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1. Introduction and examples

Topological quantum field theories — TQFTs — arose in physics as the baby (zero-energy) sector of
honest quantum field theories, which showed an unexpected dependence on the large-scale topology
of space-time. The zero-energy part of the Hilbert space of states does not evolve in time, as by
definition it is killed by the Hamiltonian; so at first sight its physics appears to be uninteresting. But
this argument fails to consider a space-time with interesting topology.

In mathematics, TQFT emerged as an intriguing organizing structure for certain brave new topo-
logical or differential invariants of manifolds, which could not be captured by standard techniques of
algebraic topology. (We will see a reason for that.)

(1.1) Definition. The original axioms of Atiyah and Witten [W1], inspired by Graeme Segal’s axioms
of Conformal Field theory, defines an D-dimensional TQFT as a symmetric monoidal functor

Z : (BordorD ,
∐

)→ (V ect,⊗).

Here, BordorD is the category whose objects are compact, boundary-less oriented manifolds of dimension
(D − 1), and morphisms are oriented n-dimensional bordisms, modulo diffeomorphism relative to the
boundary.1 A bordism is assumed to have an incoming and an outgoing boundary; but, in the oriented
world, this choice can also be indicated by comparing the boundary orientation on each component
with the independent orientation. Thus, an interval with two positive endpoints necessarily has one
incoming and one outgoing end.

1.2 Remark. In some precise formulations, the manifolds come embedded in a very large Euclidean
space (R∞), and bordisms embed in an extra ‘time’ dimension. We will ignore this structure.

The bordism category has a symmetric monoidal structure (an associative and commutative mul-
tiplication functor

∐
: BordorD ×BordorD → BordorD ) defined by disjoint union. The category of vector

spaces has a similar multiplication, defined by the tensor product. Because of the additional linearity
properties of V ect and the bi-linearity of ⊗, we call this a tensor structure.

(1.3) Example: Finite group gauge theory. This theory ZF , associated to a finite group F , is easy to
construct in any dimension. On the downside, it only detects fundamental groups of manifolds.2

Denote by BunF (X) the groupoid of principal F -bundles over X. To a closed D-manifold M , ZF
assigns the number of isomorphism classes of principal F -bundles on M , each weighted down by its

1This rather naive definition is adequate for simple applications. An improved definition takes the topology of the
diffeomorphism groups into account to produce a category enriched in topological groupoids, in which the morphisms
are the topological groupoids consisting of bordisms and diffeomorphisms relative to the boundary.

2A more sophisticated enhancement lurks in the background, the gauge theory of finite homotopy types, which detects
higher homotopy information and relates to a categorified notion of the group algebra; see Lecture 3.
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automorphism group. For connected M , this number is #Hom(π1(M), F )/#F . Thus, for D = 1,
ZF (S1) = 1.

For a closed D − 1-manifold N , ZF (N) is the space of functions on BunF (N).
It should be easy to guess now that ZF (M) : ZF (∂−M) → ZF (∂+M) is the linear map whose

matrix entry relating F -bundles F− → ∂−M and F+ → ∂+M counts the F -bundles on M restricting
to the specified bundles on the two boundaries. The count is weighted by automorphisms that are
trivial on the outgoing boundary ∂+M . Checking that this gives a TQFT (that is, composition of
bordisms maps to composition of linear maps) is an exercise, which is best spelt out in the following

1.4 Remark (Correspondence diagram). The TQFT is secretly defined by a correspondence of groupoids,
one that we will meet in Lecture 2. Namely, the groupoidBunF (M) maps by restriction toBunF (∂−M)
and BunF (∂+M):

BunF (M)
π−

''

π+

ww
BunF (∂+M) BunF (∂−M)

Identify ZF (∂±M) with the H0( ;C) of the corresponding groupoid; the map ZF (M) is the ‘push-
pull’ composition (π+)∗ ◦ π∗− on cohomology. Here, we convene that the push-forward (π+)∗ along a
groupoid sums over the points, but weighs each point by the inverse order of its automorphism group.

1.5 Remark (Twistings). The finite gauge TQFT above does not use orientations, but a twisted variant
does. Choose a group cohomology class in τ ∈ HD(BF ;C×); this defines a class τP ∈ Hn(M ;C×)
for every principal F -bundle P → M . In the top dimension, we define ZτF (M) by weighting each P ,
additionally, by the complex number

∫
M τP in the weighted count. Moving on to a closed a (D − 1)-

dimensional manifold N , it takes just a bit of thought to see that τ defines a 1-dimensional character of
the automorphism group of each principal bundle onN . (Hint: use an automorphism to define a bundle
on S1×N , and now use τ to extract a complex number for each automorphism.) In defining ZτF (N), we
now delete all lines corresponding to principal bundles with a non-trivial action of the automorphisms.
In other words: τ defines a flat line bundle O(τ) over BunF (N), and ZτF (N) = H0(BunF (N ; O(τ)).

The correspondence description extends to the twisted case and furnishes a baby example of a path
integral in mathematical physics, a beloved (if usually non-rigorous) technique to construct quantum
field theories. Recall that in physics, the partition function associated to a closed manifold is the
integral

∫
fields φ exp{iS(φ)}Dφ over the space of fields, with “action” S(φ). Here, the fields are maps

to BF , or principal bundles on M , the measure is the inverse number of automorphisms, and the role
of the (exponentiated) action is played by τ .

Exercise: Describe explicitly the matrix coefficients of the ZτF for a D-manifold with boundary.

(1.6) Baby classification, D = 1. Let us convene that time, in pictures, is flowing right-to-left, to
match the composition of operators. The vector spaces Z(+), Z(−) are assigned to the point with
its two orientations. The right arc ⊃ gives a morphism Z(⊃) : C = Z(∅) → Z(+) ⊗ Z(−), and the
left arc a pairing Z(+) ⊗ Z(−) → C. Judicious composition in one factor only shows that the two
maps establish a perfect duality between Z(+) and Z(−) (see Lecture 4 for the details, if needed);
this forces them, in particular, to be finite-dimensional: otherwise, the identity map on Z(+) would
not sit in Z(+)⊗ Z(+)∨. So Z is described by Z(+) = V ; Z(S1) = dimV and all operations involve
the standard expansion and contraction tensors in V ⊗ V ∨.

Remarkably enough, this baby example contains the germ of Lurie’s Cobordism Hypothesis, which
classifies (fully extended) TQFTs in terms of the datum Z(+), which must satisfy a finiteness hypoth-
esis expressed in terms of dualities. We will spell this out in Lecture 4.

1.7 Remark (The unoriented case). Even the D = 1 situation becomes interesting, if we abandon
orientations. In that case, we must have Z(+) = Z(−) since there is only one point, and at this
stage we have a vector space with non-degenerate symmetric bilinear form. (Exercise: prove the
symmetry of the form by pictures.) In higher dimension, our choice of oriented, as opposed to framed
manifolds3 will enforce a strong restriction on our theories, related to the Calabi-Yau condition of

3The distinction is invisible in dimension 1.
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complex geometry: a trivialization of the canonical bundle.

(1.8) D = 2 and Frobenius algebras. It is not too difficult to classify TQFTs as we defined for D = 2;
the result, folklore for a while, was spelt out rigorously by L. Abrams [A].

1.9 Theorem. A 2-dimensional oriented TQFT is equivalent to the datum of a commutative Frobenius
algebra structure on a finite-dimensional vector space A, which is none other than Z(S1).

Here, a Frobenius algebra is a unital associative algebra A with a trace θ : A → C inducing a non-
degenerate pairing A × A → C by a × b 7→ θ(ab). The trace condition, θ(ab) = θ(ba), becomes
important in the non-commutative case, and will appear for extended TQFTs in 2D. An example of a
commutative Frobenius algebra is the cohomology of a closed oriented manifold, with the cup-product
and the integration map as a trace. Deforming the cup-product to the quantum cup-product, which
counts holomorphic curves in a projective manifold, is related to the famous Gromov-Witten theory.

The geometric representation of the operations is well-known: the multiplication is represented by
the pair of pants, mapping Z(S1) ⊗ Z(S1) → Z(S1); the unit, by the disk with outgoing boundary,
and the trace, by the outgoing disk. The trace pairing, θ(ab), is implemented by an ‘elbow’, a bent
cylinder with two incoming circles. It is easy to deduce from pictures the commutativity of the
multiplication and the non-degeneracy of the trace pairing (matching the non-degeneracy of Z(⊂)
in the 1-dimensional case); but the converse direction of the theorem takes a bit more work. Here
is the argument in outline: a Frobenius algebra contains a distinguished element, the Euler class α,
the vector output by a torus with a single outgoing circle. Then, a closed genus g surface computes
θ(αg), while a surface with p incoming and q > 0 outgoing boundaries computes the following map
A⊗p → A⊗q: the product of the p inputs, times αg, co-multiplied into the outputs. The reader is
invited to check that this formula satisfies the Atiyah-Witten definition 1.1.

The special case when the algebra is semi-simple is worth noting. Then, A =
⊕

CPi, for projectors
satisfying PiPj = δijPi, whose traces θi := θ(Pi) must be non-zero complex numbers. These numbers,
up to order, determine the isomorphism class of the Frobenius algebra. Then, α =

∑
i θ
−1
i Pi, and

Z(Σg) =
∑

i θ
1−g
i . Whenever some invariant associated to surfaces can be expressed as

∑
i θ

1−g
i , one

should suspect that it is controlled by a 2D TQFT.

(1.10) Finite group gauge theory in 2D. Let us spell out Example 1.3 in 2 dimensions. Isomorphism
classes of F -principal bundles on the circle are the conjugacy classes in F . The space of functions
thereon has the natural basis of characters. We can compute the multiplication operation, described by
the of pants, by the push-pull diagram in Example 1.3 and we arrive at the convolution of characters,
viewed as functions on the group. So the algebra is semi-simple, with projectors given by the class
functions (#F )−1 dimV · χV , for the various irreducible representations V . The unit in the algebra
is the delta-function at the origin, which is the sum of projectors (#F )−1

∑
V χV · dimV . The trace,

defined by the outgoing disk, is the evaluation of class functions at the identity — the holonomy of
the unique F -bundle over the circle which extends to the disk — weighted down by the number #F
of automorphisms of the trivial bundle. So the projector traces are θV = dim2 V/(#F )2, and by
comparing the two computations for the genus g partition function we get the identities

(#F )2g−2
∑
V

(dimV )2−2g =
#{u1, u2, . . . , u2g ∈ F | [u1, u2] · [u3, u4] · · · · · [u2g−1, u2g] = 1}

#F
.

In genera 0 and 1, they are some classical identities form the character theory of finite groups:∑
(dimV )2 = #F , and the equality of the numbers of irreducible isomorphism classes of representa-

tions and conjugacy classes. This example of a TQFT was implicitly known to Frobenius, in the form
of the algebraic identities above.

(1.11) Finite higher-groupoid theories. The finite gauge theories can be generalized to capture more
of the homotopy of manifolds. For this, we re-think the finite group F in terms of its classifying space
BF . Recall that this is the quotient by F of a contractible space with free F -action. (An example you
all know is BZ/2 ∼= RP∞ = S∞/(Z/2).) This BF is an Eilenberg-MacLane space, a space with a single
non-vanishing homotopy group: in this case, π1 = F . The isomorphism classes of principal bundles on
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M are the connected components [M,BF ] of the space of maps to BF . To follow a physics analogy,
we are quantizing BF -valued fields, but the ‘path integral’ counts components (with automorphisms,
and weighted by the action in the twisted case).

Similarly, the space of states for the (D− 1)-manifold N is the space of locally constant functions
on BF -valued fields on N . In the twisted case, we get a (flat) line bundle on this space of maps and
we are taking the locally constant sections.

We can now replace BF by a more general target space X. A good notion of finiteness for the
resulting theory is the finiteness of the homotopy groups of X. In addition, homotopy groups above
πD do not affect the set of components [M,X] of the mapping space if dimM ≤ D, so we will take
X to have finite homotopy groups vanishing above dimension D. We can build a TQFT by declaring
ZX(ND−1) to be the vector space of locally constant functions on Map(N ;X), and letting ZX(M)
count the components [M,X] with some weights. The correct weight to use is a little tricky to work
out: for m : M → X, it is the alternating product of the order of the homotopy groups of the m-
component of the mapping space Map(M,X). Just like gauge theory, this TQFT can be twisted by
an ‘action’ τ ∈ HD(X;C×).

The homotopy groups of Map(M ;X) can be computed using a spectral sequence starting from
Hp(M ;π−qX). The computation, however, involves finer information about M and X, namely the
cup-product onM , and the way the homotopy groups ofX are layered together (the so-called Postnikov
k-invariants.) So the TQFT described above is sensitive to more information than the homology of
M and the homotopy groups of X. For an easy example,4 recall that π2(S2) ∼= π3(S2) ∼= Z and
π4(S2) ∼= π4(S3) ∼= Z/2. A space with the same homotopy groups as S2, in dimension up to 4, is
CP∞ × S3. Now, there are plenty of maps from M = CP2 to the latter space: for example, maps to
the factor CP∞ are classified by their degree in H2(CP2) of the pull-back generator σ ∈ H2(CP∞);
equivalently, by the induced map π2CP2 → π2CP∞ (both groups being equal to Z). None of these
interesting maps come from a map into the sphere S2 = CP1 ⊂ CP∞: the obstruction is that the
cup-square of the area form σ on S2 is zero, whereas the cup-square H2 → H4 on CP2 is not zero.
So the area form σ ∈ H2(S2) pulls back to zero under any map CP2 → S2. We will encounter this
quadratic obstruction again, in a different guise, in §3.

(1.12) Yang-Mills theory in 2D. The final variation on gauge theory, which will occupy next lecture,
pertains to a compact gauge group G. The story just told, about counting principal bundles, requires
interpretation. One way to proceed is to interpret ‘principal bundles’ as ‘flat principal bundles’, that
is, bundles with flat connections. (For discrete groups, principal bundles have a natural flat structure.)

As before, the moduli space of isomorphism classes of flat bundles on S1 is identified with the
space G/Gad of conjugacy classes, so the vector space associated to the circle should be that of class
functions on the group, again carrying the natural basis of characters. There is also a moduli space
F (Σg;G) of flat bundles over the closed surface of genus g: it is a compact real-analytic space of real
dimension 2(g − 1) · dim(G) (if G is a simple group; in general, you must correct by the rank of the
center). The variety is usually singular, and can be described with reference to π1(Σg) as

Φ(Σ, G) =
{

(u1, u2, . . . , u2g) ∈ G2g | [u1, u2] · · · · · [u2g−1, u2g] = 1
}
/G (1.13)

with the group acting by simultaneous conjugation. Related varieties Φc (of different dimensions) arise
when we ask that the commutator, instead of being 1, should lie in some specified conjugacy class c;
for generic c, the variety will be smooth. These varieties are relevant to the TQFT for surfaces with
boundary.

