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Introduction

Let me begin with a quotation from Michael Freedman’s celebrated paper The Disc Theorem
for Four-Dimensional Manifolds.

Metatheorem . Using the topological surgery and s-cobordism theorems for finite groups, it
will be possible to obtain a lot of information on the topological classification of finite groups
acting on compact 1-connected 4-manifolds.

The purpose of this thesis is to verify Freedman’s metatheorem as far as possible in the
case of free group actions. More precisely, we want to present methods for a classification of
closed topological 4-manifolds with finite fundamental group. For trivial fundamental group,
Freedman proved that intersection form and Kirby-Siebenmann invariant classify such manifolds
up to homeomorphism and that every unimodular symmetric bilinear form is realized as the
intersection form of a 1-connected closed 4-manifold. Besides the topological surgery and s-
cobordism theorems, there are four main ingredients in his proof which we have to understand
in order to see whether they generalize to other finite groups. These (at that time well-known)
results are the following.

1. The homotopy classification of 1-connected 4-dimensional Poincaré complexes.
2. The computation of the surgery groups Ls

5(1) = 0 and Ls
4(1)
∼= Z.

3. The realization of the torsion classes in

N TOP
4 (X) ∼= [X,G/TOP ] ∼= H2(X; Z/2) ×H4(X; Z) ∼= H2(X; Z/2) × Z.

by homotopy self-equivalences of X.
4. The identification of the Kirby-Siebenmann invariant as the map

ks : N TOP
4 (X) ∼= [X,G/TOP ] ∼= H2(X; Z/2) ×H4(X; Z) −→ Z/2

given by (x, y) 7−→ 〈x2 + r2(y), [X]〉 for a 4-manifold X.

Let me discuss these results in reverse order for a general fundamental group.
ad(4): This is a result of [Kirby-Siebenmann, p.329] and holds for arbitrary fundamental
groups.
ad(3): This result was proven in [Wall 1, Ch.16] by the following construction. Given an
element α ∈ π2X, Wall defines a homotopy self-equivalence hα of X by first pinching off the
top cell of X to obtain a map

X −→ X ∨ S4

and then mapping X identically and S4 via α ◦ η2 to X, where η : S3 −→ S2 is the Hopf map.
Wall then claims that in the surgery sequence hα maps to the Hurewicz image of α in

H2(X; Z/2) ⊆ N TOP
4 (X).

The exact sequence

π2X −→H2(X; Z/2) −→H2(π1X; Z/2) −→ 0

then shows that in the non simply-connected case, elements in H2(π1X; Z/2) might still cause
problems. In fact, even for a cyclic group of order 2, it has only recently been proved by
[Hambleton-Kreck 4] (in a completely indirect way) that the nontrivial element in H2(Z/2; Z/2)
is also realized by a homotopy self-equivalence of a manifold X. We note that Wall’s original
argument about the image of the map hα contains an error which was corrected in a recent
paper by [Cochran-Habegger] in the 1-connected case.
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ad(2): It is well-known that the surgery obstruction groups are in general very complicated.
Although for finite groups there is an induction theory for L-groups, complete computations are
carried out only for special finite fundamental groups.
ad(1): This is the main obstacle for extending Freedman’s classification result. In the simply-
connected case, it is a result of [Milnor] that the intersection form of a Poincaré complex
determines the homotopy type and that every unimodular symmetric bilinear form on a finitely
generated Z-lattice is realizable. To generalize this result, one has to consider the π1-equivariant
intersection form SX on the universal covering of X. But again even for π1 = Z/2, this form
does not detect the homotopy type of X, the missing invariant in this case being the k-invariant
kX ∈ H

3(π1X;π2X), see [Hambleton-Kreck 1, Rem.4.5]. In this paper, the authors consider
the quadratic 2-type

(π1X,π2X, kX , SX)

and show that this algebraic object detects the homotopy type of an oriented Poincaré complex
X if π1X is a finite group with 4-periodic cohomology. (This result was later extended by
[Bauer] to finite groups with 4-periodic 2-Sylow subgroups.) For an arbitrary finite group π1,
Hambleton and Kreck show that there is a Z/|π1|-valued primary obstruction and a secondary
obstruction with values in a certain finite abelian group G(π1X,π2X) such that the vanishing
of both obstructions implies that the quadratic 2-type determines the homotopy type of an
oriented 4-dimensional Poincaré complex X with fundamental group π1. In the paper already
mentioned, Bauer improves this result by showing that the primary obstruction is in fact Z/2-
valued and that the secondary obstruction group is annihilated by 4.

In Part(I) of this thesis we will extend these results in two directions. First we will show that
they hold with the appropriate modifications also for nonorientable Poincaré complexes. The
arguments will be straightforward generalizations of the oriented case, the interesting differ-
ence being that the secondary obstruction group G(π1X,π2X,w1X) is usually nontrivial in the
nonorientable case (and can be arbitrary large), whereas in the oriented case this obstruction
group vanishes for all fundamental groups studied so far. Only a very recent calculation by
Dr.M.Hennes seems to show that it is nontrivial for the group

π1 = Z/2× Z/2× Z/2.

In Section 3.3 we apply the nonorientable theory to show that there exists a 4-dimensional
Poincaré complex Y with the quadratic 2-type of RP4#CP2 but not homotopy equivalent to
the same. I conjectured at a very early stage that this space Y is not homotopy equivalent to
a manifold but methods for a proof were not then clear. In Section 10.2 we successfully apply
a modified surgery approach developed in [Kreck 1] to prove this conjecture.

Our Main Theorem (see Section 2.2) on the homotopy classification of Poincaré complexes
shows that the Z/|π1|-valued primary obstruction we mentioned above always vanishes, inde-
pendently of the orientation character of X. We apply this theorem in Section 3.1 to correct the
proof of a theorem in [Wall 3, Cor.5.4.1] which states that the signature is not necessarily mul-
tiplicative in coverings of Poincaré complexes. Moreover, in Section 3.2 we give an example of
a free orientation preserving Z/2-action on a 4-dimensional simply-connected Poincaré complex
and show that it cannot be equivariantly homotopy equivalent to a manifold. Finally, in Sec-
tion 3.4 we conclude from our Main Theorem that the π1-fundamental class of a 4-dimensional
Poincaré complex is determined by its quadratic 2-type. Here the π1-fundamental class of a
Poincaré complex X is the element

u∗[X] ∈ Hw1
4 (π1)/Out(π1)w1

where u : X −→ K(π1, 1) is an arbitrary 2-equivalence.
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Unfortunately, the quadratic 2-type is in general not a useful invariant because it is alge-
braically much too complicated. In fact, there are almost no results on the algebraic classifi-
cation of equivariant forms, even if one only considers indefinite forms (which are quite simple
in the 1-connected case). But if one could understand which quadratic 2-types are realized
by closed 4-manifolds with a given fundamental group, the algebra of such realizable equivari-
ant forms might become considerably easier. The main idea how to determine the realizable
quadratic 2-types is the following corollary to Freedman’s Disc Embedding Theorem.

Theorem . Let π1 be a finite group. Then a quadratic 2-type (π1, π2, k, S) is realized by a closed
oriented 4-manifold if and only if the quadratic 2-type

(π1, π2 ⊕ (Zπ1)
2r, i∗(k), S ⊥ r ·H(Zπ1))

is realizable for some r ∈ N. Here H(Zπ1) denotes the hyperbolic form on the integral group
ring Zπ1.

More precisely, Freedman shows that an algebraic decomposition

(π2M,SM ) ∼= (π2 ⊕ (Zπ1)
2r, S ⊥ r ·H(Zπ1))

is always induced from a geometric decomposition

M ≈M ′#r · (S2 × S2).

Therefore, the first step for understanding the realizable quadratic 2-types is to understand
the stable homeomorphism classification of 4-manifolds. Here the word stable means up to
connected sum with copies of S2 × S2. The following theorem was proved in [Kreck 1].

Theorem . Two closed 4-manifolds M1 and M2 are stably homeomorphic if and only if there
exist 2-equivalences ν̃i with the following properties:

(i) If νi are the topological stable normal Gauß maps for the manifolds Mi then the diagrams

ν̃i
B

ր ↓ ξ

Mi −→
νi

BTOP

commute. Here ξ is the normal 1-type of the manifolds Mi, which is a 2-coconnected
fibration over BTOP determined by the existence of ν̃i.

(ii) The pairs (M1, ν̃1) and (M2, ν̃2) represent the same element in the bordism group
ΩTOP

4 (ξ).

In Part(II) of this thesis we will first determine and describe all possible normal 1-types ξ which
can appear in the above theorem. The new result being that the total space B of ξ is always a

classifying space of a topological group G (determined by π1M,w1M,w2M and w2M̃) with

π0G ∼= π1BG ∼= π1B ∼= π1M

and with connected component G0 isomorphic either to SpinTOP or STOP . Moreover, ξ = Bρ
for some representation

ρ : G −→ TOP.

Turning around the point of view, we also show that given a topological group G with
connected component SpinTOP or STOP and π0G finitely presentable, there exists a repre-
sentation ρ : G −→ TOP such that Bρ is the normal 1-type of some closed 4-manifold. This
classifying space description of a normal 1-type ξ then allows a computation of the group Aut(ξ)
of all fiber homotopy classes of fiber homotopy self-equivalences of ξ. This group is important
since it determines the possible choices of ν̃i, once νi and ξ are fixed.
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The second new result in Part(II) is the construction of a spectral sequence for the case

w1M = 0 = w2M̃ . It converges to ΩTOP
∗ (ξ) with E2-term being equal to

E2
p,q = Hp(Π;ΩSpinTOP

q ).

This spectral sequence was well known (compare Section 5.3) if

B ≃ BSpinTOP ×K(π1, 1),

but such a decomposition does not exist for all finite groups, see Remark 3.3.3. More generally,
in Section 5.3 we give a condition on the real representation theory of π1 which decides whether
or not the total space of a given normal 1-type ξ can be decomposed as above. In Section 6.3
we exploit the fact that our spectral sequence can be defined in a more general setting to prove
new results about possible signatures of closed 4-manifolds with a prescribed normal 1-type.
For example, we show that given an arbitrary finitely presented group π1 with H2(π1; Z/2) 6= 0
there always exists a closed differentiable 4-manifold with fundamental group π1, signature 8
and universal covering spin. A remarkable consequence of this example is the fact (which we
prove in Section 8.1) that for an orientable normal 1-type ξ the Kirby-Siebenmann invariant

ks : ΩTOP
4 (ξ) −→ Z/2

is a split surjection if and only if w2(ξ) 6= 0. Another interesting example we present in the
same Section is a closed differentiable 4-manifold with finite (metacyclic) fundamental group,
signature 1 and universal covering spin. This example shows that even if the universal covering
is spin, there is no hope for a Rohlin type theorem about the divisibility of the signature.

The third main result in Part(II) is the stable homeomorphism classification of closed oriented
4-manifolds with finite fundamental group whose 2-Sylow subgroups have periodic cohomology,
see Section 7. Since we have determined all possible normal 1-types ξ in Section 5, by Kreck’s
Theorem above one only has to compute the corresponding bordism groups ΩTOP

4 (ξ) and to
divide out the action of the groups Aut(ξ). The main technical problem in this computation is
the determination of a certain d3-differential in the above spectral sequence. We first state the
spin case.

Theorem (4.4.10). Two 4-dimensional closed spin manifolds with the same finite fundamental
group whose 2-Sylow subgroups have periodic cohomology are stably homeomorphic if and only
if they have the same signature, π1-fundamental class and sec-invariant.

Here the sec-invariant of a 4-manifold M is the Z/2-valued invariant defined by

sec(M) :=

{
0 if SM = q + q∗ for some q ∈ HomZπ1(π2 ⊗ π2,Z),

1 else.

Note that since w2M̃ = 0, the main point is that q also has to be π1-equivariant. For an oriented

4-manifold M with arbitrary fundamental group and w2M̃ 6= 0, it is easy to see that signature
and π1-fundamental class determine the stable homeomorphism class, compare Section 4. So

let me assume that w2M̃ = 0. Then the element

w := (u∗)−1(w2M) ∈ H2(π1; Z/2)/Out(π1)

(where u : M −→ K(π1, 1) is again an arbitrary 2-equivalence) is a well-defined stable home-
omorphism invariant which we call the w2-type of M , compare Definition 4.4.1. Recall that
w = 0 corresponds to the spin case. For two 4-manifolds with the same w2-type w 6= 0, the
stable classification result above changes in that one has to add the ks-invariant since it is not
any more determined by the signature as in the spin case. Moreover, the sec-invariant is always
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trivial and one has to add, instead, a new Z/2-valued invariant (which can be nontrivial only
for generalized quaternion 2-Sylow subgroups). This invariant is a tertiary bordism invariant
with respect to our spectral sequence and therefore we call it the ter-invariant.

The main difference between the sec- and the ter-invariant is that the former is by definition
a homotopy invariant whereas we show in Section 8.2 that the ter-invariant can take different
values on homotopy equivalent manifolds. Our proof uses the fact that for the fundamental
groups in question the surgery obstruction for closed 4-manifold problems is detected by the
signature, see [Hambleton et al.]. We obtain the first examples of two closed oriented differen-
tiable 4-manifolds which are homotopy equivalent but not stably diffeomorphic. These examples
have generalized quaternion fundamental groups and signature 16 · k for any given k ∈ Z.

Let me point out that Part(II) is the heart of my thesis and I have therefore given a more
detailed Outline of the Strategy in Section 4.

In Part(III) we try to remove the S2 × S2-summands and obtain from the stable classification
a classification up to homeomorphism. The main tool we use is the following Cancellation
Theorem from [Hambleton-Kreck 3].

Theorem . Let M and N be two closed oriented 4-manifolds with finite fundamental group.
Suppose that the connected sum M#r · (S2 × S2) is homeomorphic to N#r · (S2 × S2).
If N ≈ N0#(S2 × S2) then M is homeomorphic to N .

Let me discuss the implications of this theorem only for manifolds with universal covering
spin. The assumption on N implies that the intersection form on H2(N ; Z) is indefinite. The
1-connected case shows that this assumption is necessary since stabilization with S2 × S2 kills
all definite forms and leaves the signature as the only invariant. Now suppose we are given two
stably homeomorphic spin manifolds M and N with finite fundamental group, same Euler char-
acteristic and indefinite intersection form on H2(N ; Z). Denoting by |E8| the simply-connected
closed 4-manifold with positive definite even intersection form of rank 8, one possibility to show
that M and N are homeomorphic is to assume that the signature of N is divisible by 8 and
that

N#−σ(N)
8 · |E8|

is stably homeomorphic to a rational homology 4-sphere Σ. Then M and N are both homeo-
morphic to

Σ#σ(N)
8 · |E8|#

χ(N)−2−|σ(N)|
2 · (S2 × S2)

because the assumption of the cancellation theorem is satisfied for this manifold. (Recall that
the intersection form on H2(N ; Z) is indefinite if and only if χ(N) − 2 > |σ(N)|.) It follows
that for a homeomorphism classification with the above methods, it is very useful to have a
rational homology 4-sphere in every stable homeomorphism class (of signature 0). In Section 9.3
we describe several methods for constructing such rational homology 4-spheres and apply these
constructions to obtain in Section 9.4 a homeomorphism classification for manifolds with special
finite fundamental groups. For example, we prove the following

Theorem (6.4.2). Two 4-dimensional closed spin manifolds with the same 4-periodic funda-
mental group and indefinite intersection forms on H2(.; Z) are homeomorphic if and only if they
have the same signature, sec-invariant and Euler characteristic.

The same result holds for two oriented manifolds with the same w2-type w 6= 0 if we add the
ks-invariant and replace the sec- by the ter-invariant.

Let me close this introduction by pointing out that every Section in this thesis starts with a
short summary which also includes all relevant assumptions. Finally we remark that this volume
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slightly differs from my original PhD thesis in that we left out the proof that the Poincaré com-
plex Y with the quadratic 2-type of RP4#CP2 (see Section 3.3) cannot be homotopy equivalent
to a manifold. This result is a corollary to the classification of nonorientable closed 4-manifolds
with fundamental group Z/2 which is to appear as a joint paper with Ian Hambleton and
Matthias Kreck.
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Part 1. Stable Classification of 4-Dimensional Manifolds

1. An Outline of the Strategy

As described in the introduction, we divide the problem of classifying 4 -dimensional manifolds
into two parts. The first part is the stable classification and the second part considers the
cancellation problem which will be described in Part(III) of this thesis.

Definition . Let M,N be two locally oriented, closed 2m-dimensional manifolds. They are
called stably homeomorphic if there exist natural numbers r and s such that

M#r · (Sm × Sm) ≈ N#s · (Sm × Sm).

Here the connected sum has to be formed compatibly with the local orientations. For differen-
tiable manifolds there is an analogous notion of a stable diffeomorphism.

Remark . Although we are looking for a stable homeomorphism classification of topological 4 -
manifolds, we will first consider the differentiable category. In Section 8 we will then explain the
necessary changes in the topological category. It will turn out that the difference is measured
by the Kirby-Siebenmann invariant only. The reason being that the striking results on exotic
structures on 4 -manifolds all disappear if one allows stabilization in our sense because the
s-cobordism theorem is stably true in the differentiable category, see [Quinn]. For an exact
statement see Corollary 5.1.3.

We will now outline the methods of [Kreck 1] to determine the stable diffeomorphism type of a
closed differentiable 2m-dimensional manifold. Let M be such a manifold which we assume to
be oriented at a chosen base point. For simplicity, we also assume all manifolds to be connected.

1.Step: Determining the normal (m− 1)-type of M .
This is the fiber homotopy type of a fibration ξ : B −→ BO which is determined by the

following properties:

(i) ξ is m-coconnected, i.e. ξ∗ : πiB −→ πiBO is an isomorphism for i > m and injective for
i = m.

(ii) The stable normal Gauß map ν : M −→ BO given by some embedding ofM into Euclidean
space, lifts to an m-equivalence over B, i.e. there exists an m-equivalence ν̃ : M −→ B
such that the following diagram commutes:

ν̃
B

ր ↓ ξ

M −→
ν
BO

Note that property (ii) does not depend on the specific choice of the stable normal Gauß map
(i.e. of the embedding), because any two of them are stably isotopic and we assumed the map
ξ : B −→ BO to be a fibration.
In [Kreck 1] ν̃ is called a normal (m − 1)-smoothing in ξ. Moreover, a fibration ξ : B −→ BO
satisfying only property (i) is called (m− 1)-universal. Existence and uniqueness of the normal
(m−1)-type follow from the theory of Moore-Postnikov decompositions (see [Baues, p.306.311])
applied to the map ν : M −→ BO. For 4-dimensional manifolds we will prove the following

Theorem (see 2.1.1 and 2.2.1). The normal 1-type of a 4-manifold M is completely deter-

mined by the fundamental group π1M and the Stiefel-Whitney classes w1M,w2M,w2M̃ .

We will also describe four explicit methods of construction for a 1-universal fibration with
given fundamental group and Stiefel-Whitney classes. Thus we will see that this first step is easy
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in dimension 4, contrary to the ordinary surgery approach where the corresponding first step
would be to determine the normal homotopy type of the manifold which, as we saw in Part(I),
can be very hard. Roughly, we are just fixing the normal homotopy type of an m-skeleton in
M , hoping that Poincaré duality will do the job in the upper half of the dimensions.

2.Step: Stabilizing with Sm × Sm.
If (M, ν̃) is a normal (m − 1)-smoothing in ξ then there is an essentially unique normal

(m− 1)-smoothing of M#Sm × Sm in ξ.

Definition . Two normal (m−1)-smoothing s (M, ν̃) and (M ′, ν̃ ′) in ξ are called ξ-diffeomorphic
if there exists a base point and local orientation preserving diffeomorphism f : M −→M ′ such
that ν̃ and ν̃ ′ ◦ f are fiber homotopic. We define

NSt2m(ξ) := { Stable diffeomorphism classes of normal (m− 1)-smoothings (M, ν̃) in ξ }.

In fact, we do not want to distinguish between two manifolds which are diffeomorphic but
possibly not ξ-diffeomorphic with respect to some normal (m − 1)-smoothings in ξ. In other
words, given a fixed manifold M we do not want to distinguish between different normal (m−1)-
smoothings (M, ν̃) in ξ. Therefore, we define

MSt2m(ξ) := { Stable diffeomorphism classes of 2m-manifolds with (m− 1)-type ξ }

and try to compute this set. Using obstruction theory one proves that two different normal
(m− 1)-smoothings in ξ differ only by a fiber homotopy equivalence of ξ, [Kreck 1, Proposition
1.9]. This shows that if we define Aut(ξ) to be the group of all fiber homotopy classes of fiber
homotopy equivalences of ξ, the forgetful map induces a 1-1 correspondence

NSt2m(ξ)/Aut(ξ) ←→ MSt2m(ξ).

3.Step: Translating into a Bordism Problem.
A normal (m − 1)-smoothing (M, ν̃) in ξ determines an element in Ω2m(ξ), the bordism

group of all manifolds with a normal ξ-structure in the sense of [Switzer] or [Stong]. These are
bordism classes of manifolds M together with a lift of the stable normal Gauß map over ξ, i.e.
the objects are again commutative triangles

ν̃
B

ր ↓ ξ

M −→
ν
BO

but there are no conditions on the connectivity of ν̃ whatsoever. Such a map ν̃ is called a ξ-
structure on M and the pair (M, ν̃) is called a ξ-manifold. Since (Sm×Sm, ν̃) is zero-bordant,
there is a well-defined map NSt2m(ξ) −→ Ω2m(ξ). The main ingredient in the whole program
is the following

Main Theorem ([Kreck 1, Theorem 2.4]). Let ξ : B −→ BO be an (m−1)-universal fibration
and suppose that B has (up to homotopy equivalence) a finite m-skeleton and is connected.
Then for m ≥ 2 the map NSt2m(ξ) −→ Ω2m(ξ) is bijective.

Here the easy part is surjectivity which can be proven by surgery below the middle dimen-
sion. For injectivity one needs the (stable) s-cobordism theorem and a new concept developed
by M.Kreck, namely the so called subtraction of handles in dimension m.
Note that Aut(ξ) also acts (linearly!) on Ωn(ξ) by composition, so that under the above as-
sumptions we get a 1-1 correspondence

MSt2m(ξ)←→ Ω2m(ξ)/Aut(ξ).
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4.Step: Computing Ω2m(ξ).
On the one hand, for m ≥ 3 we are running into difficulties because, firstly, there are a

lot of (m − 1)-universal fibrations and, secondly, these bordism groups are quite complicated
for certain ξ. On the other hand, if one restricts to certain subcategories of manifolds (e.g.
complete intersections) then one can obtain quite powerful classification results, see [Kreck 1].

In dimension 4 all possible ξ are known, moreover the special form of these normal 1-types
allows an explicit computation of the groups Ω4(ξ) in a lot of cases. We shall illustrate this in
the following

Example . Let M be oriented with w2M̃ 6= 0 and set K := K(π1M, 1). Then the normal
1-type of M is the composition

Bi ◦ p1 : BSO ×K −→ BO

of the projection onto the first factor and the standard double covering Bi : BSO → BO.
It can easily be seen that in this case Ωn(ξ) ∼= ΩSO

n (K), the singular bordism group of maps
u : M −→ K. Using the Atiyah-Hirzebruch spectral sequence Hp(K; ΩSO

q ) =⇒ ΩSO
p+q(K) and

the low dimensional information

ΩSO
i
∼=

{
0 if i=1,2,3,

Z if i=0,4

we get an isomorphism

ΩSO
4 (K) −→ Z⊕H4(K)

[M,u] 7−→ (sign(M), u∗[M ]).

Since a normal 1-smoothing in ξ is just the choice of an orientation and of a 2-equivalence
u : M −→ K, we finally obtain the stable classification

MSt4(ξ) ∼= N⊕H4(π1)/Out(π1)
. �

In Section 6.1, we shall describe a spectral sequence which generalizes the Atiyah-Hirzebruch
spectral sequence from the above example in a way that it applies to all possible orientable
normal 1-types.

5.Step: Computing Aut(ξ) and its action on Ω2m(ξ).
In a lot of special cases, this step is as easy as in the example above. But in general, the

group Aut(ξ) is quite complicated. In Theorems 2.1.9 and 2.2.6, we compute this group for
all 1-universal fibrations and we also give an explicit description of its elements using the fact
proven beforehand, namely that all total spaces of such fibrations are classifying spaces of cer-
tain topological groups. Moreover, in Section 6.2, we can partially answer the question of how
these elements act on Ω4(ξ).
Finally, in Section 7, we will put all this information together to give a complete stable classi-
fication result in the cases where the fundamental group is finite and has cyclic or quaternion
2-Sylow subgroups.
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2. Normal 1-types

5.1 The Case π2B 6= 0
5.2 The Case π2B = 0
5.3 When is B ≃ BSpin×K(Π, 1)?

In this Section we want to determine all 1-universal fibrations ξ : B −→ BO up to fiber
homotopy type. For the sake of notation, we always assume that B is connected and we have
chosen a base point. The homotopy groups of B are then well-defined and have to be those of
BO except that π2B only injects into π2BO = Z/2 and π1B can be arbitrary. This naturally
leads to the two cases we are going to consider. Since the first case is notably simpler than the
second but formally the theorems and proofs are similar, it should be quite convenient for the
reader to read Sections 5.1 and 5.2 parallel.

Before we start to develop the details, we have to say some words about the category we are
going to work in in this Section. The objects will be the so called CW-spaces which are topolog-
ical spaces homotopy equivalent to CW-complexes. The morphisms are just continuous maps.
In this category the Whitehead Theorem holds, additionally one doesn’t leave the category by
making maps into fibrations or taking pullbacks of fibrations. It will be understood without
mentioning that if we construct a continuous map ξ : B −→ BO, we make it into a fibration by
the usual process using the free path space of BO. This is certainly necessary, for example in
order that Ωn(ξ) becomes a group: To construct an inverse element, one has to lift a homotopy,
i.e. a map from the cylinder to BO over ξ.

In the course of constructing 1-universal fibrations, we will use a classifying space functor B
from topological groups to CW-spaces. By this we will always mean the simplicial construction
given for example in [May] because it has all the properties we are going to need. It will therefore
happen that the space BO constructed is only homotopy equivalent to the model obtained
through the Grassmanian which we used to define the stable normal Gauß map νM : M −→ BO.
Thus it is necessary at this point to choose a fixed homotopy equivalence between these two
models for BO.

Recall that we have assumed all manifolds to be connected (if the converse is not stated
explicitly).
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2.1. The Case π2B 6= 0.

Theorem 2.1.1.

a) The fiber homotopy type of a 1-universal fibration ξ : B −→ BO with π2B 6= 0 is deter-
mined by the isomorphism class of the pair (π1B,w1(ξ)).

b) Given a pair (Π, w1), where Π is an arbitrary group and w1 ∈ H
1(Π; Z/2), one has the

following possibilities to describe a 1-universal fibration ξ : B −→ BO with π2B 6= 0 and
(π1B,w1(ξ)) ∼= (Π, w1):
(I) Using the isomorphism H1(Π; Z/2) ∼= [K(Π, 1),K(Z/2, 1)] we define ξI by the pullback

BI
uI−−−→ K(Π, 1)

ξI

y
yw1

BO
w1(γ)
−−−→ K(Z/2, 1).

Here γ is the stable universal bundle corresponding to idBO and w1 is chosen as to be
a fibration.

(II) Using the isomorphism H1(Π; Z/2) ∼= Hom(Π,Z/2) we form the semidirect product
G := SO ⋊ Π where the action of Π on SO is given by

w1 : Π −→ Z/2 →֒ O ∼= Aut(SO).

1̄ 7→

(−1 0 0 ...
0 1 0 ...
0 0 1 ...
...

...
...
...

)
, A 7→ conjugation by A

Moreover, we have the representation

ρ : SO ⋊ Π −→ O

(x, g) 7−→ x · w1(g)

which allows us to define ξII := Bρ : BG −→ BO.
(III) Using the isomorphisms H1(Π; Z/2) ∼= VectR

1 (K(Π, 1)) ∼= [K(Π, 1), BO(1)] we can
define

ξIII := Bi⊕ w1 : BSO ×K(Π, 1) −→ BO

where i : SO →֒ O is the inclusion and thus Bi classifies the universal oriented vector
bundle over BSO. Furthermore ⊕ denotes the H-space structure on BO given by the
Whitney sum of vector bundles.

(IV) Define BIV to be the double covering of BO ×K(Π, 1) determined by the subgroup

Ker (w∗ : π1(BO ×K(Π, 1)) −→ π1K(Z/2, 1))

where w is the composition

w : BO ×K(Π, 1)
w1(γ)×w1
−−−−−−→ K(Z/2, 1) ×K(Z/2, 1)

+
−→ K(Z/2, 1)

and “ + “ is the H-space structure on K(Z/2, 1). Then let

ξIV : BIV ։ BO ×K(Π, 1)
p1
։ BO.

Proof. a) The above pullback construction(I) clearly gives for any pair (Π, w1) a 1-universal
fibration ξI : BI −→ BO with π2BI 6= 0 and (Π, w1) ∼= (π1BI , w1(ξI)). We use the 2-equivalence
uI : BI −→ K(Π, 1) to identify π1BI with Π and also elements of H1(BI ; Z/2) with those in
H1(Π; Z/2).
Now take any 1-universal fibration ξ : B −→ BO with (Π, w1) ∼= (π1B,w1(ξ)) and π2B 6= 0.
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These data give a 2-equivalence u : B −→ K(Π, 1) such that u∗(w1) = w1(ξ) and by the
universal property of the pullback we get commutative diagrams

B
φ

−−−−→ BI and B
φ

−−−−→ BI .

uց ւ uI ξ ց ւ ξI

K(Π, 1) BO

Since both B and BI are 1-universal with π2 6= 0 and u, uI are 2-equivalences, we see that φ is
an isomorphism on homotopy groups. We conclude that φ is a homotopy equivalence over BO.
By a theorem of [Dold] this implies that φ is a fiber homotopy equivalence over BO.
b) Similarly as for (I) it is easy to check that ξII , ξIII and ξIV are 1-universal with π2 6= 0 and
that they represent the given pair (Π, w1). The corresponding 2-equivalences B −→ K(Π, 1) are
obviously given by the canonical projections in all three cases. For example, the commutative
diagram

G
p2
−−−→ Π

ρ

y
yw1

O
det
−−−→ Z/2

shows that w1(ρ) = det ◦ρ = w1 ◦ p2 = p∗2(w1) ∈ H
1(G; Z/2). �

Example 2.1.2. If w1 = 0 then

ξ = Bi ◦ p1 : BSO ×K(Π, 1) −→ BO

and if (Π, w1) = (Z/2, idZ/2) we get ξ = idBO.

We will now determine the manifolds with normal 1-type ξ : B −→ BO and π2B 6= 0.

