corresponding to the presence of
normalizer in the subfactor picture. Burstein in [] has completely determined the
structure of P u in the case dimP u2,± = 8. The Hadamard matrix itself decomposes
as a twisted tensor product []

Haagerup has shown how to construct many interesting examples and given a
complete classification for Q = 5. In the circulant case he has shown there are only
finitely many examples for fixed prime Q (see [ ]).

Perhaps somewhat surprisingly, the presence of a lot of symmetry in u can cause
P u2,± to be small! The kind of biunitary described in the following result is quite
common — the Paley type Hadamard matrices give an example.

Proposition 7.3.10. Suppose Q−1 is prime and let u be a Q×Q complex Hadamard
matrix with the following two properties (the first of which is always true up to gauge
equivalence):

(i) There is an index ∗ with ua,∗ = u∗,a = 1 for all a.

(ii) The group Z/(Q − 1)Z acts transitively on the spins other than ∗,
and uga,gb = ua,b for all g ∈ Z/(Q− 1)Z.

Then dim(P u2,±) = 2 or u is gauge equivalent to a standard matrix.

Proof. The nature of the star triangle equations makes it clear that Z/(Q− 1)Z acts
by automorphisms on P u2,+, obviously fixing the projection e which is the matrix
Ra,b = 1/Q. Thus the action preserves (1−e)P u2,+(1−e). Since (Q−1) is prime there
are only two possibilities: either the action is non-trivial and dim(P u2,+) = Q so P u

is standard, or every solution of the star triangle equations is fixed by Z/(Q− 1)Z.
In the latter case let Ra,b, Sa,b be a solution of the star triangle equations. Then
putting c = ∗ we obtain

∑
d ud,aud,bR∗,d = Sb,a, so Sb,a is determined by the two

numbers R∗,∗ and R∗,d, d 6= ∗. So by 2.11.7 we are done.
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We would like to make the following two open problems about matrices quite
explicit. Both concern a generalized Hadamard matrix u.

(i) Is the calculation of dimP uk,± feasible in the polynomial time as a
function of k?

(ii) Is there a u for which dimP uk,± = 1
k+1

(
2k
k

)
? (i.e., P u is just the shaded

Temperley-Lieb algebra).

8 2D Statistitical mechanical models.

8.1 Generalities

If we consider the following tangle:

$
$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

Given R ∈ P⊗4 we consider the value of this tangle T with all the inputs being
R. We have

ZT =
∑
σ

∏
D∈DT

Ri,j,k,l

Where σ runs over all functions from the strings of the tangle to the set {1, 2, · · · k}
and i, j, k, l are the values of σ on the four strings surrounding D. Obviously some-
thing needs to be done about the boundary but let us ignore that for the moment.

If all the Ri,j,k,l are non-negative they can be written exp(−E(i,j,k,l)
kT ) and we

recognise the partition function for what is called a “vertex model” on a square
lattice in two dimensional equilibrium classical statistical mechanics. The discs in
DT are to be thought of as “atoms” interacting with their neighbours on the lattice
with the possible states of each atom being given by the quadruple (i, j, k, l). Then
E(i, j, k, l) is the energy of the atom in that state. What we do with the boundary
will change the answer but since all the terms are positive, not by much and certainly
not enough to affect the growth rate of ZT as the lattice gets larger and larger in
size. It is this growth rate, 1

|DT | log(ZT ) that is one of the main objects of study,
called the free energy-see [].

But we see that our planar algebra formalism allows us to consider ZT when
R is any element of any planar algebra in the space corresponding to 4 boundary
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points. If we consider the graph planar algebras of [] we get the so-called IRF models
(interaction round a face). We will not in general expect convergence of the growth
rate of ZT without some kind of positivity assumption on R.

Of particular interest are the spin models. We suppose 8.1 is shaded so that the
top left hand region is unshaded. Then the shaded regions form a square lattice that
is rotated by π/4 with the shaded regions being the vertices of this ("semidual")
lattice and the internal discs of 8.1 being the edges. The partition function would
then be

ZT =
∑
σ

∏
D∈DT

Ri,j

where now σ is a way of assigning a spin in {1, 2, · · · , Q} to the shaded regions which
are now the "atoms". And i and j are the two spin values assigned by the state to
the two atoms in the shaded regions around D. The R matrices in the disc give the
Boltzmann weights of the interaction between two neighbouring atoms in their spin
states given by σ (so we need the Ri,j to be positive, or at least non-negative, for
all values of (i, j)). This was the setup for the original Ising model which is the case
Q = 2. (We consider here the case without an external magnetic field. One can be
applied by inserting 2-discs diagonally between the discs of 8.1.

