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1 Introduction

The main result of this paper, Theorem 1, is that the partition function of
a 2-dimensional super symmetric quantum field theory is an integral mod-
ular function. The bulk of this work consists of incorporating a suitable
geometric notion of super symmetry into the axiomatic description of quan-
tum field theories going back to Atiyah and Segal. Roughly speaking, we
replace the usual functors from Riemannian manifolds to (locally convex)
vector spaces by functors from Riemannian super manifolds to super vector
spaces and work in families parametrized by complex super manifolds. We
end up with an axiomatic/geometric version of what physicists might call a
super symmetric quantum field theory with minimal super symmetry.

We point out that these field theories are neither conformal (i.e. the func-
tors depend on the Riemannian metric, not just its conformal class) nor
chiral (i.e. the operators associated to the bordisms depend only smoothly,
not holomorphically, on the Riemannian structures). As a consequence, it is
a priori not clear why the partition function, i.e. the quantum field theory
evaluated on 2-dimensional tori, should be SL2(Z)-invariant or holomorphic.
This all comes out of the right notion of super symmetry, a fact that seems
to be well known in the physics community, and we thank Ed Witten for
explaining it to us in the context of the super symmetric σ-model. Our own
contribution is a geometric definition of super symmetry that implies that a
certain square root exists (for an infinitesimal generator L̄0 of the operators
associated to cylinders). It is the latter algebraic fact that’s usually called
super symmetry in the physics literature and it seems well known that it
leads to a modular partition function.

In this introduction we will outline our definitions. In addition, we explain
the relevance of this result for our program of relating 2-dimensional quantum
field theories to the topological modular form spectrum TMF due to Hopkins
and Miller.

A d-dimensional quantum field theory in the sense of Atiyah and Segal
is a symmetric monoidal functor which associates a locally convex vector
space E(Y ) to a closed oriented Riemannian manifold Y of dimension (d−1)
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and a trace class operator E(Σ) : E(Y1)→ E(Y2) to an oriented Riemannian
bordism Σ from Y1 to Y2. If E is a 2-dimensional quantum field theory, then
one obtains a complex valued function ZE on the upper half plane h, by
defining

ZE(τ)
def
= E(Tτ ),

where Tτ = C/(Z + Zτ) is the torus obtained by dividing the complex plane
by the lattice Z + Zτ ⊂ C. This is the partition function of the quantum
field theory E, compare definition 22.

Atiyah and Segal’s only additional requirement for a quantum field theory
is that the functor E is continuous in the usual sense, as a functor between
topological categories. We strengthen this requirement to a notion of smooth-
ness in the sense that will be explained in detail in section 3. It means that
E can be extended to smooth families: for any smooth manifold S there is a
functor ES which associates to a smooth family Y of Riemannian manifolds
parametrized by S (i.e. a fiber bundle Y → S equipped with a Rieman-
nian metric along its fibers) a smooth family ES(Y ) of locally convex vector
spaces parametrized by S (i.e. ES(Y ) is a locally trivial bundle of locally
convex vector spaces over S). Similarly, ES associates to a smooth family
of Riemannian bordisms parametrized by S a smooth family of trace class
operators parametrized by S. The collection of functors ES is required to
depend functorially on S. It turns out to be essential that this definition also
takes into account families of objects in our categories, not just of morphisms,
as is more common in the context of topological categories.

A super symmetric quantum field theory is defined completely analo-
gously, only replacing (Riemannian) manifolds in the definition above by
super (Riemannian) manifolds. More precisely, a super symmetric quantum
field theory of dimension d|q gives a symmetric monoidal functor E which
associates a locally convex super vector space E(Y ) to a super Riemannian
manifold of dimension d − 1|q and a trace class operator E(Σ) : E(Y1) →
E(Y2) to a super Riemannian bordism Σ of dimension d|q from Y1 to Y2.
Here a super Riemannian manifold is a super manifold equipped with a su-
per Riemannian structure, which we define in section 4 for super manifolds
of dimension d|q for d = 1, 2 and q = 1. Our terminology is motivated by the
fact that a super Riemannian structure on a super manifold M of dimension
d|1 induces a Riemannian metric on the reduced manifold Mred (an ordinary
manifold of dimension d). Our definition is not the obvious generalization of
a symmetric 2-tensor to super manifolds but is comes from a physicists point
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of view, where these structures should be useful to construct classical action
functionals for certain super symmetric (classical) field theories (see remarks
57 and 65).

As for quantum field theories we require that the functor E describing
a super symmetric quantum field theory is smooth, but it is essential that
this smoothness condition is formulated by requiring that E does extend to
families parametrized by complex super manifolds, see section 4 for a detailed
definition. We note that ordinary manifolds give (complex) super manifolds
of dimension d|0 and that a super symmetric quantum field theory leads to
a quantum field theory as explained above.

Theorem 1. The partition function of a super symmetric quantum field
theory of dimension 2|1 is a modular function with integral q-expansion. This
continues to hold if one only has a super symmetric flat quantum field theory,
see Remark 2.

We recall that a modular function is a holomorphic function f : R2
+ →

C on the upper half plane, which is meromorphic at ∞ and is invariant
under the usual SL2(Z)-action on R2

+. The invariance implies in particular
f(τ + 1) = f(τ) so that f(τ) can be expressed in the form

f(τ) =
∑
i≥−N

aiq
i where q = e2πiτ .

This is the q-expansion of f ; it is integral if all coefficients ai are integers.
Our main theorem asserts the SL2(Z)-invariance of ZE, its holomorphicity,
its meromorphicity at ∞, and the integrality of its q-expansion.

We want to point out that none of these four properties of the partition
function is obvious; rather all of them are consequences of certain cancella-
tions due to super symmetry. In fact, we believe that none of these statements
holds true in general for (non-super symmetric) quantum field theories. Con-
cerning the SL2(Z)-invariance of ZE, we note that for ( a bc d ) ∈ SL2(Z) the
torus Tτ ′ for τ ′ = aτ+b

cτ+d
is conformally equivalent, but in general not isometric

to Tτ . This implies that if E is a conformal field theory (for which the opera-
tors E(Σ) are required to depend only on the conformal structure rather than
the Riemannian metric on Σ), then the SL2(Z)-invariance of the partition
function is indeed obvious. A similar remark applies to the holomorphicity of
the partition function under the assumption that the operators E(Σ) depend
holomorphically on Σ, i.e. if E is a chiral quantum field theory.
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Theorem 1 above is an important step in our approach to understand
the infinite loop space TMF , proven to exist by Hopkins-Miller and recently
constructed by Lurie. This space gives the universal elliptic cohomology
theory and is a topological version of modular forms. So by construction,
there is a map to the ring MF of integral modular forms:

π0TMF → MF

which induces a rational isomorphism (and where the kernel and cokernel
were completely calculated by Hopkins, Mahowald and Miller). We now
believe that instead of studying conformal field theories as in [ST], one should
define an infinite loop space FQFT of super symmetric flat quantum field
theories, together with a continuous map F : FQFT → TMF which leads
to a commutative diagram

π0FQFT

Z %%KKKKKKKKKK
F∗
∼=

// π0TMF

yyttttttttt

MF .

This would give a computation of the connected components of the space
FQFT , otherwise a seemingly impossible task.

Remark 2. By the Gauss-Bonnet Theorem the only closed orientable 2-mani-
fold with a flat Riemannian structure is the surface of genus one. Moreover,
the set of isomorphism classes of such structures agrees with the moduli space
of elliptic curves over C (up to rescaling, i.e. a factor R+). This is our reason
to restrict to flat surface when trying to understand the space TMF .

One aspect that is not addressed in this paper are modular forms of
weight w 6= 0. There is a notion of quantum field theories of degree n, n ∈ Z,
very similar to that in [ST]. We expect that a super symmetric version
of these will make Theorem 1 hold true, where the degree and weight are
related by the equation n = 2w. Moreover, there should be spaces FQFTn
of degree n super symmetric flat quantum field theories that are deloopings
of the space FQFT , and the above diagram should continue to hold on the
level of πnFQFT ∼= π0FQFT−n.

A final aspect of quantum field theories that needs to be included in order
to define the space FQFT above is the space-time locality. In [ST] we gave
an approach to this aspect via 2-functors from the 2-category of 0−, 1− and
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2-dimensional conformal manifolds to a 2-category algebras, bimodules and
intertwiners. We believe that this continues to work in the super symmetric
Riemannian context.

We also expect that examples of such fully fletched (super symmetric,
local) quantum field theories are given by the super symmetric σ-models for
Riemannian string manifolds as target. In this regard, it is an advantage not
to have to check conformal invariance since it only seems to hold for Ricci
flat targets. We expect that these σ-models will lead to a continuous map
on the infinite loop space that represents string cobordism

Ω∞MString −→ FQFT

which is our candidate for the family Witten genus. It should commute with
the recently constructed Witten genus of Lurie (with values in TMF ) via
the map F used in the above diagram.

Acknowledgements. The authors would like to thank the Max-Planck-
Institut für Mathematik in Bonn for its hospitality during the academic year
2001/2002 when the project started. The authors also would like to thank
Chris Douglas, Dan Freed, Andre Henriques, Henning Hohnhold, Matthias
Kreck, Jacob Lurie, Alexander Voronov and Ed Witten for stimulating dis-
cussions; particularly Jacob helped us tremendously with various aspects
of this project. Both authors are partially supported by the NSF grants,
Stephan Stolz by NSF grant DMS-0104077, Peter Teichner by NSF grant
DMS-0453957.

2 Field theories a la Segal

As mentioned in the introduction, Graeme Segal has proposed an axiomatic
definition of conformal field theories (CFT’s) and quantum field theories
(QFT’s) as functors from a suitable bordism category to a category of locally
convex (topological) vector spaces satisfying certain axioms. This proposal
is described in his paper ‘The definition of conformal field theory’, which
was circulated widely as a preprint for many years before it was published in
the proceedings of the conference in honor of his sixtieth birthday [Se2]. We
have been very much influenced by this important paper; refining his ideas
we define a d-dimensional QFT as a functor

E : RBd −→ TV
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from the category of d-dimensional Riemannian spin bordisms (defined in
subsection 2.3) to the category TV of locally convex (topological) vector
spaces (defined in subsection 2.1). This functor is required to be compatible
with the symmetric monoidal structure (given by disjoint union in the domain
category and tensor product in the range category) and to be smooth in the
sense to be explained in section 3.

The details of these definitions are new; in particular, the notion of a
‘smooth functor’ explained in section 3. We want to stress that unlike Segal’s
definition of a field theory in [Se2] and our definition in our earlier paper [ST],
there are no additional axioms for the functor E besides the smoothness and
the compatibility with the symmetric monoidal structure. We compare these
definitions in more detail in remark ??.

In the following two subsections we will describe the categories TV and
RBd. We provide more detail than might be necessary at this point; how-
ever, we try to phrase things in such a way that the generalization of these
categories to their family versions (discussed in section 3) and their super
versions (section 4) is straightforward.

There are many possible variants of the definition of the categories RBd

and TV; e.g., different choices for the geometric structure on the bordisms
involved lead to variants of the bordism category RBd. While the focus of
[Se2] and [ST] is on conformal field theories (where the bordisms are equipped
with conformal structures), in this paper we are interested in quantum field
theories which corresponds to requiring Riemannian metrics on bordisms.
We also require our bordisms to be equipped with a spin structure (rather
than just an orientation, which is more usual), and we will build our category
TV using Z/2-graded vector spaces. The resulting kind of field theories are
more closely related to super symmetric field theories.

2.1 The category TV

Definition 3. (The category TV)

objects are Z/2-graded locally convex vector spaces;

morphisms are grading preserving continuous linear maps.

Definition 4. (The projective tensor product) If V,W are locally con-
vex vector spaces, their algebraic tensor product V ⊗alg W is a vector space
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which carries again a locally convex topology known as the projective topol-
ogy which is characterized by the property that it is the finest locally convex
topology such that the canonical bilinear map

V ×W −→ V ⊗alg W

is continuous (see [Koe, §41.2]). We denote by V ⊗W the projective tensor
product which is defined to be the completion of V ⊗alg W w.r.t. the pro-
jective topology. A Z/2-grading on V,W induces the usual Z/2-grading on
V ⊗ W . The projective tensor product gives TV the structure of a sym-
metric monoidal category. As usual for graded vector spaces, the symmetry
isomorphism

V ⊗W ∼= W ⊗ V is given by v ⊗ w 7→ (−1)|v||w|w ⊗ v

for homogeneous elements v ∈ V , w ∈ W of degree |v| and |w|.

2.2 Preliminaries on spin structures

We recall that a spin structure on a Riemannian d-manifold M consists of
an orientation of M together with a double covering Spin(M)→ SO(M) of
the oriented frame bundle

SO(M)
def
= {(x, f) | x ∈M, f : Rd → TxM isometry} p−→M,

such that the restriction to each fiber p−1(x) ⊂ SO(M) is a non-trivial double
covering for d ≥ 2.

We want to stress that spin structures on a manifold are best viewed as
a groupoid, whose objects are spin structures as defined above, and whose
morphisms are isomorphisms of double coverings. The set of isomorphism
classes of spin structures on M is a torsor for H0(M ; Z/2)⊕H1(M ; Z/2) (i.e.,
this group acts freely and transitively on the set of isomorphism classes; the
first summand acts by changing the orientation, the second by tensoring with
double coverings pulled back fromM). We want to alert the reader that in the
following a spin structure is an object in this groupoid, not an isomorphism
class of objects (the latter usage is quite common in the literature).

Example 5. (Examples of spin structures.) There is a standard spin
structure on M = Rd given by the double covering

M × Spin(d) −→M × SO(d) ∼= SO(M);
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here SO(M) is the oriented frame bundle w.r.t. the standard orientation of
M = Rd; it is isomorphic to the trivial bundle M × SO(d) via the standard
trivialization of the tangent bundle of Rd.

We note that the translation action is compatible with this trivialization
and hence the translation action on SO(M) lifts to a translation action on
M × Spin(d) (which acts trivially on the second summand). In particular if
G is a discrete subgroup of Rd, then the spin structure on Rd induces a spin
structure on Rd/G.

We note that up to isomorphism there are two spin structures on the
circle S1 = R/Z equipped with its standard orientation; the spin structure
induced by the standard spin structure on R is often called the periodic spin
structure (since sections of the associated spinor bundle can be interpreted
as periodic functions on R). The circle equipped with this spin structure
represents the non-trivial element in the spin bordism group Ωspin

1
∼= Z/2.

Similarly, up to isomorphism there are four spin structures on the torus
T = R2/Z2 equipped with its induced orientation; the spin structure induced
from R2 is often called the periodic-periodic spin structure and equipped
with this spin structure the torus represents the non-trivial element in the
spin bordism group Ωspin

2
∼= Z/2.

Definition 6. Let M , N be two Riemannian spin manifolds of dimension
d. An isometric spin embedding from M to N is a pair (f, f̂∗), consisting of

an isometric embedding f : M → N and a map f̂∗ : Spin(M) → Spin(N)
which covers the SO(d)-equivariant map f∗ : SO(M) → SO(N) induced by
the differential of f .

Example 7. The groups of isometries of Rd is the semi-direct product Rd o
SO(d), where Rd acts by translations and SO(d) by rotations. The group
of spin isometries of Rd (i.e., invertible isometric spin embeddings Rd → Rd)
is the semi-direct product Rd o Spin(d). Here Rd acts on Spin(Rd) = Rd ×
Spin(d) by translations on the first factor and trivially on the second, while
Spin(d) acts on Rd by rotations (via the double cover Spin(d) → SO(d))
and on Spin(d) by left-multiplication.

(Spin structures on d-manifolds for d = 1, 2.) Spin structures on Rie-
mannian manifolds M of dimension d = 1, 2 have the following alternative
description that will be useful for us when relating them to super manifolds
of dimension d|1 equipped with a super Riemannian structure (see ??). For
d = 1 (resp. d = 2), a spin structure on M can be described as a pair (L, α)
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consisting of a real (resp. complex) line bundle L→M and a vector bundle

isomorphism α : L⊗2
∼=−→ TM (this is an isomorphism of real vector bundles

for d = 2). To see that a pair (L, α) determines a spin structure in the sense
of definition ?? consider the map

q : L→ TM given by ` 7→ α(`⊗ `).

Via the isomorphism α, the Riemannian metric on TM induces a metric on
L⊗2 (which is hermitian for d = 2), and hence on L. Restricting q to the
sphere bundle S(L) gives a double covering map

q : S(L) −→ q(S(L)) ⊂ S(TM).

As discussed below, the image q(S(L)) can be identified in both cases with
the oriented orthonormal frame bundle SO(M)→ M and hence the double
covering above gives a spin structure. For d = 1, the image q(S(Lx)) consists
of one of the two unit tangent vectors in TxM ; in particular, α determines
an orientation of TxM , and q(S(Lx)) can be thought of as the oriented or-
thonormal frame. For d = 2, the image q(S(L)) is the unit sphere bundle
S(TM), which in turn can be identified with the oriented orthonormal frame
bundle SO(M) by sending a unit tangent vector v to the frame (v, iv), where
the complex structure and the orientation of TM is induced by that of L⊗2

via the isomorphism α.

