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Introduction

The main characters

This talk surveys, under the gauge theory umbrella, a number of intriguing
topics in equivariant topology that arose over the past decades.

Necessarily, that leads to a retro-flavored lecture, but we will move up to
recent results on Coulomb branches in the gauged linear Sigma-model and
ongoing work on categorical representation theory. We will meet:

1 The Verlinde ring of a compact group, a 2D TQFT

2 Twisted equivariant K -theory, τKG (G ), τ ∈ H4(BG ;Z)

3 Deformations of these structures: Higgs bundles, the gauged linear
Σ-model;

4 Interpretation: Brauer group of (equivariant) K -theory

5 “Categorification” of τKG (G ): Equivariant matrix factorizations

6 The (conjectural) KRS 2-category of hyper-kaehler manifolds

7 Coulomb branches of 3D and 4D gauge theory
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Twisted K -theory and the Verlinde ring

A compact group G and a class τ ∈ H4(BG ;Z) define a 2D conformal
field theory with Hilbert space of states

⊕
H ⊗ H∗, over τ ′-projective

positive energy irrepresentations H of the free loop group LG .

On a conformal surface, the CFT is assembled from its chiral/anti-chiral
components using a famous 3D topological field theory (Chern-Simons).
Reduced over a circle, the latter gives the 2D Verlinde theory V .

To S1, V associates the Verlinde ring R(G , τ) of PERs with their fusion
product, defined by merging a pair of S1s to a single one via a conformal
pair of pants. When π0G = π1G = 1, R(G , τ) is a quotient of R(G ), the
representation ring, by an ideal which can be explicitly described.

A theorem in topology (Freed, Hopkins, -) identifies R(G , τ) with the ring
τK top

G (G ) with its Pontryagin product. Viewing G n G is the stack of flat
connections on S1, the Pontryagin product is induced by the pair of pants.

A similar picture for a general surface defines operations on τK top
G (G ),

defining a TQFT over the K -theory spectrum (enhanced from C).

However, this enhanced theory is not fully extended (to points).
C. Teleman (Berkeley) Topological Gauge Theory Auckland, Dec 18 2 / 16



Twisted K -theory and the Verlinde ring

TQFT structure from topology 

Js Eats

FlatBunds

FlatBunoloff FTatfundats
Correspondences coming from ∂±-restriction of flat bundles define maps

(ρ+)! ◦ ρ∗− : τKG (G )→ τKG (G )⊗ τKG (G )

which (together with a certain trace) assemble to a K -linear TQFT.
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Deformation

Verlinde deformations

The theory V associates to a closed surface S the (dimension of the) space
of Θ-functions for G at level τ . This can be enhanced to the Θ-sections
over the moduli of Higgs bundles. To keep this finite, we filter by the
degree (at infinity) and use the Poincaré series: hence the formal nature of
this deformation in a parameter t. The theory returns to V at t = 0.

A closely relative is the gauged linear Σ-model associated to a unitary
(complex and real-symplectic) representation E . Here, the space for S is
the index of the Θ-line bundle over the holomorphic mapping space of S
to the quotient stack G n E , instead of just the space of G -bundles.
The mapping space consists of pairs: one G -bundle and one section of the
associated E -bundle (plus an obstruction bundle from H1):

Γ (BunG (S); Θτ ⊗ Sym IndexS(E )) .

Tracking symmetric degrees by t leads to the deformation of V ,R(G , τ).
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Deformation

Twistings, higher twistings and deformations of τK top
G (G )

There are CFT deformations going with this, but the story can be
understood purely topologically.

The datum τ ∈ H4(BG ) (whose transgression to H3
G (G ) is the K -theory

twist) is an element in the Brauer group of K -theory, H2(BG ;GL1(K )).

Indeed, the group of lines Pic ∼= K (Z; 2) is a subgroup of GL1 of K -theory.
But that has another, larger part BSU⊗ (a spectrum equivalent as a space
to BSU⊕). The deformations we discussed come from here.

Specifically, there is a stable exponential map BU⊕ → BU[[t]]⊗, the total
symmetric power. Its 2-delooping, applied to E ∈ BUG

⊕ , t-deforms τ .