Specifically, consider a surface with a single boundary circle, which we take as outgoing. As π1 is
free, the moduli space is G2g/Gad. Inspired by the correspondence diagram in Remark 1.4, we study
the ‘product of commutators’ map G2g → G, all equivariant for the conjugation action of G; and the
varieties Φc that to arbitrary are essentially the fibers of this map.

‘Counting’ bundles is not an option, but an alternative stems from the observation that these
moduli spaces have natural volume elements coming from a symplectic form. (See next lecture.) If we

4Albeit with infinite homotopy groups, in order to stay with familiar spaces; one can collapse the homotopy groups
mod n to get finite examples
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convene to integrate against this volume instead of counting, we almost obtain a 2D TQFT, whose
genus g partition function is the symplectic volume of the space (1.13). ‘Almost’ means that we
really obtain an infinite-dimensional vector space Z(S1), albeit with a natural basis, the irreducible
characters of G. The underlying Frobenius algebra structure was computed by Witten [W2]), and the
answer is strikingly similar to the finite group story: Witten finds a projector PV for each irreducible
character of G, with trace θV = vol(G)−2 dim2 V . (The Riemannian volume of G is computed using
a conjugation-invariant metric on the Lie algebra g; the same metric is used to define the symplectic
form.) From here, Witten finds the symplectic volume formula∫

Φ(Σ;G)
exp(ω) = #Z(G) · vol(G)2g−2

∑
V

(dimV )2−2g

which is a convergent series if G is simple and the genus exceeds 1.

1.14 Remark. The factor #Z(G), the order of the center of G, may seems out of place. But in fact,
central elements define automorphisms of any flat bundle, and generically, in genus > 2, they are the
only automorphisms. So Φ is generically an orbifold with stabilizer Z(G), and we should have divided
by that when integrating.

(1.15) Variant of TQFT: Cohomological Field theories. A rather famous class of 2D field theories
enhances the structure we discussed by remembering that surfaces have diffeomorphisms. They are
the A- and B-models of Mirror symmetry, which count (pseudo-)holomorphic curves in compact
symplectic manifolds, respectively describe operations on coherent sheaves on complex manifolds, and
produce invariants valued in characteristic classes of surface bundles.

In the simplest formulation, we retain the vector space Z(S1) associated to the circle, but ask
that the linear maps Z(S1)⊗p → Z(S1)⊗q induced by surfaces with p inputs and q outputs ‘vary
cohomologically’ in families. That is, if B is the base of a bundle of surfaces, Σ → B, we want Z(Σ)
to define a class in

H∗
(
B; Hom

(
Z(S1)⊗p, Z(S1)⊗q

))
The H0 component is the original linear map; the ‘variation on the base’ does not refer to a continuous
dependence on points b ∈ B, but a coupling to homology classes. This is the only sensible definition
in the topological context, where we wish to compute homotopy-invariant quantities.

There are many variants of this notion (see [C, T1]), but the one to flag here is the Cohomological
Field theory defined by Kontsevich and Manin [M], where we allow the surfaces to acquire nodes, as in
the Lefschetz fibrations of algebraic geometry. This means that, locally near a singularity, the family
of curves is described by the family ((x, y)→ t = xy, with a local coordinate t on the base, and t = 0
describing the nodal locus.

The connection with complex geometry is quite fundamental: the classifying space for the dif-
feomorphism group Diff(Σ) of a surface (fixing a collection of specified marked points, if desired) is
homotopy equivalent to the moduli orbifold of complex structures on the same surface. This holds
exactly in the hyperbolic cases (excluding, that is, genus 0 with one or two marked points, and genus
1 with no marked points). If we impose a stability condition on our nodal surfaces — all irreducible
components should be hyperbolic — then there are also universal classifying spaces for Lefschetz fi-
brations, the much-studied Deligne-Mumford moduli orbifolds Mn

g of algebraic geometry. The indexes
g and n refer to the genus and number of marked points (which, in the context of TQFT, may be
thought of as tiny boundary circles), and the bar indicates that these spaces are compactifications of
the moduli Mn

g of smooth algebraic curves.

The orbifolds Mn
g have a beautiful local structure, with normal-crossing boundary divisors labelled

by the manners in which curves can acquire a node: think topologically of pinching a simple closed
loop on the surface into a self-intersection. The combinatorics of the strata encodes a sophisticated
algebraic structure (‘cyclic operad’, see [GK]), closely related to that of a CohFT. But, in the simplest

definition, a CohFT is determined by a collection of classes in H∗
(
Mp+q

g ; Hom
(
Z(S1)⊗p, Z(S1)⊗q

))
.

These classes are subject to factorization conditions, which describe their restriction to boundary strata
of Mn

g , and express, in this context, the conditions inspired by the notion (1.1) that composition of
surfaces leads to composition of linear maps.
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1.16 Remark. The homotopy equivalence of BDiff(Σ) with the moduli orbifold of smooth Riemann
surfaces of topological type Σ is not a mystery. We can realize BDiff as the moduli orbifold of metrics
on a surface, modulo diffeomorphisms. But, a complex structure is the same as a metric up to a
conformal rescaling, and the space of rescalings is contractible. So the moduli of metric and conformal
surfaces are equivalent. The more difficult result lurking in the background is that the components of
the group Diff are contractible in the hyperbolic case, so that BDiff ∼ Bπ0Diff.

The notion of Cohomological Field theory was motivated by the desire to encode the structure of
Gromov-Witten invariants of a Kähler (or symplectic) manifold X, which count holomorphic curves
with prescribed incidence conditions. The Frobenius algebra we get by ignoring the higher classes
on the M is the famous quantum cohomology, a (commutative) deformation of the cup-product on
H∗(X). The Kontsevich-Manin axioms include some constraints specific to the GW situation, most
importantly pertaining to the grading. The general strategy of understanding the full structure of GW
invariants stumbled upon a fatal obstacle: the cohomology of the spaces Mn

g remains unknown to this
day. Understanding the structure of CohFTs then is similar to studying modules over an unknown ring!
A key motivation for the extended TQFTs we will discuss in Lectures 3-5 was Kontsevich’s program
to classify TQFTs algebraically from minimal data, from which the Gromov-Witten invariants could
be reconstructed. This program is still under development, and just beginning to bear fruit.

One great success of the theory concerns the genus zero part of the story — interesting enough
geometrically, for it counts (trees of) rational curves in algebraic varieties. Note that, while the space
of smooth genus zero curves with marked points is simple enough (configurations of distinct points in
P1), its Deligne-Mumford compactification Mn

0 is far from trivial, and its boundary divisors intersect
along interesting patterns. The cohomology of this space was completely understood by Keel [K], who
gave an explicit presentation as the free Z-algebra generated by (the Poincaré duals of) the boundary
divisors, modulo linear and quadratic relations. (The relations are easily derived by studying fibers
of the forgetful maps Mn

0 → M4
0
∼= P1; for example, divisors lying in disjoint fibers of that map have

zero intersection product.)
A more specialized but important success followed ideas of Givental, who investigated Gromov-

Witten theory of manifolds for which the quantum cohomology, the deformed H∗(X), becomes a
semi-simple Frobenius algebra. Such is the case for Pn, where the usual cohomology ring becomes
C[ω]/ωn+1 = q, and generally for all toric manifolds. (The parameter q in the theory is used to separate
the count of holomorphic curves according to degree.) Based on ample experimental evidence, Givental
conjectured that all GW invariants — which you recall are counting holomorphic curves of various
genera and degrees — are uniquely determined from the quantum cohomology Frobenius algebra alone
(and the grading information), if the latter is semi-simple. In other words, there is a unique way to
extend a ‘naive’ semi-simple TQFT, as in §1.8 to a full CohFT, and there is an explicit (recursive)
formula for this extension. The conjecture was confirmed [T1]; but there seems to be no hope of
extending the result without the semi-simplicity assumption, which is very restrictive. (‘Most’ target
manifolds will not meet that; it is only when faced with an abundance of rational curves that we
can hope to deform the nilpotent cup-product on H∗(X) enough to make it semi-simple.) One of
Kontsevich’s motivations in studying extended TQFTs was to find an analogous structural result for
the Gromov-Witten theory of general varieties.
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2. Two-dimensional gauge theory

This example has been a favorite ever since Witten [W2] surprised the mathematical community by
computing the theory explicitly, using localization arguments in path integrals. The result gives a
TQFT computation of all integrals over the moduli space Φ(Σ;G) of flat G-connections on a surface
Σ, in terms of an explicitly computed Frobenius algebra. Assume for convenience that G is simple
and simply connected; the dimension of Φ(Σ;G) is then 2d = 2 dimG · (g − 1). We will ignore for
a moment the inconvenient truth that Φ usually contains singular points, corresponding to bundles
with reducible holonomy representation.

The universal flat bundle over Σ × Φ(Σ;G) is classified by a map u to the classifying space BG
(defined up to homotopy). Recall that H∗(BG;C) is a polynomial ring, isomorphic to (Symg∗)G ∼=
(Symt∗)W with generators φ2, . . . , φ` of cohomology degrees5 2mi + 2, with the exponents mi of
the group. (For example, the exponents for SU(n) are 1, 2, . . . , n − 1.) The slant products β\u∗φi
(integrals of u∗φi over β) with elements β of a basis of the homology of Σ define classes of degrees
2mi + 2, 2mi + 1, 2mi. Atiyah and Bott [AB] proved that H∗Φ(Σ;G) is generated by these classes,
whenever Φ(Σ;G) is smooth.6

The classes [Σ]\u∗φi, of degree 2mi, are the most ‘interesting’ for integration, as they are not easily
reduced to elementary computations. As an example, from the quadratic Casimir φ2 corresponding
to the invariant quadratic form 〈, 〉 on g, we obtain the symplectic form ω alluded to in Lecture 1.
(There is a preferred normalization of the quadratic form, called the basic one, in which the shortest
non-zero log(1) in g has square-length 2.) For two tangent vectors δA, δB at a principal bundle P ,
represented by adP -valued one-forms on Σ, the contraction 〈δA, δB〉 is naturally a 2-form on Σ and
we have

ω(δA, δB) =

∫
Σ
〈δA, δB〉.

Witten’s formula reads as follows, in the special case of SU(2). Choose a polynomial Q. For
each k ∈ Z+, let ξ(k, t) be the formal power series (in t) representing the unique critical point of the
function in ξ (depending on additional parameters h, k, t)

F (ξ;h, k, t) :=
1

2
(ξ − k)2 + t · h

2π2
·Q(πξ/h) (2.1)

in which t is treated as a formal variable, so ξ(k, t) is computed by t-series expansion around the
minimum ξ(k, 0) = k. A special case of Witten’s formula then says∫

F (Σ;G)
exp {hω + t · [Σ]\Q(u∗φ2)} = #Z(G) · h3g−3vol(G)2g−2

∑
k>0

[
1 + t

2hQ
′′(ξ(k, t))

ξ(t, k)2

]g−1

Of course, #Z(G) = 2 for SU(2). The scaling factor h3g−3 should really be absorbed in the volume, as
we should rescale the basic metric by h. (For SU(2), vol(G) = 1/π

√
2 in the basic metric, h3/2/π

√
2

rescaled.) We recognize on the right the genus g partition function for the semi-simple (but infinite-
dimensional) Frobenius algebra

⊕
CPk, with one projector Pk for each positive integer, of trace

volh(G)−2 ξ(t, k)2

1 + t
2hQ

′′(ξ(k, t))
(2.2)

They reduce to the values of §1.12 when h = 1 and t = 0, as they should.
To get the most general integral, choose several polynomials Qi and couple them to independent

formal variables ti; the ∂n/∂1 . . . ∂n-derivative of the analogous formula computes∫
F (Σ;G)

exp[hω] ∧ ([Σ]\Q1(u∗φ2)) · · · ∧ ([Σ]\Qn(u∗φ2)).

5The symmetric algebra degree, as a polynomial on g, is half the cohomology degree.
6Smoothness can occur only for the variants Φc(Σ;G); for the singular case, the correct statement involves equivariant

cohomology, instead of cohomology of the quotient space.
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2.3 Remark. The most general formula for a simple group G incorporates the other generators of
H∗Φ(Σ;G). Q will be an invariant polynomial on the Lie algebra g, which is determined by its
restriction to the Cartan subalgebra t. The role of the integers k is taken over by the highest weights
of G (shifted by the Weyl vector ρ). The numerator in the Frobenius structure constants (2.2) is the
Hessian determinant of the multi-variable function F of (2.1); ξ(t, k)2 is replaced by the volume of
the adjoint orbit of ξ(t, k) in g.

(2.4) Interpretation in K-theory. Interpreting and understanding Witten’s formulas is no easy task.
For example, the characteristic classes defined above do not really live on the moduli spaces Φ, which
are singular.7 It turns out that the spaces do have preferred (orbifold) desingularizations, and this
is one route to interpret the formulas. Here I will discuss an interpretation in terms of (twisted)
K-theory, which allows for a topological description and computation of the field theory.8

For starters, recall the Hirzebruch-Riemann-Roch theorem for a holomorphic line bundle E → X
over a complex (projective) manifold:

Ind(X;E) :=
∑

k
(−1)k dimHk(X; O(E)) =

∫
X

ch(E)Td(X) (2.5)

where Hk denotes kth cohomology with coefficients in the sheaf of holomorphic sections O(E) (equal
to the Dolbeault cohomology with coefficients in E), and the Chern character ch(E) and Todd class
Td(X) are characteristic classes of E and of the tangent bundle of X. Specifically,

ch(E) = Tr exp

(
RE
2πi

)
, Td(X) = det

RTX/2πi

1− exp(−RTX/2πi)

where R denotes the curvature form of some hermitian connection on the respective bundle E or
the tangent bundle TX, respectively. An alternative definition, if E is a sum of line bundles Li, is
ch(E) =

∑
exp c1(Li); a similar (but multiplicative) maneuver works for Td. By the splitting principle

of topological K-theory, the special case of line bundles suffices to define ch and Td, once we take into
account the behavior under sums

ch(E1 ⊕ E2) = ch(E1) + ch(E2), Td(E1 ⊕ E2) = Td(E1) · Td(E2).

Actually, the additive map Ind, from holomorphic vector bundles on X to Z, can be extended to all
topological bundles, and defines a linear index map Ind : K(X) → Z from the Grothendieck group
K0(X) of complex topological vector bundles. (This last group is called the even topological K-theory
of X, is the zero-degree part of an exotic, or generalized, cohomology theory.) Formula (2.5) gives
a factorization of the index through the ring homomorphism ch : K0(X) → Hev(X), followed by
integration against the Todd class.

2.6 Remark. It turns out that ch realizes an isomorphism of algebras K0(X) ⊗ Q ∼= Hev(X;Q); but
taking the Index map as a trace defines a Frobenius algebra structure on K0(X) ⊗ Q different from
the one on Hev(X;Q).

(2.7) Integration from the index. Assume for now that E is a line bundle with Chern class ω. There
is a way to extract the symplectic volume of X as an asymptotic of the index:

Ind(X;E⊗n) = ndimX

∫
X

exp(ω) +O(ndimX−1),

making the Todd class disappear in the leading term. A similar trick can be used for any vector
bundle E, but requires, instead of the tensor power, the use of the nth Adams operation ψn, defined
by ψnL = L⊗n for a line bundle L and imposing additivity: ψn(E⊕F ) = ψn(E)+ψn(F ). (From here,
the splitting principle pins down ψn : K0(X) → K0(X) uniquely.) Under the Chern character, ψn

corresponds to the multiplication by nk on H2k. There also is an expression for ψn in terms of exterior

7A notable family of smooth Φc closely related to the original Φ comes from G = SU(n), when c is a central element
of order n.

8Based on joint work with Freed and Hopkins [FHT], and with Woodward [TW].
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powers, but it involves signs, so it is only valid in the Grothendieck group K0(X) and not meaningful
in the category of vector bundles. At any rate, if we regard the computation of ψn as known, we see
by linearity of ψn that integration over X can be recovered as an asymptotic of the index:

Ind(X;ψnE) = ndimX

∫
X

ch(E) +O(ndimX−1).

(2.8) Index formulas on Φ(Σ;G). The point of this long preamble is the following: the integration
formulas over Φ(Σ;G) can be recovered from index formulas. However, the index formula, unlike
integration, comes from a genuine TQFT, based on a finite-dimensional Frobenius algebra. Moreover,
the index formula can be derived purely geometrically, from correspondence diagrams with moduli
spaces of flat connections, as in the case of gauge theory with a finite group.

A word of philosophy may or may not help — the index formulas represent a version of gauge
theory for the loop group of G. Loop groups have a representation theory reminiscent of that of
compact Lie groups, but the theory carries a fundamental discrete parameter, the level ; and there are
only finitely many representations at a fixed level. Thus, the theory at a fixed level has some features
of the representation theory of finite groups.

The easiest story pertains to theK-theory analogues of symplectic volumes. For integral h, exp(hω)
is the Chern character of a line bundle O(h) on Φ(Σ, G). Now, a choice of complex structure of Σ
gives a complex analytic (and in fact projective algebraic) structure on the variety Φ(Σ, G): this is a
deep theorem of Narasimhan and Seshadri, which identifies the latter with the moduli of (poly)stable
holomorphic G-bundles on Σ. The line bundles O(h) turn out to admit holomorphic structures,
uniquely so when the group G is simple.9

The index of O(h) has a very nice interpretation, thanks to the

2.9 Theorem (Kumar-Narasimhan). The higher cohomology H>0(F (Σ, G); O(h)) vanishes if h ≥ 0.

These indexes thus measure the dimensions of vector spaces. These spaces, the conformal blocks, have
been much studied. A formula for their dimension was conjectured for SU(2) by E. Verlinde:

dimH0(F (Σ, G); O(h)) = (2h+ 4)g−1
∑h+1

k=1

(
2 sin

kπ

h+ 2

)2−2g

it was proved, for general G, in the work of numerous authors. Witten’s symplectic volume formula
can be obtained from the asymptotics of Verlinde’s. I will not reproduce the derivation here, see [TW],
§5 for the general story. My goal, instead, is to explain why these numbers (and their generalization
to indexes of vector bundles) are controlled by a 2-dimensional TQFT.

(2.10) The Verlinde ring. The 2-dimensional TQFT controlling these indexes of line bundles is a semi-
simple Frobenius Z-algebra, called the Verlinde ring V (G;h). (The extension to vector bundles is less
well known; it was indicated in [T2].) I only want to flag here that the projectors in the controlling
Frobenius algebra are in natural correspondence with the projective, positive energy representations of
the smooth loop group LG of G, with projective co-cycle determined by the Chern class h of the line
bundle. There is indeed a deeper connection between loop group representations and the Verlinde ring;
for example, the Verlinde ring is the Grothendieck K-group of the category of said representations,
and there is a tensor structure on that category, the fusion product, which induces the product in the
Verlinde ring; there is a distinguished vacuum representation which acts as the unit, and the Frobenius
trace of a general representation extracts the multiplicity of the vacuum representation. You notice
the formal resemblance with the gauge theory of a finite group, where the ‘vacuum representation’ is
the trivial one. But we digress.

2.11 Remark. From the TQFT point of view, the numbers we associate to surfaces are dimensions of
vector spaces H0. Remembering the spaces themselves suggests the possibility of a 3D TQFT, with
vector spaces assigned to surfaces and numbers assigned to 3-manifolds. Indeed, this Chern-Simons
theory has been constructed rigorously [RT]. The subject leads to deep connections between conformal
field theory, loop group representations and 3-dimensional topology.

9For U(1), Φ(Σ, G) is the Jacobian of Σ, and holomorphic line bundles vary in continuous families.
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(2.12) Twisted K-theory, a crash course. We need one more ingredient to describe the TQFT control-
ling the Verlinde numbers and their generalizations (to be described). Constructing twisted K-theory
rigorously, especially the equivariant version, would take a course on its own, but the idea is easy
enough. The famous Serre-Swan theorem asserts that vector bundles over a compact Hausdorff space
X are precisely the projective modules over the ring C0(X) of continuous functions. This offers a
purely algebraic definition of K0(X), as the corresponding Grothendieck group of projectives.

When a compact group G acts on X, we can define the equivariant K-group K0
G(X) as the

Grothendieck group of vector bundles which carry a lifting of the G-action.
There is again an algebraic description. We can form the crossed product algebra GnC0(X): these

are the functions on G×X, with the point wise multiplication on X, the convolution product on G,
and using the intertwining action of G on X. For example, if G is finite, an element in G n C0(X)
can be expressed as a sum

∑
g∈G g · ϕg, with ϕg ∈ C0(X), and the multiplication is given by(∑

g∈G
g · ϕg

)
·
(∑

h∈G
h · ψh

)
=
∑

k∈G
k ·
∑

gh=k
(h−1)∗ϕg · ψh,

where for u ∈ G, (u∗ϕ)(x) := ϕ(u−1(x)). In other words, we act on the function when moving a group
element across.

The equivariant version of the Serre-Swan theorem, in this context, equates K0
G(X) with the

Grothendieck group of projective modules over Gn C0(X).
Imagine now a bundle on algebras over X, locally isomorphic to the constant bundle C. Actually,

such a bundle would have to be a product bundle, but that is because isomorphism is the wrong notion
for bundles of algebras, and should be replaced by the notion of Morita equivalence. The simplest
example is a bundle of matrix algebras. Such a bundle need not be globally trivial, or even Morita
equivalent to the trivial bundle. Indeed, given a projective vector bundle P→ X, the associated bundle
End(P) of matrix algebras is well-defined: this is because, for a vector space E, End(E) is canonically
defined from the projective space PE alone. However, End(P) need not be the endomorphism algebra
of a globally defined vector bundle E → X. Indeed, the obstruction to this is precisely that of lifting
P to a vector bundle E, P ∼= PE. From the short exact sequence

1→ GL(1)→ GL(n)→ PGL(n)→ 1

we get the fragment of long exact sequence

· · · → H1(X; GL(1))→ H1(X; GL(n))→ H1(X;PGL(n))→ H2(X; GL(1))

which locates the obstruction in H2(X; GL(1)). We are in topology and are using continuous coef-
ficients, and the exponential map shows this to be the same as H3(X;Z). In the literature, this is
called the Dixmier-Douady class of the gerbe defined by our projective bundle.

The classes we get are n-torsion, as the skilled among you will notice by comparison with the
sequence

1→ µn → SL(n)→ PGL(n)→ 1,

which places the obstruction in H2(X;µn). However, there is a good infinite-dimensional version of
this construction which employs projective Hilbert bundles, where the trick of comparing with SL(n)
fails; and indeed, one can show that any class in H3(X;Z) is realized by a Hilbert gerbe, unique up to
a certain equivalence. A technical tweak is that the good analogue of the bundle of matrix algebras,
in the Hilbert bundle story, is the bundle of compact endomorphisms.

All in all, for each class [τ ] ∈ H3(X;Z), we can define a twisted K-group τK0(X) as the
Grothendieck group of projective modules over the sections of the bundle of matrix algebras defined
by τ .

Modulo technical difficulties which have been resolved in a number of ways [AS, FHT1], the story
extends literally to spaces X with compact group action: a class in H3

G(X;Z) defines a G-equivariant
bundle of matrix algebras over X. (They are infinite-dimensional, unless the class happens to be
torsion.) Morally, we define the twisted K-group τK0

G(X) as the Grothendieck group of finitely
generated projective modules.10

10Yet again, a technical change is required in the definition of K-theory in the infinite-dimensional case, because
compact operators form a non-unital algebra: one adjoins a unit and restricts to modules of rank 0 see [AS].
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2.13 Remark (Chern character computation of τK). We mentioned earlier that rational K-theory of
a space was rather straightforward to calculate from rational cohomology. Twisted K-theory is also
rather easy to compute with rational coefficients, as follows. (Sadly, the equivariant version is more
troublesome.)

• There is an odd K-group K1(X); a cheating definition is K1(X) = K0(S1 ×X,X). This is the
definition of K−1, and we are building in the Bott periodicity theorem Ki ∼= Ki+2.

• As mentioned, for a reasonable compact space X , the Chern character gives an isomorphism
ch : K0(X)⊗Q→ Hev(X;Q). There turns out to be a matching isomorphism ch : K1(X)⊗Q→
Hodd(X;Q). Let now (C∗(X;Q), δ) be the algebra of rational cochains on X, with differential
δ. (At the price of switching to real coefficients, we can use de Rham’s differential forms.) Let
also τ be a 3-co-cycle representing the twisting class. It is easy to describe twisted K-theory in
this language: the spaces τK0|1 are isomorphic, via a twisted Chern character, to the odd and
even cohomologies of C∗(X;Q) with modified differential δ + τ∧. (Note that δτ = τ ∧ τ = 0,
confirming that (δ + τ∧)2 = 0; so this is a complex.)

Alas, this easy model does not help with equivariant twisted K-theory; see the more complicated
story of the delocalized Chern character in [FHT0].

(2.14) Twisted KG(G). Let G be a compact, simple, simply connected Lie group. Then, H3
G(G;Z),

the group of twistings of K-theory, is canonically isomorphic to Z. (There is a preferred generator,
giving the positive definite basic quadratic form on the Lie algebra.) It turns out that the levels, or
projective co-cycles of loop group representations are also parametrized by the integers.11 The key
theorem of [FHT] is an isomorphism of Frobenius rings

τKdimG
G (G) ∼= V (G;h)

The twisting τ is h+c, with the shift c in the level (the dual Coxeter number) depending on the group;
it is equal to n for SU(n). Already, c = 2 has made an appearance in Verlinde’s formula for SU(2).

We have alluded to the multiplication on V (G;h); the multiplication on τKdimG
G (G) is the Pontr-

jagin product, induced by the multiplication G×G→ G. Again, the finite group gauge theory should
come to mind, if we think of convolution of characters. This time, instead of G-invariant functions
on G, we are dealing with G-equivariant vector bundles (or rather, projective ‘twisted’ by τ). This
replacement of complex-valued function with vector bundles — vector-space valued functions — is an
instance of categorification, and hints at the fact that the Verlinde theory we describe is a 3D theory
in disguise.

The Frobenius trace on τKdimG
G (G) is a bit less obvious; see Theorem 2.16.iii below. Before

stating that, recall that the groupoid of flat G-connections on the circle, modulo gauge equivalence, is
equivalent to the quotient groupoid G/G, with G acting on itself by conjugation. A compact oriented
surface Σ, with incoming boundary ∂−Σ and outgoing one ∂+Σ, defines a correspondence between
groupoids of flat connections

Φ̃(Σ;G)

π−

((

π+

vv
Φ̃(∂+Σ;G) ∼= (G/G)q (G/G)p ∼= Φ̃(∂−Σ;G)

The language of stacks combines the groupoid structure with topological and differentiable properties.
Informally, the stacks Φ̃ above differ from the underlying quotient moduli spaces by remembering the
automorphisms of bundles. Those of you who dislike stacks must instead work equivariantly: choose
a base-point in (every connected component of) Σ and one in each boundary component, and paths
from the Σ-base points to each of the others. Each stack is then presented as a product of many
copies of G — one parallel transport for each path, and one holonomy for each generating circle for π1

of the surface or circle — divided by the simultaneous action of G at all base-points. The drawback

11Projective LG-cocycles are always classified topologically by H3
G(G;Z).

11



of proceeding in this manner is that you must then prove that the operation in Theorem 2.16 below
is independent of the choice of base-points and paths. This is avoided by defining K-theory and the
operations on stacks and representable morphisms.

(2.15) Exercises.

(i) By starting with a presentation and simplifying as possible, show that the correspondence dia-
gram induced by a pair of pants with two incoming and one outgoing circle is

(G×G)/Gdiag

Id/diag

((

m

xx
G/G G/G×G/G

with all groups acting by conjugation, Gdiag representing the diagonal subgoup, and m the
multiplication map on the group. So the operation is restricting fromG×G toGdiag-equivariance,
and then multiplication in the group.

(You should have done this exercise for a finite group G, when studying finite gauge theory.)

(ii) Show that the correspondence diagram induced by a cylinder with two outgoing cicles is the
anti-diagonal inclusion G/G→ G/G×G/G.

2.16 Theorem ([FHT, TW]). (i) There is a 2-dimensional TQFT based on the space h+cKdimG
G (G).

(ii) A surface with p inputs and q > 0 outputs induces the linear map

(π+)∗ ◦ π∗− : τKdimG
G (G)⊗p → τKdimG

G (G)⊗q.

(iii) The co-form in τKdimG
G (G)⊗2 underlying the Frobenius structure is given by the cylinder with

two outgoing ends, and is non-degenerate; its inverse is the trace pairing.

(iv) The partition function for a closed surface computes the index of O(h) over F (Σ;G).

The statement above conceals many fine points discussed in [FHT], such as how to handle the twistings
in pullbacks and push-forwards, as well as the K-theory orientations on F , which must be tracked
with care when G is not simply connected.

(2.17) Generalizations: Higgs bundles as an example. The theory extends to incorporate the K-theory
analogue of the Atiyah-Bott generating cohomology classes on Φ̃(Σ;G). We refer to [T2, TW] for
details; one subtlety not present for line bundles appears in statement (iv), where the moduli space
of flat connections must be replaced with the moduli stack of all holomorphic GC-bundles (including
the unstable ones).

Here I just give the formula of K-theory integration in a special case, on the moduli of Higgs
bundles, famous in other areas of mathematics; I leave the asymptotic derivation of the integration
formula as an exercise for the reader. The cohomological integration formula was originally found for
SU(n), using physics arguments, by Moore, Nekrasov and Shatashvili [MNS].

The moduli stack M := M(Σ;G) of all holomorphic GC-bundles over Σ has the variety Φ(Σ;G) as
an associated GIT quotient, meaning

Φ(Σ;G) = Proj
(⊕

h
Γ(M; O(h))

)
Under certain conditions (after a large O(h) twist), indexes of vector bundles over M and Φ(Σ;G)
agree. This often allows us to dispense with the stack in the story of the index and the associated
TQFT, just as we did for line bundles.

Now, M has a cotangent stack T ∗M; ordinarily, this would be a differential graded stack, but in
genus 2 or more, the dg structure vanishes and T ∗M is an ordinary (locally finite Artin) stack, locally
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presentable as a quotient of a locally complete intersection variety by a reductive group. Using the
same line bundle O(h), we can define an associated moduli space H(Σ;G), the moduli of semi-stable
Higgs bundles, which is a partial compactification of T ∗Φ(Σ;G). There is a similiar theorem equating
indexes of bundles over T ∗M and H, which applies in particular to O(h) for h > 0; so again people
who dislike stacks can avoid them in the Higgs story. Non-compactness of H gives an infinite answer
to index questions; but keeping track of the C∗-scaling action on the fibers of T ∗M can be used to
render the answers finite. Indexes will not be numbers, but power series in q ∈ C∗, whose coefficients
label the dimensions of weight spaces. With these preliminaries, we are ready for the12

2.18 Theorem (following [TW]). For G = SU(2), the q-index Ind(H(Σ;G); O(h)) is given by(
2h+ 4

1− q

)g−1∑h+1

k=1
(2 sinφk(q))

2−2g·((1+q2)−2q cos(2φk(q))
1−g

(
1 +

4q

h+ 2

cos(2φk(q))− q
(1 + q2)− 2q cos(2φk(q))

)g−1

where φk(q) = πk(q)/(h + 2) and the points k(q) = k + qk1 + q2k2 + . . . , with k = 1, 2, . . . , h + 1 are
the power series solutions of the equation

k(q) +
1

πi
log
(

1− qe−2πik(q)/(h+2)
)
− 1

πi
log
(

1− qe2πik(q)/(h+2)
)

= k.

This is a TQFT over the power series ring C[[q]]. At q = 0 we get Verlinde’s formula, as we should,
since q0 counts the sections which are constant along the fibers of T ∗M and therefore come from M.
There is a generalization to all compact groups, and vector bundles other than the O(h) can also be
included, but in that case, we must usually take the index over the cotangent stack T ∗M, not the
Higgs moduli space H.

12Thanks are due to Daniel Halpern-Leistner for alerting me to a mistake in the original version of the notes.

13



3. Extended TQFT and Higher Categories

A basic limitation in the Atiyah-Witten definition is the restriction to co-dimension 1 boundaries.
While this keeps the story clean and simple, it makes it impossible to compute the TQFT by cutting
up the manifold into simple pieces; the cases D = 1, 2 were rather special, and the next higher
classification theorem, in D = 3, due to Reshetikhin-Turaev [RT], requires the use of circles and
cutting in co-dimension 2.

Extended TQFTs are, intuitively, functors from the category BordorD , enhanced with enough struc-
ture to allow the cutting of manifolds into simple pieces with corners of all co-dimensions. This is a
rather backwards way of telling the story, and it soon enough becomes clear that we need to replace
our two tiers of structure in the bordism category — (D− 1)-dimensional objects and D-dimensional
morphisms — with (D + 1) tiers of structure, going down to points.

(3.1) Higher categories. The various ways of encoding such an algebraic structure, with D tiers of
morphisms layered over objects, allowing multi-dimensional compositions, are known as D-categories.
A prime example is the bordism D-category BordorD , in which (oriented) 0-manifolds are the objects,
oriented 1-manifolds with boundary are morphisms between 0-manifolds, 2-manifolds with corners are
“2-morphisms” and so forth. It quickly emerges that the algebraic rules of the game are not as clearly
set anymore (in fact, many sets of rules are imaginable), so here is a first inductive

3.2 Definition. A strict D-category is a category in which all sets Hom(x, y) of morphisms have
the structure of (D − 1)-categories, and the compositions Hom(x, y) × Hom(y, z) → Hom(x, z) are
strict bi-functors of (D − 1)-categories. Composition is strictly associative.13 A functor φ between
D-categories is a functor of underlying categories, such that the induced maps on morphisms φ∗ :
Hom(x, y)→ Hom(φx, φy) are functors of D − 1-categories.

We are concerned with (C-)linear categories, which at the top two layers reproduce vector spaces
and linear maps. It is also customary to require the categories to admit finite direct limits, at least
(arbitrary co-limits are sometimes convenient). There is a ‘unit object’ in the world of D-categories
for any D, unit in the sense that everything is a module over it, much like every C-vector space is a
module over C. Among linear categories, the unit is the category V ect of finite-dimensional vector
spaces. (In a C-linear category, every object can be tensored with a finite-dimensional vector space,
and this is functorial both in the object and in the vector space.) Next is the strict 2-categories of
linear categories, linear functors and natural transformations, followed by the strict 3-category of strict
2-categories, etc. If direct limits are assumed to exist, we ask for the linear functors to be right exact,
that is, to preserve them.

3.3 Remark. Another familiar one-step enhancement of the category of vector spaces of linear maps,
instead of the 2-category of linear categories, is the 2-category A lg of algebras, bi-modules and
intertwining maps. One can embed this “fully faithfully” into linear categories by sending every algebra
to its category of modules. (The key observation is that, for two algebras A,B, any right-exact functor
from A-modules to B-modules is necessarily induced by tensoring over A with a B − A-bimodule.)
This is a non-strict 2-category: composition of morphisms — tensoring of bi-modules — is defined
only up to natural isomorphism.

(3.4) Strict versus weak categories. Experience with categories should suggest a flaw in the strict
definition: when in a category, one should ask for ‘well-behaved isomorphism’ rather than equality.
Good behavior depends on the problem at hand, for instance, functoriality under some operations. For
example, it seems wrong to require the composition operation to be associative on the nose — instead
we should ask for an associator α, a natural isomorphism of the two functors from Hom(x, y) ×
Hom(y, z) × Hom(z, w) to Hom(x,w) obtained by composing in different orders. There is then a
natural condition on this associator (Stasheff’s pentagon identity), whose confirmation allows us to
work with ‘associativity up to coherent associators’ just as we would with strict associativity. Similarly,
we could ask for functors between 2-categories to preserve the composition of 1-morphisms only up to
coherently chosen 2-isomorphisms. As we progress in categorical depth, there are more identities that

13So that ‘equal’ really means equal and not canonically isomorphic.
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we could relax to ‘coherent’ isomorphisms. Any systematic listing of the associative and commutative
data, and coherence conditions on it, will lead to a theory of weak D-categories. Much current work in
higher categories is motivated by the search for spelling out methodical, but convenient and practical
ways to encode the weak data and its coherence conditions; see [B, L, R] and many others.

Intuition is not completely reliable. It turns out that there is no problem for D = 2: any weak
2-category can be ‘strictified’; but we run into trouble beyond that, as we will see in an example of
groupoids below. Ignoring this trouble for a moment, let us discuss a simple

(3.5) Finite group gauge theory in 2D. This example will be useful before discussing the general theory
of duality in the next lecture. We construct a 2-functor from the unoriented bordism 2-category Bord2

to A lg.
To the point we associate the group algebra A := C〈F 〉, of linear combinations

∑
f∈F af · ef , with

af ∈ C and multiplication ef · ef ′ = eff ′ imitating the group one. A-modules are the same as complex
representations of F . Note that A ∼= Aop by the anti-involution f ↔ f−1; so that for instance there
is no distinction between A − A bimodules and A⊗2-modules. (This does not apply to the twisted
version of gauge theory, see Remark 3.10, and is related to the fact that untwisted gauge theory for a
finite group does not require orientations on manifolds.)

Now to any interval we associate the bi-module A, which is viewed as a left A⊗2-module, a right one,
or an A−A bimodule, according to the endpoints: both outgoing, both incoming, or one of each. In
other words, the interval can be a bordism from ∅ to {∗, ∗}, from {∗, ∗} to ∅, or the identity morphism
on {∗}. (As we indicated, we will not need to orient the point ∗.) Note the natural isomorphism

A⊗A A ∼= A, expressing the composition Id ◦ Id = Id. (3.6)

To a closed circle, we associate the space A ⊗A⊗A A. This computation is forced upon us by
the presentation of the circle as the composition ⊂ ◦ ⊃, and identifies ZF (S1) with the space of co-
invariant functions on F , under the F -conjugation action. This is naturally identified with the space
of class functions on F , recovering the vector space for gauge theory discussed in §1.3.

Having defined the bottom two tiers, consider now a surface with corners. To read it as a 2-
morphism, we must supply more data: a labelling of the corners as sources or targets, and a compatible
labeling of the edges (1-morphisms) as source or targets of the 2-morphism defined by the surface.
The case of twisted gauge theories as in §1.5 is exponentially worse: we need to supply compatible
orientations of all those objects. Listing all possibilities and the corresponding maps quickly becomes
cumbersome. A better construction is again inspired by the physiscist’s path integrals.

Let then Σ be a surface with corners, read as a 2-morphism between an incoming and an outgoing
part of its boundary. Those boundary parts, ∂±Σ, are 1-morphisms with the same source and target.
That is, the corners on ∂−Σ must be matched with corners on ∂+Σ by some part B of the boundary,
standing in for identities on objects.14 We now specify that the space A associated to a 1-morphism
(1-manifold with boundary) should be interpreted as H0 of the groupoid BunF of F -bundles trivial-
ized on the boundary. Similarly, the operation ZF (Σ) is given by (π+)∗ ◦ π∗− on H0 in the familiar
correspondence diagram

BunF (Σ, B)
π−

((

π+

vv
BunF (∂+Σ, B+) BunF (∂−Σ, B−)

(3.7) The correspondence 2-category. What we just did was to factor the gauge TQFT from Bord2 →
A lg via a 2-category C or2 of correspondences of finite groupoids. Objects in C or2 are finite groupoids
X•; this notation must be conceived to include the sets X0 of objects, X1 of morphisms, the source and
target maps X1 ⇒ X0, the identity section X0 → X1, and the composition law. A map of groupoids
X• → Y• is a pair of maps on objects and morphisms, compatible with the structures.

14Confusingly enough, in the literature of open-closed TQFT, those boundary intervals are variously called free or
constrained.
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1-morphisms in C or2 are correspondences between groupoids Y• ← X• → Z•, and 2-morphisms
between X•, X

′
• are again correspondences X• ← C• → X ′•, compatible with the projection to Y•×Z•.

Composition of 1- and 2-morphisms is the homotopy fiber product : this is the naive fiber product
obtained after replacing one of the maps with a fibration — a morphism where each arrow lifts, once
a lifting of the source or target has been found.

(3.8) Example. The point is ∗ ⇒ ∗. The groupoid BF (finite group F ) is described as F ⇒ ∗. The
morphism from ∗ → BF is not a fibration, but can be converted to one after replacing ∗ ⇒ ∗ with
the equivalent groupoid F ×F ⇒ F , representing the translation F -action on F . The homotopy fibre
product ∗ ×BF ∗ is then F 3 ⇒ F , and is equivalent to the set F (with no non-trivial morphisms).
Verify this!

3.9 Remark. This weak 2-category is strictifiable because every morphism of groupoids can be func-
torially converted to a fibration.

Assigning to a manifold the groupoid of principal F -bundles over it gives a 2-functor from Bord2

to C or2. We could think of it as a quantum field theory valued in C or2. The task is to continue by
defining a 2-functor from C or2 to A lg, which we do as follows.

(i) To each object in C or2 we assign the path algebra of the groupoid.

(ii) To a correspondence Y• ← X• → Z•, we assign the sum, over all objects in Y0 × Z0, of the
functions of the homotopy fiber of X there. This is a module over the path algebra of Y• × Z•.

(iii) For a correspondence C• of correspondences, we define a linear map between function spaces by
the push-pull construction. (The matrix coefficient relating to functions counts points mapping
to both, weighted down by automorphisms relative to the second map; this is already familiar
from unextended finite gauge theory.)

There is a more conceptual description of (ii): if f : X• → Y• is a fibration of groupoids, then f∗C,
the direct image of the constant sheaf, is a flat vector bundle over X• — a bundle with a composable
lifting of the arrows. Its sections over X0 therefore give a module for the path algebra of Y•. One
should picture here a submersion f : X → Y of manifolds, for which the cohomologies Rif∗C along
the fibers are vector bundles with a canonical flat connection.

Example. Show that the path algebra of BF is C〈F 〉. Starting from the map ∗ → BF , show that we
produce the regular representation of F . For G ⊂ F and the induced map BG→ BF , show that we
get the induced representation, consisting of functions on F/G.

3.10 Remark (Twisted gauge theory). A class [τ ] ∈ H2(BF ;C×) defines a central extension of F by
C×. We think of a central extension as a line bundle over the group, with a compatible multiplication
on the total space: that is, isomorphisms αf,g : Lf ⊗Lg → Lfg, satisfying the coherence expressed by
commutativity of the square:

Lf ⊗ Lg ⊗ Lh
Id⊗αg,h//

αf,g⊗Id

��

Lf ⊗ Lgh
αf,gh

��
Lfg ⊗ Lh

αfg ,h
// Lfgh

Of course, all the lines can be identified with C, and then αf,g becomes a C×-valued group co-cycle.
Changing the isomorphisms Lh ∼= C changes the co-cycle by a co-boundary.

The twisted group algebra τC〈F 〉 is defined as the space of sections of this line bundle, and
it carries an obvious multiplication lifting the product of group elements. Its modules are the τ -
projective representations of F . This time however, the opposite algebra is −τC〈F 〉. The twisted
gauge theory is defined on oriented manifolds, but does not factor through the unoriented bordism
category.

The reader is encouraged to construct the twisted gauge theory for oriented manifolds; the funda-
mental cycle of a surface relative to its boundary, as well as Stokes’ theorem for cohomology in C×,
should make an appearance in checking the compatibility of maps.
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(3.11) Inadequacy of strict categories. We mentioned that the strict definition of higher categories, as
easy as it seemed, is not appropriate. A precise problem can be identified when restricting to higher
groupoids, namely categories where all morphisms are invertible. It is assumed that any sensible
theory of higher groupoids is equivalent to the theory of homotopy types in topology; specifically,
D-groupoids should correspond to D-types, topological spaces with vanishing homotopy groups above
dimension D. (Declaring that homotopy of maps is an equivalence relation is akin to declaring all
morphisms to be invertible in a higher category.) So, for any good definition of D-category, restriction
to groupoids should produce homotopy D-types. However, the strict inductive definition is faulty
beyond D = 2:

3.12 Proposition. A connected homotopy type X can be represented by a strict groupoid if and only
if its k-invariants beyond k2 vanish. That happens if and only if X is the classifying space of a group
which is the extension of π1(X) by a topological abelian group.

In particular, if X is simply connected, it must be equivalent to the classifying space of a topological
abelian group; that is, a product of Eilenberg-MacLane spaces.

Most simply connected homotopy types are not of that form: indeed, restricting to such spaces erases
nearly all the interesting part of homotopy theory. For example, from the 2-sphere we discussed
earlier, we can produce a homotopy 3-type by killing the homotopy groups above 3 and keeping just
π2 = π3 = Z. (This can be done by attaching cells of increasing dimensions.) But we have seen that
the result differs from the product 3-type CP∞ ×K(Z; 3), having tested maps from CP2 into the two
spaces.