2.3 The Riemannian bordism category RBd

Remark 8. Before defining the bordism category RBd we want to motivate
a special feature of it that distinguishes it from the usual bordism categories,
namely its asymmetry. Suppose that Σ is an oriented bordism of dimension
d from Y1 to Y2. Then Σ can also be interpreted as a bordism from Y ∗

2 to
Y ∗

1 , where Y ∗
i is the manifold Yi equipped with the opposite orientation. In

other words, on the oriented bordism category Bd (whose objects are closed
(d− 1)-manifolds and whose morphisms are oriented d-bordisms) there is an
anti-involution ∗ : Bd → Bd. Our bordism category RBd is asymmetric in the
sense that there is no such anti-involution on RBd (unlike e.g. the bordism
category Bd in our survey paper, which is equipped with the anti-involution
∗ [ST, Def. 2.1.1]).

This is motivated by a similar asymmetry of the category TV. We note
that sending a locally convex space V to its continuous dual V ∗ is not strictly
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speaking an anti-involution of the category TV; even after picking one of the
many possibly topologies (weak, strong,etc.) on V ∗, the double dual (V ∗)∗

is at best naturally isomorphic to V . After restricting to reflexive spaces,
and after picking a topology for the dual, we obtain a weak anti-involution.
However, this anti-involution will not be compatible with tensor products.
E.g., the evaluation map provides us with a natural continuous map

ev : V ∗ ⊗ V −→ C;

however, there is no natural continuous map C→ V⊗V ∗ (except if V is finite-
dimensional; in which case it is given by 1 7→

∑
i ei⊗e∗i , where {ei} is a basis

of V and {e∗i } is the dual basis of V ∗). The map ev∗ : (V ∗ ⊗ V )∗ → C∗ = C
dual to ev is not such a map since (V ∗ ⊗ V )∗ is typically not isomorphic to
V ⊗ V ∗ (with some assumptions on the topological vector spaces V,W the
dual of the projective tensor product V ⊗W is isomorphic to the injective
tensor product of V ∗ and W ∗).

The following terminology will be convenient for our definition of the
bordism category RBd.
(Ends of a space and metric completions.) We recall that for a topo-
logical space Y the set e(Y ) of ends of Y is the inverse limit

e(Y )
def
= lim

←
K

π0(Y \K),

taken over all compact subspaces K ⊂ Y . There is a natural topology on
the set

bY
def
= Y q e(Y )

which makes bY a compact space, called the Freundenthal compactification
of Y .

If Y is a metric space, its metric completion Ȳ is a complete metric space,
whose points are equivalence classes of Cauchy sequences in Y . There is a
continuous map

p : Ȳ −→ bY (9)

which sends a Cauchy sequence in Y ⊂ bY to its limit in bY (every sequence
in Y has an accumulation point in the compact space bY ; for a Cauchy
sequence, there is only one accumulation point which is its limit).

In general, there is little relationship between the Freundenthal compact-
ification bY which depends only on the topology of Y , and Ȳ which depends
on the metric involved; e.g., Y = R with its usual metric is complete
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Definition 10. (The category Riemd of Riemannian spin d-manifolds.)
An object of Riemd is a smooth Riemannian spin d-manifold Y without
boundary, but not necessarily compact, which comes equipped with a de-
composition of its set of ends as a disjoint union

e(Y ) = el(Y )q er(Y )

into left ends el(Y ) and right ends er(Y ). Here the words ‘left’ and ‘right’
just refer to on which side we draw the ends in our pictures of objects of
Riemd. We define subsets of δY = Y \ Y by

δl(Y )
def
= p−1(el(Y )) ⊂ δY δr(Y )

def
= p−1(er(Y )) ⊂ δY

in other words, δl(Y ) (resp. δr(Y )) is the subspace of the metric completion
given by Cauchy sequences in Y which converge to points in el(Y ) (resp.

er(Y )). We set Ȳ l def
= Y ∪ δlY and Ȳ r def

= Y ∪ δrY .
So far, the roles of the ‘left ends’ and the ‘right ends’ have been completely

symmetric; now we remove that symmetry by the following
Requirement. Ȳ l is a topological manifold with interior Y and boundary

δlY
def
= p−1(el(Y )). The map pδlY : δlY → el(Y ) induces a bijection between

π0δ
lY and el(Y ).
Here is a picture of an object of Riem2.

δlY δrYY

Figure 1: An object of Riem2

In this example, the above requirement for left ends of Y also holds for
the right ends of Y . An explicit example of an object of Riem2 where that
isn’t the case is given by Y = S1 × (0,∞) with its standard metric; Y has
two ends, which can be identified with 0 and ∞ in an obvious way, and we
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declare 0 to be a ‘left end’ and ∞ to be a ‘right end’ (which corresponds to
the usual way of drawing the interval (0,∞)). The metric completion Ȳ can
be identified with S1 × [0,∞) and we have δlY = S1 × {0} and δrY = ∅.
In particular, Y satisfies the requirement on left end above, but not the
analogous requirement for right ends.

Here is another example of an object of Riem2 for which δlY is not a
smooth (d−1)-manifold, and δrY isn’t a (d−1)-manifold at all. Let ∆d ⊂ Rd

be a d-dimensional simplex whose vertices are d+1 points in general position
such that the origin is in the interior of ∆d. Let Y be the interior of ∆d

without the origin. Then the metric completion Ȳ consists of the union of Y
and δY = ∂∆d ∪ {0}. There are two ends and p|δY : δY → e(Y ) a bijective
correspondence between π0(δY ) and e(Y ). We note that neither component
of δY is a smooth (d− 1)-manifold, but ∂∆ is a topological (d− 1)-manifold,
while {0} isn’t. In particular, we obtain an object of Riem2 if we declare the
end given by ∂∆d to be a left end, and the other end a right end.

If Y0 and Y1 are objects of Riemd, the morphisms from Y0 to Y1 are
Riemannian spin embeddings f : Y0 ↪→ Y1.

We want to emphasize that we do not require any compatibility of this
map with the decomposition of the ends of Yi into ‘left’ and ‘right’. In
general, a Riemannian embedding f : Y0 → Y1 does not induce a map bY0 →
bY1 between their Freudenthal compactifications; in particular, there is no
‘induced map’ from the ends of Y0 to the ends of Y1 (consider e.g. the inclusion
of intervals (−1, 1) ↪→ (−2, 2) equipped with the standard metrics). If f is
proper, then it extends to a unique continuous map f : bY0 → bY1.

We call a morphism f : Y0 → Y1 left-proper (resp. right-proper) if f ex-
tends to a continuous map blY0 → blY1 (resp. brY0 → brY1) which induces a
bijection on left ends (resp. right ends).

We note that the continuity of f implies that it extends to a continuous
map f̄ : Ȳ0 → Ȳ1; this map in general does not map δY0 → δY1; an example
is provided by the inclusion (−1, 1) ↪→ (−2, 2). We also observe that f̄ isn’t
necessarily injective anymore as the inclusion (0, 1)q (1, 2) ↪→ (0, 2) shows.

Here is a typical picture of an object Y of RB2. The manifold Y is non-
compact; the dotted circle on the right hand side is not part of Y ; rather, Y
can be compactified by adding that circle. We think of ∂Y as the primary
datum; the role of Y is mostly to provide a neighborhood of ∂Y equipped
with the necessary geometric data to make gluing possible. We will see that if
U ⊂ Y is an open neighborhood of ∂Y ⊂ Y , then U and Y are isomorphic as
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objects of RBd; in other words, what matters is the germ of the neighborhood
of ∂Y provided by Y .

Definition 11. (The Riemannian spin bordism category RBd.) The
objects of RBd are just the objects of the category Riemd defined above. The
morphisms from Y0 to Y1 are equivalence classes of Riemannian spin bordisms
from Y0 to Y1; here a Riemannian spin bordism is a diagram

U1
ι1
↪→ Σ

ι0←↩ U0

in the category Riemd, where Ui ⊂ Yi ⊂ Ȳi is an open neighborhood of δoutYi
whose metric completion Ūi

Σ is an object of Riemd;

ιi : Ui ↪→ Σ is an isometric spin embedding (i.e., a morphism of Riemd) of
some open neighborhood Ui ⊂ Yi of the boundary ∂Yi ⊂ Yi.

We require that

• ι0 : U0 → Σ is proper and it induces a bijection between the ends of U0

and Σ;

• ι1 : U1 → Σ restricts to a homeomorphism ∂U1

∼=→ ∂Σ.

Here is a picture of a Riemannian bordism; we usually draw the domain
of the bordism to the right of its range, since we want to read compositions
of bordisms, like compositions of maps, from right to left.

ι1(U1)
ι0(U0)

Σ

∂Σ=ι1(∂U1)

ι0(∂U0)

︸ ︷︷ ︸
Σcore

Figure 2: A Riemannian bordism
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We will call Σcore
def
= Σ \ ι0(int(U0)) the core of Σ, where int(U0) is the

interior of U0. We note that the second condition above implies that Σcore

is compact. In particular, if ι0(∂U0) does not intersect ι1(∂U1), then Σcore is
a bordism between ∂Y0 = ∂U0 and ∂Y1 = ∂U1 in the usual sense. We will
refer to ι0(int(U0)) as the incoming neighborhood (associated to the domain
of the morphism) and to ι1(int(U1)) as the outgoing neighborhood (associated
to the range). We note the asymmetry between domain and range of this
bordism (which is a desired feature as explained in remark 8): the incoming
neighborhood is outside the core bordism; we think of it as a ‘tab’ which will
be essential for composing bordisms by gluing then.

Now suppose that (Σ, ι0, ι1) and (Σ′, ι′0, ι
′
1) are two Riemannian spin bor-

disms from Y0 to Y1 with U0 ⊂ U ′
0, U1 ⊂ U ′

1 and that there is Riemannian
spin embedding F : Σ � � //Σ′ (i.e., a morphism in Riemd) which makes the
following diagram commutative

U1
� � ι2 //

� _

��

Σ� _

F

��

U0
? _

ι0oo
� _

��
U ′

1
� � ι′1 // Σ′ U ′

0
? _

ι′0oo

Then we declare (Σ, ι0, ι1) to be equivalent to (Σ′, ι′0, ι
′
1). A morphism from

Y0 to Y1 is an equivalence class of Riemannian spin bordisms with respect to
the equivalence relation generated by the relation just described.

composition of Riemannian spin bordisms is given by gluing as shown in
the picture below.

More precisely, let (Σ′, ι′0, ι
′
1) be a Riemannian spin bordism from Y0 to

Y1 and (Σ, ι1, ι2) a Riemannian spin bordism from Y1 to Y2. Without
loss of generality, we can assume that the domains of the spin isometries
ι′1 and ι1 agree (both of which are open neighborhoods of ∂Y1 ⊂ Y1);
suppose U1 ⊂ Y1 is this common domain. Then identifying ι′1(U1) ⊂ Σ′

with ι1(U1) ⊂ Σ via the isometry ι1 ◦ (ι′1)
−1 gives the Riemannian spin

manifold
Σ′′ def

= Σ ∪U1 Σ′.

Together with the isometric spin embeddings

ι′′2 : U2
ι2−→ Σ ⊂ Σ′′ and ι′′0 : U ′

0

ι′0−→ Σ′ ⊂ Σ′′

this is a Riemannian bordism from Y0 to Y2.

15



ι0(U0)

ι1(U1)

ι′1(U1)ι′2(U2)

glue via ι′1 ◦ ι−1
1

︸ ︷︷ ︸
Σ

︸ ︷︷ ︸
Σ′

Figure 3: The composition Σ′′ = Σ ◦ Σ′ in RB2

Example 12. Examples of morphisms in the category RBd.

Identity morphism. If Y is an object of RBd, then

Y
� � id // Σ = Y Y?

_idoo

is a Riemannian bordism which represents the identity endomorphism
of U .

Isomorphism. Let Y0, Y1 be Riemannian spin d-manifolds (i.e., objects of
Riemd) and suppose that there are open neighborhoods Ui of ∂Yi ⊂ Yi
for i = 0, 1 and an isomorphism f : U0 ↪→ U1 in the category Riemd.
Then

U1
� � id // Σ = U1 U0

? _
foo

represents a morphism from Y0 to Y1 in RBd which obviously is an
isomorphism.

Two-sided neighborhood. Let Σ, Y1, Y2 be objects of Riemd, and let
ιi : Yi ↪→ Σ be morphisms such that ι1(∂Y1) = ι2(∂Y2) is a hypersurface

16



in Σ (not necessarily smooth) such that

ι1(Y1) ∪ ι2(Y2) = Σ ι1(int(Y1)) ∩ ι2(int(Y2)) = ∅

as shown in the figure below. We think of Σ is a two-sided neighborhood

ι1(Y1)

ι2(Y2)

Σ

ι1(∂Y1)=ι2(∂Y2)

Figure 4: A 2-sided neighborhood as morphism in RB2

of ι1(∂Y1) = ι2(∂Y2); it gives rise to the following morphism from Y1 q
Y2 to ∅:

∅ � � //Σ Y1 q Y2
? _

ι1qι2oo .

2.4 Examples of objects and morphisms of RBd

In this subsection we introduce some objects and morphisms of RBd for d =
1, 2. Moreover, we show some relations between these morphisms. Analogous
relations in the super bordism category SRBd (see Example 81 and Lemmas
82 and 83) will play a central role in the proof of our main theorem.

Example 13. (Examples of objects and morphisms of RB1.)

the points pt, p̄t ∈ RB1. We define objects pt, p̄t ∈ RB1 as follows:

pt
def
= [0,∞) p̄t

def
= (−∞, 0],

where the real line R is equipped with its standard Riemannian metric
and its standard spin structure. We call these objects ‘points’ since we

17



think of them as consisting of {0} equipped with a one-sided collar.
We note that pt, p̄t are not isomorphic as objects of RB1 (the isometry
[0,∞)→ (−∞, 0], s 7→ −s is not spin structure preserving).

the circle S1
` ∈ RB1(∅, ∅). For ` ∈ R+ let

S1
`

def
= R/`Z

be the circle of length `, equipped with the Riemannian metric (resp.
spin structure) induced by the standard Riemannian metric (resp. spin
structure) on R. This is a Riemannian bordism from ∅ to ∅ and repre-
sents the nontrivial element of Ωspin

1
∼= Z/2.

the interval I1
` ∈ RB1(∅, pt q p̄t). For ` ∈ (0,∞) let R1

` be the morphism

[0, `/2) q (−`/2, 0] � � idq` // [0, `] ∅? _oo ,

where abusing notation we write ` : R → R for the translation by `
(i.e., s 7→ s+ `).

the pairing µ` ∈ RB1(p̄tq pt, ∅). For ` ∈ [0,∞) let µ1
` be the following

morphism in RB1 from p̄tq pt to ∅.

∅ � � // R (−∞, 0] q [0,∞)? _idq`oo .

Remark 14. Pictorially we represent the morphisms I1
` and µ` by the fol-

lowing pictures (to be read from right to left):

pt •T

I1`

j
p̄t•

•p̄tj

µ`

T• pt

We note that there is an important difference between the interval I1
` and

the pairing µ` which reflects the asymmetry in our bordism category RBd:
the pairing µ` is defined for ` = 0, while the interval I1

` is not. The reader
might wonder why we chose to consider the interval of length ` as morphism
I1
` : ∅ → pt q p̄t rather than as morphism Î1

` : pt → pt. The answer is that

I1
` is more basic then Î1

` in the sense that Î1
` can be expressed in terms of I1

` ,

18



the pairing µ
def
= µ0 and the monoidal structure (but not vice versa!). It is

straightforward to show that Î1
` is equal to the following composition:

pt = ∅ q pt
I1` q 1pt // pt q p̄t q pt

1pt qµ // pt q∅ = pt

In pictures, this composition looks as follows:

pt •_ 1pt _• pt pt •T

I1`

j•p̄tj

µ

T

p̄t•

• pt pt •_ 1pt _• pt

Similarly, we can express µ` in terms of µ and I1
` , as well as the endomorphism

of p̄t given by an interval of length `.

Next we want to state some relations between the morphisms S1
` , I

1
` and

µ in the category RB1. To do so, it will be convenient to use the following
construction.

Definition 15. Let C be a symmetric monoidal category and let µ : ZqY →
∅ be a morphism in C. Here we write q for the monoidal structure in C, and
∅ for the unit object. Motivated by the case where C is the category of vector
spaces, we think of µ as a pairing between Z and Y in the category C. Then
the morphism set C(∅, Y q Z) is a monoid with multiplication

◦µ : C(∅, Y q Z)× C(∅, Y q Z) −→ C(∅, Y q Z)

given by defining f ◦µ g for f, g ∈ C(∅, Y q Z) to be the composition

∅ = ∅ q ∅ f q g //Y q Z q Y q Z id qµq id //Y q Z

Lemma 16. For `, `′ ∈ R+ the following relations hold in the category RB1:

1. I1
` ◦µ I1

`′ = I1
`+`′ ∈ RB1(∅, pt q p̄t);
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2. S1
` is equal to the composition

∅
I1` // pt q p̄t τ // p̄t q pt

µ //∅,

where τ is the symmetry isomorphism.

