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Introduction

Background

1 Pure topological gauge theory for a compact group G in 3D can be
defined näıvely as the sphere topology of the classifying space BG .

2 It has a refinement in terms of the holomorphic Lagrangian geometry
on an algebraic completely integrable system C (Toda system), with
base the adjoint orbits B := gC/GC = SpecH∗(BG ).

3 The space C is called the Coulomb branch for pure 3D gauge theory.
4 Some boundary conditions for this theory are 2D gauged A-models.

Compact symplectic manifolds give (coherent sheaves supported on)
holomorphic Lagrangians in C , finite over the base.

5 The sections of these sheaves are their equivariant cohomologies;
more generally, the spaces of states for the circle, made G -equivariant.

6 For instance, C itself is foliated by the flag varieties of G (ranging
over all the small quantum parameters).

7 This can be viewed as a character theory for topological G -actions on
linear categories, with C playing the role of conjugacy classes, in the
sense of semiclassical calculus (irreducibles ↔ Lagrangians).
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Introduction

Example

When G = U1, C = T∨C× = SpecC[τ, z±] = SpecHU1
∗ (ΩU1),

with the Pontryagin product on ΩU1.

(In general: HG
∗ (ΩG ), with G conjugating ΩG ; a space first described by

Bezrukavnikov-Finkelberg-Mirkovic.)

Then, P1 corresponds to the Lagrangians τ = q(z − z−1),
the graphs of the differentials of W (z) = q(z + z−1) in the toric mirror.

For SO3, C (SO3) arises from C (U1) by
dividing out the ±1 Weyl action, blowing
up (τ = 0, z = ±1), and deleting the
proper transform of τ = 0.

The P1-Lagrangians foliate the space,
missing only the cotangent fibers over
z = ±1 (the point flag variety).

 

Trivial repres.
Sign repres.

Spec H     

Underlying C

Support of 
equivariant C
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Development

Gauge theory “with matter”

For non-compact manifolds, the Lagrangians (4) need not be finite over B.

For example, the standard representation C of U1 gives the Lagrangian
{z = τ} in T∨C×, with ring of functions C[τ±].
This is the equivariant symplectic cohomology of C.

For a general complex representation V of G , one regularizes the
symplectic cohomology by adding equivariance under scaling, with an
equivariant mass parameter µ. (Here, µ just shifts τ , so is dispensable.)

Formally near µ =∞ (but not for finite µ) the Lagrangian is a section of
B; the formula in terms of the weights {ν} of V is (in rank one)

z =
∏
ν

(µ+ ντ)ν (Mirror formula)

This infiniteness of the GLSM V , as boundary condition of gauge theory,
seems to be remedied by introducing matter fields in the quaternionic
representation E := V ⊕ V̄ in the 3D gauge theory.
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Development

Coulomb branches with matter

There is a Coulomb branch C (E ) for more H-representations E of G .

Gauge theory with matter assigns a vector space to S2, which is an E3

algebra for pictorial reasons (sphere topology), and C is Spec of that.

Based on substantial ideas from physics, Braverman, Finkelberg and
Nakajima defined C (E ) for the polarized case V ⊕ V̄ .

In this lecture, we will
1 Recall the definition of C (V ⊕ V̄ )
2 Give an explicit description in terms of C and the Mirror formula
3 Extend the definition to non-polarized representations
4 Give the Abelianization theorem for C , allowing all computations.

Remark

The gauge theory should be recoverable from the Coulomb branch as its
Rozansky-Witten theory. However, while this seems to work for C , most
Coulomb branches are singular, so the RW construction not clearly defined.
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Key Facts and Results

Properties of Coulomb branches

1 The zero branch C is an abelian group scheme over the base B.

2 Each C (E ) carries a Poisson structure (of degree (-2))

3 Each C (E ) maps to B with Lagrangian fibers, and is free as a module.

4 Each C (E ) carries a fiber-wise action of C , and is birational to C .

5 There are compatible multiplications C (E )×B C (F )→ C (E ⊕ F ).

6 C (V ⊕ V̄ ) has two regular Lagrangian sections, corresponding to
V , V̄ , whose ratio is given by the earlier Mirror formula.