Any choice of positive numbers Ri,j defines a model and many choices have been
looked at. [] [] If the set of spin values has no structure then one can only allow Ri,j
to depend on whether i = j or not. It is easy to see that any such R is realised by a
TL element of P spin2,+ so we are led to consider

R =

$

+A $ and

This is the most general form since just multiplying R by a consant will have a simple
effect on the partition function which will only change the free energy by an additive
scalar.

This choice of R is known as the (isotropic) Potts model which we will investigate
below.

8.2 Kramers-Wannier duality.

Before Onsager solved the square lattice Ising model in [], the critical temperature
was located by a simple argument which supposed the existence and uniqueness of
the critical temperature. We give a planar algebra version of the argument which
applies in greater generality and reposes on our concept of biinvertible element. The
argument will have two components-first using a biinvertible element to identify the
partition function on a planar graph with that of the dual graph, and the second
identifying the graph and the dual graph for certain lattices.
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As a preliminary we explain the medial (four-valent) graph for planar graphs. If
T is a shaded planar 0-tangle with input discs all having four boundary points, one
may form the planar graph GT whose vertices are the shaded regions and whose edges
are the input discs of T (each of which is connects a pair of (not necessarily distinct)
regions. We sat that the four-valent planar graph obtained from T by shrinking all
the internal discs to points is the medial graph for GT .

Exercise 8.2.1. Show that for any (finite) planar graph G there is a 0-tangle T with
GT = G. Show that the unshaded regions of GT define the planar dual of G.

We include a picture showing a planar graph together with its medial graph.

Now suppose we are given a measured shaded planar algebra (P, µ) and an ele-
ment R ∈ P2,+. Then we may define labelled planar 0-tangle given any planar graph
G by inserting R into the input discs of the tangle T with G = GT . We say that R
defines a statistical mechanical model on G whose partition functionZG,R is µ(ZT ).

Proposition 8.2.2. If (P, µ) is spherical and reduced with invertible loop parameter.
Suppose R is flat with respect to some biinvertible, satisfying the star triangle equation
with S and Ĝ is the planar dual of G then ZG,R = ZĜ,S.

Proof. Form the planar tangle T giving the medial graph. ZG,R is µ of the element
of P0,+ obtained by putting R in all the internal discs of T . Now introduce a small
closed string outside all the strings o T . This simply multiplies ZG,R by the loop
parameter. Now the string can be passed right through the labelled tangle, producing
the same tangle with the shading reversed, with all internal discs labelled by S, by
flatness. By sphericality the closed string may be removed and we see precisely the
picture for ZĜ,S .

We can now undertake the discussion that will give the critical temperature for
the Ising model. Let G be a large square lattice with N2 vertices and some way of
closing the lattice on the boundary. Then apart from the boundary of G and Ĝ, Ĝ
is also a large square lattice, of the same size. If P is realised as a concrete planar
algebra (e.g. P spin) and all the elements of R and S are positive in some basis, it is
to be expected that what happens at the boundary will have a negligible effect on
the partition function. It is also expected that limN→∞

1
N2 logZG,R will exist and

define a function called the free energy per site of the system, F (R). It should not
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depend on boundary conditions so that we expect, by 8.2.2, F (R) = F (S). But if
we are in the isotropic Potts model with R = R(A) then S(A) = AR( 1

A) by 7.3.3 so
that ZG,R(A) = (A)N

2
ZĜ,R( 1

A
) and

8.2.3. F (R(A)) = log(A) + F (R( 1
A)).

The assertions about the existence of F and the independence on boundary con-
ditions are quite reasonable and no doubt proved in considerable generality in the
mathematical physics literature. But now comes the interesting part. Criticality is
supposed to correspond to some kind of singularity in F (R(A)) but by the equation
above, if a singularity occurs at some value of A it also occurs at 1

A . So if we make
the (big) assumption that there is a unique critical point (phase transition), it must
occur when A2 = 1.

