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1 Introduction

In these notes we propose an approach towards enriched elliptic objects over a manifold
X. We hope that once made precise, these new objects will become cocycles in the
generalized cohomology theory tmf∗(X) introduced by Hopkins and Miller [Ho], in a
similar way as vector bundles over X represent elements in K∗(X). We recall that one
important role of K∗(X) is as the home of the index of a family of Fredholm operators
parametrized by X, e.g. the family of Dirac operators of a fiber bundle E → X with spin
fibers. This is the parametrized version of the Â-genus in the sense that the family index
in K∗(X) reduces to the Â-genus of the fiber if X is a point. Similarly, one important
role of tmf∗(X) is that it is the home of the parametrized version of the Witten genus
in the sense that a fiber bundle E → X whose fibers are string manifolds (cf. section 5)
gives rise to an element in tmf∗(X) [HBJ]. If X is a point this reduces to the Witten
genus [Wi1] of the fiber (modulo torsion).

It would be very desirable to have a geometric/analytic interpretation of this para-

metrized Witten genus along the lines described above for the parametrized Â-genus. For
X = pt, a heuristic interpretation was given by Witten who described the Witten genus
of a string manifold M as the S1-equivariant index of the ‘Dirac operator on the free loop
space’ ofM [Wi1] or as the ‘partition function of the super symmetric non-linear σ-model’
with target M [Wi2]; alas, neither of these things have been rigorously constructed
yet. The construction of the parametrized Witten genus in tmf∗(X) is instead purely
homotopy theoretic; the main ingredient is a Thom-isomorphism in tmf-cohomology for
vector bundles with string structures. This is completely analogous to a description of
the Â-genus based on the Thom isomorphism in K-theory for spin vector bundles.

The cohomology theory tmf∗(X) derives from cohomology theories of the ‘elliptic’
flavor. The first such theory was constructed by Landweber and Stong [La] using
Landweber’s Exact Functor Theorem and the elliptic genus introduced by Ochanine
[Och]. Ochanine’s genus can be interpreted as coming from the formal group law associ-
ated to a particular elliptic curve; varying the elliptic curve used in the Landweber-Stong
construction leads to a plethora of elliptic cohomology theories. The cohomology theory
tmf∗(X) is not strictly speaking one of these, but essentially the ‘inverse limit’ (over
the category of elliptic curves) of all these cohomology theories. (There are considerable
technical difficulties with making this precise, in fact so far no complete written account
is available.) Since integral modular forms can be defined as an inverse limit of an abelian
group valued functor over the same category of elliptic curves, the elements of tmf∗(pt)
are called topological modular forms. There is a ring homomorphism from tmf∗(pt) to
the ring of integral modular forms which is rationally an isomorphism.

Unfortunately, the current geometric understanding of elliptic cohomology still is very
much in its infancy despite the efforts of various people; see [Se1], [KS], [HK], [BDR].
The starting point of our new approach are the elliptic objects suggested by Graeme
Segal in [Se1], which we call Segal elliptic objects. Segal’s idea was to view a vector
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bundle E → X with connection as a 1-dimensional field theory over X in the following
sense: To each point x ∈ X, the bundle E associates a vector space Ex, and to each path
in X the connection on E associates a linear map between these vector spaces. Segal
suggested that a 2-dimensional conformal field theory over X could be used as a cocycle
for some elliptic cohomology theory. It would associate Hilbert spaces to loops in X,
and Hilbert-Schmidt operators to conformal surfaces (with boundary) in X.

The main problem with Segal elliptic objects is that excision does not seem to hold.
One of our contributions is to suggest a modification of the definition in order to get
around this problem. This is where von Neumann algebras (associated to points in X)
and their bimodules (associated to arcs in X) enter the picture. We will explain our
modification in detail in the coming sections of this introduction. In the case X = pt, we
obtain in particular a modification of the notion of a vertex operator algebra (which was
shown to be equivalent to a Segal elliptic object in [Hu], at least for genus zero surfaces;
the super symmetric analogue appeared in [Ba]).

Another, more technical, problem in Segal’s definition is that he had to introduce ‘rig-
gings’ of 1- and 2-manifolds. These are certain additional structures (like parametriza-
tions of the boundary circles) which we shall recall after Definition 4.1.1. Our first
observation is that one can avoid these extra structures all together by enriching the
conformal surfaces with fermions, and that these fermions give rise naturally to the
degree of an elliptic object. This degree coincides for closed surfaces with the correct
power of the determinant line as explained in [Se2] and in fact the space of fermions is
a natural extension of the determinant line to surfaces with boundary (in the absence of
parametrizations).