The proof of the theorem imitates the proof of commutativity of π2 of a topological space: the
key lemma is that a space with two strictly commuting associative multiplications is in fact strictly
commutative, and the two multiplications agree. In the world of strict 3-groupoids, this proves strict
commutativity of the second loop space, and entails the vanishing of the Whitehead bracket. We
briefly recall this story.

(3.13) The quadratic map π2 → π3. We give an interpretation of the Postnikov k-invariant k3 ∈
H4(K(π2(X), π3(X)) of a space with π2, π3 only. The standard argument for commutativity of π2(X)
and higher, for any space X, conceals higher operations on homotopy groups, the first of which is the
Whitehead bracket, a collection of bilinear maps πm(X)× πn(X)→ πm+n−1(X). These are best seen
by using the space ΩX of based loops in X and the isomorphism πm(X) ∼= πm−1(ΩX). Namely, the
commutator map ΩX×ΩX → ΩX can be deformed so as to squash the subspace ΩX×{1}∪{1}×ΩX to
the identity. Given α : Sm−1 → ΩX, β : Sn−1 → ΩX representing classes in πm,n(X), the composition

α× β : Sm−1 × Sn−1 → ΩX × ΩX
[,]−→ ΩX

squashes down to factor through

Sm−1 × Sn−1/(Sm−1 × {∗} ∪ {∗} × Sn−1) ∼= Sm+n−2,

and this gives a class in πm+n−2(ΩX) ∼= πm+n−1(X).

3.14 Remark. When m = n = 1, this becomes the commutator bracket on π1(X).

The bilinear Whitehead bracket π2 × π2 → π3 has a quadratic refinement. This is because one
can compute that the generator of π3(S2), represented by the famous Hopf fibration, is one-half of
the Whitehead square of 1 ∈ π2(S2). For any space X, one gets a quadratic map π2(X)→ π3(X) by
pre-composing any α : S2 → X with the Hopf map S3 → S2. We have

3.15 Theorem. A space X with only two non-trivial homotopy groups, π2(X) and π3(X), is com-
pletely determined up to homotopy by the two groups and by the quadratic map π2 → π3.

Homotopy theory tells us that the space is completely determined, up to homotopy, by the Postnikov
invariant k3 ∈ H4 (K(π2, 2);π3). A result of Eilenberg and MacLane asserts that such cohomology
classes correspond precisely to quadratic maps π2 → π3; we have just constructed the correspondence,
in one direction.
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(3.16) A braided tensor category from X. Now let us produce a more rigid incorporation of k3 in the
form of a braided tensor category, and in fact, a ribbon category.

3.17 Definition. A tensor category T is a (C-)linear category with a bi-linear multiplication functor
m : T × T → T , containing a unit object 1 with m(1, x) = x = m(x, 1), and an associator
αx,y,z : m(m(x, y), z) → m(x,m(y, z)) which allows us to ‘move parentheses’ in multiplication. The
associator satisfies a coherence identity for four objects (Stasheff’s pentagon identity).15

We have taken the identity to be strict, for simplicity. The pentagon identity is a precise way
of stating that the choice of order of parenthesis moves is irrelevant. The product m(x, y) is often
denoted by x⊗ y.

Informally, a tensor category is braided if it is commutative to first order. Call τ the transposition
automorphism on the square B ×B of a category.

3.18 Definition. A braided tensor category B is a tensor category equipped with a bi-multiplicative
braiding isomorphism of functors β : m

∼−−→ m ◦ τ . That means, for each pair x, y, we are given an
isomorphism β(x, y) : x⊗ y → y ⊗ x, functorial in x, y. The category is symmetric if β2 = Id.

Bi-multiplicativity means that for any three objects x, y, z, the diagrams commute:

x⊗ y ⊗ z
β(x,y⊗z) //

β(x,y)⊗Idz ''

y ⊗ z ⊗ x

y ⊗ x⊗ z
Idy⊗β(x,z)

77 x⊗ y ⊗ z
β(x⊗y,z) //

Idx⊗β(y,z) ''

z ⊗ x⊗ y

x⊗ z ⊗ y
β(x,z)⊗Idy

77

We have omitted the associators α (set them to Id).

3.19 Remark. If we set aside the associators, one way to encode the braided structure is to specify
that each n-fold tensor product functor T ⊗n → T , defined by successive multiplication, carries
a natural intertwining action of the braid group Bn on n strands, compatible with the inclusions
Bm ×Bn → Bm+n. In the symmetric case, these actions factors through the symmetric groups.

(3.20) Examples.

(i) The category of representations of a group, with the tensor product over C, is braided and in
fact symmetric.

(ii) The category of modules over a commutative algebra A, with ⊗A, is also symmetric. If A is not
commutative, this is usually not even a tensor category.

(iii) It is more difficult to produce a non-symmetric braided category, it you have not seen one. A
famous example comes from quantum groups. Below, I will give a topological example.

Given now X with two homotopy groups π2, π3, let BX be the category of flat vector bundles on
the second loop space Ω2X, supported on finitely many components. The choice of base-point of X
will not matter. We are thus choosing a representation of π3 for each element of π2. This category is
abelian and is even semi-simple, if the homotopy groups are finite.

Let m : Ω2X × Ω2X → Ω2X denote the multiplication, and define a tensor structure on BX by
U � V := m∗(U � V ), the fiberwise zeroth homology along m.

3.21 Proposition. The construction above defines a braided tensor structure on BX . The braiding
is symmetric if k3 = 0.

Proof. Associativity of � should be clear; let us just indicate the braiding. The usual argument for
the commutativity of π2 gives a homotopy between the multiplication m and its transpose m ◦ τ ,
exploiting double loop space structure. Recall the construction: realize Ω2X as maps from the square

15MacLane’s coherence theorem ensures that we can replace T by an equivalent category in which α ≡ 1; but this
may require enlarging the category to an equivalent one with many more objects, or possibly breaking some additional
structure, such as continuity.
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to X, sending the boundary to the base-point; then two adjacent squares �� embedded in a larger
square, and representing the product in Ω2X, can be continuously moved past each other by clockwise
rotation. In this way, we link � to �◦ τ by a one-parameter family of maps. The fiber-wise homology
bundle along this family carries a flat connection, and following this along the interval gives the
braiding isomorphism β(U, V ) : U � V → V � U .

(3.22) Example. Here is BS2 spelt out. Recall that π2(S2) ∼= π3(S2) = Z, and the quadratic Hopf
map Z→ Z is the square. Objects are Z-graded modules over C[z±1]; the grading reflects the points
in π2(S2) of the support of a bundle, while x acts as the generator of π3. The multiplication is then
given by tensoring over C[z±1]. This is naturally symmetric monoidal, but we modify the obvious
symmetric braiding as follows: for modules U, V supported in degrees m,n, the modified braiding
β(U, V ) : U � V → V � U is the action of zmn.

(3.23) Ribbon structure. The invariant k3 is a quadratic refinement of the Whitehead bracket and
contains finer information than the braiding. (It is thus possible for BX to be symmetric even when
k3 6= 0.) Specifically, k3 gives a ribbon structure on BX : this is a central automorphism θx for each
object x satisfying

θx⊗y ◦ (θ−1
x ⊗ 1) ◦ (1⊗ θ−1

y ) = β(y, x) ◦ β(x, y),

θx−1 = θx;

“Central” refers to morphisms in the entire category, and means that θ is an automorphism of the
identity functor on BX , and the second identity, as written, relies on the group-like structure of T
(tensor invertibility of each object).16 In the S2 example above, we have θm = zm

2
.

The first equation of the ribbon structure θ can be interpreted as follows. Braided tensor categories
are algebra objects over the little 2-disk operad E2, in the 2-category of categories. The ribbon is an
enhancement of structure to the framed little 2-disk operad. An “algebra over framed E2” is a portion
of an oriented 2D TQFT, which sees only unions of circles (as objects) and (unions of) disks with
multiple input holes, but a single output, as morphisms. This partial TQFT assigns B to the circle,
the funtor V ect→ B induced by the tensor unit to the outgoing disk, and the m-fold multiplication
B⊗m → B to the m-holed disk.17 This ribbon structure is present on any double loop space: it can
be linearized to give a ribbon category by developing Proposition 3.21.

A closely related interpretation is that θ trivializes the square of the braiding as a braided tensor
automorphism of the category. (The square of the braiding gives an automorphism of the multiplication
functor m : T ⊗T → T , compatible with the braided structure.)

3.24 Remark. The second, homogeneity property of θ is relevant to a dimensional extension towards
a 3-dimensional TQFT structure. See the book [BK] for the remarkable connections between diagram
combinatorics and topology smoldering beneath the surface of these definitions.

(3.25) Finite homotopy types. We conclude by indicating the construction of the enhanced gauge
theory of §1.11 as an extended TQFT, following the example of gauge theory. Except for the language,
richly layered with morphisms of all orders, this does not differ from the finite group extended gauge
theory §3.5.

Let X be a space with finite homotopy groups and fix the dimension D > 0 of the intendet TQFT.
Homotopy groups above D will not play a role and will be truncated. We seek a (weak) functor from
BordD to the D-category C atD−1 of weak linear (D − 1)-categories in two steps:

(i) First we construct the functor BordD → C orD to the D-category of correspondences of topo-
logical spaces with finitely many, finite homotopy groups. This is analogous to the classical field
theory, over which physicists perform the path integral to quantize.

(ii) Next, we construct the quantization functor Q : C orD → C atD−1

16One normally requires θ∨x = (θx)∨ in a rigid category — one with internal adjoints, see §5, Definition 5.10 — and
one can even formulate the condition in the absence of adjoints.

17Confusingly enough, the unframed little 2-disk operad describes the analogous portion of the TQFT for framed disks.
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The first part is unambiguous and every manifold M , representing a morphism of whatever layer,
gets sent to the space of maps Map(M ;X).

Now, since we did not commit to a definition of weak higher categories, we cannot actually perform
the second step: the details of the construction are model-dependent. One construction, using the
notion of m-algebras (algebras with layers of compatible multiplications) was indicated in [FHLT].
Another construction can be given in terms of the “Blob complex” of Morrison and Walker [MW]. In
both cases, adding the top layer of the theory (linear maps beteween vector spaces, or numbers) is
the more delicate step, and uses the finiteness of X. However, let me indicate here the idea common
to both: this is to construct the m-linearization functor of a space, which is a linear m-category, in
a way that takes homotopy fiber products to tensor products. (A zero-category is a vector space; a
linear (−1)-category would be a complex number, I guess.)

The 0-categorification of Y is the vector space of locally constant functions on Y .
The 1-categorification is the category of vector bundles with flat connection.
The 2-categorification is the 2-category of linear category bundles with flat connection (locally

constant sheaves of linear categories)
And so forth.
The key observation is that one can define the cohomology of a space with coefficients in a locally

constant sheaf of m-categories and obtain anm-category. This allows us to define ‘wrong-way maps’ for
bundles of higer categories, and thus convert correspondences into functors. The finiteness conditions
on X are needed to stay within the world of dualizable objects (next lecture), which are needed for
the consistency of the TQFT.

The braided tensor category of §3.16 is a model for the 3-categorification of the space X; we will
see in the last lecture why a braided tensor category is an object of 3-categorical nature: it has a
“3-category of module objects”.
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4. The cobordism hypothesis in dimensions 1 and 2

The “cobordism hypothesis” is the classification of fully extended D-dimensional TQFTs with values
in an arbitrary symmetric monoidal D-category. It was formulated (not completely precisely) by Baez
and Dolan [BD]: roughly speaking, such a theory should be completely determined by an object in
the D-category, which is assigned to a point; the object must satisfy certain conditions and carries
additional structure. Both of these were made precise by Lurie [L], who proved the conjecture. The key
insight behind his formulation (distinguishing it from other variants, such as [MW]) was to separate
the conditions from the structure.

This is accomplished by passing to the framed bordism D-category BordfrD , to be defined below.
In this case, the object Z(∗) assigned to the point is subject to the full dualizability condition, which
generalizes the finite-dimensionality of vector spaces in the case D = 1. There is no extra structure;
the latter only appears when attempting to factor a framed theory via manifolds with other structure
(orientation, spin, or any topologically defined structure on the tangent bundle). Again, speaking
loosely, to extend a framed theory as described above from framed manifolds to a category of manifolds
whose tangent bundle reduces topologically, from the orthogonal group, to a group G→ O(D), requires
the object Z(∗) to be made G-equivariant. More precisely, it requires exhibiting Z(∗) as a G-fixed
object within the space of all dualizable objects in the target D-category, with respect to the canonical
O(D) action on the space of such objects.

Let us start with the beginning of a definition, which conceals incompleteness and many fine points;
we will unravel them gradually, beginning with the remark that follows.

4.1 Definition. A framing of an n-dimensional vector bundle V on a manifold M is an isomorphism
of V with the trivial vector bundle M ×Rn. A D-framing on a smooth k-manifold M (where k ≤ D)
is a framing of the bundle RD−k ⊕ TM .

The D-category BordfrD has D-framed points as objects, and its k-morphisms are the compact
D-framed manifolds with corners. For k = D, we take D-manifolds, modulo boundary-fixing diffeo-
morphisms and homotopy of the framings.

4.2 Remark (Framings).

(i) It is important that the extra R’s in the framing need not align with the first summands of RD;
otherwise we would merely be defining an ordinary framing of TM . A D-framing is similar to,
but slightly more restrictive than, a stable framing (the notion obtained by allowing D to be
arbitrarily large). A D-framing becomes stable when dimM < D−1, because of the stabilization
of the homotopy groups of SO.

(ii) On a (k−1)-dimensional component B of the boundary of M , TM |B has an R1 summand which
can be framed by the inward or outward normal to B in M . This choice gives an isomorphism
RD−k ⊕ TM |B ∼= RD−k+1⊕ TB. The direction on R1 is chosen according to whether we read B
as the source or the target of the morphism M , and a D-framing of M then restricts to one of B.
Armed with a reading of M as a morphism between morphisms (between morphisms . . . ), we
can consistently follow this convention to all co-dimensions to build the D-category of D-framed
manifolds.

(iii) A D-framed manifold with corners can be read as a morphism in many ways: its boundaries of
various co-dimension must be labelled as sources or targets of morphisms. For example, Figure 1
shows four readings of a square, as the identity 2-morphism of various 1-morphisms:

 

Figure 1: Various 2-morphism readings of a square
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The 1-morphisms go right-to-left and the 2-morphisms go down. The framing is indicated on the
surface, and the sign of the corner points is forced by our framing convention: the tangent space
TM at a corner has the basis given by (2-morphism, 1-morphism) and this is compared with
the surface framing. The vertical lines are always the self-identifications of the corner objects.
There are many more possibilities, as there is no need for the 2-framing to be constant along
the horizontal direction, as pictured here; in fact, a one-unit twist of the framing will play a
distinguished role (the Serre automorphism).

(iv) There are (for D > 0) exactly two D-framed points +,− in BordfrD , up to isomorphism, distin-
guished by determinant sign of the framing RD ∼= RD⊕T (point). The isomorphism is realized by
any homotopy from one framing to another in the same orientation class, viewed as a D-framed
interval (a 1-morphism in BordfrD ). The opposite homotopy provide the inverse isomorphism
(up to invertible 2-morphisms, etc.). The automorphism group of each framed point is ΩSO(D).

4.3 Remark (Diffeomorphisms). Modding out by diffeomorphisms in the top dimension will look wrong
to the experienced among you: this is because diffeomorphism groups have a topology, which is lost
in the naive definition. For example, such a definition could never capture the structure of Gromov-
Witten theory, which relies on the topology of the Mn

g . Instead, each top-dimensional manifold should
be replaced by a space of morphisms with homotopy type the respective BDiff.18 The preferred way
to accomplish this involves the notion of (∞, D)-category, which has interesting k-morphisms for all
values k, but all of them are required to be isomorphisms above D. The homotopy type of BDiff is
then captured in the higher automorphism groups of D-morphisms.

(4.4) Duals and 1D framed TQFTs. Framings and orientations agree for R-bundles, up to a con-
tractible space of choices. Oriented theories, you recall, comprise the vector spaces Z(+), Z(−) as-
signed to the two oriented points, and the maps

Z(⊃) : C→ Z(−)⊗ Z(+),

Z(⊂) : Z(+)⊗ Z(−)→ C.
(4.5)

These are subject to the conditions that the compositions

Z(+)
Id⊗Z(⊂)−−−−−→ Z(+)⊗ Z(−)⊗ Z(+)

Z(⊃)⊗Id−−−−−→ Z(+),

Z(−)
Z(⊂)⊗Id−−−−−→ Z(−)⊗ Z(+)⊗ Z(−)

Id⊗Z(⊃)−−−−−→ Z(−)
(4.6)

are the respective identities. The conditions are seen geometrically by gluing the two half-circles at
the respective end: we obtain an ‘S’ or ‘Z’ which are diffeomorphic to the identity intervals:

 

Figure 2: Zorro’s lemma

4.7 Definition (Internal duals in a monoidal category). Given a pair of objects and morphisms as
in (4.5), (4.6) in a monoidal category (with the unit object replacing C), we call Z(+) right dual to
Z(−), and Z(−) left dual to Z(+). Z(⊂) and Z(⊃) are called the unit and trace of the adjunction.

4.8 Remark (Duality).

(i) The left dual of a given object, if it exists, is determined up to canonical isomorphism, along
with the unit/trace.

18Plus the space of framings, relative to the boundary.
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(ii) Strenghening this statement, a morphism between objects which have duals has an adjoint
morphism relating the duals in the opposite direction.

(iii) Invertible objects always admit duals: their inverses can be taken as such.

(iv) (Hom definition) An equivalent definition of duality is the specification of a bi-functorial isomor-
phism in x, y, Hom(x ⊗ Z(−), y) ∼= Hom(x, y ⊗ Z(+)). In other words, the functors . ⊗ Z(−)
and .⊗ Z(+) form an adjoint pair. (See § 4.12 below.)

(v) In a symmetric monoidal category, left and right duality are equivalent conditions; we can then
denote the dual of x by x∨. But we will still run into the left/right distinction later, when
considering Hom( , ) categories in a higher category.

(vi) Vector spaces have duals precisely when they have finite dimension. Finitely generated projective
modules over a commutative ring have duals, but over a general ring, these are not the only
modules with duals.

(4.9) Cobordism hypothesis in 1D. Call an object of a symmetric monoidal category dualizable if it

does have a dual. We have just seen that functors Z : Bordfr1 → C to some symmetric monoidal
category are classified, up to isomorphism, by Z(+) which is a dualizable object in C .

It is a worthy exercise to show that any natural transformation of functors Z → Z ′ is an iso-
morphism, in particular comes from an isomorphism f : Z(+) → Z ′(+). (Show that the companion
morphism g : Z(−) → Z ′(−) must be inverse to the adjoint morphism f∨; therefore, ∨g will be an
inverse of f .)

(4.10) O(1) action on dualizable objects. The orthogonal group O(D) acts on BordfrD by changing the
framings. This is a homotopical action: that is, it factors through the homotopy type of the group
and is not sensitive to the Lie structure (see Remark 4.20). It therefore acts on framed TQFTs, and
therefore on the collection of possible Z(+)s, the objects in a given symmetric tensor category which
admit duals. The action on objects is obvious, factoring through {±1}: the non-trivial element sends
each such object to its dual.

Now, when does the theory factor through unoriented manifolds? In that case, + = −, so we may
take Z(+) = Z(−). Then, Z(⊂) is a non-degenerate pairing Z(+) ⊗ Z(+) → 1. The absence of an
orientation on ⊂ forces this to be symmetric, so on vector spaces the theory is determined by a vector
space with a non-degenerate symmetric bilinear form.

Here is the intrinsic description. The group Z/2 acts on the groupoid G>0V ect of finite-dimensional
complex vector spaces and isomorphisms, sending vector spaces to their duals and linear isomorphisms
to their inverse duals. This is the action of O(1) on dualizable objects in V ect. (We see the need to
truncate the category to its maximal sub-groupoid: the action is ill-defined on the full subcategory.)
Let us state the following, before explaining it:

4.11 Proposition. The fixed-point category for this O(1)-action is the groupoid of vector spaces with
non-degenerate symmetric bilinear form. In particular, unoriented TQFTs are classified by O(1)- fixed
points among the dualizable objects in V ect.

First, we say that a (discrete) group G acts on a category C if

• for each element g ∈ G, we are given an autofunctor Fg : C → C ,

• for all g, h we are given an isomorphism of functors αg,h : Fg ◦ Fh
∼−→ Fgh,

such that the α’s in a triple g, h, k satisfy an obvious coherence relation enabling us to construct a
unique isomorphism Fg ◦ Fh ◦ Fk ∼= Fghk. It is also convenient to assume that F1 = Id.

The fixed-point category CG is, by definition, the one whose objects are tuples (x, ϕx,g |g∈G), where
the ϕx,g ∈ Isom(x, Fg(x)) satisfy an (obvious) coherence constraint with respect to composition:
ϕx,gh = Fg(ϕx,h) ◦ϕx,g (ignoring the α’s). That is, the two ways we can find to identify x with Fgh(x)
agree. Morphisms in CG come from C , but are required to be compatible with the ϕ.

It is now an exercise to prove the proposition: there is only one ϕ : V → V ∨ to specify, for the
non-trivial element g of O(1). The condition g2 = 1 implies (ϕ∨)−1 ◦ ϕ = IdV , the symmetry of ϕ.
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(4.12) Cobordism hypothesis in 2D. We recall the notion of adjoints, the analogue of duals, for mor-
phisms in a higher category. Fortunately, all higher definitions beyond this will be the same. The
key example pertains to functors between categories: we say that F : C � D : G form an ad-
joint pair, with F left and G right adjoint, if we are supplied with a bi-functorial isomorphism
HomC (x,Gy) = HomD(Fx, y). Clearly, the right adjoint of F is unique up to canonical isomor-
phism, if it exists; we write G = F∨. Similarly, the left adjoint F is uniquely (up to isomorphism)
determined by G, and we write F = ∨G.

Taking y = Fx supplies a unit morphism ε : IdC → G ◦ F and taking x = Gy gives a trace
θ : F ◦G → IdD . With the help of ε and θ, we can state the adjunction condition without involving
objects in C and D .

4.13 Definition. A morphism F : c → d in a 2-category is left adjoint to G : d → c if there exist a
unit 2-morphism ε : Idc → G ◦ F and a trace or evaluation θ : F ◦ G → Idd, such that the following
compositions are the respective identity 2-morphisms:

F = F ◦ Idc
IdF⊗ε−−−−→ F ◦G ◦ F θ⊗IdF−−−−→ Idd ◦ F = F,

Idc ◦G = G
ε⊗IdG−−−−→ G ◦ F ◦G IdG⊗θ−−−−→ G ◦ Idd = G

G is then said to be right adjoint to F .
A morphism is dualizable if it has right and left adjoints, which in turn have right and left adjoints,

ad infinitum.

4.14 Remark. (i) The nonsensical but concise formula “θ ◦ ε = 1” can be made meaningful exactly
in the two ways above.

(ii) We can revert to a Hom-definition of adjunction using the induced transformations

F∗ : HomC (•, x) � HomC (•, y) : G∗,

between category-valued functors on C , which we require to be adjoint (functorially in •).
(iii) There appear to be infinitely many conditions contained in the definition of dualizability. How-

ever, in the application to TQFTs, the conditions will be finite in number. This is because the
left and right adjoints must differ by an invertible functor (the Serre automorphism in dimension
2), and the checking can stop once we find the functor and check its invertibility: the existence
of all further adjoints is guaranteed.

(iv) Note that if ε, θ are isomorphisms, then so are F and G, and then they are mutually inverse.

4.15 Definition. For any 2-category C , let G>1C (“groupoid above 1-morphisms”) be the 2-category
retaining all objects and 1-morphisms, but only the invertible 2-morphisms.19 There is a similar
definition G>kC for any D-category with D > k.

4.16 Definition. An object x of a symmetric monoidal (∞, 2)-category is fully dualizable if:

• It is dualizable in G>1C ;

• Its unit and trace for duality are dualizable in their respective 1-categories of functors.

4.17 Remark. We are not asking for futher dualities, because only isomorphisms are present above 2.
Insisting on more duality forces everything, including x, to be invertible. (Develop 4.14.iv.)

4.18 Theorem (Classification of framed TQFTs). A 2D framed, extended TQFT Z with values in a
2-category C (or (∞, 2)-category) is determined by x = Z(+), which can be any fully dualizable object.

Natural transformations between two theories Zx and Zy form a (2-)groupoid (or ∞-groupoid)
which is equivalent to Hom(x, y) in the category G>0C (obtained from C by retaining only the invert-
ible 1- and 2-morphisms).

19If we start with an (∞, 2)-category, we get an (∞, 1)-category this way.
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(4.19) The Serre twist. Let x be a fully dualizable object with dual x∨, and call u, ev the unit, resp.
trace of that duality. Let also S : Z(+) → Z(+) be the Serre automorphism, induced by a clockwise

twist in the framing along an interval (see §4.25 for a picture). We will see that, in Bordfr2 ,

• (S � Id−) ◦ u is the right adjoint of ev;

• (S−1 � Id−) ◦ u is the left adjoint of ev;

The other adjoints are algebraically determined from here, since S−1 = S∨ (left and right adjoint). In
particular, this proves half of the cobordism hypothesis, namely that Z(+) must be fully dualizable.
The other, more difficult half, is the statement that Bordfr is the free 2-category generated by one
fully dualizable object, in other words, there are no extra relations to impose on Z(+).

4.20 Remark. An equivalent description of S starts from the observation that Aut(+) ∼ ΩSO(2) ∼ Z,
and S is the negative generator. The Z-action on a fully dualizable object captures the topological
action of SO(2) on the space of all fully dualizables: because SO(2) is connected, gx ∼= x for any fully
dualizable x; a choice of isomorphism arises from any choice of path from 1 to g, and is not sensitive
to deformation of the path. However, attempting to straighten out these isomorphisms coherently to
trivialize the action on the orbit of x is obstructed precisely by the automorphism S, arising from the
non-trivial loop in SO(2).

(4.21) Oriented and r-spin theories. Armed with the Serre automorphism, we will now state the
classification of oriented and Spin TQFTs. More precisely, we seek the condition under which a
framed theory factors through the oriented bordism category. In fact, for each r, we can enquire
about TQFTs for surfaces and circles with r-Spin structure, with is a chosen rth root of the tangent
bundle (assumed to be oriented). For r = 1, we have oriented surfaces, and for r = 2, traditional Spin
structures.

4.22 Theorem. Factorizations of a framed theory Z : Bordfr2 → C through the r-Spin category

Bordr−Spin
2 correspond to isomorphisms between Sr and the identity automorphism of Z(+).

(4.23) Example: semi-simple TQFTs. For C-linear TQFTs, taking values in the 2-category of linear
categories, a given trivialization of the Serre functor can be rescaled by any λ ∈ C×. If so, a com-
putation shows that the invariant Z(Σg) for a closed genus g surface gets rescaled by λ2−2g. More
precisely, the Frobenius trace θ on Z(S1) rescales by λ2, while the vector in Z(S1) defined by the
torus with one outgoing boundary circle (sometimes called the Euler class) rescales by λ−2. Recall
now that theories defined from semi-simple Frobenius algebras led to the closed surface invariant
Z(Σg) =

∑
θ1−g
i . Such theories can be interpreted as sums of 1-dimensional extended TQFTs, each

generated by the algebra C with Serre functor θ
1/2
i . In other words, the closed surface invariants

are entirely traceable to a choice of Serre automorphism, which we can scale independently for each
summand. However, extending the theory down to dimension zero requires us to choose square roots
of the Frobenius structure constants θi.

(4.24) Adjunction in pictures: oriented handles. We now spell out the 2-duality data and relations
geometrically, in terms of standard handles and handle cancellations. We have already done this for
D = 1, when converting the ‘Z’ to the interval, but it may have been too obvious to notice. There
are fewer and simpler pictures if we assume that S = Id+, when the TQFT factors through oriented
surfaces. In that case, u and ev are each other’s left and right adjoints, and the unit ε and trace θ for
adjunction are the standard handles in the topology of surfaces, as in Figure 3.

The (horizontal) 1-morphisms are read right-to-left, and the surface 2-morphisms are read down-
wards. The arrows indicate the orientations of the 1-morphism intervals; the orientation of the surface
is deduced form the rule that the 2-morphism direction comes first in the framing, at the boundary.

The identities ”θ◦ε = 1” are the standard handle cancellation relations familiar form Morse theory;
Figures 4 and 5 show the cancellations of the 1-handle (saddle) by a 2-handle:

The opposite adjunction (u, ev) involves the same pictures, but read from bottom to top (the labels
ε and θ are also swapped). This time, ε is a 0-handle, and θ is a cancelling 1-handle.
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Figure 3: The adjunctions of u and ev in the oriented case

Figure 4: The relation (Idu � θ) ◦ (ε� Idu) = Idu

Figure 5: The relation (θ � Idev) ◦ (Idev � θ) = Idev

(4.25) Framed handles. A few attempts should convince you that it is not possible to place 2-framings
on the 1-dimensional handles ⊃ and ⊂ to make both adjunctions (ev, u) and (u, ev) work. In fact, the
most natural framings to choose in defining u and ev — the product (tangent, normal) on a narrow
strip — do not permit either adjunction: this is because the radial product 2-framing at the boundary
circle of a disk does not extend over the interior. Instead, we must use the Serre functor S, defined
by a twist of the standard (2-morphism, 1-morphism) product framing:

 

Figure 6: The Serre functor

As usual, we read 1-morphisms right-to-left and 2-morphisms down, as indicated near the source
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point (so our standard framing is oriented opposite to the page framing). On the ribbon as drawn, we
take the framing is constant: this performs one positive twist compared to the product framing and
defines the functor S.