Lemma 2.1.3. Let ξ : B −→ BO be the normal 1-type of a closed, differentiable 4-manifold

M with universal covering M̃ . Then the following conditions are equivalent:

(i) π2B 6= 0,
(ii) ν∗ : π2M −→ π2BO = Z/2 is nontrivial,

(iii) w2(M̃ ) 6= 0.

Proof.
(i)⇔(ii) Let ν̃ : M −→ B be a normal 1-smoothing in ξ. Since ν = ξ ◦ ν̃ the statement follows
directly from the properties of the normal 1-type which say that

ξ∗ : π2B −→ π2BO = Z/2 is injective and ν̃∗ : π2M −→ π2B is onto.

(ii)⇔(iii) Using the universal example BSO = B̃O −→ BO one easily checks that under the
isomorphisms

Hom(π2M ; Z/2) ∼= Hom(H2M̃ ; Z/2) ∼= H2(M̃ ; Z/2)

ν∗ maps to w2(M̃). �
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Corollary 2.1.4. differentiable 4 -manifold with w2(M̃) 6= 0.

a) The normal 1-type ξ of M is given by the pair (π1M,w1M) under the correspondence of
Theorem 2.1.1.

b) A pair (Π, w1) occurs as the normal 1-type of such a manifold if and only if Π is finitely
presentable.

Proof. a) One can construct a normal 1-smoothing ν̃ : M −→ BI as follows:
Take any 2-equivalence u : M −→ K(π1M, 1) and a stable normal Gauß map ν : M −→ BO.
Then w1(ν) = u∗(w1) where u∗I(w1) = w1(ξI). This gives a map ν̃ : M −→ BI by the universal
property of the pullback. It is easy to see that ν̃ is a 2-equivalence and by construction one has
ξI ◦ ν̃ = ν.
b) follows from [Kreck 1, Theorem 2.4] (which I stated in Section 4) by noting that a CW-
space has a finite 2-skeleton up to homotopy if and only if its fundamental group is finitely
presentable.(Recall that a closed manifold is homotopy equivalent to a finite CW-complex.) �

In the last part of this Section we want to compute the group Aut(ξ) of fiber homotopy classes
of fiber homotopy equivalences of a 1-universal fibration ξ : B −→ BO with π2B 6= 0.
We first choose a base point b0 ∈ B and denote by Aut(ξ)0 the set of pointed fiber homotopy
equivalences modulo pointed fiber homotopies. Also let [X,Y ]0 stand for the set of all continuous
maps between (X,x0) and (Y, y0) modulo pointed homotopies.

Definition 2.1.5. Suppose given a fibration ξ : B −→ K and a map f : X −→ K. We denote
by [X,B]f the fiber homotopy classes of liftings f̃ : X −→ B of f over ξ. Similarly [X,B]0f
stands for the pointed homotopy classes of such liftings.

For an arbitrary fibration ξ clearly Aut(ξ) ⊆ [B,B]ξ and Aut(ξ)0 ⊆ [B,B]0ξ . Using the same

theorem of [Dold] as in the proof of Theorem 2.1.1, we see that for a 1-universal fibration ξ a
lifting of ξ over ξ is a fiber homotopy equivalence if and only if it induces an isomorphism of
fundamental groups.

Proposition 2.1.6. Let ξ : B −→ K be a fibration such that the fiber F is a K(π1F, 1) and
π1K acts trivially on π2K. Furthermore, fix f : X −→ K and let f0, f1 ∈ [X,B]0f induce the
same homomorphism of fundamental groups. Then there is an obstruction

d(f0, f1) ∈ Hom(π1X,Ker(i∗ : π1F −→ π1B)) such that d(f0, f1) = 0⇐⇒ f0 = f1.

Proof. Two liftings f0, f1 of f are the same as two sections s0, s1 of the fibration p obtained by
the pullback

F F
yj

yi

B̂ −−−→
q

B
yp

yξ

X
f

−−−→ K.

(II.1)

Since the fiber F is connected and πiF = 0 ∀i ≥ 2, it follows from [Baues, Cor.4.3.2] that s0
and s1 are section homotopic (i.e. f0 = f1) if and only if s0∗ = s1∗ ∈ Hom(π1X,π1B̂). The
homotopy exact sequence for p breaks up into a family of short exact sequences because of the
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existence of a section. We thus obtain a commutative diagram

0 −−−→ Ker(i∗)y
y

π1F π1Fyj∗

yi∗

π1B̂
q∗

−−−→ π1Byp∗

yξ∗

π1X
f∗
−−−→ π1K

which shows that for a ∈ π1X the quotient

s0∗(a)
−1 · s1∗(a)

lies in the image of j∗ since both si are sections of p. From the relations fi = q◦si and f0∗ = f1∗,
it further follows that this quotient comes from a unique element in Ker(i∗). Thus the above
quotient defines a map

d(f0, f1) : π1X −→ Ker(i∗).

This map will be the desired obstruction once we have shown that it is a homomorphism. It is
clear that d(f0, f1) is a homomorphism if we can show that j∗(Ker(i∗)) is central in π1B̂. For
any fibration Ker(i∗) is central in π1F (see [G.W.Whitehead, p.166]) but since we assumed π1K
to act trivially on π2K we can conclude that π1X acts trivially on Ker(i∗) as well. This finishes
the proof because the vanishing of d(f0, f1) is clearly equivalent to s0∗ = s1∗. �

In our situation, the fiber of a 1-universal fibration ξ : B −→ BO with π2B 6= 0,Π := π1B is a
K(π1F, 1) if and only if w1(ξ) 6= 0. In this case the fiber inclusion induces a monomorphism on
fundamental groups and thus Proposition 2.1.6 shows that Aut(ξ)0 injects into Aut(Π).
If ξ is orientable, we can choose an orientation ξ̄ : B −→ BSO whose fiber then is a K(Π, 1).
Again Proposition 2.1.6 shows that Aut(ξ̄)0 injects into Aut(Π) because the inclusion of the fiber
induces a monomorphism on fundamental groups in this case, too. To determine the images in
Aut(Π) of theses injections, we use the fact that by description(II)

ξ = Bρ : BG −→ BO and similarly ξ̄ = Bρ̄ : BG −→ BSO

for representations ρ : G = SO ⋊ Π −→ O respectively ρ̄ : G −→ SO.
To fit the two cases into one notation, we let ρ′ : G −→ G′ be defined by the following table:

w1(ξ) 6= 0 w1(ξ) = 0
G′ := O SO
ρ′ := ρ ρ̄

Moreover, we define

ξ′ := Bρ′ : B −→ B′ := BG′.

With this notation at hand we look at the functor B which on morphism level gives us a
homomorphism

B : Aut(ρ′) := {ϕ ∈ Aut(G) | ρ′ ◦ ϕ = ρ′} −→ Aut(ξ′)0.
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Lemma 2.1.7. The image of π1 : Aut(ξ′)0 −→ Aut(Π) is equal to

Aut(Π)w1 := {α ∈ Aut(Π) | α∗(w1) = w1}.

In particular, Aut(ξ′)0 ∼= Aut(Π)w1 .

Proof. On the one hand, since φ ∈ Aut(ξ′)0 lies over B′ the induced map π1(φ) lies over π1B
′

which is equivalent to φ∗(w1(ξ)) = w1(ξ). On the other hand, given α ∈ Aut(Π)w1 we get the
automorphism αG ∈ Aut(ρ′) defined by

αG(x, a) := (x, α(a)).

The isomorphism π1(BG) ∼= π0(G) ∼= G/G0

∼=
−→
p2

Π then shows that (π1 ◦B)(αG) = α, finishing

the proof. �

Remark . It is very easy to see that in fact B is an isomorphism but since we do not need this
fact, we skip the proof.

The next step in our computation is to get rid of the base point, i.e. to compare Aut(ξ′)0 with
Aut(ξ′). To this end, we again consider a more general setting.

Lemma 2.1.8. Let ξ : B −→ K be a fibration with connected fiber F . If we fix a map
f : X −→ K there is an action of π1F on the set [X,B]0f with orbit space equal to [X,B]f .

Proof. If K is a point, this is well known fact, see for example [G.W.Whitehead, III(1.11)].
The proof of the relative version is exactly the same as in the absolute case if one uses Theo-
rems I(7.16,7.18) in [G.W.Whitehead]. Here we shall just describe the action of π1F :
Let ω : I −→ F be a closed path at b0 ∈ F and let f0 : (X,xo) −→ (B, b0) be a lifting of f over
ξ. This gives a commutative diagram

I × {x0} ∪ {0} ×X
i◦ω∪f0
−−−−→ B

inclusion

y
yξ

I ×X
f◦p1
−−−→ K.

By [G.W.Whitehead, I(7.16)] this homotopy lifting extension problem has a solution unique up
to homotopy relative I × {x0} ∪ {0} ×X. Calling such a solution F : I ×X −→ B, we define
the action of [ω] ∈ π1F on [f0] ∈ [X,B]0f by

[f0]
[ω] := [F1].

Note that f0 and F1 are freely homotopic over ξ, but the homotopy F between them runs
through the path ω. �

One directly computes that the induced map on the fundamental group is given by

[f0]
a
∗ = ci∗(a) ◦ [f0]∗

where ci∗(a) denotes conjugation by i∗(a) for a ∈ π1F . We are now able to prove the main
result:

Theorem 2.1.9. If ξ : B −→ BO is a 1-universal fibration with π2B 6= 0 and
(π1B,w1(ξ)) ∼= (Π, w1) then there is an exact sequence of groups

1 −→Z −→Aut(ξ)
π1−→ Out(Π)w1 −→ 1
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with Z =

{
Z/2 if the center of Π is contained in Ker(w1),

1 else .

Moreover, if w1 = 0 (and thus Z = Z/2) this sequence splits and we obtain an isomorphism

Aut(ξ) ∼= Z/2×Out(Π).

In particular, the choice of a normal 1-smoothing ν̃ : M −→ B consists of the choice of an
isomorphism ϕ : π1M −→ Π such that ϕ∗(w1) = w1M and independently the choice of an
orientation of M in the orientable case. In the nonorientable case, one can choose something
similar to an orientation if and only if C(Π) ≤ Ker(w1).

Proof. First note that if (in the notation introduced in the table before Lemma 2.1.7) F is the
fiber of ξ′ then π1F ∼= Ker(w1). In the case w1 6= 0 (i.e. ξ′ = ξ), the considerations preceding
the theorem thus show that Aut(ξ) is isomorphic to the factor group

Aut(Π)w1/Inn(Π,Ker(w1))

where Inn(Π, U) := {cu ∈ Aut(Π) | u ∈ U} for any subgroup U of Π. In our context, we set
U := Ker(w1) which is then a subgroup of index two. The exact sequence of the statement is
given by the following exact sequence:

1 −→Z := Inn(Π)/Inn(Π, U) −→Aut(Π)w1/Inn(Π, U) −→Aut(Π)w1/Inn(Π) = Out(Π)w1 −→ 1.

We can read off the isomorphism type of the group Z by looking at the following commutative
diagram of exact sequences:

1 1 1
y

y
y

1 −−−→ C(Π) ∩ U −−−→ U −−−→ Inn(Π, U) −−−→ 1
y

y
y

1 −−−→ C(Π) −−−→ Π −−−→ Inn(Π) −−−→ 1
y

y
y

1 −−−→ C(Π)/C(Π) ∩ U −−−→ Z/2 −−−→ Z −−−→ 1
y

y
y

1 1 1

We see that

C(Π)/C(Π) ∩ U
∼= C(Π) · U/U =

{
1 if C(Π) ≤ U,

Z/2 else,

which proves the assertion for w1 6= 0.
In the orientable case, we conclude from the considerations before the theorem that Aut(ξ̄) ∼=

Out(Π). The fact that BSO −→ BO is a double covering shows that there is an exact sequence

1 −→Aut(ξ̄) −→Aut(ξ) −→Z/2

and we want to show that this gives in fact a decomposition

Aut(ξ) ∼= Aut(ξ̄)× Z/2.
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Consider the map
c× id : B = BSO ×K(Π, 1) −→ B

where c is the covering translation of the double covering. Clearly c × id has order 2 and
commutes with all elements in Aut(ξ̄) since these are all of the form idBSO ×Bα,α ∈ Aut(Π).

�

Example 2.1.10. We want to describe an infinite family of examples in which the exact se-
quence of the above theorem does not split:
Let U := SL2(F22n) with n > 1 be one of the finite simple groups of Lie type. One knows
(compare [Atlas]) that

Aut(U) = Inn(U) ⋊ 〈ϕ〉

where ϕ is the Frobenius automorphism (of order 2n) of the Galois extension (F22n : F2). We
now form the semidirect product

Π := U ⋊ Z/2

where Z/2 acts via ϕn on U . Let w1 : Π −→Z/2 be the projection with kernel U . Since ϕn is not
an inner automorphism of U it follows that C(Π) = 1 and thus the group Z in Theorem 2.1.9
is nontrivial. If we can show that Aut(Π)w1/Inn(Π, U) is cyclic of order 2n then the exact

sequence in question can certainly not split.
To this end, consider the restriction homomorphism

res : Aut(Π)w1 −→Aut(U).

This map is surjective because inner automorphisms of U can certainly be extended to Π and
also the Frobenius extends to Π via the formula

ϕ̄(x, a) := (ϕ(x), a).

The fact that C(U) = 1 easily shows that res is also injective and thus we obtain a commutative
diagram

Inn(Π, U)
res
−−−→

∼=
Inn(U)

y
y

Aut(Π)w1

res
−−−→

∼=
Aut(U).

But this shows that

Aut(Π)w1/Inn(Π, U)
∼= Aut(U)/Inn(U)

∼= 〈ϕ〉 ∼= Z/2n. �
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2.2. The Case π2B = 0.

Theorem 2.2.1.

a) The fiber homotopy type of a 1-universal fibration ξ : B −→ BO with π2B = 0 is deter-
mined by the isomorphism class of the triple (π1B,w1(ξ), w2(ξ)).

b) Given a triple (Π, w1, w2), where Π is an arbitrary group and wi ∈ H
i(Π; Z/2), one has

the following possibilities to describe a 1-universal fibration ξ : B −→ BO with π2B = 0
and (π1B,w1(ξ), w2(ξ)) ∼= (Π, w1, w2):
(I) Using the isomorphisms H i(Π; Z/2) ∼= [K(Π, 1),K(Z/2, i)] we define ξI by the pullback

BI
uI−−−−−−→ K(Π, 1)

ξI

y
yw1×w2

BO
w1(γ)×w2(γ)
−−−−−−−−→ K(Z/2, 1) ×K(Z/2, 2).

Here γ is again the stable universal bundle corresponding to idBO and w1 × w2 is
chosen as to be a fibration.

(II) Using the isomorphism H1(Π; Z/2) ∼= Hom(Π,Z/2) and the fact that the center of the
group Spin is Z/2, form the extension Spin  G ։ Π determined by
• The action

w1 : Π→ Z/2 →֒ O ∼= Aut(SO) ∼= Aut(Spin).

1̄ 7→

(−1 0 0 ...
0 1 0 ...
0 0 1 ...
...

...
...
...

)
=: r1 7→ conj. by r1 7→ conj. by e1

• The extension class w2 ∈ H
2(Π; Z/2) = H2(Π;C(Spin)).

Moreover, in the proof we will write down an explicit representation ρ : G −→ O which
allows us to define ξII := Bρ : BG −→ BO.

(III) If there exists a stable vector bundle η over K(Π, 1) with wi(η) = wi we can define

ξIII := Bp⊕ η : BSpin×K(Π, 1) −→ BO.

Here p : Spin −→ O is the composition of the universal covering Spin ։ SO and the
inclusion i : SO →֒ O.

(IV) Define BIV to be the pullback of the path-fibration

BIV −−−→ P (K(Z/2, 1) ×K(Z/2, 2))

p

y
y

BO ×K(Π, 1)
w

−−−→ K(Z/2, 1) ×K(Z/2, 2).

Here w : BO ×K(Π, 1)
(w1(γ)+1w1)×(w2(γ)+2w2)
−−−−−−−−−−−−−−−−−→ K(Z/2, 1) ×K(Z/2, 2) and “ +i “

are the H-space structures on K(Z/2, i), i = 1, 2. Then let

ξIV : BIV

p
։ BO ×K(Π, 1)

p1
։ BO.

Remark . Since H2(.; Z/2) does not correspond directly to any vector bundle information, the
assumption in (III) is not always fulfilled. We will discuss necessary and sufficient conditions
for the existence of the vector bundle η for a given group Π in Section 5.3.
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Proof. We can follow the lines of the proof of Theorem 2.1.1:
a) Again the above pullback construction(I) clearly gives for any triple (Π, w1, w2) a 1-universal
fibration ξI : BI −→ BO with π2BI = 0 and (Π, w1, w2) ∼= (π1BI , w1(ξI), w2(ξI)). In this case
we use that π2BI = 0 implies that we get a 3-equivalence uI : BI −→ K(Π, 1) to identify π1BI

with Π and also elements of H i(BI ; Z/2) with those in H i(Π; Z/2), i = 1, 2.
Now take any 1-universal fibration ξ : B −→ BO with (Π, w1, w2) ∼= (π1B,w1(ξ), w2(ξ)) and

π2B = 0. These data give a 3-equivalence u : B −→ K(Π, 1) such that u∗(wi) = wi(ξ) and by
the universal property of the pullback we again get commutative diagrams

B
φ

−−−−→ BI and B
φ

−−−−→ BI .

uց ւ uI ξ ց ւ ξI

K(Π, 1) BO

Since both B and BI are 1-universal with π2 = 0 and u, uI are 3-equivalences, we see that φ is
an isomorphism on homotopy groups. Finally we can again conclude that φ is a fiber homotopy
equivalence over BO.
b) De novo, we only have to check that the descriptions(II),(III) and (IV) give vector bundles
with the correct Stiefel-Whitney classes because it is obvious from the constructions that they
are 1-universal with π2B = 0.
For (IV) this follows from the fact that p∗(wi(γ)) = p∗(wi) ∈ H

i(BIV ; Z/2), i = 1, 2. For (III)
this is also clear since w(Bp⊕ η) = w(Bp)× w(η) and wi(Bp) = 0 ∀i ≤ 3.
For (II) we first remark that one defines the Stiefel-Whitney classes of a representation
ρ : H −→ O(n) by applying the B-functor to get Bρ : BH −→ BO(n) and then setting
wi(ρ) := wi(Bρ) ∈ H i(BH; Z/2). If H is a discrete group this is the so called flat bun-
dle construction and gives wi(ρ) ∈ H i(H; Z/2) := H i(BH; Z/2). As an example, note that
w1(ρ) = det ◦ρ ∈ Hom(H; Z/2) ∼= H1(H; Z/2) which we already used in the proof of Theo-
rem 2.1.1, part b), (II).

To continue the proof, let w2 ∈ H
2(Π; Z/2) be represented by the central extension

1 −→Z/2 −→ Π̃
q
−→Π −→ 1.

Since q∗(w2) = 0 and w2 also determines the extension

1 −→Spin −→G −→Π −→ 1

from the theorem, we see that pulling back this extension via q, we get the semidirect product

Spin⋊ Π̃ where the action is given by

w1 ◦ q : Π̃→ Z/2 →֒ Aut(Spin).
1̄ 7→ conj. by e1

Moreover, if τ ∈ Π̃ denotes the central involution with q(τ) = 1 then

G ∼= Spin⋊ Π̃/〈(−1, τ)〉
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which can be read off from the following commutative diagram of exact sequences:

1 1
y

y

Z/2 Z/2
y

y

1 −−−→ Spin
i1−−−→ Spin⋊ Π̃

p2
−−−→ Π̃ −−−→ 1

∥∥∥
y

yq

1 −−−→ Spin −−−→ G
u

−−−→ Π −−−→ 1
y

y

1 1

Here u : G ∼= Spin ⋊ Π̃/〈(−1, τ)〉 ։ Π is given by u[x, g] = q(g) ∀x ∈ Spin, g ∈ Π. Further-

more, we can define a representation

ρ : G ∼= Spin⋊ Π̃/〈(−1, τ)〉 −→ O

[x, g] 7−→ p(x) · w1(g).
(II.2)

The commutative diagram

G
u

−−−→ Π

ρ

y
yw1

O
det
−−−→ Z/2

shows that w1(ρ) = det ◦ρ = w1 ◦ u = u∗(w1) ∈ H1(G; Z/2) and we are finished if we show
w2(ρ) = u∗(w2):

By naturality, the 2nd Stiefel-Whitney class of a representation ρ : H −→ O(n) is represented
by the following pullback extension:

1 −−−→ Z/2 −−−→ H̃ −−−→ H −−−→ 1
∥∥∥

yρ̃

yρ

1 −−−→ Z/2 −−−→ Pin(n)
r

−−−→ O(n) −−−→ 1

Here Pin(n) is the usual subgroup of the units of the Clifford algebra Cl(n) corresponding
to the standard positive definite scalar product on Rn. This means that Cl(n) has R-algebra
generators e1, . . . , en with e2i = 1. Some authors denote this algebra by Cl(n)+ (and the above
subgroup by Pin(n)+), whereas they write Pin(n)− for the subgroup in the R-algebra Cl(n)−

with e2i = −1 corresponding to the negative definite scalar product on Rn. The point here is
that Pin(n)+ corresponds to w2 whereas Pin(n)− corresponds to w2 + w2

1 ∈ H
2(BO(n); Z/2).

This can be seen by taking

ρ : Z/2 −→ O(n), ρ(1̄) :=

(−1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

)
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and noting that w2(ρ) = 0 because ρ is the stabilization of a 1-dimension representation. But
the pullback of ρ under Pin(n)+ is clearly trivial (e21 = 1) whereas the pullback under Pin(n)−

is the group Z/4 (e21 = −1) and thus is nontrivial.
Returning from the general discussion to our special case, we see that we get a commutative

diagram

1 −−−→ Z/2 −−−→ Spin(n) ⋊ Π̃ −−−→ G(n) −−−→ 1
∥∥∥

yρ̃

yρ|G(n)

1 −−−→ Z/2 −−−→ Pin(n)
r

−−−→ O(n) −−−→ 1

by setting

G(n) := Spin(n) ⋊ Π̃/〈(−1, τ)〉 and ρ̃(x, g) := j(x) · w(g).

Here j : Spin(n) →֒ Pin(n)+ is the inclusion (since w1 = 0 on SO(n) one has Spin(n)+ ∼=
Spin(n)−) and

w : Π̃
q
−→Π

w1−→ Z/2 = 〈e1〉 ⊂ Pin(n)+.

Taking the union over all n ∈ N completes the proof of the theorem. �

Example 2.2.2. If w1 = w2 = 0 then

ξ = Bp ◦ p1 : BSpin×K(Π, 1) −→ BO

and if (Π, w1, w2) = (Z/2, idZ/2, w2) we get

ξ± = Br± : BPin± −→ BO

depending on w2 ∈ H
2(Π; Z/2) = Z/2.

Corollary 2.2.3. Let M be a closed,differentiable 4 -manifold with w2(M̃ ) = 0.

a) The normal 1-type ξ of M is given by the triple (π1M,w1(νM), w2(νM)) under the cor-
respondence of Theorem 2.2.1.

b) A pair (Π, w1, w2) occurs as the normal 1-type of such a manifold if and only if Π is finitely
presentable.

The proof of this corollary is identical to the proof of Corollary 2.1.4, so we skip it.
In accordance to Section 5.1, the last part of this Section is devoted to the computation of

Aut(ξ) for a 1-universal fibration ξ : B −→ BO with π2B = 0, π1B = Π. Again we choose a
base point in B and start with the computation of Aut(ξ)0, recalling that Aut(ξ)0 ⊆ [B,B]0ξ
is the subset of those liftings which induce an isomorphism on the fundamental group. As
in Section 5.1, we let ξ′ : B −→ B′ be equal to ξ for w1(ξ) 6= 0 respectively to a lifting
ξ̄ : B −→ BSO if w1(ξ) = 0.
Then the fiber F of ξ′ is a K(π1F, 1) and hence Proposition 2.1.6 applies. Note however that
the inclusion of the fiber is no more injective on fundamental groups, but now has kernel Z/2.
This shows that the kernel Aut(ξ′)π1 of the homomorphism

π1 : Aut(ξ′)0 −→ Aut(Π)

admits an injective obstruction map

o : Aut(ξ′)π1  H1(Π; Z/2)

defined by o(ϕ) := d(idB, ϕ), compare Proposition 2.1.6 for the definition of d.

Lemma 2.2.4. The image of π1 : Aut(ξ′)0 −→ Aut(Π) is contained in

Aut(Π)w1,w2 := {α ∈ Aut(Π) | α∗(wi) = wi, i = 1, 2}.
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Proof. This can be read off directly from description(I) in Theorem 2.2.1. �

To determine the exact image of the maps π1 and o and to find the group structure of Aut(ξ′)0,
we will now use the fact that by description(II), we know that

ξ′ = Bρ′ with ρ′ : G −→ G′, G′ = O or SO respectively ,

and thus we have the homomorphism

B : Aut(ρ′) −→ Aut(ξ′)0.

Proposition 2.2.5. There is a realization homomorphism

r : H1(Π; Z/2) ×Aut(Π)w1,w2 −→ Aut(ρ′) such that:

(i) The image of (B◦r)|H1(Π; Z/2)×{idΠ} lies in Aut(ξ′)π1 and composed with the obstruction
map o gives the identity on H1(Π; Z/2).

(ii) (π1 ◦B ◦ r)|{0} ×Aut(Π)w1,w2 = idAut(Π)w1,w2
.

In particular, the map

B ◦ r : H1(Π; Z/2) ×Aut(Π)w1,w2 −→ Aut(ξ′)0

is an isomorphism of groups.

Remark . It is easy to see that the homomorphism r (and thus also B) is an isomorphism. But
since we do not need this fact, we shall skip the details.

Proof. Recall from (II.2) in the proof of Theorem 2.2.1 that ρ′ is given by

ρ′ : G ∼= Spin⋊ Π̃/〈(−1, τ)〉 −→ G′

[x, g] 7−→ p(x) · w1(g).

Let α ∈ Aut(Π)w1,w2 and α̃ ∈ Aut(Π̃)w1◦q be the unique automorphism which makes the
diagram

1 −−−→ 〈τ〉 −−−→ Π̃
q

−−−→ Π −−−→ 1
∥∥∥

yeα

yα

1 −−−→ 〈τ〉 −−−→ Π̃
q

−−−→ Π −−−→ 1

commutative. Then the map αG : G −→ G defined by

αG[x, a] := [x, α̃(a)]

is a well-defined group homomorphism which lies over ρ′.
Next let β ∈ Hom(Π,Z/2) and set β̃ := β ◦ p2 ∈ Hom(G,Z/2). Since the element σ := [1, τ ] is
a central involution in G with p2(σ) = 0, the map

βG : G −→ G

g 7−→ g · σβ̃(g)

also is a group homomorphism over ρ′. Note that β̃(σ) = 0 implies that βG(σ) = σ which in
turn shows that the correspondence

H1(Π; Z/2) −→ Aut(G)
β 7−→ βG

is a group homomorphism. By construction all αG commute with all βG and thus we obtain a
homomorphism

r : H1(Π; Z/2) ×Aut(Π)w1,w2 −→ Aut(ρ′) by setting
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r(β, α) := βG · αG.

The isomorphism π1BG ∼= π0G ∼= G/G0

∼=
−→
p2

Π shows that

(π1 ◦B)(βG) = idΠ and (π1 ◦B)(αG) = α

which proves property(ii) of the assertion. Furthermore, we see that H1(Π; Z/2) × {idΠ} is
mapped to Aut(ξ′)π1 under B ◦ r. Thus the proof is finished if we show that for all β ∈
Hom(Π,Z/2) we have the relation (o ◦B)(βG) =: o(BβG) = β.

To prove this, let Π′ := Ker(ρ′) = q−1(Ker(w1) ≤ Π̃ and note that Π′ ∼= π1F if F is the fiber
of ξ′ : B −→ B′. Recall from Proposition 2.1.6 that the obstruction map o was obtained by
forming the pullback diagram(II.1). This pullback diagram can be obtained in our situation by
applying the functor B to the following pullback diagram of groups:

Π′ Π′

yj

y

Ĝ −−−→ G
y

yρ′

G
ρ′

−−−→ G′

where Ĝ = {(g1, g2) ∈ G×G | ρ
′(g1) = ρ′(g2)}.

We can now construct the sections s0 and s1 which correspond to the automorphisms idG and
βG over ρ′. These sections are obviously given by the formulae

s0(g) = (g, g) and s1(g) = (βG(g), g) ∀g ∈ G.

Therefore, we have for all g ∈ G

s0(g)
−1 · s1(g) = (g−1 · βG(g), 1) = (σβ̃(g), 1)

= j(τ β̃(g)).

Using again the isomorphism π1BG ∼= π0G ∼= G/G0

∼=
−→
p2

Π, we can conclude that for any a ∈ Π

the equation

o(BβG)(a) = d(idB , BβG)(a) = (Bs0)∗(a)
−1 · (Bs1)∗(a) = β(a)

holds true. �

The next step in our computation is to compare Aut(ξ′)0 with Aut(ξ′). In Lemma 2.1.8 we have
described an action of π1F ∼= Π′ on Aut(ξ′)0 such that the orbit space is equal to Aut(ξ′). Our
aim is to describe now an action of Π′ on Aut(ρ′) such that B is a Π′-equivariant map. Such
an action can be obtained as follows:
Recall that Π′ = Ker(ρ′) and thus conjugation by a ∈ Π′ gives an element ca ∈ Aut(ρ′). Let Π′

act on Aut(ρ′) via the formula

ϕa := ca ◦ ϕ, a ∈ Π′, ϕ ∈ Aut(ρ′).

Under these actions, B is Π′-equivariant because of the general fact that for any g ∈ G the map
B(cg) is freely homotopic to idBG under a homotopy which at the base point runs through the
path g · G0 ∈ G/G0

∼= π0G ∼= π1BG. Moreover, since in our situation g = a ∈ Ker(ρ′) this

homotopy can be chosen to lie over Bρ′. We are now able to prove the main result:
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Theorem 2.2.6. If ξ : B −→ BO is a 1-universal fibration with π2B = 0 and
(π1B,w1(ξ), w2(ξ)) ∼= (Π, w1, w2) then there is an exact sequence of groups

1 −→Z −→Aut(ξ)
o×π1−−−→ H1(Π; Z/2) ×Out(Π)w1,w2 −→ 1

with Z =

{
Z/2 if the center of Π̃ is contained in Π′,

1 else .

Here Π′ := q−1(Ker(w1)) and w2 ∈ H
2(Π; Z/2) classifies the extension

1 −→Z/2 −→ Π̃
q
−→Π −→ 1

Moreover, if w1 = 0 (and thus Z = Z/2) this sequence splits and we obtain an isomorphism

Aut(ξ) ∼= Z/2×H1(Π; Z/2) ×Out(Π)w2 .