In Definition 4.1.3 we explain the resulting Clifford elliptic objects of degree n which
includes a ‘super symmetric’ aspect. The reader should be warned that there remains
an issue with how to make this super symmetric aspect precise; we formulate what we
need as Hypothesis 3.3.13 and use it in the proof of Theorem 1.0.2 below.

We motivate these Clifford elliptic objects by first explaining carefully theK-theoretic
analogues in Section 3. It turns out that the idea of a connection has to be modi-
fied because one needs the result of ‘parallel transport’ to depend on the length of the
parametrizing interval. In other words, we explain how a K-cocycle is given by a su-
per symmetric 1-dimensional Euclidean field theory, see Definition 3.2.2. In this simpler
case, we do formulate the super symmetric aspect in detail and we discuss why it is
essential for K-theory. As is well known, the best way to define K-theory in degree n,
Kn(X), is to introduce the finite dimensional Clifford algebras Cn. We shall explain how
these algebras arise naturally when enriching intervals with fermions. We conclude in
Section 3.2 the following new description of the K-theory spectrum:

Theorem 1.0.1. For any n ∈ Z, the space of super symmetric 1-dimensional Eu-
clidean field theories of degree n has the homotopy type of K−n, the (−n)-th space in
the Ω-spectrum representing periodic K-theory.

There is an analogous statement for periodic KO-theory, using real field theories.
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Roughly speaking, Segal’s idea, which we are trying to implement here, was to replace
1-dimensional by 2-dimensional field theories in the above theorem in order to obtain
the spectrum of an elliptic cohomology theory. The following result is our first point of
contact with modular forms and hence with tmfn(X).

Theorem 1.0.2. Given a degree n Clifford elliptic object E over X, one gets canonically
a Laurent series

MF (E) ∈ K−n(X)[[q]][q−1].

Moreover, if n is even and X = pt, then MF (E) ∈ Z[[q]][q−1] is the q-expansion of
a ‘weak’ modular form of weight n/2. This means that the product of MF (E) with a
sufficiently large power of the discriminant ∆ is a modular form.

In terms of our new definition of K-theory, the map E 7→MF (E) is given by crossing
with the standard circle S1, and hence is totally geometric. As we shall explain, the
length of an interval is very important in K-theory, and by crossing with S1 it is turned
into the conformal modulus of an annulus. The above result shows that the modularity
aspects of an elliptic object are satisfied with only minor modifications of Segal’s original
definition. This is related to the fact that for X = pt the deficiency regarding excision
is not present.

In Section 4 we make a major modification of Segal’s elliptic objects and explain our
enriched elliptic objects which are defined so that excision can be satisfied in the theory.
Each enriched elliptic object gives in particular a Clifford elliptic object (which is closely
related to a Segal elliptic object) but there are also data assigned to points and arcs in X,
see Definition 1.2.1. Roughly speaking, in addition to Hilbert spaces associated to loops
in X, we assign von Neumann algebras A(x) to points x ∈ X and bimodules to arcs in X,
in a way that Segal’s Hilbert space can be decomposed as a Connes fusion of bimodules
whenever the loop decomposes into arcs, see Section 1.2. One purpose of the paper is
to make these statements precise. We shall not, however, give the ultimate definition of
elliptic cocycles because various aspects of the theory have not been completely worked
out yet.

Our main result, which to our mind justifies all definitions, is the following analogue
of the tmf-orientation for string vector bundles [Ho, §6], [AHS]. As the underlying Segal
elliptic object, we in particular recover in the case E = TX the ‘spinor bundle’ over the
loop space LX. Our enrichment expresses the locality (in X) of this spinor bundle. We
expect that this enriched elliptic object will play the role of an elliptic Euler class and,
in a relative version, of the elliptic Thom class.