We now only have to connect the parameter A with the physical parameters
in the Potts model and we have the critical temperature, assuming it exists and is
unique.. In P spin the entries of the matrix R are the Boltzmann weights for the
interactions between neighbouring spins and of course in the Potts model they only
depend on whether the two spins are the same or not. A global change in the base
energy will affect the free energy simply by a constant so we may assume E(σ, σ′) to
be any fixed quantity if if σ 6= σ′. Now we have to be careful since in order to apply
8.2.2 we need to use the spherical version PSpin. This has no effect on the meaning

of the tangle $ but

$

acts by
√
Q times it’s action in the asymmetric

version of P spin. This means that the tangle R(A) represents Boltmann weights of
A +

√
Q on the diagonal and

√
Q off the diagonal. These are all positive provided

A > − 1√
Q
. In []Baxter it is supposed that the two Boltzmann weights are inverse to

one another with the case σ = σ′ being eK . This means that A√
Q

= e2K − 1 and the
equation for cricicality is

e2K = 1 +
√
Q.

In the Ising case, Q = 2 and we obtain K = log (1+
√

2)
2 in accordance with [].

The functional equation 8.2.3 relates F (R(A)) to F (R(A−1)). Since A is related
to K by A√

Q
= e2K − 1, if K is positive, K → 0 is the same as A→ 0 and K →∞

is the same as A → ∞. But K = −E
kBT so that the functional equation relates

high temperature behaviour in the ferromagnetic case E < 0 to high temperature
behaviour.

One may extend this example in many ways. First of all, structure on the graph
may allow a natural assignment of different R matrices to different interactions.
For a rectangular lattice In the above this could mean a value of A for horizontal
interactions ( A√

Q
= e2K − 1) and a value B for vertical ( B√

Q
= e2L − 1). If F (A,B)
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is the resulting rectangular lattice free energy, the extension of 8.2.2 and the above
argument give immediately the functional equation

F (A,B) = log(AB) + F (
1

B
,

1

A
)

from which we see that if singularities occur on one side of the line AB = 1 then
they occur on the other side as well, which gives the "self-dual" or "critical" Potts
model equation

(e2K − 1)(e2L−1) = Q

first obtained by Potts [].
Another extension of the argument is to non-TL solutions of the star-triangle

equation. For instance one could take the solutions we know for complex Hadamard
matrices. We would like to use elements of P u2,+ as Boltzmann weights for a sta-
tistical mechanical model and isolate a critical or at least “self-dual” variety. But
the Boltzmann weights must be positive for the model to make physical sense so we
require both the R and S entries in the star triangle equation to be positive. We
know all solutions for S from the proof of 7.3.7. They are simply functions that are
constant on the connected components of the graph Gu, and all the entries in the
matrix will be positive is the same as saying S is a positive function. So to determine
the variety of all positive solutions we need to find all such S(a, b) for which∑

i,j

Si,j ūa,iua,jub,iūb,j > 0 ∀a, b

The solution space is at least two dimensional since it contains the Temperley Lieb
solutions which give the Potts model but we can easily see that there is more. If we
rewrite the star-triangle relation so that the side of the equation with a summation
involves S, we see that the entries R(a, b) are in fact the eigenvalues of S(a, b) so as
soon as S(a, b) is positive definite as a matrix, the numbers R(a, b) will be positive.
On the other hand the diagonal {(a, a)} is a connected component of Gu so we
may ensure positivity by diagonal dominance. As soon as the diagonal entries are
large enough compared to the other entries the matrix is positive. To determine the
dimension of the space of physically relevant value one thus only needs to know the
action of ρ2 on the set of mininal projections in P2,− or in other words on the vertices
of the graph Gu. The exact nature of the space might be difficult to determine. One
case is easy to complete and that is the case where u is the Fourier transform matrix
for a finite abelian group. If G is such a group (of order Q) and we choose an
isomorphism g 7→ ĝ from G to Ĝ then we can define ug,h = 1√

Q
ĝ(h). Flat elements

are then given by any matrix Rg,h = R(g − h) and the corresponding S matrix is
obtained from the Fourier transform of R(g). The rotation acts by sending g to g−1

so the dimension of the space of flat matrices with positive Boltzmann weights is easy
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in terms of the number of involutions in G. For instance if G is Z/5Z the dimension
is three-R must be of the form