In particular, the choice of a normal 1-smoothing ν̃ : M −→ B consists of the choice of an
isomorphism ϕ : π1M −→ Π such that ϕ∗(wi) = wi(νM), i = 1, 2 and independently the
choice of an orientation of M in the orientable case. In the nonorientable case, one can choose

something similar to an orientation if and only if C(Π̃) ≤ Π′.
Finally, in all cases one is allowed to choose independently something similar to a spin structure
in the sense that two such choices differ by an element of H1(Π; Z/2) ∼= H1(M ; Z/2).

Proof. First recall that Π′ is the fundamental group of the fiber of ξ : B −→ B′. In the case

w1 6= 0 (i.e. ξ′ = ξ and thus Π′ has index 2 in Π̃), the considerations preceding the theorem

together with the natural isomorphism Aut(Π)w1,w2
∼= Aut(Π̃)w1◦q thus shows that

Aut(ξ) ∼= H1(Π; Z/2) ×

(
Aut(Π̃)w1◦q/Inn(Π̃,Π′)

)
.

Replacing the pair (Π,Ker(w1)) in the proof of Theorem 2.1.9 by the pair (Π̃,Π′), we see that
in the exact sequence

1 −→Z := Inn(Π̃)/
Inn(Π̃,Π′)

−→Aut(Π̃)w1◦q/Inn(Π̃,Π′)
−→Out(Π̃)w1◦q = Out(Π)w1,w2 −→ 1

the group Z has the isomorphism type described in the statement. This proves the theorem if
w1 6= 0.
In the orientable case, we conclude from the considerations before the theorem that

Aut(ξ̄) ∼= H1(Π; Z/2) ×Out(Π)w2 .

The fact that BSO −→ BO is a double covering shows that there is an exact sequence

1 −→Aut(ξ̄) −→Aut(ξ) −→Z/2

and we want to show that this gives in fact a decomposition

Aut(ξ) ∼= Aut(ξ̄)× Z/2.

As in the corresponding situation in the proof of Theorem 2.1.9, we will describe an involution
c ∈ Aut(ξ) \ Aut(ξ̄) which commutes with all elements of Aut(ξ̄). To find c, we first note that

the group G = Spin× Π̃/〈(−1, τ)〉 is a subgroup of index 2 in the group

H := Pin× Π̃/〈(−1, τ)〉.
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Denoting the projection Pin −→ O by r, we have a representation η : H −→ O given by
η[x, a] := r(x). Then the following diagrams commute:

G
iG−−−→ H G

iG−−−→ H
yρ̄

yη

yρ

yη

SO
iSO−−−→ O O O

This gives a double covering BG −→ BH whose covering translation c lies over Bρ but not
over Bρ̄. To check that c commutes with all automorphisms αG, βG ∈ Aut(ρ̄) constructed in
Proposition 2.2.5, we note that there are automorphisms αH , βH ∈ Aut(η) restricting to αG

respectively βG. Namely, we define

αH [x, a] := [x, α̃(a)] and βH(g) := g · σβ̃(g),

i.e. we use exactly the same formulae as in Proposition 2.2.5. It is clear from the definition
that all αH ∈ Aut(η), but since σ = [1, τ ] ∈ G ≤ H is central in all of H and η(σ) = 1, we can
conclude that also all βH ∈ Aut(η).
Now let ϕH ∈ Aut(η) denote one of these automorphisms and denote by ϕG its restriction to
G. We have a commutative diagram

BG
BϕG−−−→ BG

c
−−−→ BG

B(ϕ−1
G

)
−−−−→ BG

y
y

y
y

BH
Bϕ

H−−−→ BH
id

−−−→ BH
B(ϕ−1

H
)

−−−−→ BH

where all horizontal arrows stand for the double covering BG −→ BH.
This diagram shows that the map B(ϕ−1

G ) ◦ c ◦BϕG is a covering translation. It must be equal
to c since c 6= idBG . Therefore, BϕG commutes with c. �

2.3. When is B ≃ BSpin×K(Π, 1)?

All four constructions from Theorems 2.1.1 and 2.2.1 do have their advantages: The pullback
construction(I) already proved to be useful as a technical tool in the uniqueness statements
of the theorems. The classifying space description(II) is interesting because it shows that a
normal 1-smoothing is just a lift of the stable structure group O of the stable normal bundle of
a manifold to a group which is uniquely determined by the manifold and can be any extension
of SO respectively Spin by a finitely presentable group. Also, this description was essential in
the computation of Aut(ξ). The fiber construction(IV) will be used to describe an interesting
invariant called sec in Section 6.2. Finally, description(III) is very convenient in the computation
of the corresponding bordism groups, as we shall show below.
The title of this Section is explained by observing that a 1-universal fibration ξ : B −→ BO
with π2B = 0 allows description(III) if and only if

B ≃ BSpin×K(Π, 1).

Before we start with the computation of bordism groups, we want to recall the definition of the
Thom spectrum of a stable vector bundle ξ : B −→ BO:

Definition 2.3.1. Let Bn := ξ−1(BO(n)) , ξn := ξ|Bn : Bn −→ BO(n) and

T (ξn) := Thom space of ξn := D(ξn)/S(ξn).
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There are commutative diagrams

ξn ⊕ ǫR −−−→ ξn+1y
y

Bn −−−→ Bn+1

which give maps sn : S1 ∧ T (ξn) −→ T (ξn+1) and one calls the corresponding spectrum
{T (ξn), sn | n ≥ 0} the Thom spectrum Mξ.

Remarks:

1. The homotopy type of Mξ does not depend on the special choice of the vector bundles
ξn as long as the direct limit of their bases Bn gives the space B ([Lewis et al.]). In
particular we could have chosen Bn as some n-skeleton of B (up to homotopy) and would
have obtained a CW-spectrum in the sense of [Adams].

2. In [Lewis et al.] it is also proved that the homotopy type of Mξ only depends on the
homotopy class of ξ.

3. If ξ : B −→ BO(N) is an unstable vector bundle then our definition gives

Mξ ≃ Σ−NT (ξ)

because T (ξ) appears only as the N th term of the spectrum Mξ. This simplifies the
indexing because for example the cohomology Thom class then lies in HN (T (ξ); Z/2) ∼=
H0(Mξ; Z/2).

If ξ : B −→ BO is 1-universal with π2B 6= 0 then ξ = Bi ⊕ η : BSO × K(Π, 1) −→ BO and
there is a standard way for computing Ωn(ξ):
First use the Pontrjagin-Thom isomorphism (see e.g. [Bröcker-tom Dieck]) and then observe
that Mξ ≃MSO ∧Mη to obtain the isomorphisms

Ωn(ξ) ∼= πn(Mξ) ∼= πn(MSO ∧Mη) = MSOn(Mη)

where MSO∗ is the homology theory corresponding to the spectrum MSO (see [Adams]), i.e.
MSO∗(S

0) ∼= ΩSO
∗ . The Atiyah-Hirzebruch spectral sequence

Hp(Mη; ΩSO
q ) =⇒MSOp+q(Mη)

applies and for n = 4 it is quite easy to evaluate because ΩSO
i
∼=

{
0 if i = 1, 2, 3

Z if i = 0, 4.

Similarly, if ξ = Bp⊕ η : BSpin×K(Π, 1) −→ BO then

Ωn(ξ) ∼= πn(Mξ) ∼= πn(MSpin ∧Mη) = MSpinn(Mη)

and for the corresponding Atiyah-Hirzebruch spectral sequence

Hp(Mη; ΩSpin
q ) =⇒MSpinp+q(Mη)

one knows that ΩSpin
i
∼=





0 if i = 3

Z if i = 0, 4

Z/2 if i = 1, 2

.

Lemma 2.3.2. Let X be a spectrum and Hp(X; ΩSpin
q ) =⇒ MSpinp+q(X) the Atiyah-Hirze-

bruch spectral sequence as above.

1. The differential d2 : Hp(X; ΩSpin
1 ) −→ Hp−2(X; ΩSpin

2 ) is the dual of
Sq2 : Hp−2(X; Z/2) −→ Hp(X; Z/2).
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2. The differential d2 : Hp(X; ΩSpin
0 ) −→ Hp−2(X; ΩSpin

1 ) is reduction mod 2 composed with
the dual of Sq2.

Proof. Let ι : S0 −→MSpin be the unit of the ring spectrumMSpin coming from the inclusions
of the bottom cell Dn/Sn−1 →֒ T (ξn). One knows that ι∗ : πi(S

0) −→ πi(MSpin) is an
isomorphism for i ≤ 2. Then the naturality of the Atiyah-Hirzebruch spectral sequence shows
that in the range in question we can as well compute the differentials d2 for the spectral sequence

Hp(X;πst
q ) =⇒ πp+q(X).

Now the differentials d2 are stable homology operations and thus are induced from elements in

[HZ/2,Σ2HZ/2] ∼= H2(HZ/2; Z/2) = 〈Sq2〉 ∼= Z/2 in part (1) and
[HZ,Σ2HZ/2] ∼= H2(HZ; Z/2) = 〈Sq2 ◦ r2〉 ∼= Z/2 in part (2).

Here for any abelian group A, HA denotes the spectrum associated to ordinary homology with
coefficients in A. To finish the proof we have to show that in both cases d2 6= 0. For this just

take X := Σp−2HZ/2 and recall that πi(Σ
p−2HZ/2) =

{
Z/2 if i = p− 2 ,

0 else.
�

Remark . In the same way one can show that the differential

d3 : E3
p,0 −→ E3

p−3,2

is dual to a secondary operation associated to the relation Sq2 ◦Sq2 = 0 on integral cohomology
classes. But since this seems well-known and we shall not use it, we omit the details.

With all these information at hand, one can in many cases compute the groups Ω4(ξ), provided
the normal 1-type ξ can be written as in description(III) of Theorem 2.1.1.

Remark . This is the reason why we studied the question under which conditions descrip-
tion(III) is available. However, in the process of writing this thesis, I later found the spectral
sequence described in Section 6, which is applicable to all normal 1-types and has the same E2-
and E∞-term as the spectral sequence above. Nevertheless, for some future problems it still
might be interesting to know in which cases description(III) is applicable.

In the remaining part of this Section, we will give a necessary and sufficient condition for the
case of a finite group Π. The question is:
Which pairs (w1, w2), wi ∈ H

i(Π; Z/2), are realizable as the first two Stiefel-Whitney classes of
a stable vector bundle over K(Π, 1)?

Lemma 2.3.3. For any space K and classes wi ∈ H i(K; Z/2), i = 1, 2, the pair (w1, w2) is
realizable if and only if the pair (0, w2) is realizable.

Proof. Let η be a stable vector bundle over K with Stiefel-Whitney classes wi := wi(η). Fur-
thermore, let l be a real line bundle over K with w1(l) = w1. Then

w(η ⊕ 3 · l) = w(η) · (1 + w1)
3

= (1 + w1 +w2 + . . . ) · (1 + w1 + w2
1 + w3

1)

= (1 + w2 +w2 · w1 + w3
1 + . . . ).

On the other hand if w1(η) = 0, w2(η) = w2 and w1 = w1(l) is given then wi(η ⊕ l) = wi for
i = 1, 2. �
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We can thus reformulate our question as follows: Determine the image of the homomorphism

w2 : [K,BSO] −→ H2(K; Z/2).

In the universal example K = K(Z/2, 2), the image is trivial because if ι2 = w2(η) then ι22
would be the mod 2 reduction of the first Pontrjagin class p1(η) but this is impossible since
H4(K(Z/2, 2); Z) = 0. On the contrary for a given space K some parts of H2(K; Z/2) are easily
seen to be in the image of w2:

Lemma 2.3.4.

1. The image of the mod 2 reduction r2 : H2(K; Z) −→ H2(K; Z/2) lies in the image of w2.
2. All cup products x1 ∪ x2 of 1-dimensional classes xi ∈ H

1(K; Z/2) lie in the image of w2.

Proof. (1) Let w = r2(c). Then there exists a complex line bundle L over K with first Chern
class c1(L) = c. Then clearly w2(L) = r2(c1(L)) = w .
(2) Let w = x1 ∪ x2 and let li be real line bundles over K with w1(li) = xi. Then w2(l1 ⊕ l2) =
x1 ∪ x2. �

Corollary 2.3.5. If K = K(Π, 1) and H3(Π) has no 2-torsion or Π is a finite abelian group
then w2 is onto.

Proof. If H3(Π) has no 2-torsion then r2 is onto and we are done by Lemma 2.3.4(1). Note that
this applies in particular for cyclic groups. Now if Π is a direct product of finite cyclic groups
then the Künneth isomorphism gives the result by applying Lemma 2.3.4(2). �

Example 2.3.6. If Π is a finite group then the 2-torsion of H3(Π) ∼= H2(Π) vanishes if and
only if it vanishes for the 2-Sylow subgroup of Π. Examples of such 2-groups are the quaternion
groups which have periodic cohomology implying that all odd-dimensional cohomology groups
vanish [Brown].

Before we can state the general result, we have to consider one more special case in which w2

is onto. Let
D2n := (x, y | xn = y2 = 1, y−1xy = x−1) ∼= Z/n⋊ Z/2

be a dihedral group of order 2n. There are classes xi ∈ H
1(D2n; Z/2) ∼= Hom(D2n,Z/2) defined

by

xi(x
ǫ · yδ) :=

{
δ (mod 2) if i = 1,

ǫ (mod 2) if i = 2

and one has the standard representation ρD : D2n →֒ O(2) which represents D2n as the sym-
metry group of a regular n-gon. The following computations of the cohomology of D2n can be
found for example in [Snaith, page 38].

Proposition . Define w := w2(ρD) then the following assertions hold:

1. If n is odd then H∗(D2n; Z/2) ∼= Z/2[x1] and H2(D2n) = 0.
2. If n ≡ 2 (4) then H∗(D2n; Z/2) ∼= Z/2[x1, x2] and H2(D2n) = 〈d〉 = Z/2 with Kronecker

products 〈x2
i , d〉 = 0, 〈x1 · x2, d〉 6= 0.

3. If n ≡ 0 (4) then H∗(D2n; Z/2) ∼= Z/2[x1, x2, w]/(x1 · x2 + x2
2 = 0) and H2(D2n) = 〈d〉 =

Z/2 with Kronecker products 〈xi · xj, d〉 = 0, 〈w, d〉 6= 0.

Lemma 2.3.7. In the short exact universal coefficient sequence

0 −→Ext(Hi−1K,Z/n)
in−→ H i(K; Z/n)

kn−→ Hom(HiK,Z/n) −→ 0

one has Ker(kn) = Image(rn : H i(K; Z) −→ H i(K; Z/n)) if HiK is a finite group.
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Proof. The short exact sequence Z
·n
 Z ։ Z/n of coefficients gives a commutative diagram of

exact sequences
y

y
y

0 −−−→ Ext(Hi−1K,Z)
i0−−−→ H i(K; Z)

k0−−−→ Hom(HiK,Z) −−−→ 0
y

yrn

y

0 −−−→ Ext(Hi−1K,Z/n)
in−−−→ H i(K; Z/n)

kn−−−→ Hom(HiK,Z/n) −−−→ 0
y

y
y

But by assumption Hom(HiK,Z) = 0 which implies that i0 is an isomorphism and thus the
result follows from the fact that Ext2

Z
(.,Z) = 0. �

If Π is a finite group then HnΠ is also finite and therefore by Lemmas 2.3.4 and 2.3.7 it is
enough to compute the image of

k2 ◦ w2 : [K(Π, 1), BSO] −→ H2(Π; Z/2) ։ Hom(H2Π; Z/2).

Let U/N be a subquotient of Π, i.e. N E U ≤ Π and denote by tU/N
the composition

tU/N
: H2Π

tr∗−−→ H2U
p∗
−→ H2(U/N )

and the Z/2-dual by

t∗U/N
: Hom(H2(U/N ),Z/2) −→ Hom(H2Π,Z/2).

Theorem 2.3.8. For any finite group Π, the image of k2 ◦ w2 equals the image of the map
∑

U/N dihedral

t∗U/N
:

⊕

U/N dihedral

Hom(H2(U/N ),Z/2) −→ Hom(H2Π,Z/2).

Remark . In this sum, which a priori runs over all dihedral subquotients of Π, we can obviously
restrict to those with |U/N | ≡ 0 (4) and a transfer argument shows that it is enough to consider
those U/N which are 2-groups. Moreover, only the maximal representatives give a nontrivial
contribution because if N ⊳ U ⊳ V and V/N is dihedral then tU/N

and tV/U
are both trivial.

The reason for this is that tr∗ : H2(V/N ) −→ H2(U/N ) and p∗ : H2(V/N ) −→ H2(V/U ) are
zero which one readily checks using the theorem on H∗(D2n; Z/2). Finally, one can select one
conjugacy class of each such maximal dihedral subquotient.

Proof of Theorem 2.3.8. The flat bundle construction discussed in Section 5.2 gives a map

FB : R̃SO(Π) −→ [K(Π, 1),BSO]

where R̃SO(Π) denotes the Grothendieck group of all real virtuell representations of dimension 0
and determinant 1. It is an easy corollary to Atiyah’s completion theorem [Atiyah-Segal] that
the image of w2 : [K(Π, 1), BSO] −→ H2(Π; Z/2) equals the image of w2 ◦ FB. Thus we need
to control only the real representations of Π and due to Lemma 2.3.4 only those which do not
come from complex representations. The proof of the theorem is finished by using the following
two observations which were proved in [Deligne]:

Proposition .
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a) If U ≤ Π and det(ρ) = 1 then det(IndΠ
U (ρ)) = 1 and the following diagram commutes:

R̃SO(U)
w2−−−→ H2(U ; Z/2)

yIndΠ
U

ytr∗

R̃SO(Π)
w2−−−→ H2(Π; Z/2)

b) Every real virtuell representation ρ of dimension 0 and determinant 1 comes from a com-
plex representation or can be written as a Z-linear combination of representations which
are induced from dihedral subquotients of Π.

Warning:

The diagram in a) does not commute if one replaces R̃SO by either RSO or R̃O, i.e. the
dimension and determinant conditions are necessary.
Although it seems to be the right place now, we will not give an example of a group Π where
w2 is not onto using Theorem 2.3.8. Instead, we will use the following much easier criterion to
give a counterexample in Remark 3.3.3. This criterion is only necessary but not sufficient, more
exactly, it is the first obstruction for finding a lift of w in the diagram

BSO
yw2(γ)

K(Π, 1)
w

−−−→ K(Z/2, 2).

Using the method of the universal example, one shows that this obstruction is

β(w2) ∈ H5(Π;π4(BSO)) ∼= H5(Π; Z).

Here β : H4(Π; Z/2) −→ H5(Π; Z) is the Bockstein homomorphism corresponding to the co-
efficient sequence ZZ ։ Z/2. Note that the vanishing of β(w2) is clearly necessary since
β(w2(η)

2) = β(r2(p1(η))) = 0.
While this obstruction theoretic approach works very well to find examples, it does not

lead much further because analyzing the higher obstructions is very involved and impossible
in practice. This is the reason why we have chosen the representation theoretic approach in
Theorem 2.3.8. It gives a complete algebraic description, though I must admit that computing
all these transfer maps is not yet standard for algebraic topologists.
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3. The James Spectral Sequence

6.1 Construction of the Spectral Sequence
6.2 The Edge-Homomorphisms of the Spectral Sequence
6.3 Applications to Signature Questions

We will now concentrate on oriented manifolds M with w2M̃ = 0, i.e. the normal 1-type
of M is a 1-universal fibration ξ : B −→ BSO with π2B = 0. We construct a spectral
sequence converging to Ω∗(ξ), generalizing the Atiyah-Hirzebruch spectral sequence described
in Section 5.3. This spectral sequence behaves very well under the action of Aut(ξ) on Ω∗(ξ) in
that the action is filtration preserving and well-understood on the E2-term, see Corollary 3.1.2.
Through its edge-homomorphisms, the spectral sequence gives interesting invariants which we
identify with geometric invariants in Section 6.2. As a consequence of the sole existence of
the spectral sequence, we obtain in Theorem 3.3.2 a couple of new results on the image of the
signature homomorphism σ : Ω4(ξ) −→ Z.
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3.1. Construction of the Spectral Sequence.

Let ξ : B −→ BSO be a 1-universal fibration with w1(ξ) = 0, π2B = 0 and Π := π1B. Our aim

is to construct a spectral sequence with E2
p,q
∼= Hp(K(Π, 1);ΩSpin

q ) which converges to Ωp+q(ξ).
In the preceding Section we obtained such a spectral sequence for the case that w2(ξ) = w2(η)
for a stable vector bundle η over K(Π, 1). In general, such a bundle η does not exist but we
still have a fibration

BSpin
i
−→B −→K(Π, 1)

such that ξ ◦ i is the universal bundle over BSpin. Moreover, the orientability of ξ implies that
the homotopy equivalences of the fiber BSpin induced by elements of Π are all homotopic to the
identity, see description(II) in Theorem 2.2.1. Therefore, the existence of a spectral sequence as
above follows from the following more general result by applying it to the above fibration and
using stable homotopy as the generalized homology theory.

Theorem 3.1.1. Let h be a generalized homology theory which is connected, i.e. πi(h) = 0

∀i < 0. Furthermore, let F −→B
f
−→ K be an h-orientable fibration and ξ : B −→ BSO a stable

vector bundle. Then there exists a spectral sequence

E2
p,q
∼= Hp (K;hq(M(ξ|F ))) =⇒ hp+q(Mξ)

(which we shall call the James spectral sequence for the fibration f , because I.M.James juggled
around with Thom spaces in his book [James] in a similar way we are going to do it.)

Remark . All spectral sequences we will consider will be 1.quadrant spectral sequences, so there
won’t occur any problems concerning their convergence. This is the reason why we assumed
the generalized homology theory h to be connected.

Proof. Since SO =
⋃

n∈N
SO(n) is a topological group, there is a contractible space ESO on

which SO acts freely and a model for BSO is the orbit space ESO/SO. As a subgroup of
SO each SO(n) also acts freely on this space ESO and if we define BSO(n) := ESO/SO(n)
then the maps in : BSO(n) −→ BSO are fiber bundles with fibers SO/SO(n). Similarly all
maps in+1

n : BSO(n) −→ BSO(n + 1) are fiber bundles with fibers SO(n + 1)/SO(n). From
the originally given stable vector bundle ξ over B we now construct a sequence of fiber bundles
over B by the pullback

Bn
bn−−−→ B

ξn

y ξ

y

BSO(n)
in−−−→ BSO.

Composing the maps bn with the original fibration f : B −→ K we get a sequence of fibrations
fn : Bn −→ K with fibers Fn together with vector bundles ξn over each Bn such that the
following diagrams commute:

Fn −−−→ Bn
fn
−−−→ K Bn

ξn
−−−→ BSO(n)

y
y

∥∥∥
y

yin+1
n

Fn+1 −−−→ Bn+1
fn+1
−−−→ K Bn+1

ξn+1
−−−→ BSO(n+ 1)

By definition (compare Section 5.3), the Thom spectrum Mξ consists of the family of Thom
spaces {T (ξn), sn : S1∧T (ξn) −→ T (ξn+1)} and similarlyMξ|F = {T (ξn|Fn), sn|S

1 ∧ T (ξn|Fn)}.
We will obtain the desired spectral sequence converging to h(Mξ) as a direct limit of relative
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Serre spectral sequences as follows: For any n ∈ N, the disc-sphere bundle pair (D(ξn), S(ξn))
is a relative fibration over Bn with relative fiber (Dn, Sn−1). Composed with fn : Bn −→ K
this becomes a relative fibration over K with relative fiber (D(ξn|Fn), S(ξn|Fn)). This fibration
is h-orientable because we are considering oriented vector bundles and the original fibration f
was assumed to be h-orientable. Thus there is a relative Serre spectral sequence (see [Switzer,
chapter 15, remark 2])

nE : Hp(K;hq(D(ξn|Fn), S(ξn|Fn))) =⇒ hp+q(D(ξn), S(ξn)).

Replacing ξn by ξn ⊕ ǫR we obtain a spectral sequence which is isomorphic to the above via
the suspension isomorphism for the generalized homology theory h. We shall identify these
two spectral sequences and obtain from the vector bundle homomorphism ξn ⊕ ǫR −→ ξn+1

homomorphisms of spectral sequences nE −→ n+1E. More exactly, we obtain a family of
commutative diagrams

nEi
p,q −−−→ n+1Ei

p,q

ndi
r

y n+1di
r

y
nEi

p−r,q+r−1 −−−→
n+1Ei

p−r,q+r−1

and we can define a spectral sequence E by the direct limit, i.e. we set

(Ei
p,q, d

i
r) := (lim

−→

n

nEi
p,q, lim

−→

n

ndi
r).

The exactness of the direct limit functor gives the isomorphism Ei+1
∗,∗
∼= H(Ei

∗,∗, d
i) which shows

that we have in fact defined a spectral sequence. By definition we have

E2
p,q = lim

−→

n

Hp(K;hq(D(ξn|Fn), S(ξn|Fn)))

∼= Hp(K; lim
−→

n

hq(T (ξn|Fn)))

∼= Hp(K;hq(Mξ|F )).

Since all nE are 1.quadrant spectral sequences we obtain E∞
p,q = lim

−→

n

nE∞
p,q with graded object

lim
−→

n

hp+q(D(ξn|Fn), S(ξn|Fn)) ∼= lim
−→

n

hp+q(T (ξn)) ∼= hp+q(Mξ). �

Remark . By construction, the James spectral sequence is natural with respect to commutative
diagrams of fibrations

F ′ −−−→ B′ −−−→ K ′

y ϕ

y
y

F −−−→ B −−−→ K

such that ξ′ = ξ ◦ ϕ.
Moreover, if f : (B′, B) −→ K is a relative fibration with relative fiber (F ′, F ) and ξ : B′ −→
BSO is a stable vector bundle then we obtain a relative version of the James spectral sequence

Hp(K;hq(M(ξ|F ′),M(ξ|F ))) =⇒ hp+q(Mξ,M(ξ|B))

by the same direct limit process. This time we have to take at the n’th step the relative Serre
spectral sequence of the relative fibration (D(ξn), S(ξn) ∪D(ξn|Bn)) over K.
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Corollary 3.1.2. If ξ : B −→ BSO is a 1-universal fibration with Π := π1B and π2B = 0,
any ϕ ∈ Aut(ξ) has a representative which preserves the filtration

ΩSpin
n = F0,n ⊆ F1,n−1 ⊆ · · · ⊆ Fn,0 = Ωn(ξ)

given by the James spectral sequence. Moreover, ϕ acts on the E2-term of the spectral sequence
via the induced map π1(ϕ) and this action induces the action on the filtration quotients E∞

p,q.

Proof. This follows directly from the naturality of the James spectral sequence once we recall
from Theorem 2.2.6 that any ϕ ∈ Aut(ξ) fits into a commutative diagram

BSpin −−−→ B −−−→ K(Π, 1)
∥∥∥

yϕ

yϕ̄

BSpin −−−→ B −−−→ K(Π, 1).

Here the homotopy class of ϕ̄ is completely determined by π1(ϕ̄) = π1(ϕ) and vice versa. �

We now determine those differentials d2 in the James spectral sequence which are interesting
for the groups Ω4(ξ). In this case the generalized homology theory is stable homotopy and the
fibration f is the pullback

BSpin −−−→ B
f

−−−→ K
y

y
yw

BSpin −−−→ BSO
w2(γ)
−−−→ K(Z/2, 2)

as in decription(I) of Theorem 2.2.1.

Theorem 3.1.3. Let Sq2w : Hp−2(K; Z/2) −→ Hp(K; Z/2) denote the homomorphism given by
Sq2w(x) := Sq2(x) + x ∪ w. Then the following assertions hold:

1. For p ≤ 4, the differential d2 : Hp(K; ΩSpin
1 ) −→ Hp−2(K; ΩSpin

2 ) is the dual of Sq2w.

2. For p ≤ 5, the differential d2 : Hp(K; ΩSpin
0 ) −→ Hp−2(K; ΩSpin

1 ) is reduction mod 2
composed with the dual of Sq2w.

Proof. First note that for the fibration {pt} −→B
id
−→ B the James spectral sequence

Hp(B;hq(Mξ|{pt})) =⇒ hp+q(Mξ)

translates by construction into the Atiyah-Hirzebruch spectral sequence for Mξ if one uses
the Thom isomorphism Hp(Mξ) ∼= Hp(B) and the fact that Mξ|{pt} ≃ S0 as spectra. By
Lemma 2.3.2, the differentials d2 in the Atiyah-Hirzebruch spectral sequence are given by the
dual of Sq2 on H∗(Mξ; Z/2), respectively the composition with the reduction mod 2. But under
the Thom isomorphism these maps become Sq2w2(ξ)

on H∗(B; Z/2). Now we use naturality of

the James spectral sequence for the fibrations

{pt} −−−→ B
id

−−−→ B
y

yid

yf

BSpin −−−→ B
f

−−−→ K

to get for all x ∈ Hp(K; Z/2), p ≤ 4:

d2(x) = d2(f∗(y)) = (Sq2w2(ξ))
∗(f∗(y)) = (Sq2w)∗(x)
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and the corresponding result for x ∈ Hp(K; Z), p ≤ 5.
Here we used that f∗ is onto for p ≤ 4 which follows from the Hurewicz Theorem since f is a 4-
equivalence. Finally, we also used that f∗ : H5(B; Z) −→ H5(K; Z) is onto. This is equivalent to
the vanishing of the differential d5 : H5(K; Z) −→ H4(BSpin) ∼= Z in the Serre spectral sequence
for the fibration f . But since f is the pullback of the fibration BSpin −→ BSO −→ K(Z/2, 2)
and the corresponding differential d5 vanishes (H5(K(Z/2, 2); Z) is finite !), we are done by the
naturality of the Serre spectral sequence. �

Remark . It is conceivable that the assertions in Theorem 3.1.3 also hold for arbitrary p although
our proof only works in the range described.

3.2. The Edge-Homomorphisms of the Spectral Sequence.

If the generalized homology theory h occurring in the James spectral sequence is stable homo-
topy then by the Pontrjagin-Thom construction we have an isomorphism πnMξ ∼= Ωn(ξ) and
we can ask for a geometrical interpretation of the edge-homomorphisms. If the base B of ξ is

fibered as F −→ B
f
−→ K then the edge-homomorphism of the James spectral sequence coming

from the base-line is

ed : πn(Mξ) −→ Hn(K;π0(Mξ|F))

where by the Hurewicz- and Thom isomorphisms π0(Mξ|F ) ∼= Z (assuming that F is connected)
and thus

ed : πn(Mξ) −→ Hn(K).

Proposition 3.2.1. Let [ν̃ : M → B] ∈ Ωn(ξ), i.e. ξ ◦ ν̃ is a stable normal Gauß map for M .
Then the above edge-homomorphism is given by

ed[ν̃ : M→ B] = f∗ ◦ ν̃∗[M] ∈ Hn(K),

where [M ] ∈ Hn(M) is the fundamental class given by the orientation determined by ν̃.