Theorem 1.0.3. Let E be an n-dimensional vector bundle over a manifold X. Assume
that E comes equipped with a string structure and a string connection. Then there is a
canonical degree n enriched elliptic object over X such that for all x ∈ X the algebras
A(x) are hyperfinite type III1 factors. Moreover, if one varies the string connection then
the resulting enriched elliptic objects are isomorphic.
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A vector bundle over X has a string structure if and only if the characteristic classes
w1, w2 and p1/2 vanish. In Section 5 we define a string structure on an n-dimensional spin
bundle as a lift of the structure group in the following extension of topological groups:

1 −→ PU(A) −→ String(n) −→ Spin(n) −→ 1

Here A is an explicit hyperfinite type III1 factor, the ‘local fermions on the circle’,
cf. Example 4.3.2. Its unitary group is contractible (in the strong operator topology)
and therefore the resulting projective unitary group PU(A) = U(A)/T is a K(Z, 2).
The extension is constructed so that π3 String(n) = 0 which explains the condition on
the characteristic class p1/2. This interpretation of string structures is crucial for our
construction of the enriched elliptic object in Theorem 1.0.3, the relation being given by
a monomorphism

String(n) −→ Aut(A)

which arises naturally in the definition of the group extension above. It should be
viewed as the ‘fundamental representation’ of the group String(n). The notion of a
string connection, used in the above theorem, will be explained before Corollary 5.3.6.

1.1 Segal elliptic objects and Excision

A Segal elliptic object over X [Se1, p.199] associates to a map γ of a closed rigged
1-manifold to a target manifold X a topological vector space H(γ), and to any conformal
rigged surface Σ with map Γ: Σ → X a vector Ψ(Γ) in the vector space associated to the
restriction of Γ to ∂Σ (we will define riggings in Definition 4.1.2 below). This is subject
to the axiom

H(γ1 q γ2) ∼= H(γ1) ⊗H(γ2)

and further axioms for Ψ which express the fact that the gluing of surfaces (along closed
submanifolds of the boundary) corresponds to the composition of linear operators. Thus
an elliptic object over a point is a conformal field theory as axiomatized by Atiyah and
Segal: it’s a functor from a category C(X) to the category of topological vector spaces.
Here the objects in C(X) are maps of closed rigged 1-manifolds into X, and morphisms
are maps of conformal rigged surfaces into X.

Originally, the hope was that these elliptic objects would lead to a geometric descrip-
tion of elliptic cohomology. Unfortunately, excision for the geometric theory defined via
elliptic objects didn’t seem to work out. More precisely, consider the Mayer-Vietoris
sequence

. . . −→ En(X) −→ En(U) ⊕ En(V ) −→ En(U ∩ V ) −→ . . .

associated to a decomposition X = U ∪V of X into two open subsets U, V ⊂ X. This is
an exact sequence for any cohomology theory X 7→ En(X). For K-theory the exactness
of the above sequence at En(U) ⊕ En(V ) comes down to the fact that a vector bundle
E → X can be reconstructed from its restrictions to U and V .
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Similarly, we expect that the proof of exactness for a cohomology theory built from
Clifford elliptic objects of degree n would involve being able to reconstruct an elliptic
object over U ∪ V from its restriction to U and V . This does not seem to be the case:
suppose (H,Ψ) is an elliptic object over U ∪ V and consider two paths γ1, γ2 between
the points x and y. Assume that the path γ1 lies in U , that γ2 lies in V , and denote by
γ̄2 the path γ2 run backwards. Then the restriction of (H,Ψ) to U (resp. V ) contains
not enough information on how to reconstruct the Hilbert space H(γ1 ∪ γ̄2) associated
to the loop γ1 ∪ γ̄2 in U ∪ V .

1.2 Decomposing the Hilbert space

Our basic idea on how to overcome the difficulty with excision is to notice that in
the basic geometric example coming from a vector bundle with string connection (see
Theorem 1.0.3), there is the following additional structure: To a point x ∈ X the string
structure associates a graded type III1-factor A(x) and to a finite number of points xi it
assigns the spatial tensor product of the A(xi). Moreover, to a path γ from x to y, the
string connection gives a graded right module B(γ) over A(∂γ) = A(x)op⊗̄A(y). There
are canonical isomorphisms over A(∂γ̄) = A(y)op⊗̄A(x) (using the ‘conjugate’ module
from Section 4.3).

B(γ̄) ∼= B(γ)

The punchline is that Hilbert spaces like H(γ1 ∪ γ̄2) discussed above can be decomposed
as

H(γ1 ∪ γ̄2) ∼= B(γ1) �A(∂γi) B(γ̄2).

where we used the fusion product of modules over von Neumann algebras introduced
by Connes [Co1, V.B.δ]. Following Wassermann [Wa], we will refer to this operation
as Connes fusion. Connes’ definition was motivated by the fact that a homomorphism
A → B of von Neumann algebras leads in a natural way to an B − A-bimodule such
that composition of homomorphisms corresponds to his fusion operation [Co1, Prop. 17
in V.B.δ]. In [Wa], Wassermann used Connes fusion to define the correct product on the
category of positive energy representations of a loop group at a fixed level.