Example 17. (Examples of objects and morphisms of RB2.) The
circle S1

` does double duty in the bordism categories RBd as endomorphism
of ∅ ∈ RB1 as well as object in RB2; we will use the same notation in both
situations, hoping that the context will make the meaning clear.

the circles S1
` , S̄

1
` ∈ RB2. Let R2

≥ = {(x, y) ∈ R2 | y ≥ 0} (resp. R2
≤ =

{(x, y) ∈ R2 | y ≤ 0} be the closed upper (resp. lower) half plane
equipped with the standard Riemannian metric and spin structure.
These are not objects in RB2 (since ∂R2

≥ = ∂R2
≤ = R is not compact),

but we obtain an object by taking the quotient with respect to the
translation action of Z` ⊂ R for some ` ∈ R+. We note that ∂R2

≥/`Z =
∂R2

≤/`Z = R/Z` is a Riemannian circle of length `. This motivates the
notation

S1
`

def
= R2

≥/Z` S̄1
`

def
= R2

≤/Z`

the torus T 2
`,τ ∈ RB2(∅, ∅). For ` ∈ R+ and τ ∈ R2

+, consider the closed
2-manifold

T`,τ
def
= R2/`(Zτ + Z1).

This torus has a Riemannian metric (resp. spin structure) induced by
the standard Riemannian metric (resp. spin structure) on R2, and hence
it is a Riemannian spin bordism from ∅ to ∅ ; it represents the non-
trivial element of Ωspin

2
∼= Z/2.

the cylinder C2
`,τ ∈ RB2(∅, S1

` q S̄1
` ). For ` ∈ R+ and τ = (τ1, τ2) ∈ R2

+

the morphism C2
`,τ is given by the Riemannian bordism

(R× [0, `τ2/2))/Z` q (R× (−`τ2/2, 0])/Z`
� � id q `τ // (R× [0, `τ2]) /Z` ∅? _oo ,

where `τ : R2 → R2 is translation by `τ ∈ R2.
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the pairing µ ∈ RB2(S1
` q S̄1

` , ∅) is represented by the Riemannian bor-
dism

∅ � � // R2/Z` R2
≥/Z` q R2

≤/Z`? _id q idoo ,

Lemma 18. For ` ∈ R+, τ, τ ′ ∈ R2
+ the following relations hold in the

category RB2:

1. C2
`,τ ◦µ C2

`,τ ′ = C2
`,τ+τ ′ ∈ RB2(∅, S1

` q S̄1
` );

2. C2
`,τ+1 = C2

`,τ ∈ RB2(S1
` , S

1
` );

3. T 2
`,τ ∈ RB2(∅, ∅) is equal to the composition

∅
C2

`,τ //S1
` q S̄1

`
τ //S̄1

` q S1
`

µ //∅,

4. T 2
g(`,τ) = T 2

`,τ ∈ RB2(∅, ∅) for every g ∈ SL2(Z);

Here g(`, τ) ∈ R2
+ in part 4 is defined by

g(`, τ)
def
= (`|cτ + d|, aτ + b

cτ + d
) for g = ( a bc d ) . (19)

This describes an action of SL2(Z) on R+ × R2
+. The space

R+ × R2
+
∼= GL+

2 (R)/SO(2)

is the moduli space of flat Riemannian structures on the torus with a ba-
sis of its first homology group via (`, τ) 7→ T 2

`,τ . Points in the same orbit
lead to isometric tori; the converse holds as well and hence the quotient
SL2(Z)\(R+ × R2

+) can be interpreted geometrically as the moduli space
(stack) of flat Riemannian tori.

The proof of these relations is straightforward. We will prove a family
version of these relations (Lemmas 47 and 48) below.
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2.5 Quantum field theories, preliminary definition

Definition 20. (Preliminary.) A quantum field theory of dimension d is a
symmetric monoidal functor

E : RBd −→ TV .

Remark 21. The above definition of a QFT is simpler than the one we
suggested in our survey paper [ST], where the functor was required to be
compatible with additional (anti-) involutions and a natural transformation
we called ‘adjunction transformation’. The asymmetric definition of the bor-
dism category RBd allows us to interpret a 2-sided neighborhood of a closed
d−1-manifold as a ‘pairing’ µ (see Example 12 (two-sided neighborhood), 13
(the pairing µ), and 17(the pairing µ)). Our old ‘adjunction transformation’
in the bordism category can then be a expressed in terms of these pairings
and similarly, the adjunction transformation in the algebraic range category
is obtained from the pairing E(µ); then the compatibility of the functor with
the adjoint transformation is simply a consequence of functoriality.

The above definition is quite similar to Graeme Segal’s definition of a
QFT in the ‘postscript’ to his paper [?], where he comments on how his
point of view has changed since that paper was originally written. Our
definition is more compact since our notion of bordism incorporates both,
usual bordisms and well as diffeomorphism which Segal treats separately.
This seems necessary when we require that a QFT is a ‘smooth’ functor in
section 3, since our family bordism category should contain families that for
example contain annuli as well as diffeomorphism (which are infinitesimally
thin annuli).

Definition 22. Let E : RBd → TV± be a QFT of dimension d = 1 or d = 2,
and let E+ : RBd → TV be the composition of E with the forgetful functor
TV± → TV (see Remark ??). For d = 1, the partition function of E is the
function

ZE : R+ −→ C defined by ` 7→ E+(S1
` ),

where S1
` ∈ RB1(∅, ∅) is the circle of length ` (see example 13), and we used

that E+(∅) = C ∈ TV and TV(C,C) = C.
For d = 2, the extended partition function of E is the function

ZE : R+ × R2
+ −→ C defined by (`, τ) 7→ E+(T 2

`,τ ),
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where T 2
`,τ ∈ RB2(∅, ∅) is the torus R2/`(Zτ + Z1) (see example 17). The

partition function of E is the function ZE : R2
+ → C obtained by restricting

to ` = 1.

The upper half-plane R2
+ parametrizes all tori up to conformal equivalence

(not uniquely); it does not parametrize all tori equipped with Riemannian
metrics up to isometry. However, every flat torus is isometric to T`,τ for
some (`, τ) ∈ R+×R2

+. Hence, while the upper half plane is the appropriate
domain for partition functions for conformal field theories, for QFT’s it is
better to work with the larger domain R+ × R2

+, since we obtain invariance
for the extended partition function defined on R+ × R2

+ (see Lemma 23).
It is well-known that for g = ( a bc d ) ∈ SL2(Z) the tori R2/(Zτ + Z1) and

R2/(Zgτ + Z1) are conformally equivalent, where gτ = aτ+b
cτ+d

. In particular,
if E is a conformal field theory (i.e., the operators E(Σ) depend only on
the conformal structure on Σ), then its partition function ZE(τ) is invariant
under the SL2(Z)-action on the upper half plane R2

+. However, these tori
are not isometric, and hence the partition function of a QFT is usually not
invariant.

What is still true is that for g ∈ SL2(Z) the torus Tg(`,τ) is isometric to
T`,τ (see part 4 of Lemma 18; the SL2(Z)-action on R+ × R2

+ is defined in
equation (19)). This implies:

Lemma 23. The extended partition function ZE : R+×R2
+ → C is invariant

under the SL2(Z)-action on R+ × R2
+.

In section 5 we will show that for a super symmetric QFT E, its extended
partition function ZE(`, τ) is in fact independent of `. In particular, the above
corollary implies that its partition function ZE(τ) = ZE(1, τ) is invariant
under the SL2(Z)-action.

2.6 Consequences of the axioms

The goal of this subsection is to prove the following results which will be
needed in the proof of our main theorem.

Proposition 24. Let E be a d-dimensional QFT, and let Σ ∈ RBd(Y1, Y2).
Then the associated operator E(Σ)+ : E(Y1)

+ → E(Y2)
+ is nuclear (see defi-

nition 26 below).
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Proposition 25. Let E be a d-dimensional QFT, let Σ ∈ RBd(Y, Y ), and

let Σ̂ be the closed Riemannian spin manifold obtained by gluing the two
boundary copies of Σ. If we assume that the locally convex vector space
E(Y )+ has the approximation property (see Definition 27), then

E(Σ̂)+ = strE(Σ)+,

where strE(Σ)+ is the super trace of the operator E(Σ)+ (see Definition 27).

Definition 26. (Nuclear operators). Let V,W be locally convex vector
spaces, and let V ′ be the dual of V . Then the finite rank operators are the
continuous linear maps T : V → W which are in the image of the canonical
map

ψ : W ⊗alg V ′ −→ L(V,W ) w ⊗ f 7→ (v 7→ wf(v)).

The map ψ is continuous (with the respect to the strong topology on V ′

and the projective topology on the algebraic tensor product W ⊗alg V ′). In
particular, it extends uniquely to a continuous linear map

ψ̄ : W ⊗ V ′ −→ L(V,W )

of the projective tensor product (the completion of W ⊗alg V ′, see definition
4). The image of ψ̄ consists of the nuclear operatorsN (V,W ) ⊂ L(V,W ) (see
[Koe, p. 214]). If W , V are Hilbert spaces, the nuclear operators N (V,W )
are precisely the trace class operators (see [Koe, §42.6]) and the map ψ̄ is
injective.

Definition 27. (Approximation property and traces). In order to de-
fine the trace of a nuclear operator T : V → V , the locally convex vector
space V needs to satisfy a technical condition, namely that the finite rank
operators (or equivalently the nuclear operators) are dense in L(V, V ) (with
respect to the topology of uniform convergence on all precompact subsets of
V ), see [Koe, §43.1]. This condition, the approximation property, guarantees
that the map ψ̄ is injective for any locally convex vector space W (see [Koe,
§43]). Most locally convex spaces have the approximation property, for ex-
ample Hilbert spaces and nuclear spaces; in fact, as Koethe mentions on p.
235 of his book, the construction of Banach spaces without the approxima-
tion property is quite involved. Grothendieck conjectured the existence of
such spaces, but the first examples were constructed only in 1973.
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If V is a locally convex vector space that has the approximation property,
one can associate to any nuclear operator T ∈ N (V, V ) a trace trT ∈ C (see
[Koe, §42.7]); the map tr : N (V, V ) → C is simply the unique map making
the following diagram commutative

V ⊗ V ′ � � ψ̄ // //

τ

��

N (V, V )

tr

��
V ′ ⊗ V ev // C

Here τ is the obvious symmetry isomorphism, and ev : V ′⊗V → C, f ⊗ v 7→
f(v) is the evaluation map.

If V is equipped with a Z/2-grading, one defines the super trace

str : N (V, V ) −→ C

as the trace above, but using the symmetry isomorphism τ : V ⊗V ′ → V ′⊗V
appropriate in the graded context, namely v ⊗ f 7→ (−1)|v||f |f ⊗ v (where
|v|, |f | ∈ {0, 1} is the degree of v resp. f). This agrees with the ususal
definiton of super trace if V is finite dimensional.

Proof of Proposition 24. We factor the Riemannian spin bordism Σ from Y1

to Y2 in the following way

Y2•_
1Y2 _•Y2 Y2•T

Σ2

j•Y ′j

Σ1

T

Y ′•

•Y1 Y1•_
1Y1 _•Y1

(28)

Applying the symmetric monoidal functor E : RBd → TV± we obtain an
analogous factorization of E(Σ) in the form

E(Y1) = C⊗ E(Y1)
T2⊗1 //E(Y2)⊗ E(Y ′)⊗ E(Y1)

1⊗T1 //E(Y2)⊗ C = E(Y2) .

Then the following algebraic lemma implies the proposition.
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Lemma 29. Let V,W be objects of TV± and let T = (T+, T−) be a morphism
from V to W . Assume that T in the symmetric monoidal category TV± can
be factored in the form

V = C⊗ V T2⊗1V //W ⊗ U ⊗ V 1W⊗T1 //W ⊗ C = W .

Then T+ : V + → W+ is a nuclear map.

For the proof of this, we will need the following direct consequence of the
duality relation ??.

Lemma 30. If T = (T+, T−) is a morphism in TV± from V = (V +, V −, µV )
to C = (C,C, µC), then T− determines T+ via the formula

T+v+ = µV (T−(1)⊗ v+).

Proof of Lemma 29. Let Ť ∈ W+⊗V − be the image of T−1 (1)⊗T+
2 (1) under

the map

U− ⊗ V − ⊗W+ ⊗ U+ τ //V − ⊗ U− ⊗ U+ ⊗W+ 1⊗µU⊗1 //W+ ⊗ V − ,

where τ is the usual (graded) symmetry isomorphism. We claim that T+ is
image of Ť under the map ψ̄. To check this, we may assume that T−1 (1),
T+

2 (1) are of the form

T−1 (1) = u− ⊗ v− ∈ U− ⊗ V − T+
2 (1) = w+ ⊗ u+ ∈ W+ ⊗ U+.

Then for v+ ∈ V + we have

T+(v+) = (1⊗ T+
1 ) ◦ (T+

2 ⊗ 1)(v+) = (1⊗ T+
1 )(w+ ⊗ u+ ⊗ v+)

= (−1)|w
+|(|u−|+|v−|)w+ ⊗ T+

1 (u+ ⊗ v+)

= (−1)|w
+|(|u−|+|v−|)w+µU⊗V (u− ⊗ v− ⊗ u+ ⊗ v+)

= (−1)|w
+|(|u−|+|v−|)+|v−||u+|w+µU(u− ⊗ u+)µV (v− ⊗ v+)

Here we use Lemma 30 to express T+
1 in terms of T−1 (1).

Now let us express Ť explicitly:

Ť = (1⊗ µU ⊗ 1) ◦ τ(u− ⊗ v− ⊗ w+ ⊗ u+)

= (−1)|w
+|(|u−|+|v−|)+|v−||u+|(1⊗ µU ⊗ 1)(w+ ⊗ u− ⊗ u+ ⊗ v−)

= (−1)|w
+|(|u−|+|v−|)+|v−||u+|w+ ⊗ µU(u− ⊗ u−)v−
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This implies that

ψ̄(Ť )(v+) = (−1)|w
+|(|u−|+|v−|)+|v−||u+|w+µU(u− ⊗ u−)µV (v− ⊗ v+),

which proves our claim T+ = ψ̄(Ť ). In particular T+ is in the image of ψ̄
and hence nuclear.

Remark 31. In the above proof we are more careful with signs than we need
to be at this point; e.g., the map µU : U− ⊗ U+ → C is grading preserving,
and hence µU(u− ⊗ u+) = 0 unless |u−| = |u+|, and similarly for v±. So
in the above proof (as well as in the proof of Lemma 32 below) we could
make things a little easier by assuming |u−| = |u+| and |v−| = |v+| without
loss of generality. However, we will need more general versions of these
results, where the complex vector spaces are replaced by modules over a
Z/2-graded algebra Λ, and µU , µV take values in Λ. Again, µU , µV are
even, but this no longer implies µU(u−⊗u+) = 0 unless |u−| = |u+| (and the
analogous statement for v±). As long as we avoid the simplifying assumptions
|u−| = |u+| and |v−| = |v+|, the proof of these more general results is the
same.

Proof of Proposition 25. Like in the proof of Proposition 24, we decompose
the morphism Σ ∈ RBd(Y1, Y2) as shown in the figure 28. Then the closed

manifold Σ̂ ∈ RBd(∅, ∅) can be written as the following composition in RBd:

•Y ′j

Σ1

T

D

DDDDDDDD
Y1•T

Σ2

j

z

zzz
zz

zz
z

•Y1 Y ′•

Applying the functor E results in corresponding decompositions of the mor-
phisms E(Σ) (resp. E(Σ̂)) in the category TV±. The following algebraic re-

sult then implies the desired statement E(Σ̂)+ = strE(Σ)+, provided E(Y )+

has the approximation property.

Lemma 32. Let U , V be objects of TV±, let τ : U ⊗V ∼= V ⊗U be the sym-
metry isomorphism, and let T1 : U ⊗ V → C, T2 : C→ V ⊗ U be morphisms
in TV±. Let T : V → V (resp. T̂ : C → C) be the following compositions in
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TV± (these pictures are to be read right to left):

V •_ 1V _•V V •U

T2

i•Ui

T1

U

U•

•V V •_ 1V _•V

•Ui

T1

U

D

DDD
DD

DD
D V •U

T2

i

z

zzz
zz

zz
z

•V U•

If V + has the approximation property, then

T̂+ = str
(
T+ : V + → V +

)
.