Proof. Using the naturality of the James spectral sequence for the fibrations

{pt} −−−→ B
id

−−−→ B
y

yid

yf

F −−−→ B
f

−−−→ K

we are reduced to showing ed[ν̃ : M → B] = ν̃∗[M] in the spectral sequence for the upper
fibration. Let us now choose an embedding M →֒ Sn+k for sufficiently large k. Then we obtain
a commutative diagram

Hn+k(S
n+k) −−−→ Hn+k(T (ν(M →֒ SN+k)))

T ν̃∗−−−→ Hn+k(T (ξk))
∼=

−−−→ Hn(Mξ)

∼=

y ∼=

y

Hn(M)
ν̃∗−−−→ Hn(B)

where a generator of Hn+k(S
n+k) is mapped to [M ] ∈ Hn(M). This proves that the diagram

πn(Mξ)
Hurewicz
−−−−−−→ Hn(Mξ)

Pontrjagin−Thom

y∼= ∼=

yThom

Ωn(ξ)
φ

−−−→ Hn(B)

(II.3)
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commutes if we set φ[ν̃ : M → B] := ν̃∗[M ].
Since the James spectral sequence for a fibration where the fiber is a point is isomorphic to the
Atiyah-Hirzebruch spectral sequence under the Thom isomorphism (compare the proof of Theo-
rem 3.1.3), diagram (II.3) shows that it suffices to show that the Hurewicz homomorphism is the
edge-homomorphism for the Atiyah-Hirzebruch spectral sequence for Mξ. But this follows from
the fact that this edge-homomorphism is a stable homology operation from stable homotopy to
ordinary homology, i.e. an element of [S0,HZ] ∼= Z. Moreover, the Hurewicz homomorphism
generates this group and if we take the spectrum ΣnHZ as a test case we can conclude that
the edge-homomorphism cannot be a nontrivial multiple of this generator. Finally, using the
spheres Sn as a second test example, one sees that the sign is correct, too. �

The other edge-homomorphism coming from the inclusion of the fiber is a map

ed′ : H0(K;πn(Mξ|F)) −→ πn(Mξ)

and if we also assume K to be connected then ed′ : Ωn(ξ|F) −→ Ωn(ξ).

Proposition 3.2.2. Let [ν̃ : M → F ] ∈ Ωn(ξ|F ), i.e. ξ|F ◦ ν̃ is a stable normal Gauß map for
M . Then the above edge-homomorphism is given by

ed′[ν̃ : M→ F] = [M, i ◦ ν̃] ∈ Ωn(ξ),

where i : F −→ B is the inclusion of the fiber.

Proof. This is just the naturality of the Pontrjagin-Thom construction, combined with the fact
that in the Serre spectral sequence this edge-homomorphism is given by the induced map i∗,
see [Switzer, Ch.15, Rem.5]. �

The last map we are interested in is not an edge-homomorphism any more but it is defined only
on the kernel of the edge-homomorphism we called ed above. More precisely, we consider now
the pullback of the path fibration

B −−−→ P (K(Z/2, 2))

p

y
y

BSO ×K
u

−−−→ K(Z/2, 2)

(II.4)

as in description(IV) of Theorem 2.2.1. Here

u : BSO ×K
w2×w
−−−→ K(Z/2, 2) ×K(Z/2, 2)

+
−→ K(Z/2, 2), w ∈ H2(K; Z/2) arbitrary,

and + denotes the H-space structure on K(Z/2, 2). Then the fibration

f := p2 ◦ p : B −→ K

has fiber BSpin and ξ := p1 ◦ p is a stable vector bundle over B. As an abbreviation, we let

B′ := BSO ×K and ξ′ := p1 : B′ −→ BSO.

This gives a commutative diagram of fibrations

F = BSpin −−−→ B
f

−−−→ K
y

yp

∥∥∥

F ′ = BSO −−−→ B′ p2
−−−→ K

with ξ = p ◦ ξ′.
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Assumption: [ν̃ : M → B] ∈ Ωn(ξ) maps to zero in Ωn(ξ′).
This assumption has two important consequences:

First of all, we can choose an element [µ : W → B′] ∈ Ωn+1(ξ
′, ξ) ∼= πn+1(Mξ′,Mξ) mapping

to [ν̃ : M → B] in the exact sequence of the pair (Mξ′,Mξ). The commutative diagram

M
ν̃

−−−→ B −−−→ P (K(Z/2, 2))

i

y p

y
y

W
µ

−−−→ B′ u
−−−→ K(Z/2, 2)

then gives an obstruction for extending the B-structure ν̃ to W . This obstruction

o ∈ H2(W,M; Z/2) ∼= [W/M,K(Z/2, 2)] ∼= [W ∪M C(M),K(Z/2, 2)]

is well-defined since maps from M to P (K(Z/2, 2)) are adjoint to maps from the cone C(M) to
K(Z/2, 2). In other words, such a map gives a homotopy from u ◦ µ ◦ i to the constant map.
Secondly, the edge-homomorphism ed vanishes on [ν̃ : M → B] because ed factors over Ωn(ξ′)
by Lemma 3.2.1. Thus the James spectral sequence gives an element

sec[ν̃ : M→ B] ∈ Hn−1(K; Z/2)/ Image(d2),

a secondary edge-invariant.

Proposition 3.2.3. In the situation above we have

sec[ν̃ : M→ B] = (p2 ◦ µ)∗(o ∩ [W,M]) ∈ Hn−1(K; Z/2)/ Image(d2).

Proof. The exact sequence of the pair (Mξ′,Mξ) induces a commutative diagram of James
spectral sequences

Hp(K;πq+1(Mξ′|F ′,Mξ|F )) =⇒ πp+q+1(Mξ′,Mξ)
↓ ∂ ↓ ∂

Hp(K;πq(Mξ|F )) =⇒ πp+q(Mξ)

and the homomorphism ∂ on the right hand side maps [µ : W → B′] to [ν̃ : M → B] for
p+ q = n. Since

πi(Mξ′|F ′,Mξ|F ) = πi(MSO,MSpin) = 0 ∀i ≤ 1 and

π2(MSO,MSpin)
∼=
−→
∂
π1(MSpin) ∼= Z/2

the edge-homomorphism in the upper spectral sequence is a map

edrel : πn+1(Mξ′,Mξ) −→ Hn−1(K; Z/2)

and we are done if we show that we get

edrel[µ : W→ B′] = (p2 ◦ µ)∗(o ∩ [W,M]).

Let me remark that at this point the indeterminacy

Image(d2) ⊆ Hn−1(K; Z/2)

of sec[ν̃ : M → B] has vanished. This results form the fact that we have chosen a particular
element [µ : W → B′] mapping under ∂ to [ν̃ : M → B]. Two such choices differ by an
element in Ωn+1(ξ

′) whose fundamental class in Hn+1(K; Z) maps under the differential d2 to
the difference of the edrel’s in Hn−1(K; Z/2).
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To compute edrel we want to compare with a certain Atiyah-Hirzebruch spectral sequence.
Let E := Σ2HZ/2. Via the Thom isomorphism we can view the map u : B′ −→ K(Z/2, 2) from
diagram (II.4) as a map of spectra ū : Mξ′ −→ E. This gives us the map

Mξ′
∆
−→Mξ′ ∧B′

+
ū∧p2+
−−−−→ E ∧K+

and because u ◦ p is zero homotopic (via a given homotopy to the constant map) we get a map
of pairs

(Mξ′,Mξ)
U

−−−→ (E ∧K+, ∗)x
x

(Mξ′|F ′,Mξ|F )
U |(Mξ′|F ′,Mξ|F )
−−−−−−−−−−−→ (E, ∗).

Here U |(Mξ′|F ′,Mξ|F ) is by construction the nontrivial element in H2(MSO,MSpin; Z/2) ∼=
Z/2. Applying the functor πst

∗ to the diagram above, the left hand side gives the relative James
spectral sequence

Hp(K;πq(Mξ′|F ′,Mξ|F )) =⇒ πp+q(Mξ′,Mξ)

whereas the right hand side gives the Atiyah-Hirzebruch spectral sequence for the generalized
homology theory E:

Hp(K;πq(E)) ∼= Hp(K;Eq(S0)) =⇒ Ep+q(K) ∼= πp+q(E ∧K+).

Since both spectral sequences are derived from the skeletal filtration of K, the map U can be
defined on every level of the spectral sequences and we obtain a commutative diagram

Hp(K;πq(Mξ′|F ′,Mξ|F )) =⇒ πp+q(Mξ′,Mξ)
↓ U |(Mξ′|F ′,Mξ|F )∗ ↓ U∗

Hp(K;πq(E)) =⇒ πp+q(E ∧K+) ∼= Hp+q−2(K; Z/2).

But E is an Eilenberg-MacLane spectrum, so the Atiyah-Hirzebruch spectral sequence collapses
and by naturality the edge-homomorphism edrel : πn+1(Mξ′,Mξ) −→ Hn−1(K; Z/2) in question
is just the map U∗ for p+ q = n+ 1.
To understand this map U∗, let T : Mξ′ −→ HZ/2 be the Thom class of the stable vector
bundle ξ′. If u : B′ −→ HZ/2 represents the class u ∈ H2(B′; Z/2) from diagram (II.4) then by
definition the class ū ∈ H2(Mξ′; Z/2) is represented by the map

ū : Mξ′
∆
−→Mξ′ ∧B′

+
T∧u
−−→ HZ/2 ∧HZ/2

m
−→ HZ/2

where m : HZ/2 ∧HZ/2 −→ HZ/2 is the multiplication map for the ring spectrum HZ/2. A
longer diagram chase which only uses the definitions of all objects involved then shows that the
following diagram commutes:

Mξ′
∆

−−−→ Mξ′ ∧B′
+

T∧∆B′

+
−−−−−→ HZ/2 ∧B′

+ ∧B
′
+y∆ 1∧u∧1

y

Mξ′ ∧B′
+

ū∧1
−−−→ Σ2HZ/2 ∧B′

+
Σ2m∧1
←−−−− HZ/2 ∧ Σ2HZ/2 ∧B′

+

The definition of the cap product with u as the homomorphism of stable homotopy groups
induced by

HZ/2 ∧B′
+

1∧∆B′

+
−−−−→ HZ/2 ∧B′

+ ∧B
′
+

1∧u∧1
−−−−→ HZ/2 ∧ Σ2HZ/2 ∧B′

+
Σ2m∧1
−−−−→ Σ2HZ/2 ∧B′

+
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then gives the commutative diagram

πn+1(Mξ′)
Hurewicz
−−−−−−→ Hn+1(Mξ′; Z/2)

Thom
−−−→

∼=
Hn+1(B

′; Z/2)
y∆∗

y.∩u

πn+1(Mξ′ ∧B′
+)

(ū∧1)∗
−−−−→ πn+1(Σ

2HZ/2 ∧B′
+) −−−→

∼=
Hn−1(B

′)

which finally leads by naturality to the commutative diagram

πn+1(Mξ′,Mξ)
Hurewicz
−−−−−−→ Hn+1(Mξ′,Mξ; Z/2) ∼= Hn+1(B

′, B; Z/2)
µ∗

←−−− Hn+1(W,M ; Z/2)
yU∗

y.∩u

y.∩o

Hn+1(K; Z/2)
(p2)∗
←−−− Hn−1(B

′; Z/2)
µ∗

←−−− Hn−1(W ; Z/2).

From this diagram we can read off in the same way we proved the commutativity of dia-
gram (II.3) in Proposition 3.2.1 that the composition

Ωn+1(ξ
′, ξ)

Pontrjagin−Thom
−−−−−−−−−−−−→

∼=
πn+1(Mξ′,Mξ)

U∗−→ Hn−1(K; Z/2)

maps [µ : W → B′] to (p2 ◦ µ)∗(o ∩ [W,M]). �

Remark . From the definition of sec through the James spectral sequence, it is clear that the
image of sec lies in the subquotient of Hn−1(K; Z/2) on which all differentials vanish. In
Theorems 2.3.2 and 3.1.3 we have computed the differential d2 on this group to be the dual
of Sq2w if w = w2(η) for a stable vector bundle η over K respectively if n ≤ 4. The following
computation is on the one hand a consistency check for the formula in Proposition 3.2.3 in the
case d2 = (Sq2w)∗. On the other hand, it underlines our conjecture that this differential is in all
dimensions the dual of Sq2w.
Let x ∈ Hn−3(K; Z/2) and set f := p2 ◦ µ : W −→ K. Then we claim that

〈Sq2w(x), f∗(o ∩ [W,M]〉 = 〈f∗(Sq2(x) + w ∪ x) ∪ o, [W,M]〉 = 0.

The reason is that o ∈ H2(W,M; Z/2) maps to f∗(w)+w2W ∈ H
2(W ; Z/2) and thus we obtain

from the relation
Sq2(y) = w2W ∪ y ∀y ∈ Hn−1(W ; Z/2)

the following equations:

f∗(x) ∪ Sq2(o) = f∗(x) ∪ o ∪ o

= f∗(x) ∪ o ∪ (f∗(w) + w2W)

= f∗(x ∪ w) ∪ o + Sq2(f∗(x) ∪ o)

= f∗(x ∪ w) ∪ o + Sq2(f∗(x)) ∪ o + Sq1(f∗(x) ∪Sq1(o)) + f∗(x) ∪Sq2(o).

This proves the assertion
f∗(Sq2(x) + w ∪ x) ∪ o = 0

because of the relation

Sq1(y) = w1W ∪ y = 0 ∀y ∈ Hn(W,M ; Z/2). �

Using Proposition 3.2.3, we can make the following nice observation about the effect of changing
the ξ-structure of a fixed n-dimensional manifold M . To this end we first describe an obstruc-
tion theoretically convenient way for obtaining elements of Aut(ξ).
By definition the fibration p : B −→ B′ = BSO × K is a principal fibration with fiber
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Ω(K(Z/2, 2)) = K(Z/2, 1) in the sense of [Baues, Def.1.3.1]. It follows that there is an ac-
tion

+ : [B,K(Z/2, 1)]0 × [B,B]0p −→ [B,B]0p

and thus we can define for a given β ∈ H1(B; Z/2) an element β̄ := β + idB ∈ [B,B]p. Note
that by [Baues, Thm.1.3.8], the correspondence β 7→ β̄ is a bijection between H1(B; Z/2) and
[B,B]p.
Moreover, if ξ : B −→ BSO is 1-universal then K is a K(Π, 1), H1(B; Z/2) ∼= H1(Π; Z/2) and
β̄ is an automorphism corresponding to the element BβG ∈ Aut(ξ)π1 which we constructed in
Proposition 2.2.5. This follows from the observation that in this case B = BG, ξ = Bρ̄ and the
action + above comes from the homomorphism

Z/2×G −→ G
(t, g) 7−→ g · σt

which we used to define βG ∈ Aut(ρ̄).
Now given a ξ-structure ν̃ : M −→ B, we can form another ξ-structure β̄ ◦ ν̃ : M −→ B and
get the ξ′-bordism

µ : W := M × I
p1
−→M

p◦ν̃
−−→ B′

between [ν̃ : M → B] and −[β̄ ◦ ν̃ : M → B]. Thus the secondary invariant sec of this difference
is defined.

Proposition 3.2.4. The following formula holds:

sec
(
[ν̃ : M→ B]− [β̄ ◦ ν̃ : M→ B]

)
= p2∗(β ∩ ν̃∗[M]) ∈ Hn−1(K; Z/2)/ Image(d2).

Proof. By [Baues, (1.3.7),Thm.1.3.8], the obstruction for finding a solution of the homotopy
lifting problem

B × {0, 1}
idB ∪β̄
−−−−→ B

inclusion

y
yp

B × I
p◦p1
−−−→ B′

is given by δ(0, β) in the long exact sequence

. . . −→H1(B; Z/2) ⊕H1(B; Z/2) ∼= H1(B × {0, 1}; Z/2)
δ
−→H2(B × I,B × {0, 1}; Z/2) −→ . . .

of the pair (B × I,B × {0, 1}). By naturality this implies that the obstruction for finding a
solution of the homotopy lifting problem

M × {0, 1}
ν̃∪β̄◦ν̃
−−−−→ B

inclusion

y
yp

W = M × I
µ

−−−→ B′

is given by δ(0, ν̃∗(β)) ∈ H2(W,M × {0, 1}; Z/2). (In Proposition 3.2.3 this obstruction was
called o.) We can conclude that

sec
(
[ν̃ : M→ B]− [β̄ ◦ ν̃ : M→ B]

)
= (p2 ◦ µ)∗(o ∩ [W, ∂W])

= (p2 ◦ µ ◦ iM )∗((0, ν̃
∗(β)) ∩ [M × {0, 1}])

= (p2 ◦ ν̃)∗(ν̃
∗(β) ∩ [M ])

= p2∗(β ∩ ν̃∗[M ])

which proves the formula. �
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Remark . We can again make a consistency check for the above formula by proving directly
that d2(p2∗(β ∩ ν̃∗[M ])) = 0 ∀β ∈ H1(B; Z/2). Recall that this is only possible for us if we
assume that d2 = (Sq2w)∗.
Let x ∈ Hn−3(K; Z/2) and set f := p2 ◦ ν̃ : M −→ K. Then we claim that

〈Sq2w(x), p2∗(β ∩ ν̃∗[M ])〉 = 〈ν̃∗
(
p∗2(Sq

2
w(x)) ∪ β

)
, [M ]〉 = 0.

The reason is that we have the relations f∗(w) = w2M,w1M = 0 and thus obtain (writing
β′ := ν̃∗(β)):

ν̃∗(p∗2(Sq
2
w(x)) ∪ β) = f∗(Sq2w(x)) ∪ β′

= f∗(Sq2(x)) ∪ β′ + f∗(w ∪ x) ∪ β′

= Sq2(f∗(x) ∪ β′) + w2M ∪ (f∗(x) ∪ β′)

= 0. �

3.3. Applications to Signature Questions.

In this Section we want to use the James spectral sequence to give partial results to the following
question: If ξ : B −→ BSO is a 1-universal fibration and σ : Ω4(ξ) −→ Z is given by the
signature, what is the image of σ?
Because σ(CP2) = 1, the signature is onto if π2B 6= 0 so this case is uninteresting. Therefore,
we can again assume π2B = 0 in the following. By Theorem 2.2.1, ξ = ξ(Π, w) then only
depends on Π and w ∈ H2(Π; Z/2) ∼= H2(B; Z/2) where w is mapped to w2(ξ) under the
isomorphism.

Definition 3.3.1. For w ∈ H2(Π; Z/2), Π a finitely presentable group, define σ(Π, w) ∈ N by
the requirement that σ(Ω4(ξ(Π, w))) = σ(Π, w) · Z.

Recall that every bordism class in Ω4(ξ) is represented by a 4-manifold with normal 1-type
ξ, so we are making statements about the possible signatures of such manifolds. In the next
Theorem we will prove some results on the image of the signature just by using the existence and
naturality of the James spectral sequence. These results include Rohlin’s well-known theorem
(see part (2)) as well as a couple of new results.

Theorem 3.3.2.

1. σ(Π, w) divides 16.
2. σ(Π, 0) = 16.
3. If w 6= 0 then σ(Π, w) divides 8.
4. σ(Π, w) = 8 if 0 6= w ∈ Ext(H1Π; Z/2) →֒ H2(Π; Z/2).
5. If Sq1w /∈ {a ∪w | a ∈ H1(Π; Z/2)} then σ(Π, w) divides 4.
6. If the multiplication by w is injective on H1(Π; Z/2) then σ(Π, w) = 1 if and only if
w2 /∈ {b2 + b ∪ w | b ∈ H2(Π; Z/2)} + Ker(k2 : H4(Π; Z/2) −→ Hom(H4(Π),Z/2)).

Proof. (1) follows from the existence of the Kummer surface which is a simply-connected spin
manifold with signature 16.
(2) Our aim is to prove Rohlin’s Theorem using only the knowledge of ΩSO

i for i ≤ 4 and

the fact that ΩSpin
3 = 0 which was proven in an elementary way in [Kirby]. If we apply the

James spectral sequence to the fibration BSpin −→ BSO −→ K(Z/2, 2) and use the fact that

ΩSO
i = 0 for i = 1, 2, 3, we can conclude that ΩSpin

i
∼= Z/2 for i = 1, 2 and we obtain a filtration

ΩSpin
4 /Image(di)

⊆︸︷︷︸
Z/2

F2,2 ⊆︸︷︷︸
Z/2

F3,1 ⊆︸︷︷︸
Z/4

ΩSO
4

∼=
−→
σ

Z.
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Because Image(di) ⊆ ΩSpin
4 is a torsion group and thus the signature vanishes on this sub-

group, the divisibility of the signature on ΩSpin
4 equals the product of the orders of the three

subquotients in the filtration. But since the homology of K(Z/2, 2) is given by

Hi(K(Z/2, 2); Z/2) ∼= Z/2 for i = 2, 3

H4(K(Z/2, 2); Z) ∼= Z/4

the above subquotients are as claimed once we show that there are no differentials involved.
All differentials leaving from H5(K(Z/2, 2); Z) ∼= Z/2 are trivial because the edge-homomor-
phism ΩSO

5 −→ H5(K(Z/2, 2); Z) (compare Lemma 3.2.1) is onto. This follows from the fact
that the nontrivial element z ∈ H5(K(Z/2, 2); Z) is realized by the oriented 5-manifold M :=
SU(3)/SO(3). To verify this assertion, note that M is simply-connected and non-spin with
H2(M ; Z) ∼= π2M ∼= Z/2. Thus by Poincaré duality

0 6= 〈w2(M) ∪ Sq1(w2(M)), [M ]〉 = 〈ι2 ∪ Sq
1(ι2), (w2)∗[M ]〉, i.e. (w2)∗[M ] = z.

The only other possible differentials in dimension 4 are

d2 : E2
4,i −→ E2

2,i+1, i = 0, 1.

But using Theorem 3.1.3 these are given by (Sq2ι2)
∗ respectively by (Sq2ι2)

∗ ◦ r2. Now in our

situation (Sq2ι2)
∗ ≡ 0 because Sq2ι2(ι2) = Sq2(ι2)+ι2∪ι2 = 0 and thus Rohlin’s Theorem follows.

(3) There is a commutative diagram of fibrations

BSpin −−−→ B −−−→ K(Π, 1)
∥∥∥

yξ(Π,w)

yw

BSpin −−−→ BSO −−−→ K(Z/2, 2)

and w 6= 0 implies that w∗ : H2(Π; Z/2) −→ H2(K(Z/2, 2); Z/2) ∼= Z/2 is onto.
We now apply the James spectral sequence to both fibrations. The lower fibration was discussed
in (2) and for the upper fibration, the James spectral sequence gives a filtration

ΩSpin
4 ⊆ F2,2(ξ) ⊆ F3,1(ξ) ⊆ Ω4(ξ).

Here certainly differentials can exist and thus the subquotients of this filtration are only sub-
quotients of E2

p,4−p. Now consider an element x ∈ H2(Π; Z/2) ∼= E2
2,2 with w∗(x) 6= 0. Then x

cannot be hit by a differential since x = di(y) would give the contradiction w∗(x) = di(ξ∗(y)) to
the arguments in (2). Therefore, x survives to infinity to give an element x̄ ∈ F2,2(ξ) ⊆ Ω4(ξ)

mapping to ξ∗(x̄) ∈ F2,2 \ΩSpin
4 . Thus the corresponding manifold has signature 8 (mod 16).

(4) If M is a manifold with normal 1-type ξ and u : M −→ K(π1M, 1) is a 2-equivalence then
the universal coefficient sequence shows that under our assumption one has:

〈w2(M), x〉 = 〈u∗(w), x〉 = 〈w, u∗(x)〉 = 0 ∀x ∈ H2(M ; Z)

which implies that the intersection form on H2(M ; Z) is even. But since σ(M) is just the
signature of this form, it follows that σ(M) is divisible by 8. Since by (3) there also exists a
manifold with signature 8 in this normal 1-type, we are done.
(5) To prove σ(Π, w) | 4, we want to find an element in F3,1(ξ) ⊆ Ω4(ξ) which maps to F3,1 \F2,2

under ξ∗.
Take an arbitrary element x ∈ H3(Π; Z/2). Then w∗(x) 6= 0 if and only if 〈Sq1w, x〉 6= 0
because H3(K(Z/2, 2); Z/2) is generated by Sq1(ι2). Such an element x cannot be hit by a
differential since again this would contradict our knowledge about the spectral sequence for the
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fibration with total space BSO. Therefore, x survives to infinity if and only if d2(x) = 0 which
is equivalent to

〈a ∪w, x〉 = 0 ∀a ∈ H1(Π; Z/2)

because by Theorem 3.1.3 the dual of d2 is multiplication by w (Sq2 vanishes on 1-dimensional
classes). Obviously our assumption is equivalent to the existence of an element x satisfying the
above two conditions.

(6) We have a commutative diagram

Ω4(ξ)
ξ∗

−−−→ ΩSO
4

σ
−−−→ Z

q

y q′
y r4

y

H4(Π)
w∗−−−→ H4(K(Z/2, 2))

∼=
−−−→ Z/4

which shows that w∗ ◦ q is the signature mod 4. Recall that H4(K(Z/2, 2); Z/4) is generated
by the Pontrjagin square ℘ and thus as a map into Z/4, w∗ is given by

w∗(x) = 〈℘,w∗(x)〉 = 〈w∗(℘), x〉 = 〈℘(w), x〉, x ∈ H4(Π).

Reducing further mod 2 gives 〈w2, x〉. Moreover, x lies in the image of q if and only if di(x) = 0
for i = 2, 3.
By assumption multiplication by w is injective on H1(Π; Z/2) which is equivalent to the surjec-
tivity of d2 : E2

3,1 −→ E2
1,2. But this implies the vanishing of d3 on E3

4,0.
Thus if the image of

w∗ : {x ∈ H4(Π) | d2(x) = 0} −→ Z/4

is n · Z/4 with n ∈ {0, 1, 2} then σ(Π, w) ≡ n mod 4.
In particular, σ(Π, w) ≡ 1 mod 4 if and only if there exists an x ∈ H4(Π) with 〈w2, x〉 6= 0 and
d2(x) = 0 (⇐⇒ 〈b2 + b ∪ w, x〉 = 0 ∀b ∈ H2(Π; Z/2) by Theorem 3.1.3).

Claim: These two conditions are equivalent to our second assumption

w2 /∈ {b2 + b ∪w | b ∈ H2(Π; Z/2)} + Ker(k2 : H4(Π; Z/2) −→ Hom(H4(Π),Z/2)).

To see this equivalence, first observe that Ker(k2) is by definition the subgroup of H4(Π; Z/2)
which annihilates all of H4(Π). Dividing out Ker(k2) and defining A := H4(Π)/2 ·H4(Π),

U := k2({b
2 + b ∪ w | b ∈ H2(Π; Z/2)}) ⊆ Hom(H4(Π),Z/2) = Hom(A,Z/2)

and µ := k2(w
2) ∈ Hom(A,Z/2), we get the following statement which is equivalent to the

claim:

∃x ∈ A with µ(x) 6= 0 and u(x) = 0 ∀u ∈ U ⇐⇒ µ /∈ U.

In other words, we want to proof U = Ann(Ann(U)) if we define the annihilator by

Ann(U) := {y ∈ A | u(y) = 0 ∀u ∈ U}.

Clearly we have the inclusion U ⊆ Ann(Ann(U)) and since both sides are finite dimensional
Z/2-vector spaces for the equality we have to show that their dimensions agree. But this follows
directly from the nondegeneracy of the bilinear form

Hom(A,Z/2) ×A −→ Z/2

(u, a) 7−→ u(a). �
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Remark . Under the assumption of part (6) of the Theorem one can show with the same methods
that if σ(Π, w) 6= 1 then σ(Π, w) = 2 if and only if

℘(w) /∈ i4,2

(
{b2 + b ∪ w | b ∈ H2(Π; Z/2)}

)
+ Ker

(
k4 : H4(Π; Z/4) −→ Hom(H4(Π),Z/4)

)
.

where i4,2 : Z/2 →֒ Z/4. This can be used to show that for example σ((Z/4)6, w) = 2 for a
certain class w, but we will not give any details here.

Examples:

a) If Π is a finite group with cyclic or quaternion 2-Sylow subgroup,
then σ(Π, w) = 8 ∀w 6= 0.

b)

σ(Z/2 × Z/2, w) =





4 if w = x2
1 + x1 · x2 + x2

2 =: y,

8 if w 6= 0, y,

16 if w = 0.

where {x1, x2} is the usual basis for H1(Z/2 × Z/2; Z/2).
c) Let Π := Z/16 ⋊ Z/8 with action of Z/8 on Z/16 given by t 7→ t5. Then there exists a

class w ∈ H2(Π; Z/2) such that σ(Π, w) = 1.

Proof. a) follows directly from Theorem 3.3.2(4) because the groups in question fulfill the as-
sumption there.
b) If w 6= y, there exists an inclusion i : Z/2 →֒ Z/2 × Z/2 such that i∗(w) = 0. Now if M
is a 4-manifold with normal 1-type ξ(Z/2× Z/2, w) then the double covering corresponding to
i(Z/2) is a spin manifold and thus its signature is divisible by 16. Therefore, σ(M) ≡ 0 mod 8
and the assertion follows from part (3) of Theorem 3.3.2. The case w = y is handled by part (5)
of the theorem because one computes that

Sq1(y) = x2
1 · x2 + x1 · x

2
2 /∈ {a · y | a ∈ H

1(Z/2× Z/2; Z/2)}.

c) We want to apply part(6) of Theorem 3.3.2 and will make use of the following computation
of the Z/2-cohomology ring of the group Π given in [Diethelm]:

H∗(Π; Z/2) ∼= Z/2[a, b, v, w]/
(a2 = b2 = 0)

with deg(a) = deg(b) = 1 and deg(v) = deg(w) = 2 and

b = p∗(β), v = p∗(ν) and i∗(a) = α, i∗(w) = µ.

Here

Z/16 ∼= 〈t〉
i
−→Π

p
−→Z/8

is the split extension in question and α, µ respectively β, ν are the generators for the corre-
sponding cyclic groups.
Obviously multiplication by w is injective on H1(Π; Z/2) and thus we have to show that

w2 /∈ {y · w + y2 | y ∈ H2(Π; Z/2)} + Image(r2).

Assume that w2 can be written as

w2 = l1(y · w + y2) + l2 · r2(x), li ∈ Z/2 with x ∈ H4(Π) and

y = λ1 · w + λ2 · v + λ3 · a · b, λi ∈ Z/2.

Now observe that the map i∗ factors through the fixed point set of the action t 7→ t5, i.e.
through the group H4(〈t〉)Z/8.
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If the element n generates H2(〈t〉) then n2 generates the group H4(〈t〉) and thus we see that
Z/8 acts as n 7→ 5 · n respectively as n2 7→ 25 · n2 = 9 · n2. This shows that

H4(〈t〉)Z/8 = 〈2 · n2〉.

and therefore
r2(i

∗(x)) = 0 ∀x ∈ H4(Π).