We abstract the data we found in the basic geometric example from Theorem 1.0.3
by giving the following preliminary

Definition 1.2.1. (Preliminary!) A degree n enriched elliptic object over X is a tuple
(H,Ψ,A,B, φB, φH), where

1. (H,Ψ) is a degree n Clifford elliptic object over X. In particular, it gives a Hilbert
space bundle over the free loop space LX,

2. A is a von Neumann algebra bundle over X,
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3. B is a module bundle over the free path space PX. Here the end point map
PX → X ×X is used to pull back two copies of the algebra bundle A to PX, and
these are the algebras acting on B. The modules B(γ) come equipped with gluing
isomorphisms (of A(x1)

op⊗̄A(x3)-modules)

φB(γ, γ′) : B(γ ∪x2
γ′)

∼=
−→ B(γ) �A(x2) B(γ′)

if γ is a path from x1 to x2, and γ′ is a path from x2 to x3.

4. φH is an isomorphism of Hilbert spaces associated to each pair of paths γ1 and γ2

with ∂γ1 = ∂γ2:

φH(γ1, γ̄2) : H(γ1 ∪∂γi
γ2)

∼=
−→ B(γ1) �A(∂γi) B(γ̄2).

All algebras and modules are Z/2-graded and there are several axioms that we require
but haven’t spelled out above.

Remark 1.2.2. This is only a preliminary definition for several reasons. Among others,

• we left out the conditions for surfaces glued along non-closed parts of their bound-
ary. The vectors Ψ(Γ) of a Clifford elliptic objects compose nicely when two surfaces
are glued along closed submanifolds of the boundary, compare Lemma 2.3.14. Our
enriched elliptic objects compose in addition nicely when two surfaces are glued
along arcs in the boundary, see Proposition 4.3.10.

• we left out the super symmetric part of the story. We will explain in Section 3.2
why super symmetric data are essential even in the definition of K-theory.

• we left out the fermions from the discussions. These will be used to define the
degree n of an elliptic object, and they are extra data needed so that a conformal
spin surface actually gives a vector in the relevant Hilbert space. If the surface Σ is
closed, then a fermion is a point in the n-th power of the Pfaffian line of Σ. Since
the Pfaffian line is a square-root of the determinant line, this is consistent with the
fact that a degree n elliptic object should give a modular form of weight n/2 when
evaluated on tori, see Sections 3.3 and 4.1.

• Segal’s Hilbert space associated to a circle will actually be defined by 4 above,
rather than introducing the isomorphisms φH . So it will not play a central role
in the theory, but can be reconstructed from it. At this point, we wanted to
emphasize the additional data needed to resolve the problem with excision, namely
a decomposition of Segal’s Hilbert space.

Most of these deficiencies will be fixed in Section 4 by defining a degree n enriched
elliptic object as a certain functor from a bicategory Dn(X) made from d-manifolds
(with n fermions) mapping into X, d = 0, 1, 2, to the bicategory vN of von Neumann
algebras, their bimodules and intertwiners.
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We end this introduction by making a brief attempt to express the meaning of an
enriched elliptic object over X in physics lingo: it is a conformal field theory with
(0, 1) super symmetry (and target X), whose fermionic part has been quantized but
whose bosonic part is classical. This comes from the fact that the Fock spaces are
a well established method of fermionic quantization, whereas there is up to date no
mathematical way of averaging the maps of a surface to a curved target X. Moreover,
the enriched (0-dimensional) aspect of the theory is some kind of an open string theory.
It would be very interesting to relate it to Cardy’s boundary conformal field theories.

1.3 Disclaimer and Acknowledgments

This paper is a survey of our current understanding of the geometry of elliptic objects.
Only ideas of proofs are given, and some proofs are skipped all together. We still believe
that it is of service to the research community so make such work in progress accessible.