A deformed version of the FHT theorem identifies the deformed τK top
G (G )

with the deformed Verlinde TQFT [-, Woodward].
This was proved by abelianization (reduction to the maximal torus and
Weyl group and direct calculation, bypassing the formulation in terms of
τK , which is not written down.)
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Deformation

Remark

The Brauer group perspective also suggests a fix for the problem that
τK top

G (G )-theory is not fully extended.
Namely, equivariant Brauer classes should give twisted versions of
G -equivariant K -modules; or a G -equivariant Azumaya algebra over K ,
whose modules we then seek. This is what Brauer classes do over a ringed
space. The point should correspond to this category of K -modules.
Unfortunately this has not been carried out to date. We seem to not find
enough G -representations on K -modules.
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Matrix Factorizations

Categorifying τK top
G (G ) over C

The complexified ring of τK top
G (G ) is the Jacobian ring of the function

g 7→ Ψ(g) :=
1

2
log2 g + TrE

(
Li2(tg−1)

)
on regular conjugacy classes g , with the proviso that “critical point of Ψ”
means “dΨ is a weight”. We square in the quadratic form defined by τ .
The formula generalized Witten’s for topological Yang-Mills theory (which
appears as τ →∞).

Jacobian rings are Hochschild cohomologies of Matrix factorization
categories associated to a superpotential, of brany fame in 2D mirror
symmetry, where they define mirror models of Gromov-Witten theory.
So this is a “mirror” of 2D gauge theory.

Remark

Matrix factorizations are 2-periodic curved complexes E 0 � E 1, with the
differential squaring to Ψ.
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Matrix Factorizations

MFs appear in a different form in a categorification of the FHT theorem.

An invertible function (like eΨ) is an automorphism of the identity functor
on category of sheaves on a space. That is the same as a BZ-action, a
rigid form of a circle action. The quotient stack G n G , a rigid version of
the loop space LBG , has a natural BZ=action — even after τ -twisting.

Theorem (Freed,-)

The G -equivariant, τ -twisted MF category over G with superpotential Ψ
defined by the BZ loop-rotation action on G n G is equivalent to the
category of τ ′-projective PERs of LG .

An indication of why comes by interpreting G n G as flat connections,
LG n Ω1(S1; g). A formal Koszul duality argument converts this into the
crossed product algebra LG n Cliff(Lg), with Dirac operator as (curved)
differential. A basis of objects in the category consists of H ⊗ S±, where
H runs over appropriate LG -representations and S± are the LG-spinors.
In finite dimensions (compact groups), one proves the theorem this way.
For loop groups, this is heuristic. (One reduces to finite dimension.)
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Reconciliation via higher dimension

Coulomb branches for 3/4D pure gauge theory

The following spaces, introduced by Bezrukavnikov-Finkelberg-Mirkovic,
were key to reconciling the two MF pictures in gauge theory.

C3(G ) := SpecHG∨
∗ (ΩG∨); C4(G ) := SpecKG∨

∗ (ΩG∨)

Theorem (BFM)

1 SpecHG
∗ (ΩG ) is an affine resolution of singularities of (T ∗T∨C )/W .

2 SpecH(ΩG ) ⊂ SpecHG
∗ (ΩG ) is the fiber over Z (G∨) ⊂ (T ∗T∨C )/W .

3 SpecHG
∗ (ΩG ) is algebraic symplectic, and SpecH∗(ΩG ) Lagrangian.

4 SpecKG
∗ (ΩG ) is an affine resolution of singularities of (TC×T∨C )/W .

5 SpecK (ΩG ) ⊂ SpecKG
∗ (ΩG ) is the fiber over

Z (G∨) ⊂ (TC × T∨C )/W .

6 SpecKG
∗ (ΩG ) is algebraic symplectic, and SpecK∗(ΩG ) Lagrangian.

7 C3(G ),C4(G ) are the phase spaces of the Toda completely integrable
systems for G , under projection to tC/W , resp. TC/W .
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Reconciliation via higher dimension

Coulomb branches as classifying spaces for gauge theory I

These spaces carry a kind of character theory for 2-dimensional gauge
theories, serving as classifying spaces for the latter. In examples coming
from gauged Gromov-Witten theory, the character calculus permits the
recovery of TQFT information (Seidel operators, J-function...).

More generally, C3 carries the characters of topological G -actions on
categories, which generate 2-dimensional gauge TQFTs over C.
C4 should do that for K -linear categories (gauge TQFTs over K ), or for
LG -actions on linear categories.

No account of the K -theory version has been worked out beyond examples.

A precise statement is a (partially verified) equivalence between two 3D
TQFTs: pure G -gauge theory PG versus Rozansky-Witten theory of C3.
The full statement for C4 is less clear: LG -gauge theories are problematic
in physics, while understanding K -linear gauge theory seems still a bit out
of reach (to the speaker).
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Reconciliation via higher dimension

Coulomb branches as classifying spaces for gauge theory II

Nevertheless, precise consequences of this may be stated (and proved in
many examples). Namely, gauged 2D theories give rise to a sheaf of
categories with Lagrangian support on C3 (C4, in the K -linear case).