Proof. As in the proof of Lemma 29 we can assume

T−1 (1) = u− ⊗ v− ∈ U− ⊗ V − T+
2 (1) = v+ ⊗ u+ ∈ V + ⊗ U+;

here we write v+ instead of w+, since now we have W = V . We recall from
that proof also that T = ψ̄(Ť ), where

Ť = (−1)|v
+|(|u−|+|v−|)+|v−||u+|v+ ⊗ µU(u− ⊗ u−)v− ∈ V + ⊗ V −

This implies that

τ(Ť ) = (−1)|v
+||u+|+|v−||u+|µU(u+ ⊗ u−)v− ⊗ v+ ∈ V − ⊗ V +

It follows that

strT = µV (τ(Ť )) = (−1)|v
+||u+|+|v−||u+|µU(u+ ⊗ u−)µV (v− ⊗ v+).

On the other hand, we calculate the composition T̂ as follows:

T̂ (1) = T+
1 ◦ τ ◦ T+

2 (1) = T+
1 ◦ τ(v+ ⊗ u+) = (−1)|v

+||u+|T+
1 (u+ ⊗ v+)

= (−1)|v
+||u+|µU⊗V (u− ⊗ v− ⊗ u+ ⊗ v+)

= (−1)|v
+||u+|+|v−||u+|µU(u− ⊗ u+)µV (v− ⊗ v+);

Here the second to last equality sign is a consequence of Lemma 30 applied
to T1; the last equality is the definition of µU⊗V .
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3 QFT’s as smooth functors

The goal of this section is to refine our preliminary definition of a quantum
field theory (see definition 43) by requiring that the functor E : RBd −→ TV
describing the QFT is smooth in the sense explained below. Strictly speaking,
this is not a requirement on the functor E, but rather an extension of the
functor E to a larger category RBfam

d whose objects are smooth families of
objects of RBd.

3.1 Smooth categories and functors

To motivate our formal definition of smooth functor and smooth category be-
low (see Definition 36), we start with an informal discussion of smoothness of
a functor E : RBd −→ TV. Heuristically, smoothness means that the vector
space E(Y ) associated to a (d − 1)-manifold should depend ‘smoothly’ on
Y (and a similar statement for morphisms); in particular, given a smooth
family Y of closed (d − 1)-manifolds parametrized by some manifold S, we
should obtain a smooth family of vector spaces parametrized by S (by ap-
plying E to each member of the family), and similarly for smooth families
of bordisms. More formally, we expect that E can be extended to a functor
Efam fitting into a commutative diagram

RBfam
d

Efam
//

$$IIIIIIIII TVfam

zzuuu
uuu

uuu
u

MAN

.

The categories TVfam and RBfam
d will be described in detail in the next sub-

section; they are ‘family versions’ of the categories TV resp. RBd considered
in the last section. E.g., the objects of TVfam are smooth families of objects
of TV, i.e., pairs (S, V ), where S is a smooth manifold, and V → S is a
smooth vector bundle over S whose fibers are complete locally convex topo-
logical vector spaces. The slanted arrows are the natural forgetful functors
to the category MAN of smooth manifolds, which map e.g. an object (S, V )
of TVfam to the object S of MAN. We expect that the functor Efam is ‘com-
patible with pull-backs’ of families via smooth maps f : S → T of manifolds
(in a sense to be made precise below).

What is the correct categorical context to talk about smooth functors?
The above heuristic discussion of ‘smooth’ suggests that if C, D are categories
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over MAN (i.e., equipped with a functors pC : C → MAN resp. pD : D →
MAN), a functor F : C → D should be called smooth if it makes the diagram

C F //

pC ""EE
EE

EE
EE

E D

pD{{xx
xx

xx
xx

x

MAN

commutative and is ‘compatible with pull-backs’. To make precise what this
means, we recall the universal property of the pull-back and the notion of
Grothendieck fibrations. An excellent reference is [?] but we briefly recall
the definition for the convenience of the reader who is not familiar with this
language.

For a category S one can study categories over S, i.e. categories C equipped
with a functor pC : C → S. In the examples above we have S = MAN and C
is either the category TVfam of smooth vector bundles or the category RBfam

d

(whose objects are smooth bundles of Riemannian spin manifolds), and pC is
the obvious forgetful functor.

In the following diagrams, an arrow going from an object ξ of C to an
object S of S, written as ξ 7→ S, will mean that pCξ = S. Furthermore, the
commutativity of the diagram

ξ
_

��

φ // η
_

��
S

f // T

will mean that pCφ = f .

Definition 33. Let C be a category over S. An arrow φ : ξ → η of C is
cartesian if for any arrow ψ : ζ → η in C and any arrow g : pCζ → pCξ in S
with pCφ ◦ g = pCψ, there exists a unique arrow θ : ζ → ξ with pCθ = g and
φ ◦ θ = ψ, as in the commutative diagram

ζ
_

��

θ &&LLLL ψ

&&
ξ
_

��

φ
// η
_

��
R

g ''NNNNNN h

&&
S

f
// T
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If ξ → η is a cartesian arrow of C mapping to an arrow S → T of S, we
also say that ξ is a pullback of η to S. From the definition, a pullback is
unique, up to a unique isomorphism.

Definition 34. A fibered category over S is a category C over S, such that
given an arrow f : S → T in S and an object η of C mapping to T , there is a
cartesian arrow φ : ξ → η with pCφ = f . In other words, the requirement is
that there is a pull-back for every object η ∈ C and every arrow S → T = pCη.
A fibered category C → S is sometimes also referred to as a Grothendieck
fibration.

If C and D are fibered categories over S, then a morphism of fibered
categories F : C → D is a functor such that:

1. F is base-preserving, i.e. pD ◦ F = pC;

2. F sends cartesian arrows to cartesian arrows.

There is also a definition of base-preserving natural transformations between
two morphisms C → D but it won’t concern us in this paper.

Example 35. Let Bun be the category of smooth fiber bundles; i.e., the
objects are smooth fiber bundles ξ = (p : E → S), and a morphisms φ from
ξ = (p : E → S) to η = (q : F → T ) is a pair of smooth maps (f : S →
T, f̂ : E → F ) which makes the diagram

E
bf //

p

��

F

q

��
S

f // T

commutative. Then the forgetful functor Bun → MAN given by (p : E →
S) 7→ S and (f, f̂) 7→ f makes Bun a category over MAN.

Given a smooth map f : S → T and a bundle η over T , let f ∗η be the
usual pull-back bundle over S. Then it is straightforward to see that the

tautological bundle map φ : ξ
def
= f ∗η → η (covering f : S → T on the base)

is cartesian. In other words, the usual pull-back of bundles satisfies the
universal property that characterizes pull-backs in the categorical setting of
definition 33. In particular, Bun→ MAN is a Grothendieck fibration.

We are now ready to make the central definition of this section.
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Definition 36. A smooth category is a category C fibered over the cate-
gory MAN of smooth manifolds, and a smooth functor between two smooth
categories C and D is a morphism of fibered categories F : C → D as in
Definition 34.

The main examples we have in mind are the smooth categories RBfam
d →

MAN and TVfam → MAN to be introduced in subsection ??; a QFT is then
simply a smooth functor RBfam

d → TVfam compatible with the symmetric
monoidal structure (see definition 43. When we introduce our notion of super
symmetric QFT’s in section 4.5, we will replace the base category MAN by
the category SMAN of super manifolds, or more precisely, cs-manifolds.

Example 37. Here is a simple minded example of smooth functors that are
related to smooth maps. More precisely, we will show that there is a natural
bijection between the set of smooth maps from a manifold X to a manifold
Y and the set of smooth functors

MANX −→ MANY

between associated smooth categories. Here the category MANX is the over-
category of X ∈ MAN, i.e., objects are morphisms g : S → X in MAN, and
morphisms from g : S → X to h : T → X are morphims f ∈ MAN(S, T )
making the diagram

S

g
��@

@@
@@

@@
f // T

h~~~~
~~

~~
~

X

commutative. There is an obvious forgetful functor MANX → MAN which
makes MANX a category over MAN; in fact this is a Grothendieck fibration
over MAN (pull-back’s are given by precomposition by f : S → T ), and hence
MANX is a smooth category. If f : X → Y is a smooth map, it induces a
functor

f̂ : MANX −→ MANY given by (g : S → X) 7→ (S
g−→ X

f−→ Y ).

This is a smooth functor (every arrow in MANY is cartesian). Conversely,
given a smooth functor F : MANX → MANY , we can apply F to the object
id : X → X of MANX and obtain a smooth map f : X → Y . It is easy to
check that these two constructions are inverse to each other and hence we
obtain the claimed bijection.
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3.2 Stacks

All of these fibered categories (of bundles) have the property that one can
get objects on a union of open sets S = ∪iUi by specifying objects on Ui
and isomorphisms (or clutching maps) on Ui ∩ Uj that satisfy the cocycle
conditions on Ui∩Uj∩Uk. Moreover, these descent data can be reconstructed
from a given bundle on all of S.

This important property of bundles can be formalized in the following
notion of a stack. We will not use this language much in this paper since
we are only interested in very particular examples of stacks, however, we feel
that it will be important for future use to have the right notion of a smooth
category respectively a super category. A fibered category over S can be
thought of as a weak version of a functor from S to CAT, i.e. as a presheaf
of categories over S. A stack is, morally, a sheaf of categories over S.

Let S be a Grothendieck site, which means that every object S of S comes
with a notion of a covering that is a collection of morphisms {Ui → S}i∈I in
S for some index set I. In our case of S = MAN these are just the usual
coverings of a manifold S by (inclusions of) open sets Ui.

Let C be a category fibered over S. By the axiom of choice, we may fix
a cleavage which consists of a class K of cartesian arrows in C such that for
each arrow f : S → T in S and each object η in C(T ) there exists a unique
arrow in K with target η mapping to f in S. This choice is just a matter
of convenience (and for keeping the language slightly under control) since all
the definitions can be given without resorting to the choice of a cleavage.

Given a covering {σ : Ui → S}, set Uij = Ui×S Uj and Uijk = Ui×S Uj×S
Uk for each triple of indices i, j and k.

Definition 38. Let U = {σi : Ui → S} be a covering in S. An object with
descent data ({ξi}, {φij}) on U , is a collection of objects ξi ∈ C(Ui), together
with isomorphisms φij : pr∗2ξj ' pr∗1ξi in C(Ui ×S Uj), such that the following
cocycle condition is satisfied.

For any triple of indices i, j and k, we have the equality

pr∗13φik = pr∗12φij ◦ pr∗23φjk : pr∗3ξk → pr∗1ξi

where the prab and pra are projections on the a-th and b-th factor, or the
a-th factor respectively.

The isomorphisms φij are called transition isomorphisms of the object
with descent data.
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An arrow between objects with descent data

{αi} : ({ξi}, {φij})→ ({ηi}, {ψij})

is a collection of arrows αi : ξi → ηi in C(Ui), with the property that for each
pair of indices i, j, the diagram

pr∗2ξj
pr∗2αj //

φij

��

pr∗2ηj

ψij

��
pr∗1ξi

pr∗1αi // pr∗1ηi

commutes. There is an obvious way of composing morphisms, which makes
objects with descent data the objects of a category, denoted by C(U) =
C({Ui → S}).

For each object ξ of CS we can construct an object with descent data on
a covering {σi : Ui → S} as follows. The objects are the pullbacks σ∗i ξ; the
isomorphisms φij : pr∗2σ

∗
j ξ ' pr∗1σ

∗
i ξ are the isomorphisms that come from

the fact that both pr∗2σ
∗
j ξ and pr∗1σ

∗
i ξ are pullbacks of ξ to Uij. If we identify

pr∗2σ
∗
j ξ with pr∗1σ

∗
i ξ, as is commonly done, then the φij are identities.

Given an arrow α : ξ → η in CS, we get arrows σ∗i : σ∗i ξ → σ∗i η, yielding an
arrow from the object with descent associated with ξ to the one associated
with η. This defines a functor CS → C({Ui → S}).

It is important to notice that these construction do not depend on the
choice of a cleavage, in the following sense. Given a different cleavage, for
each covering {Ui → S} there is a canonical isomorphism of the resulting
categories C({Ui → S}); and the functors CS → C({Ui → S}) commute with
these equivalences.

Definition 39. A fibered category C → S is a stack over the Grothendieck
site S if for each covering {Ui → S} in S, the functor CS → C({Ui → S}) is
an equivalence of categories.

3.3 QFT’s of dimension d

Definition 40. (The smooth category TVfam) This is the smooth family
version the category TV of complete locally convex topological vector spaces.
More precisely, objects are locally trivial smooth vector bundles V → S over
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smooth manifolds S whose fibers are complete locally convex topological
vector spaces. Morphisms from V → S to W → T are pairs (f, f̂) where

f : S → T is a smooth map, and f̂ is a smooth fiberwise linear map from
V to the pull-back vector bundle f ∗W . In terms of smooth sections, f̂ can
be described as a continuous C∞(S)-linear map C∞(S, V ) → C∞(S, f∗W )
between the spaces of smooth sections of V and f ∗W equipped with the
Frechet topology. It is this point of view that will generalize to the case
where S is super manifold (see Definition 73).

Mapping a vector bundle V → S to its base space S gives a forgetful
functor p : TVfam → MAN. The ordinary pull-back of vector bundles shows
that TVfam → MAN is a Grothendieck fibration; in other words, TVfam is a
smooth category.

We recall that the Riemannian bordism category RBd was defined in
terms of the category Riemd (see definitions 11 and 10). Similarly, the family
version RBfam

d will be defined in terms of a family version Riemfam
d of the

category of Riemannian spin manifolds and isometric embeddings.

Definition 41. We define Riemfam
d to be the category of smooth families of

Riemannian spin manifolds. More precisely,

objects of Riemfam
d are pairs

Definition 42. (The smooth category RBfam
d ) Let S be a smooth mani-

fold. We want to define the category RBd of S-families of Riemannian bor-
disms of dimension d in such a way that RBd agrees with the category RBd

of definition 11. We observe that objects and morphisms of the category RBd

were defined in terms of the category Riemd whose objects are Riemannian
spin manifolds of dimension d and morphisms are isometric spin embeddings.
Here we need only replace Riemd be the appropriate category Riemfam

d whose
objects (resp. morphisms) are families of objects (resp. morphisms) of Riemd

parametrized by smooth manifolds. More precisely,

• an object of Riemd is a smooth quasi bundle U → S with d-dimensional
fibers, equipped with a fiberwise Riemannian metric and spin structure
(i.e., a spin structure on the vertical tangent bundle).

• A morphism from U to U ′ is a smooth quasi bundle map f : U → U ′

preserving the fiberwise Riemannian metric and spin structure.
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Definition 43. A quantum field theory of dimension d is a smooth symmetric
monoidal functor

E : RBd −→ TV±,

which is compatible with the involution ¯ and the anti-involution ∨. Here
RBd and TV± are smooth categories (which we don’t indicate in our nota-
tion).

Remark 44. If E is a QFT of dimension 1 we can apply ES to the universal
family of circles S1

` ∈ RB1
S(∅, ∅) parametrized by S = R+, where ` ∈ R+(R+)

is the identity function. The result is a smooth function E(S1
` ) : R+ → C; the

compatibility condition (??) (for S ′ = pt) implies that this is the partition
function ZE of definition 22; in particular ZE is smooth.

Similarly, applying a 2-dimensional QFT E to the universal family of tori
T 2
`,τ ∈ RB2

S(∅, ∅), where S = R+ × R2
+ (R2

+ ⊂ R2 is the upper half-plane)
and ` : S → R+, τ : S → R2

+ are the projection maps, leads to a smooth
function R+ × R2

+ → C which agrees with the extended partition function
ZE of definition 22. Again, we conclude that the smoothness of the functor
E implies the smoothness of ZE.

3.4 Examples of objects and morphisms of RBfam
d

Definition 45. The following examples of objects and morphisms in RBd

will be parametrized by smooth maps from S to suitable smooth manifolds
M (e.g., M = R+ or M = R2

+). It will be convenient to use the notation
M(S) for the set of smooth maps from S to M ; elements of M(S) are referred
to as S-points of M . We will make use of this notation in particular later
when we use the functor of points formalism to describe maps between super
manifolds.

Example 46. (Examples of objects and morphisms of RBd.) The
following examples of objects and morphisms in the family bordism category
RBd will be important to us. They are family versions of the examples
13 and 17, parametrized by a smooth manifold S. We shall write these
examples in a fairly formal way that will extend to super manifolds without
additional work (see example 81). All fiber bundles over S involved here will
be topologically trivially; they are either of the form S × Rd → S (with the
obvious fiberwise metric and spin structure), or a quotient of this bundle
by a discrete subgroup of the group Rd(S) (of smooth maps from S to Rd,
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see definition 45). The group Rd(S) acts by structure preserving bundle
automorphisms by associating to f ∈ Rd(S) the bundle automorphism

S × Rd −→ S × Rd given by (s, x) 7→ (s, f(s) + x).