It is a pleasure to thank Dan Freed, Graeme Segal and Antony Wassermann for many dis-
cussions about conformal field theory. Graeme’s deep influence is obvious, and Dan’s ap-
proach to Chern-Simons theory [Fr1] motivated many of the considerations in Section 5.
Antony’s groundbreaking work [Wa] on Connes fusion for positive energy representations
was our starting point for the central definitions in Section 4. He also proof-read the
operator algebraic parts of this paper, all remaining mistakes were produced later in
time.
Many thanks go to Vincente Cortez, Mike Hopkins, Justin Roberts, Markus Rosellen
and Hans Wenzl for discussions about various aspects of this paper.
Part of this project was developed during our stay at the Max-Planck Institute in Bonn,
and we are very grateful for the wonderful research environment it provided. In March
2002, we held a preliminary workshop at the Sonderforschungsbereich in Münster, and
we thank all the participants for their support, and in particular Wolfgang Lück for
initiating that workshop.

2 Field theories

Following Graeme Segal [Se2], we explain in this section the axiomatic approach to
field theories, leading up to a definition of ‘Clifford linear field theories of degree n’ (cf.
definitions 2.3.16 and 2.3.20) after introducing the necessary background on Fock spaces,
spin structures and Dirac operators.

2.1 d-dimensional field theories

Roughly speaking, a d-dimensional field theory associates to a closed manifold Y of
dimension d − 1 a Hilbert space E(Y ) and to a bordism Σ from Y1 to Y2 a Hilbert
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Schmidt operator E(Y1) → F (Y2) (a bounded operator T is Hilbert-Schmidt if the sum
of the norm squares of its matrix elements is finite). The main requirement is that gluing
bordisms should correspond to composing the associated operators. As is well-known,
this can be made precise by defining a d-dimensional field theory to be a functor

E : Bd −→ Hilb,

from the d-dimensional bordism category Bd to the category Hilb of complex Hilbert
spaces which are compatible with additional structures on these categories spelled out
below. The precise definition of the categories Bd and Hilb is the following:

• The objects of the d-dimensional bordism category Bd are closed oriented manifolds
of dimension d− 1, equipped with geometric structures which characterize the fla-
vor of the field theory involved (see remarks below). If Y1, Y2 are objects of Bd,
the orientation preserving geometric diffeomorphisms from Y1 to Y2 are morphisms
from Y1 to Y2 which form a subcategory of Bd. There are other morphisms, namely
oriented geometric bordisms from Y1 to Y2; i.e., d-dimensional oriented manifolds
Σ equipped with a geometric structure, together with an orientation preserving
geometric diffeomorphism ∂Σ ∼= Ȳ1qY2, where Ȳ1 is Y1 equipped with the opposite
orientation. More precisely, two bordisms Σ and Σ′ are considered the same mor-
phism if they are orientation preserving geometric diffeomorphic relative boundary.
Composition of bordisms is given by gluing; the composition of a bordism Σ from
Y1 to Y2 and a diffeomorphism Y2 → Y3 is again the bordism Σ, but with the iden-
tification ∂Σ ∼= Ȳ1qY2 modified by composition with the diffeomorphism Y2 → Y3.

• The objects of Hilb are separable Hilbert spaces (over the complex numbers). The
morphisms from H1 to H2 are the bounded operators T : H1 → H2; the strong
topology on the space of bounded operators makes Hilb a topological category.

Without additional geometric structures on the objects and the bordisms, such a
field theory would be referred to as a topological field theory. If the geometric structures
are conformal structures on bordisms and objects, the associated field theory is called
conformal (for short CFT). If the conformal structure is a replaced by a Riemannian
metric, one obtains what is usually referred to as a Euclidean field theory (EFT) to
distinguish it from the Lorentz case. We sometimes use the term field theory (FT) if the
geometric structures are not specified.

The main examples of field theories in these notes will have at least a conformal struc-
ture on the manifolds, and in addition all manifolds under consideration will be equipped
with a spin structure (see Definition 2.3.4 for a careful explanation of spin structures on
conformal manifolds). It is important to point out that every spin manifold has a canon-
ical involution associated to it (which doesn’t move the points of the manifold but flips
the two sheets of the spin bundle). This has the effect that all algebraic objects associ-
ated to spin manifolds will be Z/2-graded. This is the first step towards super symmetry
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and our reason for introducing spin structures in the main Definitions 2.3.16 and 2.3.20.
We should point out that those definitions (where the categories of geometric manifolds
are denoted by CB2

n respectively EB1
n) introduce the spin structures (and the degree n)

for the first time. The following warm-up discussions, in particular Definition 2.1.3, only
use an orientation, not a spin structure (even though the notation CB2 respectively EB1

is very similar).
Summarizing, the reader should expect spin structures whenever there is a degree n

in the discussion. Indeed, we will see that the degree makes sense only in the presence
of spin structures.