Now we can extend the boundary framings to the disk and saddle to exhibit the adjunction pair
(ev, (S � Id−) ◦ u); as usual, 2-morphisms are read from top to bottom:

Figure 7: The adjunctions ev ◦ (S � Id−) ◦ u θ
=⇒ Id∅ (left) and Id+t−

ε
=⇒ (S � Id) ◦ u ◦ ev (right)

The same handle cancellation identities as before apply to give θ ◦ ε = 1. The other adjunction,
((S−1 � Id−)◦u, ev), is obtained by reading the pictures from the bottom up. (However, we must also
flip the sign of the vertical copy of R on the boundaries to match our source-target conventions, and
that switches the framing twist in the picture.)

(4.26) Adjunction: algebraic conditions. To spell out the adjunction conditions, we specialize to the
case of the 2-category A lg of algebras, bimodules and intertwiners. Here, Hom(A,B) is the category
of B −A bimodules, and composition of morphisms

Hom(A,B)⊗Hom(B,C)→ Hom(A,C)

is given by the tensor product of bi-modules over B.20 Taking this example literally is too restrictive:
one can prove that a fully dualizable algebra must be semi-simple. (More generally, a compactly
generated abelian category is fully dualizable within linear categories iff it it semi-simple, with finitely
many simple isomorphism classes.) This is still instructive, as we will identify the automorphism S
canonically and relate a trivialization of S to a Frobenius or Calabi-Yau structure on the algebra.
However, to get more interesting examples of TQFTs, one must use differential graded algebras and
their derived categories of modules; we review below the example of coherent sheaves on a projective
manifold.

Every A ∈ A lg is dualizable, with (left and right) dual the opposite algebra A◦. Indeed, let
Ae := A⊗A◦; we can then take for u and ev the space A, viewed as a Ae − C, respectively a C−Ae
bimodule. From this, we compute ZA(S1) = A⊗Ae A, known as the zeroth Hochschild homology of A.

The Hom definition is more convenient for computing adjoints. Using the Hom definition of
adjoints, the left adjoint ∨u of u is a C−Ae bimodule satisfying

HomAe(M,A⊗C N) = HomC(∨u⊗Ae M,N) (4.27)

for any Ae-module M and C-vector space N . (Actually, we should ask that this should hold for any
algebra B, and a right B-module structure on N ; but the latter will come for free.) Taking first
M = Ae and N = C, but then enforcing it for any N , leads to the conditions

A = HomC(∨u,C), dimC
∨u <∞;

20The conversion to the 2-category of linear categories, or differential-graded categories, is not difficult. The delicate
step involves the definition of the monoidal structure, the tensor product of categories; see [G] for of abelian categories.
In general, the categories of modules over algebras A and B tensor together to the category of A⊗B-modules.
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so that dimA <∞ and ∨u = A∨ := Hom(A,C), the dual vector space to A. In addition, to get (4.27)
for all M requires left exactness of M 7→ A∨ ⊗Ae M , that is, Ae-flatness of A∨.
Exercise: Show that, as a consequence, the category of finite-dimensional A-modules is semi-simple,
and therefore A is semi-simple. (Deduce the exactness of Hom in the category of finite-dimensional
A-modules.)

To continue, since ev∨ = (S � Id) ◦ u, we must have ev = ∨u ◦ (S−1 � Id), and we conclude that S
is canonically the A − A bimodule A∨, and that this must be an invertible bi-module. Next, for the
left adjoint ∨ev,

HomAe(∨ev ⊗C M,N) = HomC(M,A⊗Ae N) (4.28)

from which, when taking M = C, N = Ae, we obtain A = HomAe(∨ev,Ae). Moreover, to recover the
isomorphism (4.28) in general, we need the flatness and finite presentation of A over Ae. Existence of
the remaining adjoints offer no further information or constraints:

u∨ = HomAe(A,Ae) = ∨ev, ev∨ = A∨ = ∨u.

4.29 Remark. (i) It is not an accident that S is the vector space dual of A; see §5.11.

(ii) Working with a differential graded algebra instead and using quasi-isomorphisms in lieu of equal-
ities, finite-dimensionality of A becomes finiteness of the homology of A, and is usually called
compactness; while finiteness of A over Ae is smoothness. This is because they match the re-
spective properties in the case of complex varieties. With that language, fully dualizable dga’s
are the compact, smooth ones; this may have been first flagged in the work of Kontsevich and
Soibelman [KS].

(4.30) Oriented TQFTs from Frobenius algebras. A trivialization of the Serre functor is an Ae-module
isomorphism A ∼= A∨. The image of 1 under this identification defines a linear map t : a→ C, which
induces a symmetric non-degenerate trace a×b 7→ t(ab) = t(ba). This makes A into a non-commutative
Frobenius algebra. Using t, we can identify the dual space to

ZA(S1) = ev ◦ u = Hom(A⊗Ae A;C)

with Z(A) = HomAe(A,A∨) ∼= HomAe(A,A), the center of A. This is also a semi-simple commutative
algebra, which acquires a Frobenius structure from the co-unit θ : ZA(S1) → C of adjunction. The
inclusion Z(A) → A is an algebra homomorphism, while the projection A → ZA(S1) can be used to
factor the trace t on A via θ. These examples were discussed in great detail by Moore and Segal [MS],
forming an inspiration for much subsequent work [C, KS].

In conclusion, 2-dimensional, extended, oriented TQFTs correspond precisely to semi-simple, but
not necessarily commutative, Frobenius algebras.

(4.31) Finite gauge theory revisited. Following [MS], let A be the group ring C〈F 〉 of a finite group;
we choose the trace t : C〈F 〉 → C to pick out the coefficient of 1. Explicitly, the pairing is then

t(ϕ · ψ) =
∑

f∈F
ϕ(f)ψ(f−1).

I claim that Z is the F -gauge theory for surfaces with corners (which in fact is an an unoriented
TQFT). The theory is obvious on 1-manifolds: send the interval to A = C〈F 〉 and the circle to Z(A),
the class functions on F . It is again defined on surfaces by ‘counting F -bundles, weighted down by
automorphisms’; the difference from the (1, 2)-theory of Lecture 1 is that bundles are now trivialized
at the corners (and on the identity segments bounding a 2-morphism).

Exercise: Make the definition above precise, and check that it gives a functor from Bord
O(2)
2 to A lg.

4.32 Remark. The trace t has a natural extension to the entire category Rep(F ) of F -representations:
define tV = (#F )−1 ·TrV : EndG(V )→ C, for any object V in the representation category. The trace
property is t(ϕ ◦ ψ) = t(ψ ◦ ϕ), for any pair of morphisms with opposite sources and targets. This
defines a non-degenerate pairing between HomG(V,W ) and HomG(W,V ) for all V,W , and provides
an example of a Calabi-Yau structure on Rep(F ): a trivialization of the Serre functor on the category,
which we examine next in the context of varieties. It also furnishes an example of open-closed theory
(see [C] for relevant definitions), with Rep(F ) as category of branes.
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(4.33) The Serre functor on a scheme. In studying derived categories of coherent sheaves on a projec-
tive manifold X, Bondal and Orlov flagged the role of the Serre automorphism, characterized in any
linear category C by the existence of a bi-functorial isomorphism

Hom(x, S(y)) = Hom(y, x)∨.

If it exists, S : C → C is unique up to canonical isomorphism. If S is invertible, it forces the Hom
spaces to be isomorphic to their double duals, hence finite-dimensional; this is a strong condition. If
we also assume compact generation of C (a milder finiteness condition), then it can be shown that
C is a 2-dualizable object in the 2-category of linear categories, so defines a framed 2-dimensional
TQFT. Moreover, the Serre functor defined above agrees with the one defined by the framing twist.

In the case of the derived category, taking for Hom the zeroth group Ext0(F •,G •) between com-
plexes of sheaves, the classical duality theorem of Serre identifies S with the functor of tensoring
with KX [dimX], the canonical bundle shifted into degree (−dimX). The following is a remarkable
application of the cobordism hypothesis; the Calabi-Yau case had been proved, in slightly different
variant, independently by Costello [C] and Kontsevich.

4.34 Theorem. The derived category DbCoh(X) of (bounded complexes of) coherent sheaves on a
projective manifold X is fully dualizable. The Serre functor is the clockwise framing twist. Defining
an oriented TQFT requires a Calabi-Yau structure on X: a trivialization of the canonical bundle.

This is a vast generalization of the semi-simple case, obtained when X is a finite set.

(4.35) Vector spaces associated to the circle. Let us understand Z(S1) in the case C = Coh(X). When
D = 1, the circle computes a number, the dimension of the vector space. So we are generalizing the
notion of dimension to linear categories, and obtaining a vector space for an answer.

In the framed context, there are many circles S1
n, one for each integer, counting the winding number

of the 2-framing around the circle. So our TQFT will have a space of states, Z(S1
n), for each n ∈ Z. Let

us use 0 for the framing of the circle which bounds the standard unit disk in R2. If we construct S1
n by

attaching two half-circles together, these circles differ by inserting powers of the Serre automorphism
before the gluing. With our convention, Z(S1

0) = ev ◦ (S−1 � Id−) ◦ u, and Z(S1
1) = ev ◦ u, the direct

analogue of the dimension.

4.36 Theorem. When Z(+) = DbCoh(X), Z(S1
n) = H∗(X;K⊗n ⊗ Λ∗(TX)).

4.37 Remark. For n = 0, this is the Hochschild cohomology of the manifold X. For n = 1, it is the
Hochschild homology. Cohomology has a natural ring structure, and homology is a module over it
(as are all other spaces). This algebra structure is the one described by the pair-of-pants morphism
S1

0 t S1
0 → S1

0 in the TQFT, framed by realizing it as two smaller disks embedded in a larger one
within R2.

There is no Frobenius algebra structure away from the Calabi-Yau case, because the trace, the
outgoing framed disk, comes from the map S1

2 → ∅. There is however a pairing S1
1 t S1

1 → S1
2 , and

going from there to ∅ gives a perfect bilinear pairing on Hochschild homology.
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5. Cobordism hypothesis in higher dimension

The required definitions and the statement of the Cobordism Hypothesis in any dimension should
come as less of a surprise now. Let C be a symmetric monoidal (∞, D)-category, and recall the
definition 4.15 of the groupoid truncations G>kC , which retain only the weakly invertible morphisms
of level greater than k (invertible up to a coherent system of higher morphisms).

5.1 Definition (Lurie). An object x in C will be called fully dualizable if:

• it is dualizable in G>1C ,

• its unit and trace for duality are dualizable in G>2C ,

• the unit and trace for dualities established above are dualizable in G>3C ,

• and so forth until we reach D-morphisms, for which we no longer require dualizability.

The reason for stopping atD is the following: the morphisms implementing theD-dimensional dualities
would land in the groupoid part of the (∞, D)-category, and would therefore be invertible. This would
force the duality-implementing D-morphisms themselves to be invertible, and downward induction
would force all morphisms, along with x itself, to be invertible. While invertible objects construct
valid examples of field theories, they leave out most interesting examples.

5.2 Theorem (Lurie, [L]). (i) A functor Z : BordfrD → C is determined, up to isomorphism, by a
fully dualizable object, namely the image Z(+) of the positively framed point.

(ii) More precisely, the (∞, D)-category of such functors and natural transformations is a groupoid,
and is equivalent to the full sub-groupoid of fully dualizable objects in the groupoid G>0C .

(iii) The orthogonal group O(D) acts on such functors Z, and therefore on the space of fully dualizable
objects in C , by a change of D-framing on the point.

(iv) Given a “structure group” G→ O(D) for D-manifolds, a factorization of Z

BordGD

""
BordfrD

Z //

::

C

via a the bordism category of manifolds with G-structure on the tangent bundle corresponds to a
G-fixed point structure on the generating object Z(+).

5.3 Remark (Fixed point structures).

(i) Fixing Z(+) under the G-action is a combination of data and conditions. Thus, for D = 1 and
G = O(1), we need a bilinear form on the vector space Z(+), which is induced by an isomorphism
with its dual Z(−). Pictures show that the form must be symmetric and non-degenerate.

(ii) When G→ SO(D), a G-fixed point structure is a trivialization of the ΩSO(D)-action on Z(+).
Thus, for D = 2 and G = SO(2), the action of ΩSO(2) on Z(+) is generated by the Serre
automorphism. The fixed point information is an isomorphism S ∼= IdZ(+).

(5.4) Reduction to co-dimension 2. The number of conditions for full dualizability of an object seems to
proliferate exponentially with the dimension; if true, this would make any exploitation of the theorem
impossible in high dimension. I shall indicate below why this is not the case; in fact, if we ignore
framings and focus on oriented theories, we have essentially seen the maximal complexity at D = 2.
This simplification stems from three observations:

• All the unit-trace morphisms to be supplied correspond to cubes in the bordism category

• All relations take the geometric form of gluing two cubes along a common face;

• All boundary structure in co-dimension greater than 2 may be ignored.
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As a result, we may assume that our cubes of morphisms are the standard handles Dp×Dq of surgery
theory, with boundary decomposed as Dp×Sq−1

∐
Sp−1×Sq−1 Sp−1×Dq. That is, we are dealing with a

(p+q)−morphism relating two p+q−1−morphisms, both going from ∅ to the (p+q−2)−endomorphism
Sp−1×Sq−1 of the empty set: thus, a 3−layered object. The duality relations “θ◦ε = 1” to be checked
will be the standard handle cancellation relations of surgery theory.

The impact of these observations is that, to demonstrate full dualizability of an object, it suffices
to provide the k-morphisms associated to all standard handles in all dimensions through D, and check
the handle cancellation relations.

Framed theories requires framed handles. Different framings differ by maps to SO(D) relative the
boundary, and a presentation requires grappling with the homotopy of SO(D). There is finite informa-
tion here, since a combinatorial presentation requires finding the generators of the homotopy groups,
checking their invertibility, and the requisite relations. This adds to the complexity of specifying a
framed, as opposed to an oriented theory, in higher dimension.