If we use the relations

i∗(v) = i∗(b) = 0 and thus i∗(y) = λ1 · w

we get the following contradiction:

0 6= µ2 = i∗(w2) = l1 ·
(
i∗(y) · i∗(w) + i∗(y)2

)
= l1 · (λ1 · w

2 + λ2
1 · w

2) = 0. �

Remark 3.3.3. For the metacyclic group from example c) above, there cannot exist a stable
vector bundle η : K(Π, 1) −→ BO with w2(η) = w. Otherwise r2(p1(η)) = w2(η)

2 = w2 would
give a contradiction to the above proof. This gives the long promised example of a pair (Π, w)
where description(III) from Theorem 2.2.1 is not applicable.



48 Part II. Stable Classification of 4-Dimensional Manifolds

4. The Bordism Groups Ω4(ξ) for Special Fundamental Groups

7.1 The Z/2-Cohomology Ring for Periodic 2-Groups
7.2 The Spin Case
7.3 The Non-Spin Case
7.4 Stable Classification Results for π1 Finite with Periodic 2-Sylow Subgroups

Since we will be interested in oriented manifolds, the bordism group Ω4(ξ) for a 1-universal
fibration ξ : B −→ BSO with π2B 6= 0,Π := π1B was computed in the example of Section 4.
We showed that signature and π1-fundamental class give an isomorphism to Z×H4(Π).

In this Section we can thus concentrate on 1-universal fibrations with π2B = 0. We will
compute Ω4(ξ) for all finite Π with periodic 2-Sylow subgroups. We prove that in this case the
bordism group either equals Z×H4(Π), again classified by signature and π1-fundamental class
or is equal to Z×Z/2×H4(Π) with a new Z/2-valued bordism invariant. In the spin case, this
invariant is essentially the sec-invariant from Section 6.2, however in the nonspin case it comes
from the E∞

2,2-term of the James spectral sequence for Ω4(ξ) and gets therefore the name ter for
tertiary bordism invariant. The main difference between these two invariants is the fact that
sec is a homotopy invariant (see Theorem 6.4.1), whereas ter takes different values on homotopy
equivalent manifolds as we show in Section 8.2.
As a guideline for the reader, we remark that Sections 7.1 to 7.3 cover the case of periodic
2-groups and contain all interesting computations. In Section 7.4 we then put all information
together to obtain the classification results.
As a matter of convenience, we shall write in the future BΠ for an Eilenberg-MacLane space of
type (Π, 1). This is consistent with the classifying space notation, since Π is always a discrete
group.
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4.1. The Z/2-Cohomology Ring for Periodic 2-Groups.

We first recall from [Brown, Thm.VI,9.3] that a 2-group with periodic cohomology is either a
cyclic or a (generalized) quaternion group. To fix the notation, let n be a power of 2 and let

C = C2n := (z | z2n = 1) , Q = Q8n = (x, y | x4n = y2, y−1xy = x−1)

be the cyclic and quaternion groups of orders 2n respectively 8n. (We omitted Q4 because it is
cyclic.) There are the well-known faithful representations

ρC : C −→ U(1) and ρQ : Q −→ SU(2)

given by

ρC(z) := ǫ2n respectively ρQ(x) =

(
ǫ−1
4n 0
0 ǫ4n

)
, ρQ(y) =

(
0 1
−1 0

)
,

where ǫk ∈ C denotes a primitive k’th root of unity. Furthermore we have the following 1-
dimensional orthogonal representations:

a(zi) := (−1)i respectively xk(x
i · yj) :=

{
(−1)j if k = 1,

(−1)i if k = 2

which define cohomology classes a ∈ H1(C; Z/2) respectively x1, x2 ∈ H
1(Q; Z/2). The follow-

ing computation of the Z/2-cohomology rings for C and Q can be found for example in [Snaith].
The periodicity of the Z-homology is a direct consequence of the existence of the representations
ρC respectively ρQ above.

Lemma 4.1.1. Let b := w2(ρC) ∈ H2(C; Z/2) and p := w4(ρQ) ∈ H4(Q; Z/2). Then

a)

H∗(C2n; Z/2) =





Z/2[a, b]
/(a2 = b)

= Z/2[a] if n = 1,

Z/2[a, b]
/(a2 = 0)

if n > 1,

in particular dimZ/2 Hi(C; Z/2) = dimZ/2H
i(C; Z/2) = 1 ∀i ∈ N0.

Moreover, the Z-homology of C is given by

Hi(C; Z) ∼=

{
C if i is odd,

0 if 0 < i is even.

b)

H∗(Q8n; Z/2) =





Z/2[x1, x2, p]/(x2
1 + x1x2 + x2

2 = 0 = x3
1)

if n = 1,

Z/2[x1, x2, p]/(x1x2 + x2
2 = 0 = x3

1)
if n > 1,

in particular, dimZ/2Hi(Q; Z/2) = dimZ/2H
i(Q; Z/2) =

{
1 if i ≡ 0, 3 (4),

2 if i ≡ 1, 2 (4).

Moreover, the Z-homology of Q is given by

Hi(Q8n; Z) ∼=





Qab ∼= Z/2× Z/2 if i ≡ 1 (4)

C8n if i ≡ 3 (4)

0 if 0 < i is even.
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Remark . It clearly follows from the relations in H∗(Q; Z/2) that all products of x1 and x2

vanish in dimensions 4 and higher. Moreover, the main difference between Q8 and Q8n, n > 1
is the fact that for Q8 one has

x2
1 · x2 = x1 · x

2
2 6= 0 , x3

1 = 0 = x3
2,

whereas for n > 1 the relations in H3(Q8n; Z/2) look like

x2
1 · x2 = x1 · x

2
2 = x3

2 6= 0 , x3
1 = 0.

In order to determine the d2-differentials in the James spectral sequence, we will need the
following information about the action of Sq1 and Sq2 on the Z/2-cohomology rings.

Lemma 4.1.2. With the notation from lemma 4.1.1 one has

a) Sqk(ai) =
( i
k

)
· ai+k

and for n > 1 : Sq1(ai · bj) = i · ai+1 · bj , Sq2(ai · bj) = j · ai · bj+1.

b) Sq1(xi
1 · x

j
2 · p

k) =





x2
1 · p

k if i = 1, j = 0,

x2
2 · p

k if j = 1, i = 0,

0 else,

Sq2(xi
1 · x

j
2 · p

k) =





x2
1 · x

j
2 · p

k if i = 1 6= j,

xi
1 · x

2
2 · p

k if j = 1 6= i,

0 else.

Proof. If we use the so called Wu formula (see [Milnor-Stasheff])

Sqk(wm) =
k∑

i=0

(
k −m

i

)
wk−i ∪ wm+i

and note that

wi(ρC) = 0 ∀i 6= 2 and wi(ρQ) = 0 ∀i 6= 4,

we can deduce

Sq1(b) = 0 = Sq1(p) = Sq2(p).

Using the Cartan product formula and the fact that Sq2 squares 2-dimensional and vanishes on
1-dimensional classes, one easily obtains the assertions. �

4.2. The Spin Case.

If ξ : B = BSpin × BΠ
Bp◦p1
−−−−→ BSO is the normal 1-type for spin manifolds then Ω∗(ξ) ∼=

ΩSpin
∗ (BΠ) and we can apply the Atiyah-Hirzebruch spectral sequence for the generalized ho-

mology theory ΩSpin
∗ to the computation of Ω∗(ξ) as described in Section 5.3. Since the relevant

d2-differentials are given by the duals of Sq2 (see Lemma 2.3.2), Lemmas 4.1.1 and 4.1.2 show
that the natural map

ΩSpin
4 −→ ΩSpin

4 (BC)

is an isomorphism because E3
i,4−i = 0 ∀i 6= 0. In particular, the bordism groups are isomorphic

to the integers via the signature divided by 16.
Quite to the contrary, in the quaternion case all relevant d2-differentials vanish by Lemma 4.1.2

and in order to determine ΩSpin
4 (BQ), we have to look at the next differential.



Section 7. The Bordism Groups Ω4(ξ) for Special Fundamental Groups 51

Proposition 4.2.1. The differential

d3 : E3
5,0 = H5(BQ; Z) −→ H2(BQ; Z/2) = E3

2,2

is an isomorphism.

Proof. Let C = C4n ⊆ Q8n = Q be the cyclic subgroup of order 4n generated by x ∈ Q. Then
C = Ker(x1) and if η is a 1-dimensional vector bundle over BQ with w1(η) = x1 then its sphere
bundle Sη is a space of type (C, 1). Clearly the disc bundle Dη ≃ BQ is a space of type (Q, 1)
and thus we obtain a cofiber sequence

BC −→BQ
p
−→ Tη

where Tη := Dη/Sη is the Thom space of η.
Let u ∈ H1(Tη; Z/2) be the Thom class. Then by definition of the first Stiefel-Whitney class
as an unoriented version of the Euler class we get

p∗(u · xi) = w1(η) · xi = x1 · xi ∈ H
2(Q; Z/2).

Let {a1, a2} respectively {b1, b2} denote the Z/2-basis of H2(Q; Z/2) respectively H2(Tη; Z/2)
which are dual to the basis {x2

1, x
2
2} respectively {u · x1, u · x2} of H2(Q; Z/2) respectively

H2(Tη; Z/2). From the relations in H2(Q; Z/2) we deduce that

〈u · xi, p∗(a2)〉 = 〈x1 · xi, a2〉 =

{
0 if i = 1,

1 if i = 2,

and thus p∗(a2) = b2.
Now the idea is to compare the Atiyah-Hirzebruch spectral sequences for BQ and Tη. Let

z ∈ E2
4,1(Tη) = H4(Tη; Z/2) ∼= H3(Q; Z/2) ∼= Z/2

denote a generator. Then we compute that

〈u · xi, d
Tη
2 (z)〉 = 〈Sq2Tη(u · xi), z〉

= 〈Sq2(u) · xi + Sq1(u) · Sq1(xi) + u · Sq2(xi), z〉

= 〈w2(η) · u · xi + w1(η) · u · x
2
i , z〉

= 〈u · x1 · x
2
i , z〉

which implies that dTη
2 (z) = b2 via the relations x3

1 = 0 6= x1 · x
2
2. If we consider the Atiyah-

Hirzebruch spectral sequence

H̃∗(X; ΩSpin
∗ ) =⇒ M̃Spin∗(X)

for the reduced theories, we get a commutative diagram

E∞
2,2(BQ)

p∗
−−−→ E∞

2,2(Tη)y
y

M̃Spin4(BQ)
p∗
−−−→ M̃Spin4(Tη)

where both vertical arrows are inclusions. Now observe that the bottom map p∗ is also injective

because M̃Spin4(BC) = 0 as we noted at the beginning of this Section. This shows that p∗ is
injective on E∞

2,2-terms as well.
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Claim: a2 ∈ Image(dBQ
3 ).

Proof: If not then 0 6= ā2 ∈ E
∞
2,2(BQ) and therefore also p∗(ā2) 6= 0. But this contradicts the

above computations p∗(a2) = b2 = dTη
2 (z).

This finishes the proof of the proposition in the case n = 1 because Q8 has an automorphism
which interchanges x and y and thus x1 and x2 respectively a1 and a2. Therefore, also a1 ∈
Image(dBQ8

3 ) and thus dBQ8
3 is an isomorphism.

If n > 1, we consider the inclusion

i : Q8 −→ Q8n

x[8] 7−→ x[8n]n

y[8] 7−→ y[8n].

Then we have i∗(x1[8n]) = x1[8] and i∗(x2[8n]) = 0, implying i∗(a1[8]) = a1[8n]. The naturality of
the differential d3 gives a commutative diagram

H5(Q8)
i∗−−−→ H5(Q8n)

∼=

yd
BQ8
3

yd
BQ8n
3

H2(Q8; Z/2)
i∗−−−→ H2(Q8n; Z/2).

This diagram shows that a1[8n] = i∗(a1[8]) ∈ Image(dBQ8n

3 ) which together with the above claim
proves the proposition in the cases n > 1. �

Theorem 4.2.2. There is an isomorphism of groups

(σ, sec) : ΩSpin
4 (BQ) −→ 16 · Z× Z/2.

Proof. Putting the information about the differentials together, the Atiyah-Hirzebruch spectral
sequence gives an exact sequence

0 −→ΩSpin
4 −→ΩSpin

4 (BQ) −→E∞
3,1
∼= Z/2 −→ 0.

Moreover, by forgetting the map into BQ one obtains a splitting of this sequence. Finally,
following Section 6.2 we see that the secondary edge-homomorphism to E∞

3,1 is given by the
map we called sec there. �

Remark . To be precise, we should have mentioned that we can apply sec only to elements
which are zero-bordant in ΩSO

4 (BQ) ∼= Z. Thus the above map to Z/2 is in fact given by

[M ] 7−→ sec([M ]−
σ(M)

16
· [K]),

where K denotes the Kummer surface.

4.3. The Non-Spin Case.

As in the spin case, the cyclic groups are easy to handle. First note that there is only one case
to consider since H2(C; Z/2) = 〈b〉. Since multiplication by b is injective on H1(C; Z/2), we see
that the differential

d2 : E2
3,1 −→ E2

1,2

is injective and thus the James spectral sequence for Ω∗(ξ(C, b)) gives an exact sequence

0 −→ΩSpin
4 −→Ω4(ξ(C, b)) −→E∞

2,2
∼= Z/2 −→ 0.
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Since by Theorem 3.3.2 there exists a manifold with signature 8 in this normal 1-type, we proved
that

σ

8
: Ω4(ξ(C, b)) −→ Z

is an isomorphism.
Before we start to work on the quaternion groups, we need a general

Lemma 4.3.1 ([James]). Let E,F be real vector bundles over a space X. If q : S(F ) −→ X
denotes the sphere bundle projection then there is a cofiber sequence of Thom spaces

T (q∗E) −→ T (E) −→ T (E ⊕ F ).

Proof. One first notes that T (E) = DE/SE is a deformation retract of

DE ×DF

SE ×DF
,

where × stands for the fiber product over X. Then there is an inclusion

T (q∗E) =
DE × SF

SE × SF
→֒

DE ×DF

SE ×DF

with cofiber
DE ×DF

DE × SF ∪ SE ×DF
= T (E ⊕ F ). �

Remark 4.3.2. Recalling from Definition 2.3.1 that for an N -dimensional vector bundle E the
Thom spectrum ME equals the suspension spectrum Σ−NT (E), we get the following cofiber
sequence of Thom spectra:

Mq∗E −→ME
p
−→ΣdimFM(E ⊕ F ).

If we apply the generalized homology theory ΩSpin
∗ to this cofiber sequence, we get a long exact

sequence

. . . −→ΩSpin
n (Mq∗E)

q∗
−→ ΩSpin

n (ME)
.∩[F ]
−−−→ ΩSpin

n−dimF (M(E ⊕ F ))
∂
−→ ΩSpin

n−1 (Mq∗E) −→ . . .

Interpreting the group ΩSpin
n (ME) ∼= Ω4(ξE) as the bordism group of ξE-manifolds, where

ξE := Bp⊕E : BSpin×X −→ BO,

(and similarly the other bordism groups) then the maps in the above exact sequence have the
following geometrical interpretation (compare [Bröcker-tom Dieck, p.21]):

• q∗ is given by composing the ξq∗E-structure with q to obtain a ξE-structure on the same
manifold.
• If ν̃ : M −→ BSpin ×X is a ξE-manifold, we can pull back the vector bundle F over X

to M and can take the self-intersection of the zero-section in this bundle. This gives the
map . ∩ [F ].
• To get the image under ∂ for an (n − dimF )-dimensional ξE⊕F -manifold µ : N −→
BSpin × X, one just takes the pullback of the sphere bundle q : S(F ) −→ X under µ.
This comes naturally equipped with a ξq∗E-structure.

We now consider the quaternion groups Q = Q8n, n a power of 2. We fix a class w ∈ H2(Q; Z/2)
and want to use the James spectral sequence for the computation of Ω4(ξ(Q,w)). As in the
cyclic case, there is no sec-invariant problem, since the differential

d2 : E2
3,1 −→ E2

1,2
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is injective for all w and thus E∞
3,1 is always trivial. On the contrary, all other relevant d2-

differentials vanish. Therefore, the only open question about differentials is answered in the
following

Proposition 4.3.3. The differential

d3(w) : E3
5,0 = H5(BQ; Z) −→ H2(BQ; Z/2) = E3

2,2

is nontrivial if w = x2
2 or x2

1 + x2
2.

If w = x2
1 then d3 6= 0 if and only if Q is the ordinary quaternion group of order 8.

Proof. First note that there is an automorphism of Q8n which maps y to x·y leaving x fixed. This
shows that we only have to consider the two cases w = x2

i , because the answer for w = x2
1 + x2

2

will be the same as the one for w = x2
2.

1.Case: w = x2
2.

Since w ∈ Image(r2 : H2(Q; Z) −→ H2(Q; Z/2)), we can choose a complex line bundle L with
w2(L) = w. Then description(III) of Theorem 2.2.1 is applicable, i.e.

ξ(Q,w) = BSpin×BQ
Bp⊕L
−−−−→ BSO

and Ω∗(ξ) ∼= π∗(Mξ) ∼= MSpin∗(ML) can be computed by Section 5.3 via the Atiyah-Hirzebruch

spectral sequence with E2-term equal to H∗(ML; ΩSpin
∗ ). It is clear that it suffices to study

the corresponding d3-differential in this spectral sequence. We will use a similar method as
in Proposition 4.2.1, so let again C = C4n ⊆ Q8n = Q be the cyclic subgroup of order 4n
generated by x ∈ Q. Then C = Ker(x1) and if η is a 1-dimensional vector bundle over BQ with
w1(η) = x1 then its sphere bundle Sη is a space of type (C, 1). If we call q : Sη −→ BQ the
projection, Remark 4.3.2 gives us a cofiber sequence of Thom spectra

Mq∗L −→ML
p
−→ΣM(L⊕ η). (II.5)

Since the order of C is 4n, the square of the generator of H1(C; Z/2) is trivial and thus

w2(q
∗L) = q∗(w) = (q∗(x2))

2 = 0,

which shows that

MSpin4(Mq∗L) ∼= MSpin4(BC) ∼= 16 · Z.

Then the commutative diagram of exact sequences

0 −−−→ MSpin4(S
0)

∼=
−−−→ MSpin4(Mq∗L) −−−→ 0

∥∥∥
y

y

0 −−−→ MSpin4(S
0) −−−→ MSpin4(ML) −−−→ E∞

2,2(ML) −−−→ 0
y

yp∗

0 −−−→ MSpin4(ΣM(L⊕ η))

shows that the composition

E∞
2,2(ML)

E∞

2,2(p∗)
−−−−−→ E∞

2,2(ΣM(L⊕ η)) ⊆MSpin4(ΣM(L⊕ η))

is injective, in particular E∞
2,2(p∗) is a monomorphism. Since

dimZ/2 H2(ML; Z/2) = 2 = dimZ/2H2(ΣM(L⊕ η); Z/2)
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and E∞
2,2(ML) = H2(ML; Z/2)/ Image(d3)

, the proof is finished if we can show that

E∞
2,2(ΣM(L⊕ η)) 6= E2

2,2(ΣM(L⊕ η)).

This would be certainly guaranteed if the differential

d2 : H4(ΣM(L⊕ η); Z/2) −→ H2(ΣM(L⊕ η); Z/2)

is nontrivial. Since d2 = (Sq2)∗, this is verified by the following computation
(where u ∈ H1(ΣM(L⊕ η); Z/2) denotes the Thom class for L⊕ η)

Sq2(u · x1) = Sq2(u) · x1 + Sq1(u) · Sq1(x1) + u · Sq2(x1)

= w2(L⊕ η) · u · x1 +w1(L⊕ η) · u · x
2
1

= x2
2 · x

′
1u+ x1 · x

2
1 · u

= x2
2 · x1 · u 6= 0.

2.Case: w = x2
1.

First note that an analogue proof as in the 1.case breaks down, because the corresponding Sq2

is trivial. But for Q8, the existence of an automorphism which interchanges x1 and x2 shows
that dQ8

3 6= 0 in this case, too. For the higher order quaternion groups we have to analyze the
situation in more detail:
Let {a1, a2} respectively {e1, e2} be the basis of H2(ML; Z/2) respectively H5(ML) which are
dual to the basis {x2

1 · u, x
2
2 · u} respectively {x2

1 · p · u, x
2
2 · p · u}, where u ∈ H0(ML; Z/2) is the

Thom class of ML.

Claim: (1) d3(e2) = 0.
(2) a1, a1 + a2 /∈ Image(d3).

Proof: (1) The cofiber sequence (II.5) gives a commutative diagram

H5(Mq∗L)
q∗
−−−→ H5(ML)

d3

y d3

y

0 = E3
2,2(Mq∗L)

q∗
−−−→ E3

2,2(ML) = H2(ML; Z/2)

and thus it suffices to show that e2 ∈ Image(q∗). But this follows from the computation below,
where z ∈ H5(Mq∗L) ∼= H5(C) denotes a generator:

〈p · xi · u, q∗(z)〉 = 〈q∗(p · xi · u), z〉

= 〈q∗(p) · q∗(xi) · u, z〉 =

{
0 if i = 1

1 if i = 2.

(2) follows from the fact that for a equal to a1 or a1 + a2 the equation a = d3(e) would lead to
the following contradiction:

0 6= 〈w, a〉 = 〈w, d3(e)〉

= 〈w∗(ι2), d3(e)〉 = 〈ι2, d3(w∗(e))〉

= 0.

Here 0 6= ι2 ∈ H
2(K(Z/2, 2); Z/2) and we compared with the James spectral sequence for the

fibration

BSpin −→BSO −→K(Z/2, 2)
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for which we showed in the proof of Theorem 3.3.2(2) that all relevant d2 and d3-differentials
vanish. �

Note that the claim in particular proves the relation

dQ8
3 (e1[8]) = a2[8].

Now let n > 1 and consider as in the proof of Proposition 4.2.1 the inclusion

i : Q8 →֒ Q8n

with i∗(x1[8n]) = x1[8] and i∗(x2[8n]) = 0 (implying i∗(L[8n]) = L[8] and i∗(a2[8]) = 0). Then the
commutative diagram

H5(ML[8])
i∗−−−→ H5(ML[8n])

yd3[8]

yd3[8n]

H2(ML[8]; Z/2)
i∗−−−→ H2(ML[8n]; Z/2)

shows that
d3(e1[8n]) = d3(i∗(e1[8])) = i∗(d3(e1[8])) = i∗(a2[8]) = 0.

Together with Claim(1) this completes the proof. �

Theorem 4.3.4. Let Q = Q8n be a quaternion 2-group and 0 6= w ∈ H2(Q; Z/2).

(i) If w = x2
2 or x2

1 + x2
2 or w = x2

1, n = 1, there is an isomorphism

σ : Ω4(ξ(Q,w)) −→ 8 · Z.

(ii) If w = x2
1 and n > 1, there is a Z/2-valued “tertiary” bordism invariant ter such that

(σ, ter) : Ω4(ξ(Q,w)) −→ 8 · Z× Z/2

is an isomorphism of groups.

Proof. Using the above information about the differentials in the James spectral sequence, the
result follows from Theorem 3.3.2, parts(3) and (4) which say that in all cases the image of the
signature on Ω4(ξ(Q,w)) is 8 · Z. �

Remark . In Section 8.2 we will show that ter is not a homotopy invariant whereas we show
in Theorem 6.4.1 that the sec-invariant from the spin case is determined by the equivariant
intersection form of the manifold.

4.4. Stable Classification Results for π1 Finite with Periodic 2-Sylow Subgroups.

First recall from Section 5 that the fiber homotopy type of a 1-universal fibration ξ : B −→ BSO
only depends on Π := π1B,π2B and w2(ξ) if π2B = 0. In Section 6.3, we denoted ξ = ξ(Π, w)
in the latter case. To have a unified language for all cases, we introduce the following notation:

Definition 4.4.1. Let ξ : B −→ BSO be a 1-universal fibration with Π := π1B and let
u : B −→ BΠ be a fixed 2-equivalence.

1. The w2-type of ξ is by definition ∞ if π2B 6= 0 and otherwise w := (u∗)
−1w2(ξ) ∈

H2(Π; Z/2). We will write

ξ = ξ(Π, w) with w ∈ {∞} ∪H2(Π; Z/2).

2. If M is an oriented manifold with fundamental group Π then its w2-type is by definition
the w2-type of the normal 1-type of M viewed as an element

w2M ∈ H(Π) := {∞} ∪ H∈(Π; Z/∈)/Out(Π).
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In part(2) of the definition, we have to divide out the group Out(Π) because the normal
1-type of a manifold is only well-defined up to fiber homotopy equivalence. Note that the w2-
type of an oriented manifold together with its fundamental group contains exactly the same
information as its normal 1-type but is more convenient to use. Finally, recall that w2M =∞

if and only if w2M̃ 6= 0. Since this is in turn equivalent to the intersection form of M̃ being
odd, the w2-type is a proper generalization of the even-odd type for 1-connected 4-manifolds.

Definition 4.4.2. Let Π be a finitely presented group and w ∈ H(Π). We define MSt2m(Π)
to be the set of all stable diffeomorphism classes of oriented 2m-dimensional manifolds with
fundamental group Π. Furthermore, we let MSt4(Π, w) be the subset of MSt4(Π) consisting of
all manifolds with w2-type w.

By Section 5, we know that for m > 1 all sets MSt2m(Π, w) are non empty and since the
w2-type is obviously a stable diffeomorphism invariant and we have

MSt4(Π) =
⋃

w∈H(Π)

MSt4(Π, w).

We will now describe another important stable diffeomorphism invariant:

Definition 4.4.3. Let ξ : B −→ BSO be a 1-universal fibration with Π := π1B and let
u : B −→ BΠ be a fixed 2-equivalence.

1. The π1-fundamental class of an n-dimensional ξ-manifold (M, ν̃) is by definition the ele-
ment

(u ◦ ν̃)∗[M ] ∈ Hn(Π).

2. If M is an oriented n-manifold with fundamental group Π then its π1-fundamental class
is by definition the element

v∗[M ] ∈ Hn(Π)/Out(Π),

where v : M −→ BΠ is some 2-equivalence which can be chosen to factor over the normal
1-type of M .

Note that the π1-fundamental class is a bordism invariant and gives a homomorphism

u∗ : Ωn(ξ) −→ Hn(Π)

which is just the edge-homomorphism ed from Theorem 3.2.1 but we will use the more suggestive
name u∗ in the following. With these invariants at hand, we can now start to describe the
classification results.
Let Π be a finite group and Π(2) a 2-Sylow subgroup of Π. Following [Swan 1], we define the

2-period of Π to be the least positive integer q such that the Tate cohomology groups Ĥ i(Π;M)

and Ĥ i+q(Π;M) have isomorphic 2-primary components for all i ∈ Z and all Π-modules M .
The following theorem allows in certain cases a translation of the computations for Π(2) from
Sections 7.1 to 7.3 to those for Π.

Theorem ([Swan 1, Thm.1]). If Π(2) is cyclic, the 2-period of Π is 2. If Π(2) is a quaternion
group, the 2-period of Π is 4.

Our computations thus naturally split into two cases. Before we can state the classification
theorems, we have to define the number d(Π) := dimZ/2H

2(Π; Z/2), which measures how many

w2-types we have to consider.
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Theorem 4.4.4. Let Π be a finite group with cyclic 2-Sylow subgroups. Then d(Π) ∈ {0, 1}
and if ξ = ξ(Π, w) : B −→ BSO is a 1-universal fibration, signature and π1-fundamental class
induce the following group isomorphisms:

Ω4(ξ)
∼=
−→ Z×H4(Π) if w =∞,

Ω4(ξ)
∼=
−→ 16 · Z×H4(Π) if w = 0,

Ω4(ξ)
∼=
−→ 8 · Z×H4(Π) if d(Π) = 1 and w 6= 0,∞.

Remark . It will soon turn out that d(Π) = 0 if and only if the group Π has odd order.

Corollary 4.4.5. Let Π be a finite group with cyclic 2-Sylow subgroups. Then |H(Π)| = ⌈(Π)+
∈ and signature and π1-fundamental class induce the following 1-1 correspondences:

MSt4(Π,∞) ←→ Z×H4(Π)/Out(Π)
MSt4(Π, 0) ←→ 16 · Z×H4(Π)/Out(Π)
MSt4(Π, w) ←→ 8 · Z×H4(Π)/Out(Π) if d(Π) = 1 and w 6= 0,∞.

In particular, w2-type, signature and π1-fundamental class classify oriented 4-manifolds with
fundamental group Π up to stable diffeomorphism, i.e. the mapping

(w2, σ, u∗) : MSt4(Π) −→ H(Π)× Z×H△(Π)/Out(Π)

is injective.

Before we can proof these theorems, we need some preparations.

Lemma 4.4.6. If C is a cyclic 2-Sylow subgroup of a finite group Π then

1. Ĥk(Π; Z)(2) ∼=

{
C if k is even,

0 if k is odd.

2. For all k ∈ Z, dimZ/2 Ĥ
k(Π; Z/2) =

{
1 if |Π| is even,

0 if |Π| is odd.

3. The inclusion i : C →֒ Π induces for all Π-modules M and all k ∈ Z a monomorphism

i∗ : Ĥk(Π;M)(2) −→ Ĥk(Π;M).

Proof. (1) follows immediately from Swan’s theorem because Ĥ0(Π; Z) is cyclic of order |Π| and

Ĥ1(Π; Z) = 0, see [Brown, p.135].
(2) is a direct consequence of (1) if one applies the long exact sequence in Tate cohomology
obtained from the short exact coefficient sequence Z  Z ։ Z/2.
(3) If M is a Π-module, the transfer map

tr∗ : Ĥk(C;M) −→ Ĥk(Π;M)

from Section 1.3 has the property tr∗ ◦ i∗ = multiplication by |Π : C|, which proves the state-
ment. �

Proof (of Theorem 4.4.4 and Corollary 4.4.5). If |Π| is odd, the proof is obvious, so let us as-
sume that Π and thus C have even orders. The commutative diagram of fibrations

BSpin −−−→ B′ −−−→ BC
∥∥∥

y
yBi

BSpin −−−→ B −−−→ BΠ



Section 7. The Bordism Groups Ω4(ξ) for Special Fundamental Groups 59

induces a map between the James spectral sequences for Ω∗(ξ(Π, w)) and Ω∗(ξ(C, i
∗w)). With

the homological information at hand, we can easily see that this map gives an exact sequence

0 −→Ω4(ξ(C, i
∗w)) −→Ω4(ξ(Π, w))

u∗−→ H4(Π) −→ 0.

The edge-homomorphism u∗ is onto, because H4(Π) has odd order and thus all differentials
vanish on this group. In Sections 7.2 and 7.3 we showed that the signature induces isomorphisms

Ω4(ξ(C, i
∗w)) −→ n · Z

where n = 1, 16 or 8 depending on i∗w ∈ H(C) = {∞, ′, ⌊}. Since by Theorem 3.3.2(4) the
image of the signature on Ω4(ξ(Π, w)) takes exactly the same values, the proof of Theorem 4.4.4
is finished because the signature splits the above exact sequence.
To prove the corollary, we only have to show that every element of Aut(ξ) respects the decom-
position

Ω4(ξ) ∼= Z×H4(Π)

because the action on H4(Π) is given by the induced map on fundamental groups. Clearly, the
torsion subgroup H4(Π) is preserved. Moreover, in all cases the James spectral sequence gives
an exact sequence

0 −→n · Z ∼= F2,2 −→Ω4(ξ) −→H4(Π) −→ 0

and the signature gives a splitting of this sequence. Since by Corollary 3.1.2, every fiber ho-
motopy self-equivalence of ξ respects this extension (and does not change the signature of a
manifold), the result follows. �

At the end of the part on cyclic 2-Sylow subgroups, we state an interesting structure theorem
for such groups, which seems to be standard for group theorists but might be unknown to some
topologists.

Theorem ([Gorenstein, Ch.7,Thm.6.1]). If Π is a finite group with cyclic 2-Sylow subgroups,
it possesses a normal 2-complement, i.e.

Π ∼= N ⋊ C

with |N | odd and C cyclic of 2-power order.

Note that this theorem implies that nonabelian simple groups cannot have cyclic 2-Sylow
subgroups and that a group Π as above is always solvable.
Now let Π be a finite group with quaternion 2-Sylow subgroup Q = Q8n. Using Swan’s theorem
and the same arguments as for the cyclic case (together with the observation [Brown, p.135]

that Ĥ−1(Π; Z) = 0 which was not necessary in the 2-periodic case), we obtain the following

Lemma 4.4.7. Π has the following homological properties:

1. Ĥk(Π; Z)(2) ∼=

{
C8n if k ≡ 0 (4),

0 if k is odd.

2. dimZ/2 Ĥ
k(Π; Z/2) = 1 for all k ≡ 0, 3 (4) and

d(Π) := dimZ/2H
2(Π; Z/2) = dimZ/2H

2(Π)(2)

= dimZ/2 Ĥ
k(Π; Z/2) ≤ 2 for all k ≡ 1, 2 (4).

3. The inclusion i : C →֒ Π induces for all Π-modules M and all k ∈ Z a monomorphism

i∗ : Ĥk(Π;M)(2) −→ Ĥk(C;M).
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Proof. The only thing which is not proved exactly as in the cyclic case is the equality

dimZ/2H
1(Π; Z/2) = dimZ/2H

2(Π; Z/2)

which can be shown in the following way. Because of the existence of the transfer maps, all
three vertical maps i∗ in the Bockstein exact sequence

· · · −−−→ H1(Π; Z/2)
Sq1

Π−−−→ H2(Π; Z/2) −−−→ H2(Π; Z/4) −−−→ · · ·
yi∗

yi∗
yi∗

· · · −−−→ H1(Q; Z/2)
Sq1

Q
−−−→

∼=
H2(Q; Z/2) −−−→ H2(Q; Z/4) −−−→ · · ·

are monomorphisms and thus the commutativity of the diagram shows that Sq1Π is an isomor-
phism. �

At this point, I wanted to give examples of certain groups to show that d(Π) can take all three
possible values 0,1 and 2 and I was looking for properties of the group Π which determine d(Π).
The following result was very surprising for me. The proof uses highly nontrivial results from
the theory of finite groups and can be viewed as an analogue of the structure theorem given
above for finite groups with cyclic 2-Sylow subgroups.

Theorem 4.4.8. Let Π be a finite group with quaternion 2-Sylow subgroup Q and let K be the
largest normal subgroup of Π of odd order.

a) The factor group Π/K is isomorphic to either
(i) a 2-Sylow subgroup Q of Π,
(ii) the nontrivial extension of the alternating group A7 by C2, or
(iii) an extension

1 −→ SL2(q) −→Π/K −→Cm −→ 1,

where q is an odd prime power and m ∈ N is odd.
b) d(Π) = 2 if and only if case(i) occurs in a), i.e. if

Π ∼= K ⋊Q.

c) d(Π) = 1 does not occur .

Proof. a) is a consequence of a theorem of Brauer and Suzuki, see [Gorenstein, Chapter 12,
Thm.1.1]. It states that the center of Π/K is of order 2. (Note that this already implies that Π
cannot be simple!) It then follows that Π/K modulo its center has dihedral 2-Sylow subgroups.
But such groups where classified by [Gorenstein, Chapter 16.3], compare also the remark in
[Gorenstein, p.377].
b) Recall from Lemma 4.4.7 that

d(Π) = dimZ/2H
2(Π; Z/2) = dimZ/2H

1(Π; Z/2) = dimZ/2(H1(Π)⊗ Z/2) =: a(Π).

Since |K| is odd, we clearly have a(Π) = a(Π/K ). In case(i) this directly implies that a(Π) =
a(Q) = 2.
In the remaining cases(ii) and (iii), one easily checks that a(Π/K ) = 0 because the nontrivial

extension of A7 by C2 (which is well-defined since H2(A7;C2) ∼= Z/2) as well as SL2(q), q ≥ 4
are perfect groups and |H1(SL2(3))| = 3. This also proves part c). �

In the following classification theorem we will not use this structure theorem except that we do
not state the empty case d(Π) = 1.
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Theorem 4.4.9. Let Π be a finite group with quaternion 2-Sylow subgroups. Then d(Π) ∈
{0, 2} and if ξ = ξ(Π, w) : B −→ BSO is a 1-universal fibration, there exist Z/2-valued bordism
invariants sec (in the spin case) respectively ter (in the non-spin case) which together with the
signature and the π1-fundamental class induce the following group isomorphisms: (if d(Π) = 0
only the first two cases occur !)

Ω4(ξ)
∼=
−→ Z×H4(Π) if w =∞,

Ω4(ξ)
∼=
−→ 16 · Z×H4(Π)× Z/2 if w = 0,

Ω4(ξ)
∼=
−→ 8 · Z×H4(Π) if i∗w = x2

2, x
2
1 + x2

2 or i∗w = x2
1, |Π|(2) = 8,

Ω4(ξ)
∼=
−→ 8 · Z×H4(Π) × Z/2 if i∗w = x2

1 and |Π|(2) > 8.

Proof. As in the cyclic case we compare the James spectral sequences for Ω∗(ξ(Π, w)) and
Ω∗(ξ(Q, i

∗w)) to obtain an exact sequence

0 −→Ω4(ξ(Q, i
∗w)) −→Ω4(ξ(Π, w))

u∗−→ H4(Π) −→ 0.

By Theorems 4.2.2 and 4.3.4, to prove the theorem we only have to show that this sequence
splits. Clearly the signature splits off a free direct summand and we are done in the cases where
the invariants sec respectively ter do not occur . In the other cases, the kernel of the signature
is an extension of H4(Π) by Z/2. But since H4(Π) has odd order, this extension splits, too. �
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Corollary 4.4.10. Let Π be a finite group with quaternion 2-Sylow subgroups.

1. For 4-dimensional spin manifolds with fundamental group Π there exists a Z/2-valued
stable diffeomorphism invariant sec which together with the signature and the π1-funda-
mental class induces the following 1-1 correspondences: (if d(Π) = 0 only the first two
cases occur !)

MSt4(Π,∞) ←→ Z×H4(Π)/Out(Π)
MSt4(Π, 0) ←→ 16 · Z×H4(Π)/Out(Π) × Z/2

MSt4(Π, w) ←→ 8 · Z×H4(Π)/Out(Π) if i∗w = x2
2, x

2
1 + x2

2

or i∗w = x2
1, |Π|(2) = 8

2. Let d(Π) = 2, |Π|(2) > 8 and i∗w = x2
1.

For a 4-dimensional manifold with w2-type (Π, w) there exists a Z/2-valued stable diffeo-
morphism invariant ter such that the mapping

(σ, u∗, ter) : MSt4(Π, w) −→ 8 · Z×H4(Π)/Out(Π) × Z/2

is injective. This mapping is onto if every automorphism of Π fixes the element

(i∗)−1x2 ∈ H
1(Π; Z/2).

If not, the image is exactly

{(8 · s, u, t) ∈ 8 · Z×H4(Π)/Out(Π) × Z/2 | s · t ≡ 0 (2)}.

Remarks:

(i) One can get a more compact form of the classification theorem by setting the invariants
sec and ter equal to a fixed value in the cases where they are not really needed. Then we
have proved that the mapping

(w2, σ, u∗, sec, ter) : MSt4(Π) −→ H(Π)× Z×H△(Π)/Out(Π) × Z/∈ × Z/∈

is injective. (Recall that for |Π|(2) = 8 we can leave out ter.)
(ii) This classification result will be much more useful once we have identified the invariants

sec and ter with something better computable. This will be done in Section 9.2.
(iii) To get a complete classification for the given fundamental group, we still have to compute

the set H(Π). If d(Π) = 0 then H(Π) = {∞, ′}, so let us assume d(Π) = 2 in the following
discussion.
Recall that |H(Q∀)| = ∋ whereas |H(Q∀\)| = △ for n > 1 because in the latter case the

element x1 ∈ H
1(Q8n; Z/2) is preserved under all automorphisms of Q8n. The reason for

this is that Ker(x1) is the unique cyclic subgroup of index 2 in Q8n whereas Q8 has 3 such
subgroups.
To control the action on H2(Π; Z/2) for a given α ∈ Aut(Π), we can assume that α
preserves a 2-Sylow subgroup because inner automorphism act trivially on cohomology. It
follows that for |Π|(2) > 8 the element (i∗)−1x1 is preserved and thus |H(Π)| ≥ △. Note
however that |H(Π)| = ▽ is very well possible because the automorphism of Q8n which
interchanges x2 and x1 + x2 must not extend to Π. This is for example the case for the
semidirect product

Π := Cm ⋊Q8n

where m is odd and Q8n acts via the map x2 : Q8n −→Z/2 ≤ Aut(Cm) on Cm.
Similarly, for |Π|(2) = 8 it is easy to write down semidirect products which show that
|H(Π)| can take any value between 3 and 5.
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(iv) The condition in part(2) of the above corollary, namely that every automorphism of Π
fixes the element

(i∗)−1x2 ∈ H
1(Π; Z/2),

is equivalent to |H(Π)| = ▽ by remark(iii). For such groups the stable classification is
more complicated in two aspects: There are more w2-types and also the ter-invariant takes
more distinct values.

Proof of Corollary 4.4.10. If the groups Ω4(ξ(Π, w)) in Theorem 4.4.9 do not contain 2-torsion,
the proof is the same as in the cyclic case. Therefore, we have to consider only two cases:

1.Case: w = 0 (and ξ = ξ(Π, 0)).
We have to show that every element of Aut(ξ) respects the decomposition

Ω4(ξ) ∼= 16 · Z×H4(Π)× Z/2.

Clearly, the 2-primary torsion Z/2 as well as the odd-primary torsion H4(Π) are preserved.
Moreover, the same argument as in the cyclic case shows that that the free part is preserved,
too. Note that we have used there that in the James filtration the term F2,2 is free, detected
by the signature. This will become wrong in the next case.

2.Case: d(Π) = 2, |Π|(2) > 8 and i∗w = x2
1 (and ξ = ξ(Π, w)).

Theorem 4.4.9 gives a decomposition

Ω4(ξ) ∼= 8 · Z× Z/2×H4(Π).

Again, the 2-primary respectively the odd-primary torsion parts are preserved and we have to
compute the orbit of the element (8, 0, 0) under Aut(ξ). The James filtration looks in this case
is

ΩSpin
4 ⊆ F2,2 ⊆ Ω4(ξ)

with (8, 0, 0) ∈ F2,2 and Ω4(ξ)/F2,2
∼= H4(Π). Since by Corollary 3.1.2 every ϕ ∈ Aut(ξ) respects

this filtration (and also the signature), we can conclude that

ϕ∗(8, 0, 0) = (8, ?, 0).

The question mark can be determined as follows: We have a commutative diagram

0 −−−→ ΩSpin
4 −−−→ F2,2

p
−−−→ H2(Π; Z/2) −−−→ 0

∥∥∥
yϕ∗

yπ1(ϕ)∗

0 −−−→ ΩSpin
4 −−−→ F2,2

p
−−−→ H2(Π; Z/2) −−−→ 0.

If {a1, a2} is a basis of H2(Π; Z/2) which is dual to the basis {(i∗)−1x2
1, (i

∗)−1x2
2} of H2(Π; Z/2),

we have seen in Remark(iii) above that (i∗)−1x2
1 and thus a2 is preserved under π1(ϕ)∗.

Identifying elements of F2,2 with tupels in 8 · Z× Z/2, we know that

ϕ∗(0, 1) = (0, 1) and p(0, 1) = a2.

The surjectivity of p then shows that p(1, 0) = a1 or a1 + a2, but in both cases we have

ϕ∗(8, 0) = (8, 0)⇐⇒ π1(ϕ)∗a1 = a1

⇐⇒ π1(ϕ)∗((i∗)−1x2
2) = (i∗)−1x2

2

⇐⇒ π1(ϕ)∗((i∗)−1x2) = (i∗)−1x2
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and otherwise ϕ∗(8, 0) = (8, 1). Therefore, ϕ respects the direct decomposition of Ω4(ξ) if and
only if π1(ϕ) fixes (i∗)−1x2. Since by Theorem 2.2.6 the map

π1 : Aut(ξ) −→ Aut(Π)w = Aut(Π)

is surjective, we proved the assertion using the following remark: if ϕ∗(8, 0) = (8, 1) for some
ϕ ∈ Aut(ξ) then the ter-invariant is determined by the signature if and only if σ ≡ 8 (16). �
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5. Topological 4-Manifolds

8.1 Necessary Modifications in the Stable Classification Program
8.2 Extensions of the ∗-Operation

In this Section we want to move from the category of differentiable manifolds to the category
of topological manifolds. The changes which are necessary to achieve a stable homeomorphism
classification of 4-dimensional topological manifold are described, with the result being that
the difference is measured by the Kirby-Siebenmann invariant only. Further, in Section 8.2
topological surgery in dimension 4 is used to show that the ter-invariant from Section 7.3 can
be changed without changing the homotopy type of the manifold. This will, in particular,
produce two oriented differentiable manifolds which are homotopy equivalent but not stably
diffeomorphic, see Example 5.2.4.
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5.1. Necessary Modifications in the Stable Classification Program.

In this Section we will consider the stable homeomorphism classification of closed oriented
topological 4-manifolds. Such a manifold has a stable normal Gauß map ν : M −→ BTOP ,
where

TOP =
⋃

n≥0

TOP (n)

and TOP (n) is the topological group of all base point preserving self-homeomorphisms of R⋉.
Then BTOP is the classifying space of stable fiber bundles with fiber R⋉ and specified zero-
section. There are the obvious inclusion maps O(n) −→ TOP (n) which induce a fibration
BO −→ BTOP with fiber TOP/O.
Similarly, if BPL is the classifying space for stable piecewise linear bundles then there is a
fibration BPL −→ BTOP with fiber TOP/PL. The fundamental result of [Kirby-Siebenmann]
says that this fibration is a principal fibration, induced by an H-map

ks : BTOP −→ K(Z/2, 4)

which the authors call the triangulation obstruction and which is today known as the Kirby-
Siebenmann invariant. Up to dimension 6, the spaces BPL and BO are equal and thus the
Kirby-Siebenmann invariant gives in the 4-dimensional case a unique Z/2-valued obstruction
for the existence of a lift of the topological stable normal Gauß map M4 −→ BTOP over BO.
It was not until the striking results of M.Freedman that one could prove the nontriviality of
this obstruction. Freedman showed (see [Freedman] or the book of [Freedman-Quinn, Ch.11.3])
that the topological surgery sequence

Ls
5(π1X,w1X) −→ST OP

△ (X ,N ) −→N T OP
△ (X ,N ) −→L∫△(π∞X ,⊒∞X ) (II.6)

is exact for any 4-dimensional Poincaré pair (X,N) where N3 is a manifold and π1X is a good
group (e.g. finite or cyclic). Now if N is a homology 3-sphere then the cone over N gives a
Poincaré pair (C(N), N). But since one already knew that

Ls
5(1) = {0} and N T OP

△ (C(N ),N )
∼=
−→ L∫△(∞) (∼= Z),

Freedman concluded that there is a unique contractible 4-manifold whose boundary is N . By
taking N to be the boundary of the plumbing construction on 8 tangent disc bundles of S2 with
respect to the graph E8, and closing this off with a contractible manifold as above, he obtained
a topological 4-manifold with even definite intersection form of rank 8. Since for spin manifolds
[Kirby-Siebenmann, p.325,Thm.13.1] had proven the formula

ks(M) ≡
σ(M)

8
(mod 2), (II.7)

Freedman had obtained a manifold with nontrivial ks-invariant which he called |E8|. Note that
from the surgery sequence (II.6), the topological s-cobordism theorem and Milnor’s homotopy
classification of simply-connected Poincaré complexes (compare Section 1.6), Freedman’s classi-
fication of simply-connected 4-manifolds (see [Freedman-Quinn, Ch.10.1]) directly follows from
an observation of [Wall 1, Ch.16] about the realization of the torsion classes in

N T OP
△ (M) ∼= [M,G/T OP] ∼= H∈(M; Z/∈)×H△(M; Z)

by homotopy self-equivalences of the manifold M (there is a corrected version of Wall’s con-
struction in [Cochran-Habegger]).
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We now want to turn to the computation of topological bordism groups. Using the manifold
|E8|, it follows directly from the work of [Kirby-Siebenmann, p.322-325] that for G = O,SO or
Spin the natural maps

ΩG
i −→ ΩGTOP

i

are isomorphisms for i ≤ 3 and injective with cokernel Z/2 for i = 4. Moreover, the signature

divided by 8 gives an isomorphism of ΩSpinTOP
4 onto Z, whereas ΩSTOP

4
∼= Z× Z/2 via (σ, ks).

Our aim is to extend these results to the bordism groups ΩTOP
4 (ξ) for a 1-universal fibration

ξ : B −→ BTOP . The constructions in Section 5 can be repeated word by word to obtain all
such fibrations and their fiber homotopy classification, just by replacing BO by BTOP at every
step. The reason why this works well follows from the fact that the natural map BO −→ BTOP
is a 3-equivalence. In particular, we obtain the linear 1-universal fibrations by pulling back the
topological ones via this map.

Theorem 5.1.1. Let ξ′ : B′ −→ BSTOP be an oriented topological normal 1-type and let
ξ : B −→ BSO be the corresponding differentiable normal 1-type. Then the pullback diagram

B −−−→ B′

yξ

yξ′

BSO −−−→ BSTOP

induces an exact sequence

0 −→Ω4(ξ) −→ΩTOP
4 (ξ′)

ks
−→ Z/2 −→ 0 (II.8)

which splits if and only if w2(ξ) 6= 0.

Proof. The exactness of the sequence follows directly from the above information about ΩSTOP
i

respectively ΩSpinTOP
i , i ≤ 4, by comparing the James spectral sequences of the fibrations ξ

and ξ′. Note that it is easy to generalize the James spectral sequence from vector bundles to
fiber bundles with fiber R⋉ and zero-section. We only have to replace the relative fibration
(disc bundle, sphere bundle) by the relative fibration (total space, total space \ zero-section) to
which we can also apply the relative Serre spectral sequence.
However, we also have to use topological transversality in dimension 4 (see [Scharlemann] or
[Freedman-Quinn, Ch.9]), to be able to use the Pontrjagin-Thom isomorphism

ΩTOP
4 (ξ′) ∼= π4(Mξ′).

It is clear that a splitting of the exact sequence(II.8) is the same as the choice of an element of
order 2 in ΩTOP

4 (ξ′) with nontrivial ks-invariant. If π2B 6= 0 then ΩSTOP
4 ⊆ ΩTOP

4 (ξ′) and the

sequence splits because ΩSTOP
4 contains such an element: one can take e.g. [|E8|]− 8 · [CP2].

If w2(ξ) = 0 then the relation(II.7) holds in ΩTOP
4 (ξ′). This implies that a ξ′-manifold with

nontrivial ks-invariant has nontrivial signature and thus cannot have finite order. In particular,
the exact sequence(II.8) does not split.



Section 8. Topological 4-Manifolds 69

Finally, let π2B = 0 and w2(ξ) 6= 0. The James spectral sequence for ξ and ξ′ gives a commu-
tative diagram of exact sequences

0 −−−→ ΩSpin
4 −−−→ F2,2(ξ)

p
−−−→ E∞

2,2(ξ) −−−→ 0
y·2

y
∥∥∥

0 −−−→ ΩSpinTOP
4 −−−→ F2,2(ξ

′)
pTOP

−−−→ E∞
2,2(ξ

′) −−−→ 0
yks

yks

Z/2 Z/2.

Since E∞
2,2 = H2(π1B; Z/2)/ Image(di) is 2-torsion and the first vertical map is multiplication

by 2, the middle horizontal sequence splits out of the obvious algebraic reason. This implies
that the image of the signature on F2,2(ξ

′) is 8 · Z and therefore the map

(
σ

8
, pTOP ) : F2,2(ξ

′) −→ Z×E∞
2,2

is a well-defined isomorphism. Recall from Theorem 3.3.2(3) that there exists a (differentiable)
ξ-manifold [M ] ∈ F2,2(ξ) with signature 8. It follows directly from the above isomorphism that

[M ]− [|E8|] ∈ F2,2(ξ
′) ⊆ ΩTOP

4 (ξ′)

is an element of order two which clearly has nontrivial ks-invariant. �

Corollary 5.1.2. If w2(ξ) 6= 0, the image of the signature on Ω4(ξ) equals the image of the
signature on ΩTOP

4 (ξ′).

It is now clear how to compute the groups ΩTOP
4 (ξ′), assuming that Ω4(ξ) is known. In the

nonspin case there is the additional Z/2-valued ks-invariant whereas in the spin case just the
image of the signature changes from 16 · Z to 8 · Z.
There also is a topological version of the stable classification result of M.Kreck (see the Main The-
orem in Section 4), which states that the natural map

NStTOP
4 (ξ) −→ ΩTOP

4 (ξ)

is a 1-1 correspondence under the same assumptions as in the differentiable case. If we use this
result in both categories DIFF and TOP , we obtain a corollary which shows that with respect
to stable questions, these two categories only differ by the ks-invariant.

Corollary 5.1.3 (compare [Kreck 1, Thm.4.1,4.12]).

a) If M is a closed orientable 4-manifold with trivial Kirby-Siebenmann invariant then there
is a natural number r such that M#r · (S2 × S2) has a differentiable structure.

b) If M and N are two closed oriented differentiable 4-manifolds which are stably homeomor-
phic then they are stably diffeomorphic.

5.2. Extensions of the ∗-Operation.

In this Section we want to prove that for the fundamental groups under consideration, i.e.
finite groups with periodic 2-Sylow subgroups, the invariants ks and ter from Theorems 4.4.4
respectively 4.4.9 can be varied without changing the homotopy type of the manifold. The most
famous example of such a construction is the ∗-operator of [Freedman-Quinn, Ch.10.4]. They
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prove that for a 4-manifold M with good fundamental group and w2M̃ 6= 0 (i.e. w2-type ∞ in
our notation), there always exists a manifold ∗M with the properties:

∗M ≃M and ks(∗M) 6= ks(M).

Without taking uniqueness into account, we will call any manifold with the above two properties
a representative of ∗M . Note that this convention differs from the original definition of the ∗-

operation in [Freedman-Quinn] who set ∗M := M if w2M̃ = 0.

Remark 5.2.1. Although the normal 1-types of M and ∗M are the same (because they are

determined by π1M,w2M,w2M̃ which are all homotopy invariants), the homotopy equivalence
∗M ≃M cannot be a normal map with respect to νM and ν∗M . This follows from the definition
of ks(M) ∈ H4(M ; Z/2) ∼= Z/2 as the composition

M
νM−−→ BTOP

ks
−→ K(Z/2, 4)

which shows that any odd degree map f : X −→M with νX = νM ◦f preserves the ks-invariant.
Recall that for a normal map f : X −→M by definition the bundle over M can be any vector
bundle (respectively TOP -bundle) reduction of the Spivak normal bundle. This is the reason
why we are careful about specifying the bundle in question.

It is clear that ∗M cannot exist if M is spin, because the relation(II.7) shows that the
ks-invariant is a homotopy invariant for spin manifolds. This leaves the question about the
existence of ∗M for all w2-types 6= 0,∞.

Proposition 5.2.2. Let M be a closed manifold with finite fundamental group whose 2-Sylow
subgroups are periodic. If M is not spin then ∗M exists.

Proof. Since for the fundamental group π1M in question the surgery obstruction for closed
4-manifold problems is detected by the signature (see [Hambleton et al.]), the surgery se-
quence(II.6) shows that it is enough to construct a degree 1 normal map X −→M with

ks(X) 6= ks(M) and σ(X) = σ(M).

To this end we have to study the set of degree 1 normal maps

N T OP
△ (M) ∼= [M,G/T OP].

By [Kirby-Siebenmann, p.329], the 5-skeleton of G/TOP equals the 5-skeleton of K(Z/2, 2) ×
K(Z, 4) and therefore

[M,G/TOP ] ∼= H2(M ; Z/2) ×H4(M).

Moreover, in the same reference it is proven that the difference of the ks-invariants, as a map
from H2(M ; Z/2) ×H4(M) to Z/2 is given by the correspondence

(x, y) 7−→ 〈x2 + r2(y), [M ]〉.

Finally, by [Madson-Milgram, pp.97,98], a nontrivial multiple of the difference of the signatures
is given by the projection onto the second factor of H2(M ; Z/2) ×H4(M).

We finish the proof by observing that w2(M) 6= 0 implies the existence of an element x ∈
H2(M ; Z/2) with x2 6= 0. Thus under the above isomorphisms we can take as the degree 1
normal map the element (x, 0) ∈ H2(M ; Z/2) × H4(M). It obviously satisfies the desired
properties. �
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If M has normal 1-type ξ and the tertiary bordism invariant ter is trivial on ΩTOP
4 (ξ) then ∗M

represents a well-defined element in this bordism group because all other bordism invariants
are in fact homotopy invariants (for the sec-invariant compare Theorem 6.4.1). But if the ter-
invariant is nontrivial then we did not control ter(∗M) in Proposition 5.2.2. Therefore, we have
to be more careful in the next construction.

Proposition 5.2.3. Let ξ : B −→ BSTOP be 1-universal with Π := π1B finite with periodic
2-Sylow subgroups such that in (the topological analogue of) Theorem 4.4.9 the following map
φ is an isomorphism

φ : (σ, u∗, ter, ks) : ΩTOP
4 (ξ) −→ 8 · Z×H4(Π)× Z/2× Z/2.

Given a pair (t, k) ∈ Z/2×Z/2 and a normal 1-smoothing (M,µ) in ξ which is zero-bordant in
ΩTOP

4 (ξ), there exists a normal 1-smoothing (•M, •µ) in ξ such that

•M ≃M and φ(•M, •µ) = (0, 0, t, k).

Proof. We will first construct a manifold •M for the pair (t, k) = (1, 0).
The ξ-structure M −→ B induces a homomorphism

µ∗ : Ω4(ν) = Ω4(ξ ◦ µ) −→ Ω4(ξ)

where ν = ξ ◦ µ : M −→ BSTOP is the topological stable normal Gauß map for M . For the
same reasons as in the proof of the preceding proposition, it is enough to construct a degree 1
normal map f : X −→M such that

νX = ν ◦ f and µ∗(M,f) = φ−1(0, 0, 1, 0).

This time we will work entirely inside the subset of N T OP
△ (M), consisting of the affine subspace

of degree 1 normal maps in ΩTOP
4 (ν) because we have to control also the normal 1-smoothings

of the manifolds in question. We start with the most obvious element of degree 1, namely
(M, idM ) ∈ ΩTOP

4 (ν) (mapping to 0 under µ∗), and we want to add an element T ∈ ΩTOP
4 (ν)

such that
deg(T ) = 0 and µ∗(T ) = φ−1(0, 1, 0, 0).

Then the sum (M, idM ) + T will give the desired bordism class of (X, f) above. To prove the
existence of an element T with the specified properties, we compare the Atiyah-Hirzebruch
spectral sequences for

ΩTOP
∗ (ν) and ΩTOP

∗ (ξ)

with E2-terms H∗(Mν;π∗(S
0)) respectively H∗(Mξ;π∗(S

0)). We obtain the following maps on
the induced filtrations:

E∞
1,3(ν) = F1,3(ν) ⊆ F2,2(ν) ⊆ F3,1(ν) ⊆ π4(Mν) ∼= ΩTOP

4 (ν)
↓ ↓ µ2,2 ↓ ↓ µ∗

E∞
1,3(ξ) = F1,3(ξ) ⊆ F2,2(ξ) ⊆ F3,1(ξ) ⊆ π4(Mξ) ∼= ΩTOP

4 (ξ).

First note that all elements in F3,1(ν) have degree 0 because

E∞
4,0(ν) = H4(Mν) ∼= H4(X) ∼= Z

and the edge-homomorphism is just the image of the fundamental class (compare Proposi-
tion 3.2.1). Secondly, by Theorem 4.3.4 we know that

E3
3,1(ξ) = H3(Mξ; Z/2)/ Image(d2) = 0

and therefore φ−1(0, 0, 1, 0) ∈ F3,1(ξ) = F2,2(ξ). It thus suffices to show that µ2,2 is an epimor-
phism which in turn is guaranteed if the maps

µ∞i,4−i : E∞
i,4−i(ν) −→ E∞

i,4−i(ξ)
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are surjective for i = 1, 2.
We first recall that since µ : M −→ B is a normal 1-smoothing, it is a 2-equivalence and thus
by the Thom isomorphism

µ∗ : Hi(Mν; Z/2) −→ Hi(Mξ; Z/2)

is an isomorphism for i = 1 and an epimorphism for i = 2. The commutative diagram of exact
sequences

0 −−−→ Image(di(ν)) −−−→ H1(Mν; Z/2) −−−→ E∞
1,3(ν) −−−→ 0

y
y∼=

yµ∞

3,1

0 −−−→ Image(di(ξ)) −−−→ H1(Mξ; Z/2) −−−→ E∞
1,3(ξ) −−−→ 0

then proves the surjectivity of µ∞1,3.