Abusing language, we will write again f for this bundle automorphism.

the point ptS ∈ RB1. The quadruple

ptS
def
= (U, Y, U+, U−) = (S × R, S × {0}, S × (−∞, 0), S × (0,∞))

is an object of RB1.

the interval I1
` ∈ RB1(ptS, ptS). For ` ∈ R+(S) the pair of bundle maps

U = S × R � � id // Σ = S × R U = S × R? _`oo ,

is a Riemannian spin bordism from ptS to ptS. We will use the notation
I1
` for this S-family of intervals whose length is given by the function
` : S → R+.

the circle S1
` ∈ RB1(∅, ∅). For ` ∈ R+(S) the circle bundle

S1
`

def
= (S × R)/Z`

is a Riemannian spin bordism from ∅ to ∅.

the circle S1
` ∈ RB2. For ` ∈ R+(S) the quadruple

S1
`

def
= ((S × R2)/Z`, (S × R)/Z`, (S × R2

+)/Z`, (S × R2
−)/Z`)

is an object of RB2.

the cylinder C2
`,τ ∈ RB2(S1

` , S
1
` ). For ` ∈ R+(S) and τ ∈ R2(S), consider

the following pair of bundle maps preserving the fiberwise metrics and
spin structures

U2 = (S × R2)/Z` � � id // Σ = (S × R2)/Z` U1 = (S × R2)/Z`? _`·τoo .

For τ ∈ R2
+(S) conditions ?? are satisfied and this is a Riemannian

spin bordism from S1
` to itself.

37



The torus T 2
`,τ ∈ RB2(∅, ∅). For t ∈ R+(S) and τ ∈ R2

+(S) the torus bundle

T 2
`,τ

def
= (S × R2)/`(Zτ + Z1).

is a Riemannian bordism from ∅ to ∅.

The following two lemmas are the family versions of the relations among
morphisms in RBd formulated in Lemmas 16 and 18.

Lemma 47. Let S be a smooth manifold and `, `′ ∈ R+(S). Then the fol-
lowing relations hold in the category RB1:

1. I1
` ◦ I1

`′ = I1
`+`′ ∈ RB1(pt, pt);

2. Î1
` = S1

` ∈ RB1(∅, ∅);

Lemma 48. Let S be a smooth manifold and ` ∈ R+(S), τ, τ ′ ∈ R2
+(S).

Then the following relations hold in the category RB2:

1. C2
`,τ ◦ C2

`,τ ′ = C2
`,τ+τ ′ ∈ RB2(S

1
` , S

1
` );

2. Ĉ2
`,τ = T 2

`,τ ∈ RB2(∅, ∅);

3. C2
`,τ+1 = C2

`,τ ∈ RB2(S
1
` , S

1
` );

4. T 2
g(`,τ) = T 2

`,τ ∈ RB2(∅, ∅) for every g ∈ SL2(Z);

We will only prove Lemma 48, since the proof two relations of Lemma 47
is completely analogous, but simpler than the proof of the first two relations
of Lemma 48.

Proof. To prove the first relation, we use the notation of Definition 11 (where
the composition was described) and we write C2

`,τ = (Σ, ι2, ι1) and C2
`,τ ′ =

(Σ′, ι′2, ι
′
1) and arrange this in the diagram

V3 = (S × R2)/Z` � � ι2=id // Σ = (S × R2)/Z` (S × R2)/Z` = V2
? _

ι1=`τoo

V2 = (S × R2)/Z` � � ι′2=id
// Σ′ = (S × R2)/Z`

ι1◦(ι2)−1=`τ

OO

(S × R2)/Z` = V1
? _

ι′1=`τ ′
oo
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According to the construction, the composition is given by the bordism Σ′′ def
=

Σ ∪ Σ′ (where a point x′ ∈ Σ′ is identified with its image under ι1 ◦ (ι2)
−1),

together with the embeddings

ι′′3 : V3
ι3
↪→ Σ ⊂ Σ′′ and ι′′1 : V ′

1
ι′1intoΣ′ ⊂ Σ′′

The diagram above shows that we can identify Σ′′ def
= Σ ∪ Σ′ with Σ (by

sending x′ ∈ Σ′ to τ(x)); with this identification, we have ι′′3 = id and
ι′′1 = `τ ◦ `τ ′ = `τ + `τ ′ = `(τ + τ ′). In other words, the composition
(Σ′′, ι′′3, ι

′′
1) is equal to C2

`,τ+τ ′ .
The second relation follows from the fact that the projection map

(S × R2)/Z` −→ (S × R2)/`(Zτ + Z1) = T 2
`,τ

induces the desired bundle isomorphism Ĉ2
`,τ
∼= T 2

`,τ .
The third relation follows from the fact that the bundle automorphisms

`τ, `(τ + 1): S × R2 −→ S × R2

induce the same bundle automorphism on (S × R2)/Z`.
To prove the last relation, let us use the notation

Λ`,τ
def
= `(Zτ + Z1) ⊂ R2

+(S).

For g = ( a bc d ) ∈ SL2(Z) let Ra : R2(S) → R2(S) = C(S) be the rotation
given by multiplication by a = cτ+d

|cτ+d| ∈ S
1(S) ⊂ C(S). We note that

Ra(Λg(`,τ)) =
cτ + d

|cτ + d|
Λg(`,τ) =

cτ + d

|cτ + d|
`|cτ + d|

(
Z
aτ + b

cτ + d
+ Z1

)
= ` (Z(aτ + b) + Z(cτ + d)) = Λ`,τ .

Abusing notation, let us also write Ra for the bundle automorphism

Ra : S × R2 −→ R2 (s, v) 7→ (s, a(s)v).

The calculation above shows that Ra induces a bundle isomorphism

T 2
g(`,τ) = (S × R2)/Λg(`,τ) −→ (S × R2)/Λg(`,τ) = T 2

`,τ .
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A smooth map f : S ′ → S induces a pull-back functor f ∗ : RBd → RBd

such that (fg)∗ = g∗f ∗. The fiberwise disjoint union gives RBd the structure
of a symmetric monoidal category; the involution ¯ , the anti-involution ∨,
and the adjunction transformation generalize from RBd to RBfam

d .

Definition 49. The smooth category RBd is the functor

MANop −→ CAT

which sends a smooth manifold S to the category RB and a smooth map
f : S ′ → S to the pull-back functor f ∗ : RBd → RBd.

4 Super symmetric quantum field theories

As mentioned in the introduction, super symmetric field theories are a variant
of the field theories described in the previous section obtained by replacing
the Riemannian bordism category RBd by its super version SRBd, whose ob-
jects are closed super manifolds of dimension d− 1|1, and whose morphisms
are super bordisms of dimension d|1 equipped with a super Riemannian met-
ric. The goal of this section is to give a rapid introduction to super manifolds
and to define super Riemannian metrics on super manifolds of dimension d|1
for d = 1, 2. For more details on super manifolds we refer the reader to [Va],
[Fr] and [DM].

4.1 Super manifolds

Before giving the sheaf-theoretic definition of super manifolds, we make some
motivational remarks. Like schemes, super manifolds are described in terms
of their functions. In particular, associated to any super manifold M of
dimension n|m is a Z/2-graded, graded commutative algebra C∞(M), the
elements of which we think of as functions on M . For example, there is a
super manifold denoted Rn|m of dimension n|m with

C∞(Rn|m) = C∞(Rn)⊗ Λ[θ1, . . . , θm],

where Λ[θ1, . . . , θm] is the exterior algebra generated bym elements θ1, . . . , θm
of odd degree. The super manifold Rn|m is the local model for a super
manifold of dimension n|m in the same way that Rn is the local model for a
manifold of dimension n or that spec(R) for a commutative ring R is the local
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model for a scheme. We note that the algebra C∞(Rn|m) can be interpreted
as the global sections of a sheaf On|m of graded commutative algebras over
Rn, which on open subsets U ⊂ Rn is given by

On|m(U)
def
= C∞(U)⊗ Λ[θ1, . . . , θm]

Definition 50. (Super manifolds.) A super manifold M of dimension
n|m is a Hausdorff space Mred with countable basis together with a sheaf
O of graded commutative algebras which is locally isomorphic to the sheaf
On|m over Rn described above. The sheaf O is called the structure sheaf, its
global sections O(Mred) is a Z/2-graded algebra denoted C∞(M), and the
topological space Mred is called the reduced manifold. To see that Mred is
in fact a smooth manifold, let J ⊂ O be the nilpotent ideal generated by
the odd functions in O, and let Ored be the quotient sheaf, which is a sheaf
of commutative R-algebras over the topological space Mred. We note that
any section f of Ored can in fact be interpreted as a continuous function
on Mred, whose value at x ∈ Mred is the unique real number λ such that
f −λ is not invertible in any neighborhood of x. Since (Mred,Ored) is locally

isomorphic to (Rn,O
n|m
red ), and O

n|m
red is the sheaf of smooth functions on Rn,

we see that Ored gives a smooth structure on Mred. In particular, if M is a
super manifold of dimension n|0, then the sheaf O is equal to Ored and hence
a super manifold of dimension n|0 can be identified with an ordinary smooth
manifold of dimension n.

Example 51. (Main example of super manifolds.) Let E → M be a
q-dimensional smooth vector bundle over a smooth n-manifold N . Then

ΠE
def
= (N,ΛE∗)

is a super manifold of dimension n|q with Mred = N , where abusing language
we write ΛE∗ =

⊕
k ΛkE∗ for the sheaf of smooth sections of the exterior

algebra bundle generated by the vector bundle E∗ dual to E. In particular,
if E is the tangent bundle of N , then E∗ is the cotangent bundle of N and
C∞(ΠTN) can be identified with the differential forms on N . The symbol Π
stands for ‘parity reversal’; it means that the fibers of E should be interpreted
as ‘odd’ which makes ΠE a super manifold of dimension n|q while the total
space of E is an ordinary manifold of dimension n+ q.

It can be shown that every super manifold is of the above form. In
other words, the functor E 7→ ΠE from the category of vector bundles over
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manifolds to the category of super manifolds is surjective on isomorphism
classes of objects. It is however not an equivalence of categories, since in
general there are many morphisms ΠE → ΠE ′ that are not induced by
vector bundle maps E → E ′.

Many constructions and definitions for manifolds have analogs for super
manifolds. To formulate these analogs, we typically try to express the original
notion for ordinary manifolds in terms of their smooth functions, and then
generalize to super manifolds. For example:

vector field A vector field X on an ordinary manifold N can be viewed as
a derivation of the algebra C∞(N) of smooth functions on N . A vector
field X on a super manifold M is defined as a graded derivation of
C∞(M), i.e., X : C∞(M)→ C∞(M) is a linear map with the derivation
property

X(fg) = X(f)g + (−1)|X||f |fX(g) for f, g ∈ C∞(M)±.

Here |X|, |f | ∈ {0, 1} is the degree of X and f , respectively. More
precisely, this defines even vector fields (|X| = 0) and odd vector fields
(|X| = 1); a general vector field is the sum of an even and an odd
vector field.

vector bundle We recall that the category of smooth vector bundles over an
ordinary manifold N is equivalent to the category of sheaves of locally
free modules over the sheaf of smooth functions on N (by associating
to a vector bundle E → N its sheaf of smooth sections). We will
use this equivalence to identify smooth vector bundles with sheaves of
locally free modules. Moreover, if M is a super manifold, we define
a vector bundle of dimension p|q to be a sheaf E of graded modules
over the structure sheaf OM , which is locally free of rank p|q (i.e., for a
sufficiently small open subset U the graded OM(U)-module E(U) has
a basis consisting of p even and q odd elements). In that situation, the

quotient Ered
def
= E/JE is a sheaf of locally free Z/2-graded modules

over Ored, i.e., Ered = Eev
red ⊕ Eodd

red is a Z/2-graded vector bundle over
the reduced manifold Mred.

tangent bundle For an ordinary n-manifold N , the tangent bundle TN
interpreted as a sheaf is equal to Der(ON), the sheaf of derivations of
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the structure sheaf ON . This is a sheaf of locally free modules of rank

n. If M is a super manifold of dimension n|m, let TM
def
= Der(OM) be

the sheaf of vector fields (aka graded derivations) on M ; this a vector
bundle (aka sheaf of locally free modules over OM) of rank p|q. The
associated reduced bundle TMred = TM ev

red ⊕ TM odd
red over Mred is a

vector bundle of dimension p|q; moreover, its even part TM ev
red can be

identified with the tangent bundle of Mred.

Example 52. (Vector fields on Rn|m). Now let us consider vector fields on
the super manifold Rn|m. We recall that C∞(Rn|m) = C∞(Rn)⊗Λ[θ1, . . . , θm].
Let x1, . . . , xn ∈ C∞(Rn) be the coordinate functions, and let ∂x1 , . . . , ∂xn ∈
Der(C∞(Rn)) be the corresponding partial derivatives. These can be ex-
tended to even derivations of C∞(Rn|m) which commute with the action of
Λ[θ1, . . . , θm]. Similarly, there are odd derivations

∂θi
: C∞(Rn|m) −→ C∞(Rn|m);

these commute with the action of C∞(Rn) and ∂θi
(θi) = 1, ∂θi

(θj) = 0 for
i 6= j; in fact, these properties characterize ∂θi

. We note that ∂xi
preserves the

Z/2-grading of C∞(Rn|m), while ∂θi
reverses it. In other words, ∂xi

(resp. ∂θi
)

is an even (resp. odd) element of Der(C∞(Rn|m); or, geometrically speaking,
∂xi

is an even vector field on Rn|m, while ∂θi
is an odd vector field.

Now consider R1|1 and let us write t, θ ∈ C∞(R1|1) for the even (resp.
odd) coordinate function. Any function f ∈ C∞(R1|1) = C∞(R) ⊗ Λ[θ] is
then of the form

f = f0 + θf1 with f0, f1 ∈ C∞(R).

Let D be the odd vector field D = ∂θ − θ∂t. Then

Df = (∂θ − θ∂t)(f0 + θf1) = ∂θθf1 − θ∂tf0 = f1 − θ∂tf0,

since the terms ∂θf0 and θ∂t(θf1) = θ2(∂tf1) both vanish. In particular,

D2(f0 + f1θ) = −∂tf0 − ∂tf1θ = −∂t(f0 + f1θ).

In other words, D2 = −∂t.
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Definition 53. (cs-manifolds.) In the next subsection we will define super
Riemannian structures on super manifolds of dimension d|1 for d = 1, 2. More
precisely, these structures will be defined for a variant of super manifolds
that Deligne and Morgan [DM, §4.8] refer to as cs-manifolds which stands
for complex super. This terminology might be somewhat misleading, since it
suggests that the associated reduced manifold is a complex manifold. This is
not the case; rather, the adjective complex means that we describe the super
manifold in terms of its complex valued functions instead of its real valued
functions. The precise definition is this: a cs-manifold of dimension n|m is
a topological space Mred together with a sheaf OM of graded commutative

algebras over the complex numbers, which is locally isomorphic to Rn|m
cs

def
=

(Rn,On|m ⊗ C). If M = (Mred,O) is a cs-manifold, we denote by M̄
def
=

(Mred, Ōred) the complex conjugate cs-manifold (where Ōred is the complex
conjugate structure sheaf obtained by replacing all the complex vector spaces
O(U) for U ⊂Mred by the complex conjugate vector spaces; this is compatible
with the algebra structure).

We note that a super manifold of dimension n|m leads to a cs-manifold by
complexifying its structure sheaf. In fact, we can interpret a super manifold
as a cs-manifold M equipped with a real structure, i.e., a complex anti-
linear involution ¯ on its (complex) structure sheaf OM . We note that the
reduced structure sheaf Ored = O/J has a canonical real structure, since it
can be identified with the sheaf of C-valued smooth functions on Mred (with
respect to the smooth structure on Mred determined by this sheaf), which
has the complex conjugation involution. In particular, if M is a cs-manifold
of dimension n|0, then there are no odd elements in the sheaf O and hence
O = Ored has a canonical real structure. In other words, cs-manifolds of
dimension n|0 are just ordinary smooth manifolds of dimension n.

Definition 54. (Maps between super manifolds) If M , N are super
manifolds, the morphisms fromM toN are simply grading preserving algebra
homomophisms

C∞(N) −→ C∞(M).

If M , N are cs-manifolds, we require in addition that the reduced map
C∞(Nred; C) −→ C∞(Mred; C) (obtained by modding out the ideal gener-
ated by odd functions) is real, i.e., compatible with complex conjugation
(this condition guarantees that a map f : M → N between cs-manifolds
induces a smooth map Mred → Nred between the reduced manifolds).
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A convenient way to describe describe maps between cs-manifolds is the
functor of points approach (see [DM, §2.8, 2.9]). If M , S are cs-manifolds,
the S-points of M are the set of morphisms S → M of cs-manifolds; we

will use the notation MS
def
= SMAN(S,M) for the S-points of M . For ex-

ample, an S-point of the cs-manifold Rp|q can be identified with a collection
(x1, . . . , xp, θ1, . . . , θq) of even (resp. odd) functions on S such that the re-
ductions (xk)red ∈ C∞(Sred; C) are real valued functions.