Definition 2.1.1. (Additional structures on the categories B
d and Hilb).

• Symmetric monoidal structures. The disjoint union of manifolds (respectively
the tensor product of Hilbert spaces) gives Bd (resp. Hilb) the structure of sym-
metric monoidal categories. The unit is given by the empty set and C, respectively.

• Involutions and anti-involutions. There are involutions Bd → Bd and Hilb →
Hilb. On the category Bd this involution is given by reversing the orientation on
the d-manifold (objects) as well as the bordisms (morphisms); this operation will
be explained in detail in Definition 2.3.1. We note that if Σ is a bordism from Y1

to Y2, then Σ with the opposite orientation can be interpreted as a bordism from
Ȳ1 to Ȳ2. For an object H ∈ Hilb, H̄ is the space H with the opposite complex
structure; for a morphism f : H1 → H2, the morphism f̄ : H̄1 → H̄2 is equal to f
as a map of sets.

There are also anti-involutions (i.e., contravariant functors) ∗ : Bd → Bd and
∗ : Hilb → Hilb. These are the identity on objects. If T : H1 → H2 is a bounded
operator, then T ∗ : H2 → H1 is its adjoint; similarly, if Σ is a bordism from Y1 to
Y2, then Σ∗ is Σ with the opposite orientation, considered as a morphism from Y2

to Y1. Finally, if φ is a diffeomorphism from Y1 to Y2 then φ∗ def
= φ−1.

• Adjunction transformations. There are natural transformations

Bd(∅, Y1 q Y2) −→ Bd(Ȳ1, Y2) Hilb(C, H1 ⊗H2) −→ Hilb(H̄1, H2)

On Bd this is given by reinterpreting a bordism Σ from ∅ to Y1 q Y2 as a bordism
from Ȳ1 to Y2. On Hilb we can identify Hilb(C, H1⊗H2) with the space of Hilbert-
Schmidt operators from H1 to H2 and the transformation is the inclusion from
Hilbert-Schmidt operators into all bounded operators. It should be stressed that
neither transformation is in general surjective: in the category Bd, a diffeomorphism
from Y1 to Y2 is not in the image; in Hilb, not every bounded operator is a Hilbert-
Schmidt operator. For example, a diffeomorphism φ gives a unitary operator E(φ)
(if the functor E preserves the anti-involution ∗ above). In infinite dimensions, a
unitary operator is never Hilbert-Schmidt.
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Remark 2.1.2. In the literature on field theory, the functor E always respects the
above involution, whereas E is called a unitary field theory if it also respects the anti-
involution. It is interesting that in our honest example in Section 4.3 there are actually
3 (anti) involutions which the field theory has to respect.

Definition 2.1.3. The main examples of field theories we will be interested in are
2-dimensional conformal field theories and 1-dimensional Euclidean field theories. We
will use the following terminology: A conformal field theory or CFT is a functor

E : CB2 → Hilb

compatible with the additional structures on the categories detailed by Definition 2.1.1
where CB2 is the ‘conformal’ version of B2, i.e., the bordisms in this category are
2-dimensional and equipped with a conformal structure. A Euclidean field theory or
EFT is a functor

E : EB1 → Hilb

compatible with the additional structures of Definition 2.1.1 where EB1 is the ‘Euclidean’
version of B1, i.e., the bordisms in this category are 1-dimensional and equipped with a
Riemannian metric.

Example 2.1.4. Let M be a closed Riemannian manifold, let H = L2(M) be the Hilbert
space of square integrable functions on M and let ∆: H → H be the Laplace operator.
Then we can construct a 1-dimensional EFT E : EB1 → Hilb by defining

E(pt) = H E(It) = e−t∆ E(St) = tr(e−t∆).

Here pt is the one-point object in EB1, It is the interval of length t, considered as a
morphism from pt to pt, and St ∈ EB1(∅, ∅) is the circle of length t. We note that unlike
the Laplace operator ∆ the heat operator e−t∆ is a bounded operator, even a trace class
operator and hence it is meaningful to take the trace of e−t∆.