7 With the mass parameter included, C (V ⊕ V̄ ) is the quotient in affine
schemes of two copies of C relatively translated by the mirror section.

8 Abelianization: C (G ;E ) = C
(
T ;E 	 g⊕2

C
)
/W , when the latter

makes sense (e.g. the roots are weights of E but less is needed).

(3) and (8) ⇒ all Coulomb branches from C and from SU2, V = C2.
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Sphere and surface topology

Pure topological gauge theory

Two näıve versions of gauge theory in 3D (related by Koszul duality) can
be described homotopically. They fit in the framework of fully extended
TQFT, but lose information.
Much like in 2D, string topology for a compact manifold M can be
generated by C ∗(M) or C∗(ΩM), we can use C ∗(M) and the E2 algebra
C∗(Ω2M) to define sphere topology, a partially defined 3D TQFT.
It is fully defined up to dimension 2; some 3D operations also exist (e.g.
the E3 structure on the space assigned to the sphere).

Here, M = BG (so we can dispense with (co)chains). The space of states
for S2 is computed, in the two cases, as the E2 Hochschild cohomology of
H∗(BG ), resp. H∗(ΩG ), giving formal completions of C along Lagrangians
(the cotangent fiber at 1, or the zero-section, respectively, for the torus).

From the two näıve answers, the true answer can be guessed as H∗G (ΩG ).
More generally, a closed surface Σ leads to the analogous equivariant
homology of the stack of G -bundles. This gives a partial TQFT.
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Sphere and surface topology

Wild speculation

This topological construction makes it seem that adding a representation
E is irrelevant, because of its contractibility.
What shows up instead is a categorified version of the virtual fundamental
class for an obstructed deformation problem. This does in fact carry a
virtual fundamental class from the boundary theory, the GLSM of V .

It appears, on the level of surfaces, in the guise of a constructible sheaf on
the stack BunG of G -bundles, which is (conjecturally) multiplicative for
the TQFT gluing operations. A key contribution of [BFN] is a coefficient
system on ΩG in which the sphere multiplication is strictly defined,
bypassing the deformation and coherence checks.

The theory with matter should be generated by a conjectural gauged
holomorphic Fukaya 2-category of E . For V ⊕ V̄ , a simplified model could
be the gauged endofunctor category of the Fukaya category of V . This
seems difficult to define precisely.

C. Teleman (Berkeley) Coulomb branches Perimeter Institute 8 / 15



The constructible sheaf on BunG

The BFN construction

The construction uses the algebraic model GC((z))/GC[[z ]] of ΩG , and the
coefficient system produced is GC[[z ]]-equivariant.
The double coset GC[[z ]] \ΩG represents the stack of bundles on the formal
disk with doubled origin; it is multiplicative via the Hecke correspondence

{GC[[z ]] \ GC((z))/GC[[z ]]} × {GC[[z ]] \ GC((z))/GC[[z ]]}
↑

GC[[z ]] \ GC((z))×GC[[z]] GC((z))/GC[[z ]]

↓
GC[[z ]] \ GC((z))/GC[[z ]]

One first produces an equivariant linear space LV → ΩG , whose fibre-wise
Borel-Moore homology defines the constructible sheaf SV .
Multiplicativity of SV is implemented by a correspondence diagram on
LV , which matches the multiplication in the Hecke correspondence.
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The constructible sheaf on BunG

At a loop γ ∈ GC((z)), the fiber LV (γ) is the kernel of

V [[z ]]⊕ V [[z ]]
Id−γ−−−→ V ((z))

which has finite codimension in V [[z ]].
(This is H0 of the V -bundle over the double-centered disk.)

We can dispense with the infinite-dimensional bundles by using BunG (P1)
in guise of G \ ΩG and replace LV with the total space of the index sheaf

Spec Sym
[
RΓ
(
P1; V (−1)

)∨]
,

where V is the universal bundle with fiber V on P1 × BunG .
The sheaf SV → BunG is the fiber-wise compactly supported cohomology.
The “square root” of S that we will need in the non-polarized case is
more transparent in this interpretation.

Remark

This last construction can be applied to any closed surface, but only yields
a topological answer after stabilization (perturbation of ∂̄, or high order
poles to avoid Brill-Noether phenomena).
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The constructible sheaf on BunG

Quaternionic representations

When E has no invariant Lagrangian, the 3D theory has no obvious
topological boundary conditions that would allow its reconstruction by a
Mirror formula. (It may well have conformal boundary conditions.)

Instead, we will modify of the BFN construction of the constructible sheaf.

Note that using E in lieu of V produces a sheaf SE for the doubled
representation E ⊕ Ē . So what is needed is a square root of SE , in the
following sense.

Each stratum of ΩG is shifted cohomologically by capping with the Euler
class of H0 of the universal bundle. Now, in K -theory, the Euler class of a
vector bundle is its exterior algebra. A square root would be the Spin
bundle, if one exists. This requires a reduction along Spin→ SO→ U of
the structure group.

We will find something close enough to this for H0(E ).
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Real and Quaternionic structures

A Bott sequence (Wood’s theorem)

This is the sequence, classified by η : Σ2KO → Σ1KO,

KO
C⊗R−−−→ KU

Ω2(H⊗C)−−−−−→ Ω2BSp = Σ2KO (P)

whose relevance is seen when integrating E over P1,

E : BG → BSp  RΓ(E (−1)) : ΩG → Ω2BSp = Σ2KO :

it refines the complex structure of RΓ to Σ2KO.
A polarization V of E would lift RΓ(E ) to RΓ(V ) ∈ KU in (P), and we
could build LV ,SV as before.
Now, an obstruction calculation shows that a lift in (P) always exists, just
not an additive one. So the constructible sheaf SV would seem not (E2)
multiplicative.

But that is not quite right.
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Real and Quaternionic structures

Mod 2 obstruction to multiplicativity

By virtue of (P), additivity holds up to suspension by a real virtual vector
bundle. Should this be oriented, the Thom isomorphism would remove the
obstruction. (Similarly, a Spin structure would remove it in K -theory.)

The obstruction to lifting BO to BSpin consists of w1,w2, in the bottom
of BO; this is a spectrum W with π1 = π2 = Z/2 connected by Sq2. The
obstruction to Spin reduction in (P) is then read from η : Σ2KO → Σ1W .
Since we need E2 additivity in the reduction, the obstruction is

E : BG → BSp→ Σ3W

and consists of a class in H4(BG ;Z/2) and, subject to its vanishing, a
second one in H5(BG ;Z/2).

Remark

The argument needs fleshing out: one uses a lifting of ΩG in (P) to
suspend the index sheaf and produce a linear space with a real structure.
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Final Comments

Questions and Conjectures

1 The construction should work on an arbitrary curve and produce a
vector space independent of the complex structure. TQFT would
need a factorization rule for these, which must be spelt out.
There will be no rigid construction as in [BFN].

2 Abelianization in higher genus should be a strong version of the
Atiyah-Bott construction, splitting the homology. This may allow
effective computation of the TQFT structure.

3 In the polarized case, the TQFT should admit the GLSM of V as a
topological boundary theory.

4 Without polarization, conformal boundary conditions should exist.
Can one construct the 3D TQFT from those, as one can from the
topological boundary theory in the polarized case?

THANK YOU FOR LISTENING
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Coulomb branch and the Langlands dual group G∨

Theorem (Bezrukavnikov-Finkelberg-Mirkovic + small improvements)

1 SpecHG
∗ (ΩG ) is an algebraic symplectic manifold, isomorphic to the

algebraic symplectic reduction T ∗regG
∨//AdG

∨.

2 It is an affine resolution of singularities of (T ∗T∨C )/W .

3 The fiber of SpecHG
∗ (ΩG ) over 0 ⊂ tC/W is a Lagrangian

submanifold ∼= SpecH∗(ΩG ). (“Free boundary condition”.)

4 SpecKG
∗ (ΩG ) is is an algebraic symplectic orbifold, isomorphic to a

twisted holomorphic symplectic reduction T ∗reg (LGC)∨//Ad(LGC)∨.

5 It is an affine (orbi-)resolution of singularities of (TC × T∨C )/W

6 See (3), mutatis mutandis.
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