4.2 Super Riemannian structures on 1|1-manifolds

Now we are ready to define super Riemannian structures on cs-manifolds
of dimension d|1 for d = 1, 2. There should be a general notion of super
Riemannian structures on general super manifolds (for example along the
lines of the paper by John Lott [Lo]), but for the purposes of this paper,
the authors prefer the pedestrian approach of first defining this notion for
d = 1, and then for d = 2. We hope that the terminology super Riemannian
structure won’t tempt the reader into thinking that this is some kind of inner
product on the tangent bundle of the super manifold at hand. Rather, we
think of a Riemannian metric as the structure needed to define an action
functional (the usual energy); similarly, the structure on super manifolds
of dimension 1|1 and 2|1 described below is the structure needed to define
analogous action functionals (see Remarks 57 and 65). This motivates us to
call this structure a super Riemannian structure. An additional motivation
is provided by the fact that a super Riemannian structure on a cs-manifold
M of dimension d|1 induces a Riemannian metric on the reduced manifold
Mred (an ordinary manifold of dimension d). In both cases (d = 1, 2), we
will first give a preliminary definition, provide the standard example of this
structure, and motivate this structure by considerations from physics. Then
we give a more elaborate definition which allows for more flexibility (which
will be needed in the proof of our main result).

Definition 55. (Preliminary definition). A super Riemannian structure
on a cs-manifold M of dimension 1|1 is an odd vector field D on M such that

(i) the reduction of the even vector field D2 gives a nowhere vanishing
(complex) vector field (D2)red on Mred.

(ii) The complex conjugate of (D2)red is −(D2)red.
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Example 56. (The standard super Riemannian structure on R1|1
cs )

Let us write y resp. θ for the even resp. odd coordinate function on R1|1
cs and

∂y, ∂θ for the corresponding vector fields. Then the calculation of example
52 shows that the odd vector field

D
def
= ∂θ − iθ∂y

squares to D2 = −i∂y. In particular, it satisfies condition (i) and (ii) above.

We note that i(D2)red is the vector field ∂y on (R1|1
cs )red = R; this shows that

this super Riemannian structure on R1|1
cs induces the standard Riemannian

metric and the standard spin structure on R.

Remark 57. (Physics motivation). From the Lagrangian point of view,
a particle moving on geodesics in a Riemannian manifold X can be described
by minimizing the energy functional S(f), where f : R → X describes the
world line of the particle. From an abstract point of view, the world lines
don’t need to be parametrized by R; any 1-manifold Σ equipped with a
Riemannian metric is sufficient to define the energy of f : Σ→ X.

Similarly, the world line of a super particle moving in X is described by
a map f : Σ → X, where now Σ is a super manifold of dimension 1|1. If
D is an odd vector field such that (D2)red is nowhere vanishing, there is a
well-defined action

S(f)
def
=

1

2

∫
Σ

〈D2f,Df〉 volD .

Here D2f (resp. Df) is the derivative of f in the direction of the vector field
D2 (resp. D); these are sections of the pull-back bundle f ∗TX which can
paired using the Riemannian metric onX to obtain the function 〈D2f,Df〉 ∈
C∞(Σ). We recall that on the super manifold Σ, it is sections of the line
bundle Ber(TΣ)∗ (the dual of the Berezinian line bundle associated to the
tangent bundle) which can be integrated over Σ (after an orientation on the
reduced manifold Σred is fixed; see [DM, Prop. 3.10.5]). A short calculation
similar to that on p. 663 of [Wi3] shows that there is a canonical isomorphism

Ber(TΣ) ∼= D, where D def
= 〈D〉 ⊂ TΣ is the odd line bundle spanned by D.

In particular, D determines a dual section volD ∈ Ber(TΣ)∗. We note that
replacing D by −D doesn’t change the action.

If Σ = R1|1 and D = ∂θ − θ∂t, then the action takes the usual form for
the action of a super particle moving in a Riemannian manifold X (see [Wi3,
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Problem FP2] and [Fr, p. 41-43]):

S(f) = −1

2

∫
R1|1

dtdθ〈ḟ , Df〉.

The parameter t here should be thought of as time; we would like to apply
Wick rotation and express all quantities involved in terms of y = it (imag-
inary time). In particular, D becomes our standard vector field ∂θ − iθ∂y
on the cs-manifold R1|1

cs with coordinates (y, θ) (see Example 56). We note
that the appearance of i in the formula for D explains our preference for
cs-manifolds. Why do we Wick rotate? One reason is that in the quantum
theory we want trace class operators e−yQ

2
rather than unitary operators

eitQ
2
.

We note that the action functional above is invariant under any auto-
morphisms of R1|1 that preserve D (up to sign). It is easy to check that the
vector field Q = ∂θ + θ∂t commutes with D (in the graded sense); in other
words, Q is the infinitesimal generator of a group of automorphisms of R1|1

which preserve D. This symmetry of the classical action is a super symmetry
in the sense that Q is an odd vector field. In particular, upon quantization,
Q leads to an odd operator acting on the Z/2-graded Hilbert space of the
theory.

Definition 58 needs to be modified in two ways:

(a) We want to consider the super Riemannian structure given by an odd
vector field D the same as the structure given by −D.

(b) A super Riemannian structure is only locally given by an odd vector
field.

This suggests to define a super Riemannian structure is an equivalence
class of such D’s where we identify D and −D. The defect of that definition
would be that it is not local in the following sense: suppose D1 and D2

are sections of the tangent sheaf TM → Mred restricted to open subsets
U1 ⊂Mred (resp. U2 ⊂Mred); suppose that the super Riemannian structures
determined by D1 resp. D2 agree on the intersection U1∩U2 (i.e., D1 = ±D2

on U1 ∩ U2). Then there might not be any D on U1 ∪ U2 which agrees with
±Di on Ui. In other words, these structure might not fit together to give a
structure on U1 ∪ U2 restricting to the given structures on U1 and U2. This
defect can be fixed by the following more elaborate definition:
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Definition 58. Let M be a cs-manifolds of dimension 1|1. A super Rieman-
nian structure on a M is given by a collection of pairs (Ui, Di) indexed by
some set I, where

• the Ui’s are open subsets of Mred whose union is all of Mred;

• the Di’s are sections of the tangent sheaf TM restricted to Ui satisfying
the conditions (i) and (ii) of Definition 55;

• the restrictions of Di and Dj to Ui ∩Uj are equal up to a possible sign.

Two such collection define the same structure if their union is again such
a structure (this is analogous to saying that two smooth atlases define the
same smooth structure if the union of these atlases is again an atlas).

Proposition 59. There is a functor Riem1 → Riem1|1.

We remark that the functor we construct below is in fact an equivalence
of categories, but we don’t need this statement in this paper. In any case,
this result shows that for d = 1 super Riemannian structures on super mani-
folds of dimension d|1 are closely related to Riemannian structures plus spin
structures on manifolds of dimension d. In the next subsection we will show
that the same holds for d = 2. This is another motivation for the terminology
‘super Riemannian structure’.

Proof. Let M be a Riemannian spin 1-manifold. The functor F sends M to
the super manifold ΠLC.

We note that Lemma ?? continues to hold with respect to this more
sophisticated notion of super Riemannian structure, since while the vector
fields Di might not fit together to give a vector field D on M , the even vector
fields D2

i do agree on the intersections and hence we have a globally defined
even vector field D2 on M .

We will need some information about the automorphism super group of
R1|1
cs equipped with its standard super Riemannian structure. The analo-

gous non-super statement is that the isometry group of R (equipped with its
standard metric) contains R (acting by translations on itself). To state the

analog for R1|1
cs , we first define the multiplication

µ : R1|1
cs × R1|1

cs −→ R1|1
cs (y1, θ1), (y2, θ2) 7→ (y1 + y2 + θ1θ2, θ1 + θ2). (60)
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This gives R1|1
cs the structure of a super Lie group, i.e., a group object in the

category of super manifolds.

Lemma 61. The left translation action of R1|1
cs on itself preserves the stan-

dard super Riemannian structure of Example 56.

4.3 Super Riemannian structures on 2|1-manifolds

Definition 62. Let M be a cs-manifold of dimension 2|1. A super Rieman-
nian structure on M is given locally by a pair (D,B), consisting of an odd
vector field D and an even vector field B on M such that

(i) The vector fields (D2)red, Bred on the reduced manifoldMred are linearly
independent at every point of Mred.

(ii) The vector field Bred is the complex conjugate of (D2)red.

It should be emphasized that (D2)red and Bred are complex vector fields on
the reduced manifold Mred; i.e., sections of the complexified tangent bundle
of Mred. As in the case of dimension 1|1, this needs to be modified by
describing an appropriate equivalence relation on such pairs and by making
the definition local in Mred. We call two such pairs (D,B), (D′, B′) equivalent
if there are f, g ∈ C∞(M) whose reduced functions fred, gred : M → C have
values in S1 ⊂ C such that D′ = gD and B′ = fB. We note that condition
(ii) above for the pairs (D,B), (D′, B′) implies that f̄red = g2

red.
A super Riemannian structure on a cs-manifold M of dimension 2|1 is

given by a collection of triples (Ui, Di, Bi), i ∈ I, where

• the Ui’s are open subsets of Mred whose union is all of Mred;

• the Di’s (resp. Bi’s) are sections of the tangent sheaf TM restricted to
Ui satisfying conditions (i) and (ii) above;

• the restrictions of (Di, Bi) and (Dj, Bj) to Ui∩Uj are equivalent in the
sense above.

Two such collection define the same structure if their union is again such a
structure.
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Example 63. (The standard super Riemannian structure on R2|1
cs .)

We define a super Riemannian structure on the cs-manifold R2|1
cs = (R2,O2|1⊗

C) as follows. Let us write x, y, θ ∈ C∞(R2|1
cs ) for the coordinate functions,

set z = x+ iy ∈ C∞(R2|1
cs ), and consider the following vector fields on R2|1

cs :

B
def
= ∂z

def
=

1

2
(∂x − i∂y) ∂z̄

def
=

1

2
(∂x + i∂y) D

def
= ∂θ + θ∂z̄

A calculation as in Example 52 shows that D2 = ∂z̄; in particular, D2
red = ∂z̄

is nowhere vanishing on R2 and D2
red = ∂z̄ = ∂z = Bred (to keep notation

at bay we write ∂z and ∂z̄ for the vector fields on R2|1
cs as well as for their

reductions, which are complex vector fields on R2 = (R2|1
cs )red). This shows

that (D,B) is in fact a super Riemannian structure on R2|1
cs .

The terminology super Riemannian structure is motivated by the follow-
ing result.

Lemma 64. A super Riemannian structure on a cs-manifold M of dimension
2|1 induces a Riemannian metric and a spin structure on the reduced man-
ifold Mred (an ordinary 2-manifold). Replacing M by the complex conjugate
cs-manifold M̄ results in the same metric and the opposite spin structure.

Proof. We first work locally. So let (D,B) as above be a pair of sections of the
tangent sheaf TM → Mred over some open subset U ⊂ Mred; in particular,
the (local) sections Bred and B̄red = D2

red of the complexified tangent bundle
TMred⊗C are everywhere linearly independent. Hence there there is a unique
hermitian metric on the complexified tangent bundle TMred⊗C with respect
to which these sections are perpendicular to each other and both have length√

2 (a choice of normalization motivated by the standard super Riemannian

structure on R2|1
cs ; see Example 63). This restricts to a real valued inner

product on TMred ⊂ TMred ⊗ C. To see this, let X be a (complex) vector
field on Mred; it can be written in the form X = fBred + gB̄red where f, g
are smooth complex valued functions on Mred. Then

X̄ = f̄ B̄red + ḡBred,

which shows that X is a real vector field if and only if g = f̄ . If X =
fBred + f̄ B̄red and Y = hBred + h̄B̄red are real vector fields, then

〈X,Y 〉 = 〈fBred + f̄ B̄red, hBred + h̄B̄red〉 = 2(f̄h+ fh̄)
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is real-valued.
We note that if (D′, B′) is another such pair equivalent to (D,B) (i.e.,

B′ = fB and D′ = gD for f, g ∈ C∞(M) such that fred, gred : Mred → C
take values in S1), then B′

red = fredBred and B̄′
red = f̄redB̄red are again

perpendicular vector fields of length
√

2, and hence the hermitian metrics
these pairs determine on TMred⊗C agree. Hence our local arguments above
are sufficient.

We remark that the standard super Riemannian structure on R2|1
cs of ex-

ample 63 induces the usual Riemannian metric on R2 = (R2|1
cs )red, since the

vector fields Bred = ∂z and B̄red = ∂z̄ are perpendicular and of constant
length

√
2 w.r.t. the usual metric.

Remark 65. (Physics Motivation.) A string moving in a Riemannian
manifold X is described by a map f : Σ2 → X from a Lorentz surface Σ2

to X (in the simplest case Σ = S1 × R, where S1 parametrizes the string
and R parametrizes time); a super string moving in X amounts to a map
f : Σ2|1 → X from a super manifold Σ of dimension 2|1 to X. Problem FP6
(p. 613) of Witten’s homework collection in the IAS proceedings [Wi3] (see
also the solution on p. 663) explains that an action functional (Lagrangian)
for such maps can be defined, provided Σ comes equipped with a pair (D,B)
of subbundles (distributions) D,B ⊂ TΣ of dimension 0|1 (resp. 1|0). In
other words, D (resp. B) is generated locally by an odd vector field D (resp.
and even vector field B); it is required that the vector fields D, D2 and B
span TX. Then the action of a map f : Σ→ X is defined by

S(f)
def
=

∫
Σ

〈df|D, df|B〉.

Here df|D (resp. df|B) is the differential of f restricted to D ⊂ TΣ (resp.
B ⊂ TΣ); these are sections of D∗ ⊗ f ∗TX (resp. B∗ ⊗ f ∗TX) that can
be paired using the Riemannian metric on X to obtain 〈df|D, df|B〉, which is
a section of D∗ ⊗ B∗. The calculation on p. 663 of [Wi3] shows that this
line bundle is canonically isomorphic to the Berezinian Ber(TΣ)∗, and so its
section 〈df|D, df|B〉 can be integrated over Σ.

As in the 1|1-dimensional case, the automorphisms of (Σ,D,B) give rise
to (super) symmetries of the theory. As is well-known, the automorphism
group of (Σ,D,B) (super conformal group) is an infinite dimensional super
Lie group. We prefer to work with the super Riemannian structure (given by
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D, B) rather than the super conformal structure given by the distributions
D, B they generate, since the conformal invariance of the classical theory
usually does not survive to the quantum theory (conformal anomaly).

A flat model is R2|1 with even coordinates u, v and odd coordinate θ and

D = ∂θ − θ∂u B = ∂v,

where, as Witten explains in [Wi2, §2.2], the coordinates u, v are the right-
resp. left-moving light cone coordinates on R2 equipped with the Minkowski
metric ds2 = du dv. In terms of the more usual coordinates t (time) and x
(space), for which the Minkowski metric takes the form ds2 = dt2 − dx2, the
light cone coordinates are given by

u = x+ t v = t− x.

For the same reasons as in the 1|1-dimensional case, we want to do a Wick
rotation and express all quantities in terms of the imaginary time y = it. In
particular, u = x + t = x − iy = z̄ and v = t − x = −(x + iy) = −z. In
particular, expressed in terms of ∂z = 1

2
(∂x − i∂y), ∂z̄ = 1

2
(∂x + i∂y), and ∂θ

we have:
D = ∂θ − θ∂z̄ B = −∂z (66)

Again the calculation in Example 52 shows that D2 = −∂z̄; in particular, the
vector fields D2 and B reduce to the everywhere linearly independent (com-

plex) vectors fields −∂z̄ (resp. −∂z) on (R2|1
cs )red = R2 which are complex

conjugates of each other (of course with respect to the new real structure
where the coordinate functions x, y are regarded as real functions). In other
words, after a Wick rotation the vectors fields D, B define a super Rieman-
nian structure on R2|1

cs .

Definition 67. (Flat super Riemannian structures on 2|1-manifolds).
Let M be a cs-manifold of dimension 2|1. A super Riemannian structure on
M is called flat if the pairs of local vector fields (D,B) defining it satisfy the
following additional property:

(iii) The graded commutator [D,B] vanishes.

We note that the standard super Riemannian structure (63) is flat and
we believe that vice versa, a flat cs-manifold is locally isomorphic to the
standard structure.
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Lemma 68. Let M be a cs-manifold of dimension 2|1 equipped with a super
Riemannian structure which is flat. Then the induced Riemannian metric on
Mred is flat.

Proof. Let ∇ be the unique connection on TMred⊗C for which the sections
D2
red and Bred are parallel. We claim that ∇ is the Levi-Civita connection

for the induced metric on Bred (or more precisely, the connection on the
complexified tangent bundle induced by the Levi-Civita connection). It is
clear that ∇ is a metric connection since D2

red and Bred are both vector fields
of constant length. It remains to show that the torsion tensor T vanishes,
which is given by

T (X,Y )
def
= ∇XY −∇YX − [X,Y ]

for complex vector fields X, Y (the expression ∇XY is originally defined for
real vector fields X and complex vector fields Y , but we can extend it to
complex vector fields X by requiring ∇XY to depend complex linearly on
X). Since T (X, Y ) is skew-symmetric and complex linear in both variables,
to prove T ≡ 0, it suffices to show T (D2

red, Bred) = 0; this is the case since
∇XD

2
red and ∇XBred vanish for every vector field X (this is the condition

that D2
red and Bred are parallel w.r.t. ∇) and since our flatness-condition

[D,B] = 0 implies [D2, B] = 0 and hence [D2
red, Bred] = 0. This shows

that ∇ is the (complexified) Levi-Civita connection; in particular, the Levi-
Civita connection is flat due to the existence of the parallel sections D2

red and
Bred.

We can give R2|1
cs the structure of a super Lie group by defining the mul-

tiplication

µ : R2|1
cs × R2|1

cs −→ R2|1
cs

(z1, z̄1, θ1), (z2, z̄2, θ2) 7→ (z1 + z2, z̄1 + z̄2 + θ1θ2, θ1 + θ2)
(69)

Here z = x + iy ∈ C∞(R2|1
cs ) and z̄ = x − iy, where x, y ∈ C∞(R2|1

cs ) are

the coordinate functions of the cs-manifold R2|1
cs ; the subscript 1 (resp. 2)

indicate the first (resp. second) copy of R2|1
cs . We note that we need to work

with R2|1
cs in order to make sense of the function z (and hence of the map

µ). Moreover, after reduction z̄ is the complex conjugate of z, which implies
that µ satisfies the reality condition of Definition 54.

53



Lemma 70. The left translation action of R2|1
cs on itself preserves the stan-

dard super Riemannian structure.

We will need the following result in the proof of our main result.

Lemma 71. Let a ∈ C be of unit length. Then the automorphism

Ra : R2|1
cs −→ R2|1

cs (z, z̄, θ) 7→ (a2z, ā2z̄, āθ)

preserves the standard super Riemannian structure.

Proof. A calculation shows

F∗∂z = a2∂z F∗∂z̄ = ā2∂z̄ F∗∂θ = a∂θ F∗(∂θ − θ∂z̄) = ā(∂θ − θ∂z̄)

This implies that the pairs (D,B) = (∂θ − θ∂z̄,−∂z) and (F∗D,F∗B) are
equivalent in the sense of Definition 62 and hence represent the same super
Riemannian structure on R2|1

cs .

4.4 Super categories and functors

We recall that a QFT (see definition 43) is a smooth functor RBfam
d → TVfam;

here the objects of the domain and range category are ‘smooth families’ of
suitable objects parametrized by smooth manifolds. In categorical language,
domain and range categories are smooth categories in that sense that they
are fibered over the category MAN of smooth manifolds (see Definitions 34
and 36). Similarly, the definition of a super symmetric QFT in subsection 4.5
will involve working with categories whose objects are ‘families paramatrized
by super manifolds’. We will refer to such categories as ‘super categories’;
the precise definition is the following.

Definition 72. A super category is a category C fibered over the category
SMAN of super manifolds, and a super functor between two super categories
C and D is a morphism of fibered categories F : C → D (see Definition 34).

Definition 73. (The super category STV) The objects of STV are ‘vec-
tor bundles over super manifolds whose fibers are locally convex topological
vector spaces’, but we need to define what we mean by this. We recall that if
S is a manifold, then the (local) sections of an n-dimensional complex vector
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bundle over S form a sheaf of modules over the structure sheaf OS, which
is locally of the form C∞(U) ⊗ Cn. This motivated the definition of finite
dimensional vector bundles over a super manifold S as sheaves of locally free
modules over OS in section ??. For infinite dimensional vector bundles we
need to be more careful: if V is a locally convex topological vector space, and
S is an ordinary manifold, the smooth functions on S with values in V can be
identified with C∞(S)⊗ V , but now the tensor product is not the algebraic
tensor product, but rather the projective tensor product (see Definition 4) of
C∞(S) (equipped with the Frechet topology) and V ; we note that there is
no difference between these tensor products if V is finite dimensional.

This suggests the following definition of (possibly infinite dimensional)
vector bundles over super manifolds. Let S be a super manifold, and let
V be a locally convex Z/2-graded topological vector space. Then a vector
bundle over S with fiber V is a sheaf E over Sred of locally convex OS-modules
which is locally of the form OS(U)⊗ V (projective tensor product).

If f : S → T is a morphism of super manifolds, and F is a vector bundle
over T , we can form the pull-back vector bundle f ∗F over S, whose global
sections C∞(S, f∗F) are given by

C∞(S, f∗F)
def
= C∞(S)⊗C∞(T ) C

∞(T,F).

If E is a vector bundle over S, we define a vector bundle morphisms from E to
F to be a pair (f, f̂), where f : S → T is a morphism of super manifolds, and

f̂ : E → f ∗F is a map of sheaves which is OS-linear and continuous. These
are the morphisms in the category STV.

There is an obvious forgetful functor STV→ SMAN. It can be shown that
the pull-back f ∗F as defined above is a pull-back in the sense of Definition
33. In particular, STV is fibered over the category of super manifolds, and
hence STV is a super category in the sense of Definition 72.

4.5 Super symmetric quantum field theories

The goal of this subsection is definition of super symmetric quantum field
theories (Definition 74) and their partition function (Definition ??).

Definition 74. A super symmetric quantum field theory of dimension d for
d = 1, 2 is a super functor

E : SRBd −→ TV,
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compatible with the symmetric monoidal structure. Here the SRBd is the
super category defined below, which is the ‘super’ version of the smooth
bordism category RBfam

d .

The definition of SRBd is completely analogous to Definition 11 of RBd

(resp. Definition 42 of RBfam
d ); we just need to replace Riemannian mani-

folds of dimension d by cs-manifolds of dimension d|1 equipped with super
Riemannian structures and allow cs-manifolds as parameter spaces. More
precisely, we recall that the objects and morphisms of the bordism cate-
gories RBd (resp. RBfam

d ) are defined in terms of the category Riemd (resp.
Riemfam

d ) of Riemannian spin d-manifolds (resp. families of such manifolds
parametrized by S). We obtain SRBd by replacing Riemd by the category
SRiemd defined as follows.

Definition 75. The super category SRiemd

• the objects of SRiemd are smooth locally trivial fibers bundles of cs-
manifolds Y → S with fibers of dimension d|1 which are equipped with
a fiberwise super Riemannian structure (fiberwise here means that the
local vector fields defining the super Riemannian structure are vertical).

• A morphism from U to U ′ is an embedding U ↪→ U ′ of cs-manifolds
that is a bundle map (i.e., commutes with the projection to S), and
preserves the fiberwise super Riemannian structure.

Remark 76. There is a natural reduction functor

SRiemd
red // Riemd

that sends a (quasi) bundle U → S of super manifolds equipped with a
fiberwise super Riemannian structure to the (quasi) bundle Ured → Sred
equipped with the induced fiberwise Riemannian metric and spin structure
(cf. Lemmas ?? and 64). This induces a reduction functor between the
corresponding bordism categories

SRBd
red // RBfam

d . (77)
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Example 78. (Example of a QFT of dimension 1|1.) Let M be a
compact spin manifold, let V the Z/2-graded Hilbert space of L2-spinors on
M , µ : V ⊗ V̄ → C in inner product and D : V → V be the Dirac operator
on M (an unbounded self-adjoint operator). Then M determines a QFT EM
of dimension 1|1 with the following properties: for any cs-manifold S and
t ∈ C∞(S)ev, θ ∈ C∞(S)odd the functor

(EM)S : SRB1 −→ STV

maps
sptS 7→ (S × V, S × V̄ , µ) and It,θ 7→ e−tD

2+θD,

where the operator valued function e−tD
2+θD is defined using spectral calcu-

lus.

Definition 79. (Partition function of a QFT of dimension d|1.) Let E
be a QFT of dimension d|1 and E+ : RB2|1 → TV the composition of E with
the forgetful functor TV± → TV (see Remark ??). Then its partition func-
tion is obtained by applying E to a suitable S-family Σ of closed Riemannian
super manifolds of dimension d|1; in other words, Σ is an endomorphism of
the object ∅ ∈ SRB2. Then ES(Σ) is an even endomorphism of the trivial
bundle S × C, which may be regarded as an element ES(Σ) ∈ C∞(S)ev.

For d = 1 we define

ZE
def
= ES(S

1|1
` ) ∈ C∞(S),

where S = R+ and ` : S → R+ is the identity.
For d = 2 we define

ZE
def
= E+

S (T
2|1
`,τ ) ∈ C∞(S),

where S = R+ × R2
+ and ` : S → R+, τ : S → R2

+ ↪→ R2|1
cs,+ are the obvious

maps.

Remark 80. It might seem that there is a better way to define the parti-
tion function of a super symmetric QFT of dimension 2|1 by including odd
parameters by setting

ZE
def
= E+

S (T 2
`,τ ) ∈ C∞(S)ev,
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where S = R+×R2|1
+ and ` : S → R+, τ : S → R2|1

cs,+ are the projection maps.

However, C∞(R+ × R2|1
cs,+) = C∞(R+ × R2

+; C) ⊗ Λ[θ], where θ is odd, and
hence

C∞(R+ × R2|1
cs,+)ev = C∞(R+ × R2

+),

which shows that the function associated to this more general family of super
tori contains the same information as the partition function described above.
An analogous remark applies to QFT’s of dimension 1|1.

4.6 Examples of objects and morphisms of SRBd

Example 81. (Examples of objects and morphisms in RB
d|1
S ). The

following examples extend the examples discussed in (46) to the super set-
ting in the sense that their images under the reduction functor (77) yields the
examples discussed there. All fiber bundles over the cs-manifold S described
below are either of the form S ×Rd|1

cs → S (with the obvious fiberwise super
Riemannian structure), or a quotient of this bundle by a discrete subgroup

of Rd|1
cs (S) = SMAN(S,Rd|1

cs ) (the group of smooth maps from S to Rd|1
cs with

group structure induced by the multiplication map µ of equation (60) resp.
(69)); this group acts by structure preserving bundle automorphisms by as-

sociating to f : S → Rd|1
cs the bundle automorphism given by the composition

S × Rd|1
cs

∆×1 //S × S × Rd|1
cs

1×f×1 //S × S × Rd|1
cs

1×µ //S × Rd|1
cs .

Abusing language we again write f for this bundle automorphism. Lemma
61 resp. 70 imply that f preserves the fiberwise super Riemannian structure.

the super point sptS ∈ SRB1. The quadruple

spt
def
= (U, Y, U+, U−) = (S × R1|1

cs , S × R0|1
cs , S × R1|1

cs,−, S × R1|1
cs,+)

is an object of SRB1; here R1|1
cs,± ⊂ R1|1

cs is the super submanifold whose
reduced manifold is R1

± ⊂ R1.

the super interval I
1|1
` ∈ SRB1(sptS, sptS). For ` ∈ R1|1

cs,+(S) the pair of
bundle maps

U = S × R1|1
cs

� � id // Σ = S × R1|1
cs U = S × R1|1

cs ,
? _`oo
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is a super Riemannian bordism from sptS to sptS. We will use the

notation I
1|1
` for this morphism.

the super circle S
1|1
` ∈ SRB1(∅, ∅). For ` ∈ R1|1

cs,+(S) the bundle

S
1|1
`

def
= (S × R1|1

cs )/Z`

is a Riemannian bordism from ∅ to ∅.

the super circle S
1|1
` ∈ SRB2. For ` ∈ R1

cs,+(S) the quadruple

S
1|1
`

def
= ((S × R2|1

cs )/Z`, (S × R1|1)/Z`, (S × R2|1
cs,+)/Z`, (S × R2|1

cs,−)/Z`)

is an object of SRB2. We remark that we need to restrict ` to be an
element of R1

cs,+(S) ⊂ R2|1
cs,+(S) (rather than R1|1

cs,+(S)), since otherwise

the translation ` doesn’t preserve the subspace S × R1|1
cs ⊂ S × R2|1

cs .

the super cylinder C
2|1
`,f ∈ SRB2(S

1|1
` , S

1|1
` ). For ` ∈ R1

cs,+(S), f ∈ R2|1
cs,+(S)

the bundle automorphism f commutes with ` and hence we have the
following pair of morphisms in Riem

d|1
S

V2 = (S × R2|1
cs )/Z` � � id // Σ = (S × R2|1

cs )/Z` V1 = (S × R2|1
cs )/Z`? _

`foo .

This is a super Riemannian bordism from S
1|1
` to itself; we use the

notion C
2|1
`,f for this endomorphism of S

1|1
` ∈ RB

2|1
S .

The super torus T
2|1
`,f ∈ SRB2(∅, ∅). For ` ∈ R1

cs,+(S) and f ∈ R2|1
cs,+(S) the

bundle
T

2|1
`,f

def
= (S × R2|1

cs )/`(Zf + Z1).

is a super Riemannian bordism from ∅ ∈ SRB2 to itself.

All the relations of Lemmas 47 and 48 generalize as follows.

Lemma 82. Let S be a cs-manifold and `, `′ ∈ R1|1
cs,+(S). Then the following

relations hold in the category SRB1:

1. I
1|1
` ◦ I

1|1
`′ = I

1|1
`+`′ ∈ SRB1(spt, spt);

2. Î
1|1
` = S

1|1
` ∈ SRB1(∅, ∅);
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Lemma 83. Let S be a cs-manifold and ` ∈ R+(S), f, f ′ ∈ R2|1
cs,+(S). Then

the following relations hold in the category SRB2:

1. C
2|1
`,f ◦ C

2|1
`,f ′ = C

2|1
`,µ(f,f ′) ∈ SRB2(S

1|1
` , S

1|1
` );

2. Ĉ
2|1
`,f = T

2|1
`,f ∈ SRB2(∅, ∅);

3. C
2|1
`,f+1 = C

2|1
`,f ∈ SRB2(S

1|1
` , S

1|1
` );

4. T
2|1
g(`,f) = T

2|1
`,f ∈ RB2(∅, ∅) for every g ∈ SL2(Z);

The proof of these results is completely analogous to the proof of Lemma
48. We only want to mention that the rotation Ra : R2 → R2 now needs to
be replaced by the structure preserving automorphism Ra : R2|1

cs → R2|1
cs of

Lemma 71 (more precisely, a has to be replaced by its square root).

5 Partition functions of susy QFT’s

The goal of this section is the proof of our main theorem 1 concerning the
partition functions of super symmetric QFT’s of dimension 2|1; this is done
in subsection 5.2. As a warm-up we prove in the first subsection an analogous
result for super symmetric QFT’s of dimension 1|1.

5.1 Partition functions of QFT’s of dimension 1|1
Theorem 84. Let E be a super symmetric quantum field theory of dimension
1|1. Then its partition function ZE : R+ → C is an integer valued constant
function.

The proof of this result will be based on using the following algebraic
data obtained by applying E or rather the composite functor

E+ : RB1|1 E−→ TV± −→ TV

(see Remark ??) to certain objects resp. morphisms of the Riemannian bor-
dism category RB1|1:

• the locally convex vector space H
def
= E+

pt(spt) associated to the super

point spt (an object of the bordism category RB
1|1
pt );
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• The function E+
S (S

1|1
f ) ∈ R1|1

+ (S) = SMAN(S,R1|1
+ ) associated to the

family of super circles S
1|1
f ∈ SRB1(∅, ∅) determined by f ∈ R1|1

+ (S)
(see Example 81).

• The function E+
S (S

1|1
f ) ∈ N (H,H)(S) = SMAN(S,N (H,H)) associ-

ated to the family of super intervals S
1|1
f ∈ SRB1(∅, ∅) determined by

f ∈ R1|1
+ (S) (see Example 81). We recall that S

1|1
f is an endomorphism

of p∗S spt ∈ SRB1; hence ES(S
1|1
f ) is an endomorphism of the trivial

bundle ES(p
∗
S spt) = p∗S(H) = S × H. This in turn can be reinter-

preted as a smooth map S → N (H,H) to the nuclear endomorphisms

of H, i.e., E+
S (S

1|1
f ) ∈ N (H,H)(S) = SMAN(S,N (H,H)).

Geometric relations then imply algebraic relations for the associated alge-
braic data. In particular, gluing the incoming with the outgoing super point
in the family of super intervals I

1|1
f results in the family of super circles S

1|1
f ,

and hence by proposition 25 (or rather its generalization to SRBd) we have

E+
S (S

1|1
f ) = strE+

S (I
1|1
f ). (85)

Similarly, the geometric relation I
1|1
f ◦ I

1|1
f ′ = I

1|1
µ(f,f ′) (see part 1 of Lemma 82)

implies the algebraic relation

E+
S (I

1|1
f ) ◦ E+

S (I1|1
g ) = E+

S (I
1|1
µ(f,g)). (86)

We note that the map

R1|1
cs,+(S) −→ N (H,H)(S) given by f 7→ E+

S (S
1|1
f )

depends functorially on S by commutativity of Diagram ??. In other words,
the above describes a map of (generalized) super manifolds R1|1

cs,+ → N (H,H)

in the S-point formalism. Identifying elements f ∈ R1|1
cs,+ with pairs (y, θ) of

functions θ ∈ C∞(S)odd, y ∈ C∞(S)ev with yred(s) ∈ R+ for all s ∈ Sred, we

can write E+
S (S

1|1
y,θ) in the form

E+
S (S

1|1
y,θ) = A(y) + θB(y).

Here A,B : R+ → N (H,H) are smooth maps, described via the S-point
formalism by

R+(S) = C∞(S)ev −→ N (H,H)(S) y 7→ A(y) (resp. B(y)).
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Lemma 87. The relation (86) implies the following relations for the opera-
tors A(y), B(y):

A(y1)A(y2) = A(y1 + y2)

A(y1)B(y2) = B(y1)A(y2) = B(y1 + y2)

B(y1)B(y2) = −A′(y1 + y2)

(88)

Proof. Writing out the left hand side of equation 28 for f = (y1, θ1) and
g = (y2, θ2), we obtain

E+
S (I

1|1
y1,θ1

) ◦ E+
S (I

1|1
y1,θ1

)

=(A(y1) + θ1B(y1))(A(y2) + θ2B(y2))

=A(y1)A(y2) + θ1B(y1)A(y2) + θ2A(y1)B(y2)− θ1θ2B(y1)B(y2).

Here the minus sign is a consequence of permuting the odd elements θ1 and
B(y1). In order to expand the right hand side, we recall from equation (60)
that

µ((y1, θ1), (y2, θ2)) = (y1 + y2 + θ1θ2, θ1 + θ2).

It follows that the right hand side of equation 86 is equal to

E+
S (I

1|1
µ((y1,θ1),(y2,θ2)))

=A(y1 + y2 + θ1θ2) + (θ1 + θ2)B(y1 + y2 + θ1θ2)

=A(y1 + y2) + A′(y1 + y2)θ1θ2 + (θ1 + θ2)(B(y1 + y2) +B′(y1 + y2)θ1θ2)

=A(y1 + y2) + θ1B(y1 + y2) + θ2B(y1 + y2) + θ1θ2A
′(y1 + y2).

Comparing coefficients then yields the desired relations.

We note that

ZE(y) = E+
R+

(S
1|1
y,0) = strE+

R+
(I

1|1
y,0) = strA(y),

where the first equality is the definition of the partition function (see Defini-
ton 79), and the second equality is equation 85. Hence Theorem 84 is a
consequence of the following algebraic result.
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Proposition 89. Let A(y), B(y) be smooth families of nuclear operators
parametrized by y ∈ R+ satisfying relations (88). Let H1 be the eigenspace
of A(1) with eigenvalue +1, and let sdimH1 be its super dimension. Then

strA(y) = sdimH1.

We recall that a nuclear operator is compact; in particular, any (general-
ized) eigenspace of a nuclear operator corresponding to a non-zero eigenvalue
is finite dimensional.

Proof. The third of the relations 88 implies that

A′(y) = −B(
y

2
)B(

y

2
) = −1

2
[B(

y

2
), B(

y

2
)],

where [B(y
2
), B(y

2
)] is the graded commutator of the odd operator B(y

2
) with

itself. Taking the super trace, we obtain

d

dy
strA(y) = −1

2
str[B(

y

2
), B(

y

2
)] = 0,

since the super trace vanishes on graded commutators. This shows that
strA(y) is independent of y ∈ R+.

To relate strA(1) to the super dimension of the eigenspace H1, we apply
the spectral calculus developed by Wrobel [Wr, Thm. 2.3] to the compact
operator A = A(1). The spectrum of any compact operator is a countable
bounded subset σ ⊂ C whose only possible accumulation point is 0 ∈ C
(cf. [Ed, Thm. 9.10.2]). For λ ∈ σ \ {0} the corresponding (generalized)
eigenspace Hλ is finite dimensional. Since the eigenspace with eigenvalue 0
doesn’t contribute to the super trace of A we have

strA =
∑

λ∈σ\{0}

str(A|Hλ
)

To calculate str(A|Hλ
), we choose a basis of Hλ such that the matrix corre-

sponding to A is an upper triangular matrix with diagonal entries λ. Then
str(A|Hλ

) = λ sdimHλ and similarly str(A2
|Hλ

) = λ2 sdimHλ.

Using Wrobel’s spectral calculus (cf. [Wr, Thm. 2.3]), projection opera-
tors onto the generalized eigenspaces Hλ for λ 6= 0 can be constructed by
functional calculus out of the operator A. Since A = A(1) commutes with
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the operators A(y), B(y) for all y ∈ R+ (by the relations 88), also the pro-
jection operator onto Hλ commutes with A(y) and B(y). In particular, the
operators A(y), B(y) map the subspace Hλ to itself and we can apply the
argument above to the subspace Hλ to conclude that the super trace of A(y)
restricted to Hλ is independent of y.

Now let us calculate strA2
|Hλ

in two different ways. On one hand, A2 =

A(1)A(1) = A(2) (by the first of the relations 88, and hence

strA2
|Hλ

= strA(2)|Hλ
= strA|Hλ

= λ sdimHλ.

On the hand, we calculated above str(A2
|Hλ

) = λ2 sdimHλ. This implies
sdimHλ = 0 for λ 6= 1 and hence strA = strA|H1 = sdimH1.

5.2 Partition functions of QFT’s of dimension 2|1
In this section we will prove our main result theorem 1 concerning the par-
tition function of a super symmetric quantum field theory of dimension 2|1.
The proof is entirely analogous to the proof of the corresponding result 84
for field theories of dimension 1|1; it is based by analyzing the algebraic data
obtained by applying the QFT to the certain objects and morphisms of the
Riemannian bordism category RB2|1. More precisely, if E : RB2|1 → TV± is
the QFT at hand, we evaluate the functor

E+
S : RB

2|1
S

ES−→ TV± −→ TV

on certain objects and morphisms of RB
2|1
S described in example 81.

• The locally convex vector space H
def
= E+

pt(S
1|1
1 ) associated to the super

circle of length 1 and the vector bundle over R+ given by E+
pt(S

1|1
` ),

where ` : R+ → R+ is the identity. The fiber of this bundle at 1 ∈ R+

is H, and we fix a trivialization E+
pt(S

1|1
` ) ∼= S×H which is the identity

at 1 ∈ R+.

• The function E+
S (T

2|1
`,f ) ∈ C∞(S)ev associated to the family of super tori

T
2|1
`,f ∈ RB

2|1
S (∅, ∅) determined by f ∈ R2|1

+ (S).

• The function E+
S (C

2|1
`,f ) ∈ SMAN(S,N (H,H)) associated to the family

of super cylinders C
2|1
`,f ∈ RB

2|1
S (S

1|1
` , S

1|1
` ) determined by ` ∈ R+(S),

f ∈ R2|1
cs,+(S).
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We recall from part 2 of Lemma 83 that T
2|1
`,f = Ĉ

2|1
`,f (i.e., the family of

super tori T
2|1
`,f is obtained by gluing the domain and range of the family of

super cylinders C
2|1
`,f ). Hence Proposition 25 (or rather its generalization to

RB
2|1
S ) implies

E+
S (T

2|1
`,f ) = strE+

S (C
2|1
`,f ). (90)

The relation C
2|1
`,f ◦ C

2|1
`,f ′ = C

2|1
`,µ(f,f ′) (see Lemma 83 implies

E+
S (C

2|1
`,f ) ◦ E+

S (C
2|1
`,g ) = E+

S (C
2|1
`,µ(f,g)) (91)

Identifying f ∈ R2|1
+ (S) with triples (x, y, θ) of functions x, y ∈ C∞(S)ev,

θ ∈ C∞(S)odd with yred(s) > 0 for all s ∈ Sred, we write E+
S (C`,x,y,θ) in the

form
E+
S (C`,x,y,θ) = A(`, x, y) + θB(`, x, y), (92)

where A,B : R+ × R2
+ → N (H,H) are smooth maps. Fixing ` for now, we

will write A(x, y), B(x, y) instead of A(`, x, y), B(`, x, y).

Lemma 93. Relation 91 implies the following relations for the functions A,
B:

A(x1, y1)A(x2, y2) = A(x1 + x2, y1 + y2)

A(x1, y1)B(x2, y2) = B(x1, y1)A(x2, y2) = B(x1 + x2, y1 + y2)

B(x1, y1)B(x2, y2) = −∂A
∂z̄

(x1 + x2, y1 + y2)

(94)

Proof. Writing out the left hand sice of equation (91) for f = (x1, y1, θ1) and
g = (x2, y2, θ2) we obtain

E+
S (C

1|1
`,f ) ◦ E+

S (C
1|1
`,g )

=(A(τ1) + θ1B(τ1))(A(τ2) + θ2B(τ2))

=A(τ1)A(τ2) + θ1B(τ1)A(τ2) + θ2A(τ1)B(τ2)− θ1θ2B(τ1)B(τ2),

(95)

where we write τi instead of (xi, yi) ∈ R2
+.

In order to expand the right hand side, we need to write the multiplication
map µ : R2|1

cs × R2|1
cs → R2|1

cs explicitly in terms of the coordinate functions
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x, y, θ; rewriting equation (69) (which is written in terms of z = x + iy,
z̄ = x− iy and θ) we obtain:

µ((x1, y1, θ1), (x2, y2, θ2)) = (x1 + x2 +
1

2
θ1θ2, y1 + y2 +

i

2
θ1θ2, θ1 + θ2).

It follows that the right hand side of equation 91 is equal to

E+
S (C

2|1
`,µ(f,g))

=A(x+
1

2
θ1θ2, y +

i

2
θ1θ2) + (θ1 + θ2)B(x+

1

2
θ1θ2, y +

i

2
θ1θ2),

where we abbreviate x1 + x2 by x and y1 + y2 by y. Now we use Taylor
expansion around the point (x, y) to rewrite the first term as follows:

A(x+
1

2
θ1θ2, y +

i

2
θ1θ2)

=A(x, y) +
∂A

∂x
(x, y)

1

2
θ1θ2 +

∂A

∂y
(x, y)

i

2
θ1θ2

=A(x, y) +
∂A

∂z̄
(x, y)θ1θ2,

where as usual ∂
∂z̄

= 1
2
( ∂
∂x

+ i ∂
∂y

). We note that all higher order terms in

the Taylor expansion vanish since θ2
i = 0. Similarly, we obtain a Taylor

expansion for B(x+ 1
2
θ1θ2, y+ i

2
θ1θ2). Putting the terms together, we obtain:

E+
S (C

2|1
`,µ(f,g)) = A(x, y) +

∂A

∂z̄
(x, y)θ1θ2 +B(x, y)θ1 +B(x, y)θ2 (96)

Comparing coefficients in equations (95) and (96) then yields the desired
relations.

The following algebraic result is the key step in the proof of our main
theorem 1.

Proposition 97. Let A(τ), B(τ) be smooth families of nuclear operators
parametrized by τ ∈ R2

+ ⊂ C satisfying relations (94) and A(τ + 1) = A(τ).
Then the function strA(τ) is a holomorphic function with an expansion of
the form

strA(τ) =
∑
k∈Z

akq
k,
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where q = e2πiτ , the coefficients ak are integers and ak = 0 for sufficiently
negative k. More generally, if A(`, τ), B(`, τ) is a family of such operators
depending smoothly on some parameter ` ∈ R+, then strA(`, τ) is in fact
independent of `.

Assuming this statement for now, we next prove our main theorem.

Proof of Theorem 1. We note that

ZE(`, τ) = E+
S (T

2|1
`,τ,0) = strE+

S (C
2|1
`,τ,0) = strA(`, τ),

where the first equality is the definition of the partition function (see Defini-
ton 79), and the second equality is equation 90.

If A,B : R+ × R2
+ → N (H,H) are the smooth families of nuclear opera-

tors defined by equation (92), these satisfy the relations (94) by Lemma 83.

Moreover, the equality C
2|1
`,x+1,y,θ = C

2|1
`,x,y,θ ∈ RB

2|1
S (S

1|1
` , S

1|1
` ) (see part 3 of

Lemma 83) implies in particular A(`, x + 1, y, θ) = A(`, x, y, θ). Then the
above proposition implies the holomorphicity of its partition function, the
integrality of its q-expansion, and the fact that the coefficients ak vanish for
k << 0. To see that ZE(1, τ) is invariant under the SL2(Z)-action, we note
that for g ∈ SL2(Z) we have

ZE(`, gτ) = ZE(`|cτ + d|, gτ) = ZE(g(`, τ)) = ZE(`, τ).

Here the first equality comes from independence of strA(`, τ) of `, the second
is by definition of the SL2(Z)-action on R+ × R2

+, and the third is Lemma
23 (or rather its generalization to QFT’s of dimension 2|1 which is straight-
forward).

Proof of Proposition 97. We first prove holomorphicity of strA(τ). The third
of the relations (94) implies that

∂A

∂z̄
(τ) = −B2(

τ

2
) = −1

2
[B(

τ

2
), B(

τ

2
)]

(where [ , ] is the graded commutator) is again a trace class operator and
hence we can calculate:

∂

∂z̄
strA(τ) = − str(B2(

τ

2
)) = −1

2
str[B(

τ

2
), B(

τ

2
)] = 0

67



This shows that strA(τ) is a holomorphic function on the upper half plane
R2

+.
We observe that the relations (94) imply that the compact operators

A(τ) for various τ ∈ R2
+ all commute with each other. In particular, we can

consider simultaneous generalized eigenspaces Hλ for the family of operators
A(τ), τ ∈ R2

+, where λ : R2
+ → C is the corresponding eigenvalue. We note

that the first of the relations (94) imply that λ is an exponential map, i.e.,

λ(τ1 + τ2) = λ(τ1) · λ(τ2).

It follows that λ is either identically equal to zero, or its image is contained
in C× (the non-zero complex numbers); in the latter case, λ can be written

in the form λ(τ) = e
eλ(τ), where λ̃ : R2

+ → C is a homomorphism (of additive

semigroups). The continuity of λ̃ (which follows from the fact that A : R2
+ →

N (H,H) is smooth) implies that λ̃ is the restriction of an R-linear map

C→ C. It will be convenient to write λ̃ in the form λ̃(τ) = 2πi(aτ − bτ̄) for
a, b ∈ C; in other words,

λ(τ) = e2πi(aτ−bτ̄) = qaq̄b (98)

We note that the condition A(τ +1) = A(τ) implies a− b ∈ Z. Let us denote
by Ha,b ⊂ H the generalized eigenspace corresponding to the eigenvalue
function λ(τ) given by equation (98). We note that the spaces Ha,b are finite
dimensional, since the operators A(τ) are trace class and hence compact;
in particular, any generalized eigenspace with non-zero eigenvalue is finite
dimensional.

Since only the non-zero eigenspaces contribute to the super trace of A(τ),
we have

strA(τ) =
∑
a,b

str(A(τ)|Ha,b
).

It is straightforward to calculate the super trace of A(τ) restricted to Ha,b;
A(τ) is an even operator and hence it maps the even (resp. odd) part of H to
itself, and we can calculate the trace of A(τ) acting H±

a,b separately. There is

a basis of H±
a,b such that the matrix corresponding to A(τ) is upper triangular

with diagonal entries λa,b(τ). It follows that

str
(
A(τ)|Ha,b

)
= λa,b(τ) sdimHa,b.

We note that the argument proving the holomorphicity of strA(τ) continues
to hold if we restrict A(τ) to the subspace Ha,b (the projection map onto Ha,b
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is built by functional calculus from the operators A(τ); hence any operator
that commutes with all A(τ)’s – like B(τ/2) – will also commute with the
projection operator and hence preserve the subspace Ha,b). We note that the
function λa,b(τ) is holomorphic if and only if b = 0. It follows:

sdimHa,b = 0 for b 6= 0.

In particular, the only contribution to the super trace of A(τ) comes from
the space Ha,0, which forces a to be an integer. We conclude

strA(τ) =
∑
k∈Z

str
(
A(τ)|Hk,0

)
=

∑
k∈Z

λk,0(τ) sdimHk,0 =
∑
k∈Z

qk sdimHk,0.

We note that the eigenspaces Hk,0 must be trivial for sufficiently negative
k (otherwise the corresponding eigenvalues qk are arbitrarily large), and hence
ak = sdimHk,0 is zero.

References

[DM] P. Deligne and J. Morgan, Classical fields and supersymmetry Quan-
tum fields and strings: a course for mathematicians, Vol. 1 (Princeton,
NJ, 1996/1997), AMS (1999) 41 – 98.

[Ed] R. E. Edwards, Functional analysis. Theory and applications, Holt,
Rinehart and Winston, New York-Toronto-London 1965

[Fr] D. Freed, Five lectures on supersymmetry. AMS 1999.

[HKST] H. Hohnhold, M. Kreck, S. Stolz and P. Teichner DeRham cohomol-
ogy via super symmetric field theories in preparation

[HST] H. Hohnhold, S. Stolz and P. Teichner The K-theory spectrum: from
minimal geodesics to super symmetric field theories Preprint, available
at http://www.nd.edu/ stolz/preprint.html

[Ho] M. Hopkins, Algebraic Topology and Modular Forms. Plenary Lecture,
ICM Beijing 2002.
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