It is not hard to show that the properties in Definition 2.1.1 allow us to extend E
uniquely to a real EFT. More interestingly, the operator E(Σ) : E(Y1) → E(Y2) associ-
ated to a bordism Σ from Y1 to Y2 can be described in terms of a path integral over the
space of maps from Σ to M . This is the Feynman-Kac formula, which for Σ = It gives
e−t∆.

Definition 2.1.5. More generally, if X is a manifold, we may replace the category
Bd above by the category Bd(X), whose objects are closed oriented (d − 1)-manifolds
equipped with a piecewise smooth map to X; similarly the morphisms of Bd(X) are
oriented bordisms equipped with maps to X and orientation preserving diffeomorphisms
compatible with the given maps to X. We note that Bd(X) can be identified with Bd

if X is a point. The four structures described above on the bordism category Bd can
be extended in an obvious way to the category Bd(X). We define a d-dimensional field
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theory over X to be a functor E : Bd(X) → Hilb which is compatible with the monoidal
structure, (anti)-involutions, and adjunction transformations mentioned above. Analo-
gously, we can form the categories CB2(X) (resp. EB1(X)) of 2-dimensional conformal
bordisms over X (resp. 1-dimensional Euclidean bordisms over X).

Example 2.1.6. This is a ‘parametrized’ version of Example 2.1.4 (which in the notation
below is the case X = pt and Z = M). Suppose that π : Z → X is a Riemannian
submersion. Then we can construct a 1-dimensional EFT E : EB1(X) → Hilb over X as
follows. On objects, E associates to a map γ from a 0-manifold Y to X the Hilbert space
of L2-functions on the space of lifts {γ̃ : Y → Z | π ◦ γ̃ = γ} of γ; in particular if Y = pt
and γ(pt) = x, then E(Y, γ) is just the space of L2-functions on the fiber over x. We can
associate an operator E(Σ,Γ): E(Y1, γ1) → E(Y2, γ2) to a bordism (Σ,Γ) from (Y1, γ1)
to (Y2, γ2) by integrating over the space of maps Γ̃ : Σ → Z which are lifts of Γ: Σ → X.
For Σ = It and if Γ maps all of Σ to the point x, then the operator constructed this
way is via the Feynman-Kac formula just e−t∆x, where ∆x is the Laplace operator on
the fiber over x.

2.2 Clifford algebras and Fock modules

Definition 2.2.1. (Clifford algebras). Let V be a real or complex Hilbert space
equipped with an isometric involution α : V → V , v 7→ v̄ = α(v) (C-anti-linear in the
complex case). This implies that

b(v, w)
def
= 〈v̄, w〉

is a symmetric bilinear form (here 〈 , 〉 is the inner product on V , which is C-anti-linear
in the first and linear in the second slot in the complex case).

The Clifford algebra is the quotient of the real resp. complex tensor algebra generated
by V by imposing the Clifford relations

v · v = −b(v, v) · 1 v ∈ V.

Suppressing the dependence on the involution in the notation, we’ll just write C(V )
for this algebra. It is a Z/2-graded algebra with grading involution ε : C(V ) → C(V )
induced by v 7→ −v for v ∈ V ; the inner product on V extends to an inner product on
the Clifford algebra C(V ).

We will write −V for the Hilbert space furnished with the involution −α. We will
adopt the convention that if an involution α on V has not been explicitly specified, then
it is assumed to be the identity. For example,

• Cn
def
= C(Rn) is the Clifford algebra generated by vectors v ∈ Rn subject to the

relation v · v = −|v|2 · 1,
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• C−n
def
= C(−R

n) is the Clifford algebra generated by vectors v ∈ R
n subject to the

relation v · v = |v|2 · 1, and

• Cn,m
def
= C(Rn⊕−Rm) is the Clifford algebra generated by vectors v ∈ Rn, w ∈ Rm

subject to the relations v · v = −|v|2 · 1, w · w = |w|2 · 1, v · w + w · v = 0. We will
use repeatedly that Cn,n is of real type for all n:

Cn,n ∼= M2n(R)

The reader should be warned that conventions in the literature concerning Clifford alge-
bras vary greatly; our conventions with regards to Cn and Cn,m agree for example with
[Ka, Ch. III, 3.13] and [LM, Ch. I, §3].

Remark 2.2.2. (Properties of Clifford algebras.) Useful properties of the construc-
tion V 7→ C(V ) include natural isomorphisms

C(V ⊕W ) ∼= C(V ) ