1. 3D Topological gange theory

The past decadr hed to an understanding that
3D topological gange thory (A-model)
is controlled by
Hyperkaihler spaces closely related to the Toda syskm
Key steps along the way

- Seiberg \& Witten on 3D gauge theory for sU(2)
- Angyus-Famagi et al for su(n)
- Seiberg 2 Intriligator on 3D mioror symmety Witten- Hanany on Coulomb branches
- Bezrukarnikov, Fiskelbery, Mirkon'c

Toyological conshuction of Toda sposus from affine Grassmannions

- Your distinguished speaku on Gromov-Witten boundary condus.
- Bullimore-Dimofte-Gaiotto abelian Coubmb branches
- Beaverman - Finkelbug - Nakajima polarized matter
- Braverman et al proposal fr quaturnionic matter - (-) Consthuction -川-

Template: $Q F T \rightarrow$ modulispace of vacua M conhols lour energy nugime of thory
In susy gange theories: Coulomb and Higgs branches of M
3D: X hyserkähler with G action,
Higgs: $X / G_{I H}$ Coulomb: Toda (G) + "inontum corrections"
2. Refresher on the Toda sfaces $\zeta_{3,4}\left(G ; O^{\downarrow}\right)$
$\Gamma \tau_{\text {perioduc, }} k_{*}$ classical, H_{*}

- Hyperkähter manifolds (orbifolds) with compltily intigrafle, abelian group stonctures over

$$
b_{3} \longrightarrow g_{\mathbb{C}} / / G_{\mathbb{C}}=t_{\mathbb{C}} / w, b_{4} \rightarrow G_{c} / / G_{\mathbb{C}}=T_{\mathbb{C}} / w
$$

Abelian cases: $T^{*} T_{\mathbb{C}}^{V}, T_{\mathbb{C}} \times T_{\mathbb{C}}^{v} \quad$ HK shintime Hanm solint

- General: (affine) blow-ups of Weyl quobients
$\begin{aligned} b_{3}(G O) & =H_{*}^{G}(\Omega G), \quad G^{-} \Omega G=G^{26 / G} \\ b_{4}(G ; O) & =K_{*}^{G}(\Omega G),\end{aligned}$
Hopf algebras over H_{*}^{G}) K_{*}^{G}
- Bourdary conchitions pr the 3D gange theoy come form symplectic marifolds w/ Hamilt. G-action They clefine Lagrangians in the Toda spaces

Eg: regresentation V, Lagrangians an graphs of

$$
\left.\begin{array}{rl}
t_{\mathbb{C}} \ni \xi \longmapsto & \prod_{\nu}(\mu+\langle\nu \mid \Sigma\rangle)^{\nu} \in T_{\mathbb{C}}^{\nu} \\
T_{\mathbb{C}} \ni x \longmapsto & \left.\prod_{\nu}\left(1-m^{-1} x\right)^{\nu}\right)^{\nu} \in T_{\mathbb{C}}^{v} \\
& \mu, m \text { "mass panametecs" }
\end{array}\right\} \begin{gathered}
\exp (d W) \\
T \\
G L S M \text { superyotentials } \\
\text { frr } V / G
\end{gathered}
$$

3. Main Theoren on Conlomb branches $G_{3,4}(G ; E)$
$G=$ compact conoucted Lie gp; $E=$ quaturnionic rep; "polarized" means $E=V \oplus V^{*}$

Nakajima; Bullimon-Dinoft-Gaiotto; yours tulyj Bravuman-Finkelberg-Nakajima; Braverman etal;

1. There exiof ${ }^{4}$ constuctible, equivaniant coefficient systions

2 The gare E_{2}-multiplicative under Pontryagin prochuets and thein equivariant cohomologies $b_{3,4}(G ; E)$ ane E_{3} ("Poisson structures of degree -2 ")
2. They are multrplication in $E, H_{E} \otimes H_{F} \rightarrow H_{E \in F}$

$$
\text { so } e_{3,4}(G E) \times e_{\text {Toda }}(G ; F) \longrightarrow C_{3,4}(G ; E \oplus F)
$$

4. Non-polazized Erejuire the removal of obstuctrons.
5. $H_{*}^{G}\left(\Omega G_{i} H_{E}\right)$ and $K_{*}^{G}\left(\Omega G_{F} K_{E}\right)$ an birational to b_{3}, b_{4} and ane expectel to be the conlomb bcanches fr E/G
6. (Abelianization) $C_{3,4}(G \cdot E) \cong C_{3,4}\left(T ; E-g_{m}\right) / W$ if E contains the roots of $O J .[-]$
7. Polarized case: construction from GLSm boundany cond. [-]
8. Constunction of Coulomb branches-polavized case
(Physics; Nakajima; $B-F-N ; B-D-G$)
Moral construction: $E=V \oplus V^{V}$, choose one of then Get on index bundh $H^{0}-H^{\prime \prime}(|P| ; p \times V)$ along P^{\prime} over the moduli Bung $\left(P^{\prime}\right) \sim \sim_{G} \backslash \Omega$ of holomorphic $G_{\mathbb{Q}}$ - bundles on \mathbb{P}^{\prime}.