R(n) =


r0 if n = 0
r1 if n = 1 or 4
r2 if n = 2 or 3

And in fact the space of all R with all Boltzmann weights positive is the inter-
section of the positive cone in R3 with {(r0, r1, r2)|r0 +r1 cos 2π/5+r2 cos 4π/5 > 0}
. CONTINUE

Another way to generalise this duality result is to use R-matrices in n-box spaces
for n > 2. The most obvious candidate is to use TL elements and get a 3-spin inter-
action Potts model on a triangular lattice. Here is a picture of the lattice, ignoring
boundary conditions:

This was analysed in detail in [](Baxter Temperley Ashley, Proc. R. Soc. Lond.
A 16 January 1978 vol. 358 no. 1695 535-559). We illustrate in the simple isotropic
case where R is invariant under ρ2 so there is no need to specify the position of
the $’s. The geometry of the lattice could be used to accomodate an arbitrary TL
element.

The internal discs are all to be filled with the same element R of TL.After nor-
malising the energy as in the previous case we can assume

R(A,B) =
$

+A $ +B{

$

+ $ +
$

}

Choosing any biinvertible in PSpin it is clear that R(A,B) satisfies the flatness
condition
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$

$ R

= $

$

S

with S(A,B) = AR( 1
A ,

B
A ). So repeating the argument of 8.2.2 and the discussion

of Kramers-Wannier duality we expect the following functional equation:

F (A,B) = logA+ F (
1

A
,
B

A
)

where F (A,B) is the free energy per site of the large limit of the triangular lattice
above where all the circles are labelled with R = R(A,B). So that the self-dual and
supposedly “crtitical” situation is just A = 1.

Relating the values of A and B to the Boltzmann weights is a bit more interesting.
There are 3 Potts configurations:
(i) All three σ (in the shaded regions) distinct: call the Boltzmann weight w3.
(ii) All three σ equal: call the Boltzmann weight w1.
(iii) Two of the σ’s equal and the other one different: call the Boltzmann weight w2.

These give the equations:

w3 =
√
Q

w2 =
√
Q+B

w1 =
√
Q+ 3B +

A√
Q

(The factors or
√
Q are because of the action of tangles in PSpin as opposed to P spin.)

We can zero out the energy as before by dividing by w3 and setting w2
w3

= eK and
w1
w3

= eL to obtain the equation for self-duality:

eL = 3eK +
1

Q
− 2.

Note that in the ferromagnetic case L > 0,K > 0 there is a physical value of L
for every K and in the antiferromagnetic case there is a physical pair (K,L)provided
|K| is small enough.

8.3 Temperley Lieb equivalence

If we consider a planar graph G with its medial graph as in 8.2.1 we have shown
how to define a Potts model on it. We can also define an “Ice-type” model on it as
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follows. Orient the strings (edges of the medial graph) at each vertex of the medial
graph so that two edges bounding the same shaded region are ingoing and the other
two are outgoing. This orientation may or may not extend to the strings. If it does
not, simply insert u+ or u− somewhere on that string. Blow up the crossings so that
they are discs into which elements of P Ice2 may be inserted. Putting R(θ) into each
disc we obtain a labelled 0-tangle in P Ice0 . Here is what would be obtained for the
tangle of 8.2.1:

R

R

R
R

R

where we have suppressed the u± between the two arrows on two of the strings for
clarity.

If we replace each R by xE + y1 then we get a sum over 2k terms, where k is the
number of vertices of the medial graph. Each term contributes a power of x and y
and a factor δr where r is the number of closed loops formed. (A closed loop must
contain an even number of u± which all cancel.) But if we used PSpin on the original

graph and used x $ +y

$

we would get exactly the same sum. This is

an abstract version of Temperley-Lieb equivalence as in [],[].

8.4 The transfer matrix.

8.5 The Yang-Baxter equation.

8.6 Commuting transfer matrices.

9 Subfactor planar algebras.

Definition 9.0.1. The canonical planar algebra of a subfactor N ⊆ M is the pla-
nar algebra with Pn,+ = H0

N−N (⊗nNM), Pn,− = H0
M−M (⊗n+1

N M) endowed with the
action of shaded tangles defined above.
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