(5.5) 3D example. Let us illustrate these ideas in dimension 3, ignoring framings and retaining only
orientations. The oriented category is especially easy, because the adjoint of a morphism is always
represented by the opposite bordism, meaning the same manifold with opposite orientation, read
backwards as a bordims. (The frame-reversing convention requires more care.) Recall from the
previous lecture that ε : Id → u ◦ ev, the unit of adjunction in Hom(S0, S0), was represented by the
‘arch’, an upside-down saddle; I will exhibit the left adjoint ∨ε as the standard saddle. The bordism
U : Id→ ε ◦ ∨ε is the standard 1-handle attachment familiar from Morse theory:

In the oriented case, ∨ε = ε∨; reading the pictures upwards gives the opposite adjunction. The trace
morphism T : ∨ε ◦ ε→ Id is a 2-handle attachment, as in Figure 8

and may require a stretch of the connecting tube to see, as in Figure 9:
Figure 5.5 is one of the relations “T ◦ U = 1”, namely (Id∨ε � T ) ◦ (U � Id∨ε) = Id∨ε:

This is the standard cancellation of a 1-handle by a 2-handle.
Rewriting the diagrams in cubular form illustrates an inductive formulation, which allows one to

reduce the duality morphisms to handles in any dimension.
The 1-morphisms for which the blue surfaces are 2-morphisms are circled in black in the initial and
final picture: they are u◦ev at the top and Id at bottom, both from S0 = {+}t{−} to itself. The initial
and final angular saddles represent the same 2-morphism ε in the bordism category. The two cubes
to be inserted represent a 1-handle attachment and its a 2-handle cancellation. The generalization to
any dimension arises by replacing the top square, I × I, by Ip × Iq.
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Figure 8: From ε∨ ◦ ε to Id

Figure 9: Attaching a 2-handle

The cubes we just drew have co-dimension 3 vertices, so the reduction to manifolds with corners
only of co-dimension 2 requires a further argument. Full execution is a bit involved, but the idea is
simple enough, and relies on inductive application of the cobordism hypothesis. Figure 12 suggests the
argument for dimension 3, assuming that 2-duality has been checked, meaning that we have established
the existence and consistency of the TQFT up to dimension 2:
We draw one undivided circle along the boundary of the surface, which encloses all the handle attach-
ment and cancellation steps. This step separates the subdivision or recombination of a boundary with
zero-dimensional corners into the 2D part of the theory, and shows that the operations and relations
in the 3D theory can be defined and checked on surfaces with circle boundaries only.

5.6 Remark. Recall from Morse theory that any manifold can be built from the empty set by attaching
handles, and all operations involve manifolds with co-dimension 2 corners only. At first sight, this
might suggest a classification of TQFTs which go only 2 layers deep, and avoid categories beyond
2 altogether. In fact, a partial result in this direction does exist in 3 dimension, the Reshetikhin-
Turaev theorem [RT], classifying 2-deep 3D TQFTs with a semi-simple category associated to the
circle. However, going beyond dimension 3 is hopeless: the spheres used for handle attachment
can be embedded in complicated ways. For example, the entire complexity of simply connected,
differentiable 4-manifolds is concealed in the theory of links in 3-manifolds, used for attaching 2-
handles. Nevertheless, the observation is useful: if we can cut up the boundaries themselves, and their
further boundaries, into handles, then this ‘codimension 2’ intuition becomes correct, and develops
into the recursive procedure for checking dualizability using only standard handles and cancellations.
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Figure 10: “T ◦ U = 1”

(5.7) Tensor and module categories. We now move to a 3-dimensional illustration of the cobordism
hypothesis, which allows the construction of interesting 3D TQFTs. A key example is provided by
recent work by Douglas, Schommer-Pries and Snyder.21.

We defined a tensor category T as a linear category with bilinear monoidal structure.22 Recall a
minor complication: associativity of the tensor product is moderated by an associator

αx,y,x : (x⊗ y)⊗ z ∼−−→ x⊗ (y ⊗ z),

subject to a Stasheff’s pentagon identity. We are in luck, though, because MacLane’s coherence
theorem allows us to replace T by an equivalent category with strict associativity.

A module category M over T is a linear category with a bilinear multiplication functor T ×M →
M , satisfying the obvious constraints that define an action of T on M . (Again, it turns out that we
can modify M to obtain a strict module category, where the coherences are identities [G].)

(5.8) Tensor product of categories. [EGNO, G] The definition for abelian categories (due to Deligne)
is borrowed from algebra: for a right T -module M and a left one N , M �T N is the category
co-representing the functor which sends a linear category C to the category of T -bilinear, right exact
bi-functors M×N → C . One can then show the tensor product of abelian categories is co-represented
by an abelian category [G].

5.9 Remark. The tensor product of abelian categories over V ect is already a bit subtle: for instance,
M �V ectN has more objects than just the direct sums m�n, with m ∈M and n ∈ N ; we must close
this under quotients (co-kernels). The resulting category is abelian. If M and N are the categories
of A- and B-modules, then M � N is the category of A⊗B-modules.

The upshot of the definitions should be the construction of a (weak) symmetric monoidal 3-
category, with tensor categories as object, bi-module categories as morphisms, tensor product as
composition, bi-module functors as 2-morphisms and finally natural transformations between the
latter as 3-morphisms. Some ingredients for the construction are spelt out, for instance, in [G]; full
details of the construction are found in the recent paper [DSS].

5.10 Definition. A tensor category is rigid if every object has left and right duals.

Assigning to an object its left and right duals defines two contravariant functors on T ; these are mu-
tually inverse. Rigid tensor categories have some particularly good properties [EGNO]; in particular,
if T is abelian, then the multiplication ⊗ : T × T → T is bi-exact, as are the internal dualization
functors.

21The author is most grateful for their explanations, long before the paper was publicly available.
22Some sources, such as [EGNO], impose additional conditions.
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Figure 11: Handle cancellation with cubes

 

Serre twist on + given by page framing

 

Serre twist on + given by page framing

Figure 12: No corners needed
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(5.11) 2-dualizability. Every tensor category T is 1-dualizable, with dual the multiplicatively opposite
category T mo, the same category with opposite tensor product. The argument for this repeats the
one for algebras, and u, ev are represented by T as T e-module. We can also mimic the algebra
computations for 2-duality from Lecture 4. We need T to be dualizable as a linear category, and
dualizable as a T e-module. The Serre functor is the dual of T as linear category, which we denote
T ∨. 2-dualizability requires this to be an invertible bimodule, and the inverse must be the bimodule
category of (right exact) functors HomT e(T ; T e). Furthermore, tensoring with T over T e should
be an exact operation on categories (commute with finite filtered limits and colimits).

We can identify T ∨ more precisely. If all objects in T are compact — such is the case, for instance,
for the category of finitely generated modules over a Noetherian ring — then T ∨ can be identified
with the linearly opposite category T ◦ as follows: an object a◦ ∈ T ◦ is sent to the co-represented
functor x 7→ Hom(a, x). We shall spell out more of the structure of T ∨ following Theorem 5.19 below,
in the special case of rigid categories.

(5.12) Drinfeld center and Hocschild homology. Associated to closed 1-manifolds are linear categories,
and those associated to the framed circles S1

n, n > 0, are the tensor products T ⊗T e (T ∨)⊗T (n−1), with
the (n−1)st power (T ∨)⊗T (n−1) := T ∨⊗T · · ·⊗T T ∨ of the Serre bi-module T ∨. The description for
n ≤ 0 involves the inverse bi-module of T ∨, but an alternative presentation exploits the dualizability
of T over T e to rewrite the tensor product with inverse powers as a Hom-category. Specifically, the
categories for n ≤ 0 are HomT e((T ∨)⊗T (−n),T ). Here, Hom stands for the category of linear, right
exact functors compatible with the T e-action. Unlike the case of algebras, compatibility with the
T -action carries data, not just conditions, as we will see momentarily in examples.

The category HomT e(T ,T ) for the 0-framed circle plays a distinguished role, as it has a natural
tensor structure under composition. It is equivalent to the Drinfeld center DC(T ) of T : this is the
category of pairs (x, β) where x ∈ T and β is a half-brading with x, a multiplicative isomorphism
between the functors x⊗ and ⊗x of left and right tensoring with x. The reader can probably guess
what we mean by multiplicativity of β, based on the condition for a braiding (Lecture 3); it is the
commutativity of the triangle

y ⊗ x⊗ z
Idy⊗β(z)

''
x⊗ y ⊗ z

β(y)⊗Idz
77

β(y⊗z) // y ⊗ z ⊗ x

The Drinfeld center comes with a natural braiding β(x, y) : x ⊗ y ∼−−→ y ⊗ x, from the half-braiding
carried by the first object x. This braiding is usually not symmetric.

5.13 Remark. (i) In practice, the braiding tries to be ‘maximally non-symmetric’. For example, if
T is the tensor category (Rep(F ),⊗) of representations of a finite abelian group F under the
tensor product over C, its center is the tensor category of representations of F × F∨, but with
a Heisenberg-like, non-degenerate braiding defined from the natural pairing of F, F∨ in to C×.

(ii) Specifically, calling n = #F , a distinguished class in H4(B2F × B2F∨;µn) is induced by the
Pontrjagin pairing into µn ⊂ C×. Treating this as a k3-invariant builds for us a space with π2 =
F ×F∨ and π3 = µn. Hence, we construct a braided tensor category as in Proposition 3.21. This
tensor category splits into Fourier components according to the characters of µn. The summand
corresponding to the standard character is isomorphic to the Drinfeld center of (Rep(F ),⊗).

(iii) More generally, any finite group G has a ‘categorified group ring,’ which is the category of vector
bundles on G, with the tensor structure coming from convolution. This is the obvious categorical
analogue of the functions on the group. The Drinfeld center of this is the tensor category of G-
equivariant vector bundles on G, with the convolution structure and with an interesting braiding.
This is the categorified analogue of class functions on G. Example (ii) has G = F∨.

5.14 Remark. In the 3-dualizable case, the square of the Serre functor is the identity because π1SO(3) =
Z/2; so there will be only two categories, going with the two 3-framings on the circle, S1

even and S1
odd.

They are DC(T ) = HomT e(T ,T ) and T ⊗T T .
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(5.15) Fusion categories. There is no complete classification of 3-dimensional extended TQFTs based
on tensor categories resembling the one seen in 2D, by semi-simple (not necessarily commutative)
algebras. There are some constraints; for instance, when T is abelian, then full dualizability requires
the Drinfeld center (and its twisted form, Hochschild homology) to be semi-simple. This follows by
considering a special case of an important operation in TQFTs, dimensional reduction. In this case,
we reduce the 3D TQFT ZT generated by T along S1, to produce a 2-dimensional theory S1\ZT ,
defined by

S1\ZT (M) := ZT (M × S1);

this theory must be generated by S1\ZT (+) = ZT (S1), which implies that DC(T ) is semi-simple.

5.16 Remark. Semi-simplicity of the center is automatic for rigid categories, but generally a strong
constraint. Exercise: compute the Drinfeld center of the “2× 2 upper triangular matrix algebra over
V ect”, the category V ect⊕3, with tensor product imitating the multiplication of matrices

[
a b
0 c

]
.

However, a beautiful class of extended 3D TQFTs comes form the following result of Douglas,
Schommer-Pries and Snyder. It is based on the notion of fusion category that has been the subject of
much research (Etingof, Ocneanu et al). The wording similarity with the 2-dimensional story is a bit
deceptive, as the structure of a fusion category is substantially more involved than that of a complex
semi-simple algebra.

5.17 Definition. A fusion category is a semi-simple rigid tensor category with finitely many simple
isomorphism classes.

Examples:

(i) The ‘categorified group ring’ of a finite group G, 5.13.iv. This generates the 3D gauge theory
with finite group F . The tensor structure, and the resulting TQFT, can be twisted by a co-cycle
τ ∈ H3(BF ;C×) — a higher analogue of a central extension of the group by C×, which in 2D
generates a twisted version of gauge theory. In the tensor category, the cocycle appears as an
associator.

(ii) The semi-simplified category of representations of a quantum group at a root of unity (the cate-
gory of finite-dimensional representations modded out by representations of quantum dimension
zero). The associated 3-dimensional field theory computes Turaev-Viro theory, whose closed
3-manifold invariants are the square norms of the famous Chern-Simons invariants.23

The conditions are strong enough to imply the good behavior of the tensoring operation:

5.18 Theorem (Etingof-Nykshich-Ostrik). For any right and left semi-simple module categories
M ,N over a fusion category F , the tensor product M �F N is semi-simple. It is also exact
in M and N .

So we can define a ‘small’ 3-category of fusion categories, semi-simple bimodule categories, functors
and natural transformations. In the setting of fusion categories, we also have a duality which allows
us interpret tensor products as functor categories. In particular, this establishes the semi-simplicity
of the Drinfeld center and its twisted version.

5.19 Theorem (Douglas, Schommer-Pries, Snyder, [DSS]). Every fusion category F is a fully dual-

izable object of the 3-category T cat. In particular, it defines a framed TQFT ZF : Bordfr3 → T cat.
The category ZF (S1

0) is the Drinfeld center of F , with its natural tensor structure. The Serre functor
is the double dual functor in F .

Because π1SO(3) = Z/2 (and no longer Z = π1SO(2)), the Serre automorphism of any 3-dualizable
object must square to 1. As a consequence, the authors get an enlightening proof of a recent result
about fusion categories [ENO], in turn based on earlier work of Radford’s [Rad].

5.20 Corollary (Etingof-Nykshich-Ostrik). In any fusion category, there is a canonical isomorphism
of the quadruple dual functor with the identity functor.

23There is at present no construction of the Chern-Simons invariants within a fully extended TQFT for general non-
abelian G, although a program by Bartels, Henriques and Douglas is nearing completion. The generating tensor category
analogue is far from discrete, though, and is described in terms of von Neumann algebras. For torus groups, one can
land in topological categories, and a C∗ Hopf-like algebra appears, [FHLT].
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(5.21) The Serre automorphism T ∨. Let us spell out its identification of Serre with the double right
dual functor, in the rigid case. This does not rely on semi-simplicity of T . Return to the identification
T ◦ = T ∨ of §5.11, sending a◦ ∈ T ◦ to the functional X 7→ HomT (a,X); I claim that we have

x⊗ a◦ ⊗ y =
(
y∨ ⊗ a⊗ ∨x

)◦
because on a functional X 7→ F (X), we have (x ⊗ F )(X) = F (X ⊗ x); following which, we can use
the Hom-duality properties of ∨x, y∨,

HomT (a, y ⊗X ⊗ x) = HomT (y∨ ⊗ a⊗ ∨x,X).

Now let us use the right dual to identify T with T ◦: a 7→ (a∨)◦. The relation becomes

x⊗ (a∨)◦ ⊗ y =
(
y∨ ⊗ a∨ ⊗ ∨x

)◦
=
[(∨∨x⊗ a⊗ y)∨]◦

The result is identifying the Serre bi-module T ∨ with T , but with the left tensor action twisted by
double left dualization. This is the bimodule implementation of the double left dual functor.

5.22 Remark. (i) If S is not isomorphic to Id, then the TQFT can be defined for Spin surfaces. A
rigid category is called pivotal if the double dual is isomorphic to the identity. In the fusion
case, a pivotal structure allows us to pass from Spin surfaces to oriented surfaces. Going on to
3-manifolds, in order to pass from the framed to the oriented setting, we need what is called
a spherical structure: a pivotal structure in which the trivialization of Serre, the double dual,
squares to the canonical trivialization of the quadruple dual.

(ii) The condition that Serre should be a tensor functor, rather than a bimodule category, is closely
related to the existence of internal duals: a F − F bimodule S is implemented by a tensor
automorphism precisely when S is equivalent to F as a left and as a right F -module separately.
The tensor automorphism it implements is the composition of these separate ‘straightening’
isomorphisms. In the rigid case, both straightening isomorphisms between F and F∨ are the
internal duality functors.
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