Build the Linear span $L_{v}:=$ Spec Sym e of it index sheaf Get coefficient systems $H_{E}, K_{\bar{E}}$ by framing cohomology with compact vertical supports
\rightarrow 'shifts' the strata of Burg $\left(\mathbb{P}^{\prime}\right)$ by fibaruise Euler classes Morally, $b_{3,4}(G \mathcal{F}):=\operatorname{spec} H_{x}^{G}\left(\Omega G ; H_{E}, K_{\tau}\right)$.

Product shucturn is expected to come from the 3D pair of pants by solving the Dirac equation with pescrikd boundary conditions:

$$
\begin{array}{ll}
(00) & (\operatorname{Mod} \text { space of solutions) } \\
B u n_{G}\left(\mathbb{P}^{\prime}\right) \times B n_{G}\left(\mathbb{P}^{\prime}\right) & \text { Bun }\left(\mathbb{P}^{\prime}\right)
\end{array}
$$

5. Algebraic geometry rewording (BFNY)

The analysis for the respective Dirac equation is not complete, but an alternation chveloged by BFN exploits the $\mathbb{R} \times \mathbb{C}$ splitting of \mathbb{R}^{3} to reduce the Dirac es. to $\overline{2}$ and hern to complex geometry
(See papen for details) but use "ting sphere" instead If pl $=-:-$ two copies of the disk glued away from 0
-: Moduli of $G_{\mathbb{C}}$-bundles $\left.=G_{\mathbb{C}}((z)]\right) G_{\mathbb{C}}((z)) / G_{\mathbb{C}}([z])$
as the same homotopy type $G \Omega G$ as $\operatorname{Bnn}_{G}\left(\mathbb{P}^{\prime}\right)$ Multiplication can be chimed by Hecke comospondences.
6. Theorem (Global sbuctun, polarized case)
$b_{3,4}\left(G_{j} \vee \oplus V^{*}\right)$ is obtained by gluing tho copies of $b_{3,4}(G ; O)$ sheared by the Lagrangian shift $\exp (d w)$ For the GLSM potential W.

Resnmulate: $b_{3,4}\left(G ; V \& V^{*}\right) \longrightarrow($ Toda base $\epsilon, T / W)$ has two Lagrangian sections, from V, V, whore ratio is the said Lagrangian shift; and it is covered by the two Today chants chfiruce by there sections.
("quasi-toric calculus for Tod group scheme")
7. Non-polanized case

Invoking the earlier construction for E instrad of V leads to the 'dousked' Coulomb branches $e_{3,4}\left(G_{j} E \oplus E\right)$.

So the protium is to extract square root of $\mathcal{H}_{E \oplus E}, \mathcal{X}_{E \in A E}$ that is, of fibuwise Euler classes

A way to cut a complex span in half: by a real structure.

$$
\begin{aligned}
& \text { Investigate: }
\end{aligned}
$$

A polarization of E would give a lift of $\Omega^{2} E$ to $K U$ Obshucted by $\eta \circ \Omega^{2} E \in K O^{\prime}$.
In any case reid want an E_{2} lift so obaluuction really is

$$
B G \xrightarrow{E} B S_{P} \xrightarrow{\eta} \Sigma^{3} K O
$$

seems unhelpful until we recall that we don't need a complete lift !
Just enough to build the coefficient systems.
So the obstruction is the image, via $\Sigma^{4} J$, into $\Sigma^{4} G L_{1}(H \mathbb{Z})$ or $\Sigma^{4} G L(K O)$ (or $\left.\Sigma^{G} G L\left(K_{0}\right)\right)$

For cohomology: obstuction clan in $H^{4}(B G ; \mathbb{Z} / 2)$ $\left(\omega_{1}\right) \quad$ and is $C_{2}(E) \bmod 2=w_{4}(E)$

Fr e <0-theory: a secondary obotunction $\sigma \in H^{s}(B C ; 2 / 2)$ $\left(\omega_{2}\right)$ is defined if $\omega_{4}(E)=0$

For KU-thoog: the $2^{\text {ne }}$ obstruction is $B \sigma \in H^{6}(B G ; \mathbb{Z})$ $\left(W_{3}\right) \quad$ (Essentially $\frac{1}{2} C_{3}(E)$)

Theorem (nasty calculation)
If G is connected and $W_{4}(E)=0$, then $B \sigma=0$.
(Fails for chis connected groups)
Improvement. One can rewaken the obs suction to ω_{G} is the square of a clan in $H^{2}(B G \mathbb{Z})$

Ore can even upu to the obotuction predicted by Ell witter $\fallingdotseq W_{4}$ has a square no st $\in H^{2}(B G \notin 2)$
at the price of collapsing
the cohomology gracing mod 2:

$$
\begin{array}{ll}
\left.136 \xrightarrow{E} B S_{y} \xrightarrow{\eta} \begin{array}{cc}
2 / 2 & 5 \\
\text { homology grading } & \begin{array}{l}
2 \\
0
\end{array} \\
0
\end{array} \right\rvert\,
\end{array}
$$