For µ∞2,2, remember that H5(Mν) ∼= H5(M) = 0 and thus E∞
2,2(ν) = E3

2,2(ν). Moreover, the
differential

d2(ν) : E2
4,1(ν) −→ E2

2,2(ν)

is trivial because it is dual to Sq2Mν and we have for all a ∈ H2(M ; Z/2) the relation

Sq2(x · u) = Sq2(x) · u+ Sq1(x) · Sq1(u) + x · Sq2(u)

= x2 · u+ x · w2(u)

= x2 · u+ x · w2(ν) · u

= x2 · u+ x2 · u = 0

where u ∈ H0(Mν; Z/2) is the Thom class of ν.
Thus there is a commutative diagram of exact sequences

0 −−−→ E∞
2,2(ν) −−−→ H2(Mν; Z/2)

d2(ν)
−−−→ Z/24

y
yµ∗

∥∥∥

E3
2,2(ξ) −−−→ H2(Mξ; Z/2)

d2(ξ)
−−−→ Z/24

which proves the surjectivity of µ∞2,2 because E∞
2,2(ξ) = E3

2,2(ξ)/ Image(d3(ξ)) and the middle
vertical map µ∗ is an epimorphism.
To finish the proof of the proposition, the changes that are necessary in order to realize an
arbitrary pair (t, k) ∈ Z/2 × Z/2 instead of the special pair (1, 0) have to be outlined. To get
a nontrivial ks-invariant, we start with a manifold ∗M instead of M . Then for any normal
1-smoothing ∗µ of ∗M , we have

φ(∗M, ∗µ) = (0, 0, ?, 1).

We want to show that we can vary ? = ter(∗M) arbitrarily without changing the homotopy
type and the ks-invariant. This can be done by the same strategy as above, namely by surgery
on a degree 1 normal map f : X −→ ∗M (with νX = ν∗M ◦ f) obtained from the bordism class
of

(∗M,ν∗M ) + T ∈ ΩTOP
4 (ν∗M ).

The result is a normal homotopy equivalence •M ≃ ∗M over ν∗M and thus by Remark 5.2.1
the ks-invariants of •M and ∗M agree. �
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Example 5.2.4. If Π is a finite group with quaternion 2-Sylow subgroups then Theorem 4.3.4
together with the above proposition proves the existence of two oriented differentiable 4-mani-
folds with fundamental groups Π which are homotopy equivalent but not stably diffeomorphic.
Remember that a 4-manifold with trivial ks-invariant has stably a differentiable structure and
that the ter-invariant is nontrivial on a suitable bordism group corresponding to this fundamental
group. Note that we are comparing the zero element in the group Ω4(ξ) with a nontrivial
element, and thus the (linear) action of Aut(ξ) cannot move one into the other.

Had we only wanted to obtain the above example, we need not have switched to the topological
category and use M.Freedman’s deep result. The reason for this is that [Cappell-Shaneson]
proved that in the differentiable setting the surgery sequence is exact in the stable category.
But for the reasons described in Section 9.1, we will really need the unstable result of Proposi-
tion 5.2.3 once we try to classify up to homeomorphism.
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Part 2. Homeomorphism Classification of 4-Dimensional Manifolds

6. Cancellation of S2 × S2-Summands

9.1 The Cancellation Theorem
9.2 Sesquilinear and Metabolic Forms
9.3 Construction Methods for Rational Homology 4-Spheres
9.4 Classification Results for Special Fundamental Groups
9.5 Some Conjectures

This Section is centered around the question whether two stably homeomorphic 4-manifolds
are homeomorphic. It is clear that the number of S2 × S2-summands on both sides have to be
equal and that this is controlled by the Euler characteristic χ. Thus our aim will be to prove
results in the following direction:

If χ(M) = χ(N) and M ≈
st.

N then M ≈ N .

Together with the results of Part(II), we will obtain a homeomorphism classification for special
fundamental groups under rather mild restrictions on the intersection form on H2(.; Z). This
will be carried out in detail in Section 9.4 for the following 3 classes of finite fundamental groups.

(i) Groups with cyclic Sylow subgroups.
(ii) SL2(p), p a prime with p ≡ 3, 5 (8).
(iii) Groups with 4-periodic cohomology.

Before we start this Section, we remind the reader that without mentioning we always consider
closed oriented topological 4-manifolds.
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6.1. The Cancellation Theorem.

Theorem ([Hambleton-Kreck 3]). Let M and N be two 4-manifolds with finite fundamental
group. Suppose that the connected sum M#r · (S2 × S2) is homeomorphic to N#r · (S2 × S2).
If N ≈ N0#(S2 × S2) then M is homeomorphic to N .

A brief outline of the proof of the cancellation theorem can be given as follows: First note
that if the homeomorphism

f : M#r · (S2 × S2) −→ N#r · (S2 × S2)

carries the hyperbolic form H(Λr),Λ := Zπ1M , coming from the S2×S2-summands, identically
from the left to the right hand side then one can check (or see [Kreck 1, Lem.6.1]) that the
cobordism

(M × I)#r · (S2 ×D3) ∪
f

(N × I)#r · (D3 × S2)

is an s-cobordism between M and N . By the topological s-cobordism theorem it follows that M
and N are homeomorphic since finite fundamental groups are good in the sense of [Freedman].
(At this point the corresponding proof breaks down in the differentiable category.)
We now face the problem that we do not have given the homeomorphism f explicitly and thus
we cannot control what happens to the hyperbolic summands. We just know that f∗ maps any
pair of hyperbolic basis vectors (e, f) ∈ H(Λ) to a hyperbolic pair inside H2(N ; Λ) ⊕ H(Λr).
To be more precise, we should mention that we are talking about the quadratic forms on the
universal coverings given by intersections and self-intersections (see Section 9.2) defined only on

K := Ker(w2 : H2(N#r · (S2 × S2); Λ) −→ Z/2).

Now I.Hambleton and M.Kreck improve a theorem of H.Bass who showed that a certain group
of automorphisms of the quadratic form on K acts transitively on such hyperbolic pairs. The
main problem they have to solve is that Bass assumes the existence of two additional hyperbolic
summands (which would correspond to N ≈ N0#2 · (S2×S2)). Roughly, what they use is that
H2(N0; Λ) itself contains a form which is almost as good as a hyperbolic summand.
The last step in the proof of the cancellation theorem is to realize the necessary algebraic
automorphisms of K by self-automorphisms of N#r · (S2 × S2) and hereby changing f to a
homeomorphism which maps the hyperbolic summands identically.
The existence of such self-homeomorphisms goes back to a beautiful idea of [Wall 2] and was
carried out in [Cappell-Shaneson]. �

Let me now discuss, how a stable homeomorphism classification together with the cancellation
theorem leads to a homeomorphism classification under mild restrictions.

Corollary 6.1.1. Let Π be a finite group with H2(Π)(2) = 0 and let M and N be 4-manifolds
with fundamental group Π and indefinite intersection form on H2(.; Z). If M and N are stably
homeomorphic, χ(M) = χ(N) and if every element of signature 0 in

MStTOP
4 (Π, w2M)

is represented by a rational homology 4-sphere then M and N are homeomorphic.

Remark . By M.Freedman’s classification of simply-connected 4-manifolds, the assumption on
the indefiniteness of the intersection form is already necessary in the simply-connected case.
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Proof. Recall from Theorem 3.3.2(4) that the assumption H2(Π)(2) = 0 implies that

σ(Π, w) =





1 if w =∞,

16 if w = 0,

8 if w 6=∞, 0.

It follows that if we define

Z :=

{
σ(M) · CP2 if w2M =∞
σ(M)

8 · |E8| if w2M 6=∞

then Z is a simply-connected 4-manifold with definite intersection form and M#(−Z) has
signature 0. By assumption, there exists a rational homology 4-sphere Σ which is stably home-
omorphic to this connected sum. Now observe that M is stably homeomorphic to M#(−Z)#Z
because

MSt4(Π, w2M) ∼= Ω4(ξ(Π, w2M))/Aut(ξ)

and (−Z) is the inverse of Z in the bordism group. Maybe it is worth mentioning a different
proof of this fact: In the case w2M 6= ∞ it follows from the classification of 1-connected 4-
manifolds which implies that (−Z)#Z is homeomorphic to σ(M) · (S2×S2). If w2M =∞, one
can use a trick from [Wall 2, Rem.5.2] who shows that under this condition

M#CP2#(−CP2) ≈M#(S2 × S2).

Coming back to the main line of the proof, we obtain a homeomorphism

M#r · (S2 × S2) ≈ Σ#Z#s · (S2 × S2),

where Σ#Z has a definite intersection form. But since by assumption M has an indefinite
intersection form, we may conclude that s > r. Thus the cancellation theorem implies that

M ≈ Σ#Z#(s− r) · (S2 × S2).

Since exactly the same arguments apply for the manifold N , the conclusion follows. �

Remark 6.1.2. If Π is an arbitrary group, there does not exist a rational homology 4-sphere in
MSt4(Π,∞). This follows from the observation that the intersection form on H2(M ; Z) is even
if and only if w2M vanishes on all integral homology classes. Thus if Σ is a rational homology

4-sphere and x ∈ H2(Σ̃; Z) then

〈w2(Σ̃), x〉 = 〈p∗(w2Σ), x〉 = 〈w2Σ, p∗(x)〉 = 0

because the intersection form on H2(Σ; Z) is identically zero and in particular even. Since on

Σ̃ any 2-dimensional Z/2-homology class is a reduction of an integer class, we conclude that

w2(Σ̃) = 0.

This shows that Corollary 6.1.1 is never applicable for the w2-type ∞. However, if there exists
any rational homology 4-sphere Σ in MSt4(Π) then the manifold

Σ#CP2#(−CP2)

has signature 0 and lies in MSt4(Π,∞). Thus the assertion of the corollary still holds if we
assume that

χ(M) > 4 if w2M =∞, σ(M) = 0.

Note that we do not need this assumption if w2M =∞ and σ(M) 6= 0 because in this case we
added a CP2-summand to Σ anyway.
I hope that the reader is now strongly motivated to read a digression on the construction of
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rational homology 4-spheres. But first I have to insert a chapter on the algebra of intersection
forms.

6.2. Sesquilinear and Metabolic Forms.

We first recall the relevant definitions from [Bass, § 1-3]: Let Λ be a ring with involution, i.e.
we have given an antiautomorphism a 7→ ā of order ≤ 2. Using this involution, one can view a
right Λ-module M as a left Λ-module by setting

a ·m := m · ā ∀a ∈ Λ,m ∈M

and vice versa. As a matter of education at the University of Mainz, I prefer to work with left
modules. So let M be a left Λ-module. Then HomΛ(M,Λ) is naturally a right Λ-module via

(ϕ · a)(m) := ϕ(m) · a ∀a ∈ Λ,m ∈M,ϕ ∈ HomΛ(M,Λ).

We shall write M for the corresponding left Λ-module.

Example 6.2.1. Let Π be a finite group and Λ := ZΠ be the group ring with the involution
∑

g∈Π

agg :=
∑

g∈Π

agw1(g)g
−1

for a given homomorphism w1 : Π −→ Z/2. Let M be a left Λ-module and M∗ be the abelian
group HomZ(M,Z) with the left Λ-action

(a · u)(m) := u(ā ·m) ∀a ∈ Λ,m ∈M,u ∈M∗.

From this definition it follows that HomΛ(M,Z) = (M∗)(Π,w1), where for a Λ-module V we
define (in analogy to the fixed-point set for w1 ≡ 0)

V (Π,w1) := {v ∈ V | g · v = w1(g)v ∀g ∈ Π}.

There is a natural isomorphism of left Λ-modules (compare [Brown, Ch.VI,Prop.3.4])

ψ : M∗ −→M

given by

ψ(u)(m) :=
∑

g∈Π

u(g−1 ·m)g ∀m ∈M,u ∈M∗.

If ǫ1 : Λ −→ Z is defined by ǫ1(
∑

g∈Π

agg) := a1 then the inverse of ψ is given by ϕ 7→ ǫ1 ◦ ϕ.

Definition 6.2.2. A sesquilinear form on a Λ-module M is a biadditive function

h : M ×M −→ Λ

satisfying h(a ·m, b · n) = a · h(m,n) · b̄ ∀a, b ∈ Λ,m, n ∈M .
The set of all such forms is denoted by Sesq(M). The dual of h is the sesquilinear form h̄ defined
by

h̄(m,n) := h(n,m) ∀m,n ∈M.

h is called hermitian if h = h̄ and the pair (M,h) is called in this case a hermitian module.

Remark . There is a canonical isomorphism of abelian groups

d : Sesq(M) −→ HomΛ(M,M )

given by d(h)(m)(n) := h(n,m) ∀h ∈ Sesq(M),m, n ∈ M . One calls the form h nonsingular
if d(h) is an isomorphism.
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Example 6.2.3. If Π is a finite group, Λ = ZΠ the group ring with involution as in Exam-
ple 6.2.1 and M is a Λ-module, we have natural isomorphisms

HomΛ(M,M ) ∼= HomΛ(M,M∗) ∼= HomΛ(M ⊗Z M,Z) = HomZ(M ⊗Z M,Z)(Π,w1).

To make the second isomorphism well-defined, we have to give M ⊗ZM the Λ-module structure
defined by

g · (m⊗ n) := w1(g)(g ·m⊗ g · n) ∀g ∈ Π,m, n ∈M.

It follows that elements s ∈ HomZ(M ⊗Z M,Z)(Π,w1) are characterized by the property

s(a ·m,n) = s(m, ā · n) ∀a ∈ Λ,m ∈M.

This leads to an isomorphism of abelian groups

Ψ : HomZ(M ⊗Z M,Z)(Π,w1) −→ Sesq(M)

given by

Ψ(s)(m,n) :=
∑

g∈Π

s(g−1 ·m,n)g.

As in Example 6.2.1, the inverse of Ψ is simply given by h 7→ ǫ1 ◦ h. It follows that taking the
dual of a sesquilinear form h corresponds to the involution s 7→ s∗ on HomZ(M ⊗ZM,Z) where

s∗(m,n) := s(n,m).

Such hermitian forms arise in geometry for example as follows: Let X be a 4-dimensional
Poincaré complex with finite fundamental group Π. Then the cup-product plus evaluation on

the fundamental class [X̃ ] (in other words Poincaré duality) gives a unimodular form (compare
Part(I) of this thesis)

SX ∈ HomZ(H2(X̃)⊗Z H
2(X̃),Z)(Π,w1X).

Via the correspondence in Example 6.2.3 we obtain a nonsingular hermitian form on H2(X̃)
(with values in the group ring with its usual involution). But this is not the intersection form
usually considered in the literature, because if one tries to perform concrete computations,
one always uses the intersection numbers of submanifolds representing certain homology or
homotopy classes. Algebraically, this is reflected by the fact that the universal coefficient
theorem together with the Hurewicz homomorphism give a natural isomorphism

H2(X̃) ∼= HomZ(H2(X̃),Z) ∼= H2(X̃)∗ ∼= π2(X̃)∗ ∼= π2(X)∗.

Via the natural isomorphisms (π2 := π2X)

HomZ(π∗2 ⊗ π
∗
2 ,Z) ∼= HomZ(π∗2 , π

∗∗
2 ) ∼= HomZ(π∗2 , π2)

SX can be therefore viewed as an element in HomZ(π∗2 , π2) and the unimodularity of SX means
that this element is an isomorphism. Now what people usually understand under the equivariant
intersection form of the Poincaré complexX, is the nonsingular hermitian form on π2 with values
in Λ which corresponds to

S−1
X ∈ HomZ(π2, π

∗
2 ) ∼= Sesq(π2).

It can be computed by counting intersection numbers in X̃ as described in [Wall 1, Thm.5.2].
Although in Part(I) of my thesis we rigorously worked with SX , we will now switch to its inverse.
Moreover, following the notation in [Wall 1], we will denote the hermitian form S−1

X by

λX : π2X × π2X −→ Λ.
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Remark 6.2.4. If Π = π1X is an infinite group, one has to be more careful since on the one
hand, the algebraic isomorphisms ψ respectively Ψ cannot be defined and on the other hand,

X̃ is not compact and thus Poincaré duality is an isomorphism

SX : H2
comp(X̃) −→ H2(X̃)

where H i
comp denotes cohomology with compact support. But these two problems cancel in

the following sense: On the one hand , the homomorphism Ψ from Example 6.2.3 can still be
defined on the subgroup of all s ∈ HomZ(M ⊗Z M,Z)(Π,w1) such that for all m,n ∈M

s(g−1 ·m,n) = 0 for all but finitely many g ∈ Π.

On the other hand, the isomorphisms

H2(X̃) ∼= π2(X̃) ∼= π2X and H2(X̃) ∼= (π2X)∗

are still valid and there is a forgetful map

f : H2
comp(X̃) −→ H2(X̃).

Therefore, we obtain a homomorphism

λX : π2X
S−1

X−−→
∼=

H2
comp(X̃)

f
−→ H2(X̃) −→

∼=
(π2X)∗

on which the above homomorphism Ψ is well-defined and gives an element λX ∈ Sesq(π2X).
This follows from the fact that one counts intersections between two (compact) 2-spheres so that
only finitely many deck-transformations keep a given sphere in an area where it can intersect a
second given sphere.

Note that for infinite fundamental groups we are forced to work with λX ∈ Sesq(π2X) since in
general there is no intersection form on (π2X)∗. We shall now describe a further condition which
is satisfied for the intersection form λ of a 4-dimensional Poincaré complex: From Lemma ?? it
follows that the form ǫ1 ◦ λ satisfies the Bredon-conditions

ǫ1 ◦ λ(τ(m),m) ≡ 0 (2) ∀m ∈ π2 and τ ∈ Π of order 2.

This is clearly equivalent to

ǫτ ◦ λ(m,m) ≡ 0 (2) ∀m ∈ π2 and τ ∈ Π of order 2.

If we assume w1(τ) = 0 ∀τ ∈ Π with τ2 = 1, an elementary computation shows that the
following two conditions are equivalent for a given element m ∈ π2:

(i) ǫτ ◦ λ(m,m) ≡ 0 (2) ∀τ ∈ Π with τ2 = 1.
(ii) λ(m,m) ∈ {a+ ā | a ∈ Λ}.

The oriented case w1 ≡ 0 is particularly interesting because then one easily shows that for
a, b ∈ Λ the equation a + ā = b + b̄ implies that there exists an element l ∈ Λ such that
a− b = l − l̄. In particular, the element m ∈ π2 determines via the equation

λ(m,m) = a+ ā

the element a ∈ Λ modulo an indeterminacy of the form l − l̄. This leads to the following

Definition 6.2.5. Let (M,λ) be a hermitian Λ-module. If I := {l − l̄ | l ∈ Λ}, a function

µ : M −→ Λ/I

is called a quadratic refinement of λ if it satisfies the following properties:

1. λ(m,m) = µ(m) + µ(m) ∈ Λ ∀m ∈M ,
2. µ(m+ n) = µ(m) + µ(n) + [λ(m,n)] ∀m,n ∈M ,
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3. µ(a ·m) = a · µ(m) · ā ∀a ∈ Λ,m ∈M .

Definition 6.2.6. In [Wall 1], a quadratic form with coefficients in Λ is a triple (M,λ, µ), where
(M,λ) is a hermitian Λ-module with quadratic refinement µ.

From the discussion preceding the definitions it follows that an oriented Poincaré complex X
has a quadratic refinement of the intersection form λ restricted to the module

K(X) := Ker(w2(X̃) : π2X −→ Z/2) = {m ∈ π2X | ǫ1 ◦ λ(m,m) ≡ 0 (2)}.

In Section 2, we used this additional geometric restriction on λ to prove the Main Theorem.
From the viewpoint of manifolds, the above approach to a quadratic refinement is very artificial
because one obtains µ without an assumption on the orientation character directly from the
geometry of manifolds as follows: If N is a 4-dimensional manifold, an element in the kernel

of w2(Ñ ) : π2N −→ Z/2 can be uniquely (up to regular homotopy) represented by a framed
immersion S2 # N , compare [Kreck 1, Prop.6.6]. Then one can apply the description of [Wall 1,
Thm.5.2] for counting the self-intersections of this immersion to obtain a function

µ : K(N) −→ Λ/I

with the algebraic properties of a quadratic refinement for the intersection form λ|K(N).

Remark 6.2.7. The inclusion of groups {1} →֒ Π induces an inclusion Z →֒ ZΠ = Λ of rings
with involution and since 1̄ = 1 also an inclusion

Z · 1 →֒ Λ/I

which splits the well-defined map ǫ̃1 : Λ/I −→ Z induced by ǫ1. We can therefore write

Λ/I = Z · 1⊕R

as abelian groups. Now let x ∈ K(N) be given. We represent x by a (not necessarily framed)
immersion f : S2 # N . Then µ(f) is defined by [Wall 1, Thm.5.2] and we want to compare

µ(x) = µ(x)1 + µ(x)R with µ(f) = µ(f)1 + µ(f)R ∈ Z · 1⊕R.

One can change the immersion f to a framed immersion by introducing so called twistings
which are certain explicit nonregular homotopies of f , see [Freedman-Quinn, p.14,22]. Since
these changes take place inside a (contractible) coordinate neighborhood, one has the equation

µ(x)R = µ(f)R.

For the 1-component of µ one can use the following formula (iii) of [Wall 1, Thm.5.2]:

λ(f, f) = µ(f) + µ(f) + χ(ν(f)) · 1

to conclude from the homotopy invariance of λ that

µ(x)1 = µ(f)1 + 1
2χ(ν(f)).

Note that since x ∈ K(N), the Euler number χ(ν(f)) of the normal bundle of f is even. These
formulas show that µ(x) is well-defined by setting

µ(x) := µ(f) + 1
2χ(ν(f)) · 1 ∈ Λ/I

for any immersion f representing x ∈ K(N).

We have seen that the existence of µ is an additional condition on λ but that in the orientable
case µ is completely determined by λ. However, in the nonoriented case the quadratic refinement
is an extra structure which is important for doing surgery, see Section 9.2. In this Section, we
want to concentrate on the oriented case and can therefore forget about the function µ if we
just keep the condition for its existence in mind:
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Definition 6.2.8. A hermitian form λ ∈ Sesq(M) is called weakly even if for all m ∈M

λ(m,m) ∈ {a+ ā | a ∈ Λ}.

Recall that the intersection form of an oriented Poincaré complex with w2-type 6=∞ is always
weakly even. Further examples of weakly even hermitian forms are obviously those of the form
q + q̄ with q ∈ Sesq(M).

Definition 6.2.9. A hermitian form λ ∈ Sesq(M) is called even if there exists a q ∈ Sesq(M)
such that

λ = q + q̄.

Remark . In the definition of [Bass, (4.4)], a quadratic module is a pair (M, [q]) where q ∈
Sesq(M) and [q] is its class modulo {s− s̄ | s ∈ Sesq(M)}. Then the associated hermitian form
λ := q + q̄ is well-defined and has the quadratic refinement µ(m) := [q(m,m)]. In particular, a
quadratic module gives a quadratic form in the sense of Definition 6.2.6.
Since in this Section we are not interested in the additional structures given by q or µ but only
in the hermitian form λ and its properties, we have chosen the above language.

Lemma 6.2.10 ([Bass, Prop.3.4]). If (M,λ) is a finitely generated projective hermitian module
then λ is even if and only if it is weakly even.

It is very easy to algebraically construct examples of weakly even hermitian forms which are
not even. But the interesting question is, whether such examples also appear as intersection
forms of 4-manifolds. In Proposition 6.3.4, we will see that for certain groups Π the following
example does in fact occur in the geometry of 4-manifolds.

Theorem 6.2.11. Let Π be a finite group and Λ = ZΠ endowed with the involution from
Example 6.2.1 with w1 ≡ 0. Let I be the augmentation ideal of Λ and h ∈ Sesq(I) be the
restriction of the “identity form”

(1) : Λ× Λ −→ Λ
(a, b) 7−→ a · b̄ .

Then h is a weakly even hermitian form, which is even if and only if Π has cyclic 2-Sylow
subgroups. We call h the canonical form on I.

Proof. Since the (1)-form is hermitian, so is h. However, the (1)-form is not weakly even. But
if we take the Z-basis {g − 1 | g ∈ Π \ 1} of I then for any g ∈ Π

h(g − 1, g − 1) = (g − 1) · (g−1 − 1)

= (1− g) + (1− g)

and thus h is weakly even.
If Π is a cyclic group generated by g then g− 1 generates I as a Λ-module and has the defining
relation N ·(g−1), where N ∈ Λ is the sum of all group elements. (We just put the isomorphism
I ∼= Λ/N in words!) Thus a sesquilinear form q on I is determined by its value q(g − 1, g − 1)
and to any given l ∈ Λ with N · l = 0 there exists a sesquilinear form q with q(g− 1, g − 1) = l.
In particular, there exists a q0 ∈ Sesq(I) with q0(g − 1, g − 1) = (1 − g) and it follows that
h = q0 + q̄0 is even.
Let me now translate the hermitian form h via the correspondence Ψ of Example 6.2.3 into the
Z-valued, Π-equivariant symmetric form ǫ1 ◦ h. Since we will not switch back to the Λ-valued
form, let me omit the ǫ1-symbol and recall that

h : I× I −→ Z
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is then given by h(g − 1, g′ − 1) = 1 + δg,g′ . The evenness translates into the question whether

h ∈ HomΛ(I⊗ I,Z) = HomZ(I⊗ I,Z)Π

can be written as h = q + q∗ with q ∈ HomΛ(I⊗ I,Z).

Lemma 6.2.12. Let h = hΠ be the form above.

1. If hΠ is even and U ≤ Π is some subgroup then the canonical form hU on IU is even, too.
2. If U ≤ Π is a 2-Sylow subgroup and hU is even then hΠ is even, too.

Proof: (1) In the commutative diagram

0 −−−→ IU −−−→ ZU
ǫ

−−−→ Z −−−→ 0
y

y
∥∥∥

0 −−−→ IΠ −−−→ ZΠ
ǫ

−−−→ Z −−−→ 0

where the vertical arrows are the natural inclusions, one knows that their common cokernel
F is a free U -module, see [Brown, p.14]. Therefore, F splits back to give an isomorphism of
U -modules

IU ⊕ F ∼= IΠ.

With respect to this decomposition, hΠ is given by the matrix of U -homomorphisms(
hU A
A∗ B

)
.

It now follows that if hΠ = q + q∗ with

q ∈ HomZ(IΠ⊗ IΠ,Z)Π ⊆ HomZ(IΠ⊗ IΠ,Z)U

then hU is even, too.
(2) In the terminology of part(1), we know that the form B is weakly even because hΠ has this
property. But since B ∈ Sesq(F ) and F is a free U -module, it follows from Lemma 6.2.10 that
B is in fact even. Since by assumption also hU is even, there exists a q ∈ HomZ(IΠ⊗ IΠ,Z)U

such that
hΠ = q + q∗.

We have to show that we can also choose q ∈ HomZ(IΠ⊗ IΠ,Z)Π.
Set H := HomZ(IΠ ⊗ IΠ,Z). Then Π acts on H as described in Example 6.2.3 and the corre-
spondence f 7→ f∗ induces an additional Z/2-action on H which commutes with the Π-action.
Using Tate-cohomology groups with respect to this Z/2-action, the problem is whether

0 = [hΠ] ∈ Ĥ0(Z/2;HΠ),

knowing that hΠ represents the zero element in Ĥ0(Z/2;HU ). But now the transfer map de-
scribed in Section 1.3 is a Z/2-equivariant homomorphism tr such that the composition

HΠ 〉
→֒ HU ⊔∇

→ HΠ

is multiplication by |Π : U |. Since this is an odd number and the Tate-cohomology groups have
exponent 2, we conclude that

i∗ : Ĥ0(Z/2;HΠ) −→ Ĥ′(Z/∈;HU )

is injective, which proves assertion(2). �

With this lemma at hand, we can now restrict to the case where Π is a noncyclic 2-group. For
the smallest such group Π = Z/2× Z/2, I did a very explicit computation by writing down all
necessary equations in terms of certain (3 × 3)-matrices. It turned out that hΠ is not even in
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this case. But since this is far away from being exciting or interesting and this form does not
occur in the geometry of manifolds, we skip the details. But note that it follows from the above
lemma that hΠ is not even for Π a dihedral 2-group because such a group contains Z/2 × Z/2
as a subgroup.
The next case which I also computed by hand is Π = Q8, the ordinary quaternion group of
order 8. Here one has to solve equations for (7× 7)-matrices, but with quite a bit of patience I
could show that hΠ is not even is this case, neither. It follows that for Π an arbitrary quaternion
2-group, hΠ is not even. This is the geometrically interesting case but the method of proof is by
far not satisfactory. We will now present a proof which originated from a very fruitful discussion
with Dr.W.Willems, University of Mainz, who in particular pointed out to me the usefulness of
P.Webb’s theorem below.

The idea is to project from the ring Z to the field F2 and to show that the form h is not even
over this field. Therefore, let I2 be the augmentation ideal in F2Π and let h2 be the F2-valued,
Π-equivariant symmetric bilinear form given by h2 ≡ h mod 2.

Claim: h2 is not even if Π is a 2-group which is neither cyclic nor dihedral.

Since this claim will finish the proof of the theorem, we do not have to return to the Z-valued
form and can therefore suppress the subscript 2. To prove the claim, we first note that norm
element N ∈ F2Π generates the sum of all minimal submodules of I and is thus contained in
an arbitrary (nontrivial) submodule of I. If we show that the radical of h is 1-dimensional
then it follows that it is generated by N . For this we write h with respect to the F2-basis
{g − 1 | g ∈ Π \ 1} of I as the matrix

h =




2 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2


 =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


+




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


 =: 11 +A

and observe that A has the (|Π| − 2)-fold eigenvalue 0 and the simple eigenvalue

trace(A) = rank(I) = |Π| − 1 = 1 ∈ F2.

Therefore, h has the (|Π| − 2)-fold eigenvalue 1 and the simple eigenvalue 0 proving that the
radical of h is 1-dimensional. Setting H := I/〈N〉 (this the so called “heart” of the module

F2Π), we conclude that h induces an isomorphism

h|H : H
∼=
−→ H∗. (III.1)

We now suppose that h is even and will derive a contradiction to the isomorphism(III.1) above.
Let

q ∈ HomF2Π(I⊗ I,F2) fulfill the relation h = q + q∗.

Then 〈N〉 ⊆ Rad(q),Rad(q∗) because otherwise q (or q∗) would give a Π-equivariant isomor-
phism I ∼= I∗. This is impossible since it would follow that

Z/2 = Ĥ−1(Π; Z/2) ∼= Ĥ0(Π;I∗) ∼= Ĥ0(Π;I) ∼= Ĥ1(Π; Z/2) ∼= Πab ⊗ Z/2.

But since Π is a 2-group, Πab ⊗ Z/2 ∼= Π/φ(Π) and this group can only be cyclic if Π is cyclic
itself. (Here φ(Π) is the Frattini subgroup of Π, see [Huppert I, p.268 ff].)
Since we excluded cyclic groups in the claim, we can conclude that the forms q and q∗ induce
forms on the heart H of F2Π. The main ingredient in the proof is the following

Theorem 6.2.13 ([Webb]). If Π is a 2-group which is not dihedral then H is absolutely inde-
composible.
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Here the term absolutely indecomposible means that H stays indecomposible under all fi-
nite field extensions of F2. One knows that a module H is indecomposible if and only if the
endomorphism ring End(H) = EndF2Π(H) is a local ring, i.e. the set of all nonunits forms the
unique maximal ideal or Jacobson radical

J := J(End(H)),

compare [Reiner, p.82,88]. But if H is in addition absolutely indecomposible then it follows by
[Huppert II, p.77] that

End(H)/J
∼= F2. (III.2)

Regarding the forms h, q, q∗ as elements of HomF2Π(H,H∗), both of the following two cases lead
to a contradiction (note that the equality det(q) = det(q∗) shows that there are only these two
cases to consider).

1. q and q∗ are singular: Then it follows that h−1 ◦ q, h−1 ◦ q∗ ∈ J and thus

idH = h−1 ◦ h = h−1 ◦ (q + q∗) = h−1 ◦ q + h−1 ◦ q∗ ∈ J.

2. q and q∗ are nonsingular: Then there exists a unit u ∈ End(H) such that q∗ = q ◦ u.
Applying the isomorphism(III.2), we know that u = idH +j for some j ∈ J and thus

h = q + q∗ = q + q ◦ (idH +j) = 2 · q + q ◦ j = q ◦ j

is a singular form on H which contradicts the isomorphism(III.1). �

Remark . The above proof of the innocent looking Theorem 6.2.11 was quite involved. To
underline the nontriviality of this theorem, I want to remark that in the paper [Plotnick], the
author fails to decide whether for quaternion Π the canonical form h is even.

We will now define a special kind of hermitian modules which will turn up as the intersection
forms of various 4-dimensional manifolds in the next Section:

Definition 6.2.14 ([Bass, (3.5)]). Let (M,h) be a hermitian Λ-module.

1. The associated metabolic module is

H(M,h) := (M ⊕M,λ(M,h))

where λ(M,h) is defined by

λ(M,h)((ϕ,m), (ϕ′,m′)) := ϕ(m′) + ϕ′(m) + h(m,m′).

In matrix notation one may write

H(M,h) =

(
0 11
11 h

)
.

2. If h ≡ 0 then H(M, 0) =: H(M) is called the hyperbolic module on M .

It follows directly from the definition that λ(M,h) is (weakly) even if and only if h is (weakly)
even.

Lemma 6.2.15 ([Bass, Prop.3.6]). If (M,h) is an even hermitian Λ-module then

H(M,h) ∼= H(M).

Proof. If h = q + q̄ then the equation(
11 0
q 11

)
·

(
0 11
11 0

)
·

(
11 q̄
0 11

)
=

(
0 11
11 q + q̄

)

proves the assertion. �
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The following lemma from [Bass, Prop.3.6,3.7,3.10] is often very useful:

Lemma 6.2.16. Let (M,h) be a hermitian Λ-module.

(a) The metabolic module H(M,h) is nonsingular if and only if the natural map M −→M is
an isomorphism.

(b) If h is nonsingular then there is an orthogonal decomposition

H(M,h) ∼= (M,h)⊥(M,−h).

(c) If h is nonsingular and M ∼= M0 ⊕M1 with M0 = M⊥
0 then there is an isomorphism of

hermitian modules

(M,h) ∼= H(M1, h|M1).

We finish this Section by observing that the condition in part(a) of the above lemma is always
fulfilled if Λ is the group ring of a finite group and M is a finitely generated free abelian group.
This follows from the correspondence ψ from Example 6.2.1, since the natural map M −→M∗∗

is an isomorphism.

6.3. Construction Methods for Rational Homology 4-Spheres.

The first thing I have to say is that there is no overall method for constructing rational homology
4-spheres. It is even possible that for a given fundamental group there exists no rational
homology 4-sphere at all. For example, if Π is a finite abelian group then I proved in my
Diplom Thesis that Π is the fundamental group of a rational homology 4-sphere if and only if it
can be generated by 3 elements. But there is one well known construction which can be applied
in some special cases (for abelian groups it just gives the cyclic case).

Proposition 6.3.1. Given a finite 2-complex K with fundamental group Π and a cohomology
class w ∈ H2(Π; Z/2), there exists a differentiable compact, oriented 5-manifold N(K) with
boundary such that the following diagram commutes up to homotopy:

K
f

−−−→ B

j

y≃

yξ(Π,w)

N(K) −−−−→
νN(K)

BSO

Here f is a 2-equivalence and j a homotopy equivalence, in particular N(K) admits a normal
1-smoothing in ξ(Π, w). Moreover, the inclusion of the boundary M(K) into N(K) is a 2-
equivalence inducing a normal 1-smoothing of M(K) in ξ(Π, w).
Finally, the intersection form on M(K) is a metabolic form H(π2K, s) for some hermitian form
s ∈ Sesq(π2K).

Proof. The existence of N(K) was proved in [Mazur]. He replaces the cells of K by handles,
choosing the framings so that the above diagram commutes. Note that we have to assume that
the w2-type is 6=∞, since otherwise the map f is in general not onto in π2. For example, it is
very well possible that the boundary M(K) is a rational homology 4-sphere and we have seen
in Remark 6.1.2 that then necessarily w2M(K) 6=∞.

To compute the equivariant intersection form of M(K), we consider the commutative dia-
gram of cohomology groups with coefficients in ZΠ given by Lefschetz duality on the universal
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coverings: (We write N := N(K),M := M(K) )

H2(N,M) −−−→ H2(N) −−−→ H2(M) −−−→ H3(N,M) −−−→ H3(N)

∼=

y.∩[N ] ∼=

y.∩[N ] ∼=

y.∩[M ] ∼=

y.∩[N ] ∼=

y.∩[N ]

H3(N) −−−→ H3(N,M) −−−→ H2(M) −−−→ H2(N) −−−→ H2(N,M)

Since N is homotopy equivalence to a 2-complex, these exact sequences are in fact short exact.
They split because on the cells of K one can define a homotopy splitting of the composition

M
i
→֒ N

j−1

−−→
≃

K

since i is a 2-equivalence, compare [Baues, Thm.4.3.1]. Finally, the commutativity of the above
diagram shows that

V := H3(N,M) ∼= H2(N) ∼= H2(N)∗ ∼= (π2K)∗

is direct summand of π2M satisfying V ⊆ V ⊥. But since the intersection form on π2M is
nonsingular and V is a direct summand of half rank, it follows that V = V ⊥ and thus by
Lemma 6.2.16(c) the intersection form of M is metabolic. �

We will call a manifold M(K) constructed as above a thickening of K (with respect to w)
although a priori the manifold N(K) deserves this name. I do not think that this will lead to
confusion. It is surprisingly an open question whether the intersection form of a thickening is
always hyperbolic.

Remark 6.3.2. By construction, the Euler characteristic of a thickening is given by

χ(M(K)) = 2 · χ(N(K)) = 2 · χ(K).

If the 2-complex K is modelled on a presentation

(g1, . . . , gn | r1, . . . , rm) of deficiency m− n,

then it follows that

χ(K) = 1− n+m.

If one defines the deficiency of a finitely presentable group Π to be the minimum over all
deficiencies of finite presentations for Π, it follows that for a group of deficiency zero there
exists a thickening with Euler characteristic 2. If H1(Π; Q) = 0, this thickening is a rational
homology 4-sphere.

Recall that the cellular chain complex of the universal covering of the finite 2-complex K
gives an exact sequence

0 −→ π2K −→C2 −→C1 −→C0 −→Z −→ 0

in which the Ci are finitely generated free Λ-modules. Generalizing the notions from Section 2.2,
we call a Λ-module L a representative of Ω3Z if it fits into an exact sequence

0 −→L −→P2 −→P1 −→P0 −→Z −→ 0

with finitely generated projective Λ-modules Pi. We will now generalize the thickening con-
struction in the topological category:

Proposition 6.3.3. Let Π be a finite group and w ∈ H2(Π; Z/2). If the Λ-module L is a
representative of Ω3Z, there exists a 4-dimensional topological normal 1-smoothing (M, ν̃) in
ξ(Π, w) which bounds in ΩTOP

4 (ξ(Π, w)). The intersection form of M is a metabolic form
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H(L′, s′) for some Λ-module L′ in the same genus as L and some hermitian form s′ ∈ Sesq(L′).
In particular we have

χ(M) = 2 ·
1 + rankZ L

|Π|
.

Proof. Let K be a finite 2-complex with fundamental group Π. Then by Shanuel’s Lemma
([Brown, p.192]), there exists a finitely generated projective Λ-module P and a natural number
r such that

π2K ⊕ Λr ∼= L⊕ P.

Replacing K by K ∨
∨

r S
2 we can therefore assume that π2K ∼= L⊕ P .

Now [Hambleton-Kreck 2, Cor.1.19] prove a generalization of Roiter’s Replacement Lemma,
from which it follows that there exists a Λ-module L′ in the same genus as L such that

L⊕ P ∼= L′ ⊕ F

for some finitely generated free Λ-module F .
Let M(K) be a thickening of K with respect to w. It has a metabolic intersection form

λ = H(π2K, s) ∼= H(L′ ⊕ F, s).

Since w 6=∞, λ is weakly even and thus the restriction λ|(F ⊕F ) is a weakly even, nonsingular
metabolic form on a free module and thus by Lemmas 6.2.10 and 6.2.15 this restriction is
hyperbolic. We obtain an orthogonal decomposition

λ = λ|(F ⊕ F ) ⊥ (λ|(F ⊕ F ))⊥ ∼= H(F ) ⊥ H(L′, s′).

It follows from M.Freedman’s main theorem ([Freedman]) that this algebraic decomposition of
the intersection form is induced by a geometric decomposition (n := rankΛ(F ))

M(K) ≈M#n · (S2 × S2)

for some topological 4-manifold M with intersection form H(L′, s′). Clearly M and M(K) have
the same fundamental groups and w2-types and by the formula

|Π| · χ(K) = χ(K̃) = 1 + rankZH2(K̃) = 1 + rankZ π2K

the Euler characteristic condition follows from Remark 6.3.2. �

Let me now describe yet another method for obtaining rational homology 4-spheres: Let Y 3 be
a 3-manifold with fundamental group Π and Ḋ3 an open coordinate 3-disc inside Y . Define

Σθ := (Y 3 \ Ḋ3)× S1 ∪
θ
S2 ×D2,

where θ : S2 × S1 −→ S2 × S1 is derived from an element in π1(SO(3)) ∼= Z/2. Then Σθ is
a 4-manifold with fundamental group Π and it is a rational homology 4-sphere if and only if
H1(Π; Q) = 0. Note that Σθ is obtained by surgery on the circle ∗ × S1 in Y × S1 where θ
corresponds to the choice of the framing of the normal bundle. If we do spin structure preserving
surgery, θ = 0 corresponds to the zero bordant spin structure on S1 whereas θ 6= 0 means that
we take the nontrivial spin structure denoted by Ŝ1. Thus by construction Σ := Σθ=0 bounds

in ΩSpin
4 (BΠ) but a priori we do not know the bordism class of Σ̂ := Σθ 6=0. A straightforward

computation proves the following

Proposition 6.3.4 ([Plotnick]). If Π = π1(Y
3) is a finite group and I denotes the augmen-

tation ideal of the group ring Λ then the intersection form of Σ is the hyperbolic form H(I)

whereas the intersection form of Σ̂ is the metabolic form H(I, h) with h ∈ Sesq(I) the canonical
form on I as in Theorem 6.2.11.
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To compare this proposition with the computation for thickenings, note that Y \ Ḋ3 is homo-

topy equivalent to a 2-complex and for finite Π the universal covering Ỹ is a homotopy 3-sphere
and thus

π2(Y \ Ḋ
3) ∼= π2(Ỹ \ |Π| · Ḋ

3) ∼= I.

Moreover, Σ can also be obtained as the double of (Y \ Ḋ3) × I which shows that Σ is the

thickening of Y \ Ḋ3 with respect to w = 0. In particular, for finite fundamental groups of
3-manifolds, the thickenings with respect to w = 0 have hyperbolic intersection forms.
On the contrary, we have shown in Theorem 6.2.11 that the metabolic intersection form H(I, h)

of Σ̂ is hyperbolic (⇔ h is even) if and only if Π = π1Σ̂ has cyclic 2-Sylow subgroups. It follows
that in the other possible case, where Π has quaternion 2-Sylow subgroups, the intersection

forms of Σ and Σ̂ are not isomorphic and thus these two rational homology 4-spheres are not
homotopy equivalent.

Remark . The question whether Σ and Σ̂ are homotopy equivalent was raised by [Plotnick]
but he vainly tried to solve the algebraic problem whether the sesquilinear form h is even.
In [Hambleton-Kreck 1, Rem.4.3], the authors answered the question by comparing the Thom

spectra of BΠ ∧ BSpin and BΠ ∧ BSpinG and concluded that Σ and Σ̂ must have distinct
quadratic 2-types. Our computation shows that it is in fact the evenness of the intersection
form which distinguishes these two rational homology 4-spheres.

There are various possibilities to generalize the construction leading to Σ and Σ̂. We will not
make use of the first one, so we describe it only briefly:
Let Π = π1(Y

3) be finite and let w ∈ H2(Π; Z/2). Then there exists a unique oriented S1-bundle
L over Y with w2L = w. Since L restricted to a 3-disc in Y is trivial, we can form

Σw
θ := L|(Y \ Ḋ3) ∪

θ
S2 ×D2, θ as before.

One checks that one choice of θ leads to a ξ(Π, w)-manifold which is zero-bordant in Ω4(ξ(Π, w)).
Moreover, a similar computation as in Proposition 6.3.4 shows that the intersection form in this
case is again the hyperbolic form H(I). In particular, a thickening of Y \ Ḋ3 with respect
to w has also hyperbolic intersection form. The other choice of θ leads to a spin manifold

with metabolic intersection form, stably diffeomorphic to Σ̂ as one can show by computing the
invariant sec from Corollary 4.4.10.

Remark 6.3.5. For all w ∈ H2(Π; Z/2) we constructed rational homology 4-spheres Σw
θ with

w2-type w and isomorphic (hyperbolic) intersection forms on the universal covering. But since
by the Wu formula the w2-type is a homotopy invariant and for the fundamental groups in ques-
tion the homotopy type is detected by the quadratic 2-type (see [Hambleton-Kreck 1, Thm.A]),
the k-invariant must distinguish these manifolds. This gives a nice extension of an example in
[Hambleton-Kreck 1, Rem.4.5] where the authors consider the case Π = Z/2.

The second generalization is concerned with a wider class of possible fundamental groups
and was introduced in [Hambleton-Kreck 1]. If Π is a finite group with 4-periodic cohomology,
there exists a 3-dimensional Swan-complex X for Π. This means that Π acts freely on the
CW-complex X ≃ S3. The finiteness obstruction for X as an element in K0(X) = K0(ZΠ) is
represented by a projective module PX and can be very well nontrivial, compare[Milgram]. By
doing surgery on a degree 1 normal map

Y 3 × S1 −→ X × S1
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[Hambleton-Kreck 1, Thm.4.2] obtain two 4-dimensional spin manifolds M and M̂ with funda-
mental group Π and

π2M ∼= I⊕ I⊕ P ⊕ P ∼= π2M̂

form some projective module P in the same projective class as PX . Moreover, the authors show
that the intersection form on M is the hyperbolic form H(I ⊕ P ) and the intersection form

on M̂ is the metabolic form H(I ⊕ P, h ⊕ 0) where h ∈ Sesq(I) is the canonical form from
Theorem 6.2.11.
By doing exactly the same algebraic trick as in the proof of Theorem 6.3.3, we can now conclude
that there exists a Λ-module I′ in the same genus as I and a natural number n such that

H(I⊕ P ) ∼= H(I′ ⊕ Λn) ∼= H(I′) ⊥ H(Λn)

and similarly

H(I⊕ P, h⊕ 0) ∼= H(I′ ⊕ Λn, s) ∼= H(I′, s′) ⊥ H(Λn)

for some s′ ∈ Sesq(I′). Note that s′ is even if and only if h is even. Since these decomposition
can be realized geometrically, we obtain from Theorem 6.2.11 the following

Proposition 6.3.6. Let Π be a finite group with 4-periodic cohomology. Then there exist two

topological spin rational homology 4-spheres Σ and Σ̂ with fundamental group Π and intersection

forms H(I′) respectively H(I′, s′). The metabolic intersection form of Σ̂ is hyperbolic if and only
if Π has cyclic 2-Sylow subgroups.

In the last part of this Section, I would like to survey a construction method which I employed
in my Diplom thesis. It is also a generalization of the above construction: If Y 3 is again a 3-
manifold then one can perform surgery (with either framing) on an arbitrary element g ∈
π1(Y × S

1), not just on the circle ∗ × S1. Then it might be possible that even though π1Y is
infinite, for some choice of g the resulting 4-manifold has finite fundamental group and is thus
a rational homology 4-sphere. By taking Y to be one of the 3-dimensional Brieskorn spheres

{(z1, z2, z3) ∈ S
5 ⊆ C3 | ̥2

1 + ̥3

2 + ̥p

3
= 0},

I proved the following result.

Proposition 6.3.7. Given a prime number p, there exist two differentiable homology 4-spheres

Σ and Σ̂ with fundamental group SL2(p). Moreover, sec(Σ) = 0 and

sec(Σ̂) =

{
1 if p ≡ 3, 5 (8)

0 if p ≡ 1, 7 (8)
.

We will show in Theorem 6.4.1 that the above invariant sec measures whether the intersection
form of the manifold is even or not. Out of this reason and because the cohomological period
of the group SL2(p) is 4 if and only if p = 3, 5, this theorem is an extension of Theorem 6.3.6.
I must admit that I could not settle the question whether there exist homology 4-spheres with
nontrivial sec-invariant for p ≡ 1, 7 (8). For the smallest values p = 7, 17, I constructed such
manifolds using very special presentations for SL2(7) respectively SL2(17) which I could not
generalize to larger primes.
However, for an arbitrary prime p, it is not hard to construct a 4-manifold with fundamental
group SL2(p), nontrivial sec-invariant and Euler characteristic 4. But since we decided only to
apply the cancellation theorem in case a rational homology 4-sphere exists, we will not make
use of these manifolds. Nevertheless, it is clear how to obtain a classification theorem under a
stronger hypothesis in these cases, too.
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6.4. Classification Results for Special Fundamental Groups.

The fundamental groups for which we will give a classification result will be certain finite groups
with periodic cohomology so that we can apply the stable classification results from Section 7.4.
Since in addition the fourth homology group of a finite group with periodic cohomology vanishes,
the stable diffeomorphism invariants are exactly

w2, signature , sec, ter and ks.

Here the sec-invariant is defined for spin manifolds, whereas the ter-invariant is defined in one
special w2-type 6= ∞, 0. We abbreviate this w2-type by wter. In Section 8.2 we showed that
the ter-invariant is not a homotopy invariant, whereas the following theorem proves that the
sec-invariant is determined by the stable equivariant intersection form.

Theorem 6.4.1. Let M be a 4-dimensional spin manifold with finite fundamental group whose
2-Sylow subgroups are quaternion. Then

sec(M) = 0 if and only if the equivariant intersection form of M is even.

Proof. By the usual transfer argument (compare Lemma 6.2.12), we can assume that Π := π1M
is a quaternion 2-group. By Theorem 6.2.11 and Proposition 6.3.4 there exist two rational

homology 4-spheres Σ and Σ̂ with fundamental group Π such that the intersection form λΣ

is even but λbΣ is not even. Therefore, Σ and Σ̂ can not be stably diffeomorphic. But by
Corollary 4.4.10, signature and sec-invariant detect the stable diffeomorphism class implying
that

sec(Σ) 6= sec(Σ̂).

Since by construction Σ was the manifold which bounds in ΩSpin
4 (BΠ), it follows that sec(Σ) = 0

and the proof is complete for the special examples Σ and Σ̂. This implies the general case, since
the manifold

M#(−σ(M)
8 · |E8|)

has an even intersection form if and only if M does and also their sec-invariants agree. Since

this connected sum is stably homeomorphic to either Σ or Σ̂, the result follows. �

Let me now state our main classification result.

Theorem 6.4.2. Let M and N be two 4-manifolds with finite fundamental group Π and same
w2-type, signature, ks-invariant and Euler characteristic. Assume that the intersection form on
H2(M ; Z) is indefinite (and that χ(M) > 4 if w2M =∞ and σ(M) = 0). Then M and N are
homeomorphic if either of the following conditions is fulfilled:

(i) All Sylow subgroups of Π are cyclic.
(ii) Π ∼= SL2(p), p a prime with p ≡ 3, 5, (8) and

sec(M) = sec(N) if w2M = 0.

(iii) Π has 4-periodic cohomology and

sec(M) = sec(N) if w2M = 0 respectively
ter(M) = ter(N) if w2M = wter.

(Recall from Corollary 4.4.10 that in some cases ter(M) is determined by the signature.)
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Proof. To apply Corollary 6.1.1, we have to construct a rational homology 4-sphere in every
stable homeomorphism class of signature 0 manifolds with the given fundamental group and
w2-type. For this we go through the single cases:
(i) It is well known that a group whose Sylow subgroups are cyclic is a metacyclic group with
vanishing second homology. By [Beyl-Trappe, Ch.IV], Π has deficiency zero and so a suitable
thickening gives a rational homology 4-sphere Σ, see Remark 6.3.2. By the stable classification
result (Corollary 4.4.5), we need just one more rational homology 4-sphere, namely one with
w2-type 6= ∞, 0 and nontrivial ks-invariant. This is provided by Proposition 5.2.2, where we
showed that ∗Σ exists in this case.
(ii) The necessary homology 4-spheres are provided by Propositions 6.3.7 and 5.2.2 as above.
(iii) If Π has 4-periodic cohomology, there exists an exact sequence (see [Swan 2])

0 −→ I −→P2 −→P1 −→P0 −→Z −→ 0

where Pi are finitely generated projective Π-modules and I is the dual of the augmentation
ideal I.
Therefore, Proposition 6.3.3 gives for every w2-type w 6=∞ a rational homology 4-sphere which
bounds in ΩTOP

4 (ξ(Π, w)). In the spin case, Proposition 6.3.6 also gives a rational homology
4-sphere with nontrivial sec-invariant. In the w2-types w 6=∞, 0 take the zero-bordant rational
homology 4-sphere and apply Proposition 5.2.2 (respectively Proposition 5.2.3 if w = wter)
which shows that without changing the homotopy type, one can prescribe the ks-invariant
(respectively ks- and ter-invariant if w = wter) arbitrarily. Since by the stable classification
result (Corollary 4.4.10), these rational homology 4-spheres cover all elements of signature 0 in
MStTOP

4 (Π, w), the result follows. �

Remark . For finite cyclic groups, the above result was improved in [Hambleton-Kreck 4] be-
cause the authors could show that in this case one can cancel all the way down. They prove
that two 4-manifolds with the same finite cyclic fundamental group are homeomorphic if and
only if they have the same w2-type, ks-invariant and isomorphic intersection forms on H2(.; Z).

6.5. Some Conjectures.

We want to conclude the discussion of a homeomorphism classification by the method of sta-
bilization and then cancellation by stating a number of conjectures for arbitrary fundamental
groups which we partially proved for (say) quaternion groups. We again consider connected
closed oriented topological 4-manifolds.

Conjecture A: Two 4-manifolds M and N have the same π1-fundamental class if and only
if π2M and π2N are stably isomorphic in the sense that there exist r, s ∈ N such that

π2M ⊕ Λr ∼= π2N ⊕ Λs.

The only if part of Conjecture A was proven in [Hambleton-Kreck 1, Prop.2.4], where the
authors show that for a fixed 2-equivalence u : M −→ BΠ, the π1-fundamental class

u∗[M ] ∈ H4(Π) ∼= Ext1Λ((Ω3Z)∗,Ω3Z)

determines by the above isomorphism an extension

0 −→Ω3Z
i
−→ π2M ⊕ Λr p

−→ (Ω3Z)∗ −→ 0.

To prove the if part of Conjecture A, one has to find a natural way in which the stable isomor-
phism type of π2M determines one of the maps i or p above.
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Let me now assume that the π1-fundamental class of M vanishes and that the w2-type w of M
is 6=∞. By adding copies of S2 × S2 to M , we can assume that

π2M ∼= π2K ⊕ π2K

for some finite 2-complex K. Furthermore, the sec-invariant of M is defined as an element

sec(M) ∈ (H3(Π; Z/2)/ Image((Sq2
w)∗ ◦ r2)) /Out(Π).

Conjecture B. The stable isometry class of the equivariant intersection form λM determines
sec(M), the trivial sec-invariant corresponding to an even hermitian form (compare Conjec-
ture C). Moreover, given s ∈ H3(Π; Z/2), there exists a 4-dimensional spin manifold Ms with

fundamental group Π and sec-invariant [s] such that for some hermitian form h ∈ Sesq(π2K)

λMs
∼= H(π2K,h).

Remark . The moreover part is only stated for spin manifolds because otherwise there might
occur problems coming from the weaker divisibility conditions for the signature. For example,
at the end of Section 6.3 we constructed a 4-manifold with fundamental group Z/2 × Z/2,
vanishing π1-fundamental class, signature 4 and universal covering spin. This manifold must
necessarily have a nontrivial sec-invariant but its intersection form cannot be metabolic since it
has signature 4. Even more is true: for the normal 1-type ξ in question, the sec-invariant is a
homomorphism

sec : F3,1(ξ) −→ 4Z/8Z ∼= Z/2

and is induced by the signature (which implies the first part of Conjecture B for this normal
1-type).

Let me discuss the following evidence for the moreover part of Conjecture B. From the exact
sequence

0 −→H3(Π; Z/2)
∂
−→ π2K ⊗Λ Z/2 −→H2(K; Z/2)

we see that there exists an element α ∈ π2K with ∂(s) = α ⊗ 1. This element α determines a
hermitian form hα on π2K by the equation

hα(φ,ψ) := φ(α) · ψ(α) ∈ Λ ∀φ,ψ ∈ π2K.

Furthermore, it is easy to see that if

α⊗ 1 = β ⊗ 1 ∈ π2K ⊗Λ Z/2 for some β ∈ π2K

then there exists a q ∈ Sesq(π2K) with hβ = hα + q + q̄. The same proof as the one for
Proposition 6.2.15 then shows that

H(π2K,hα) ∼= H(π2K,hβ).

We conclude that algebraically there is a well-defined map

H3(Π; Z/2) −→ { Isomorphism classes of metabolic modules H(π2K,h)}.

But what about the realization of these metabolic forms as intersection forms of 4-dimensional
manifolds? The only necessary condition is that the metabolic form must be weakly even
because the w2-type is 6= ∞. But for the metabolic forms defined above, this can be verified
using the fact that

α⊗ 1 ∈ Image(∂) ⊆ π2K ⊗Λ Z/2.
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Let me now describe a sufficient condition for the realizability of the metabolic forms above:
Assume that there exists a thickening M(K) (with respect to w = 0) and a homotopy retraction
r : K −→M(K) of the composition

M(K) ⊆ N(K)
≃
−→ K

such that the element

(r∗(α), 1, 1) ∈ π2M(K)⊕ Λ⊕ Λ ∼= π2(M(K)#CP2#(−CP2))

is represented by an embedding ϕ : S2 ×D2 −→M(K)#CP2#(−CP2).
Then we can do surgery on ϕ to obtain a spin manifold Ms with fundamental group Π and
intersection form

λMs
∼= H(π2K,hα).

Moreover, using Proposition 3.2.3, it is easy to show that sec(Ms) = [s]. By construction, we
have a homeomorphism

Ms#CP2#(−CP2) ≈M(K)#CP2#(−CP2)

and we remark that from the stable point of view this is not surprising. In fact, the connected
sum with CP2#(−CP2) changes the w2-type to be ∞ and thus kills the sec-invariant.
Note however, that even if Π is a good group the existence of the embedding ϕ as above cannot
be concluded from the embedding theorem in [Freedman-Quinn, Thm10.3]. In fact, w2 is neither
trivial on π2(M(K)#CP2#(−CP2)) nor is it nontrivial on the orthogonal complement of the
two vectors

(r∗(α), 1, 1), (0, 1, 0) ∈ π2M(K)⊕ Λ⊕ Λ

and thus non of the possible assumptions in Theorem 10.3 of [Freedman-Quinn] are satisfied.
Note that an obvious necessary condition for the existence of the embedding ϕ is the vanishing
of λM(K)(r∗(α), r∗(α)). This leads to

Conjecture C. Given a finite 2-complex K, there exists a pair (M(K), r) as above such that

λM(K)|r∗(π2K) ≡ 0.

My idea for the proof of this conjecture would be to construct a 4-dimensional manifold W
with boundary ∂W such that

W ≃ K and π2∂W
i∗−→ π2W is surjective.

Then the double of W would be a thickening as described in Conjecture C. This approach
certainly needs techniques from 3-dimensional topology and the reason why I believe it to work
is that if

K ≃ Y 3 \
◦

D3

for some closed 3-manifold Y then W := (Y 3 \
◦

D3) × I satisfies the desired properties since
∂W = Y#Y .

Conjecture D. Let M and N be two 4-manifolds with finite fundamental group. Suppose
that the connected sum M#r · (S2 × S2) is homeomorphic to N#r · (S2 × S2). Then M is
homeomorphic to N if there exists a decomposition N ≈ N0#CP2#(−CP2).

Note that this conjecture is exactly the cancellation theorem from [Hambleton-Kreck 3] (com-
pare Section 9.1), except that the assumption N ≈ N0#(S2×S2) is replaced by the assumption
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N ≈ N0#CP2#(−CP2). This hypothesis implies that w2N =∞ and thus the stable classifica-
tion is easy but there cannot exist a rational homology 4-sphere in the stable homeomorphism
class of N , see Remark 6.1.2. Conjecture D would imply that the extra assumption

χ(M) > 4 if w2M =∞, σ(M) = 0

could be omitted in our classification theorems. The reason why I believe Conjecture D to be
true is that the intersection form of CP2#(−CP2) contains a hyperbolic form on a finite index
submodule and the methods of [Hambleton-Kreck 3] are designed to work in such a situation.
We finish this Section with a conjecture whose proof would have to make use of the verification
of all previous conjectures.

Conjecture E. Let M and N be two 4-manifolds with the same finite fundamental group of
deficiency zero. Assume that the intersection form on H2(M ; Z) is indefinite. Then M and
N are homeomorphic if and only if they are stably homeomorphic and have the same Euler
characteristic.

Note that if one adds the hypothesis

χ(M) > 4 if w2M =∞, σ(M) = 0

or proves Conjecture D, the above conjecture is proven in [Hambleton-Kreck 4] for odd order
groups. This assumption on the group order makes the situation considerably easier because
the w2-type is either ∞ or 0 and there are no sec- respectively ter-invariants.
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