A construction has been proposed [KRS] of a 2-category of sheaves of
categories on a hyper-Kaehler manifold, related to Rozansky-Witten
TQFT. A precise claim would be that this KRS 2-category is equivalent to
the 2-category of C-linear categories with G -action.

In the present case, we view 2D gauge TQFTs as boundary conditions for
PG . The equivalence with RW theory gives the correspondence between
the two models of boundary conditions.

While the full program is not developed, portions can be established for
C3,4 using their integrable system structure ( preferred co-ordinates).
This allows one to show one direction of the correspondence.
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Reconciliation via higher dimension

Pictures instead of thousands of words: G = SU(2)

                   Trivial 
                          representation 
    
 
                   Invariant                                           KRS object 
            subcategory 
                                                                          A spectral component 
 
                                                                          Zero section of  T^ 
 
                       1 in T^ 
                                        Underlying category 
 
 
 
 
 
 

C3 with the unit, regular and
Verlinde (dΨ) Lagrangians.
x , ξ are the coordinates on T∨, t.

The Toda projection to the axis ξ2

of adj. orbits gives an integrable
system, which is also an abelian
group scheme over the base t/W .
The unit section is in black.

C4 is vertically periodicized; as is, it’s good near 1 ∈ T∨ at large level.

General 2D gauge TQFT are generated by categories with G -action and
have a “character” in C3,4. The group structure along the Toda fibers
corresponds to the tensor product of TQFTs.
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Reconciliation via higher dimension

Verlinde rings in the Coulomb branches

The Verlinde rings we discussed appear as Jacobian rings within C4(G );
specifically, intersections of two Lagrangian subspaces, the “trivial
representation” and the “Verlinde Lagrangians” exp(dΨ).
(They acquire a Frobenius trace from the natural volume form.)

Note that exp(dΨ) is the sum of a regular part from log(g)2, representing
an isogeny T → T∨ with kernel the undeformed Verlinde ideal, and a
singular part from Li2. The Li2 Lagrangian is the B-model mirror of E as a
symplectic manifold with G -action.

So far, this is only a restatement of the deformed Verlinde ring calculation:
“dΨ is a weight” was imposed by periodicising T ∗TC to TC × T∨C .

More is true, however: the G n G twisted MF computation can also be
mapped to C4, as illustrated next for U(1) (no twisting for simplicity)
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Reconciliation via higher dimension

t.tt
Spec(T nτ C[T ]) ∼= (t× Λ)/π1,
differs from Spec(T nC[T ]) = T × Λ
by coupling the π1 action on t to Λ.
Ψ = 1

2ξ
2 + λ(ξ), with one critical

point on each sheet.

C4(T ) = TC × T∨C with the graph
of the Verlinde Lagrangian 1

2d log2.
Its intercepts with T × {1} are in
bijection with the Verlinde points
λ/π1T .
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Alia

I have not discussed some current topics:

1 Coulomb branches for “3D gauge theory with matter”: these are
algebraic symplectic spaces, closely related to the C3,4(G ) and
depending on the representation E .
Braverman-Finkelberg-Nakajima gave a precise definition. Can be
much simplified with our ingredients when the ”matter” is E ⊕ E ∗,
but not for more general representations.
That is an open problem (related to the existence of topological
boundary conditions for gauge theory with matter)

2 Gauged linear Σ-model as a TQFT over varying surfaces.
Partition function for surfaces  a K -class over the moduli of curves.
Several approaches exist, none yet carried out (let alone compared):
the semi-simple TQFT classification theorem; Kontsevich, Saito et al
theorem about primitive forms, Frobenius manifolds and TQFTs; and
the abelianization method of (-, Woodward).
The latter is in progress (for smooth curves); the answer involves
Deligne-Mumford symmetric powers.
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Alia

3 Coulomb branch C4 as a space over K -theory.
This would improve Verlinde theory to K -modules, from C-modules.
The K -linear theory lies in between 3D Chern-Simons theory and its
2D Verlinde reduction. Thus, for a surface, CS gives a vector space,
τKG (G ) a point in K , and V a number. This is a weak form of the
problem of assigning a reasonable topological object to CS(point).

4 Finally, I used several variants of gauge theory, whose their
inter-relation is not so clear. (To me)
CS theory and the pure 3D gauge theory PG are quite different.
In fact, CS has very few (if any) topological boundary conditions, but
a remarkable conformal boundary condition; whereas pure topological
gauge theory PG has lots of topological ones. (Compact symplectic
G -manifolds, and some non-compact ones, like E .)
Often, these are disjoint phenomena (“gapped vs. ungapped”), yet
PG can compute many Chern-Simons related quantities.
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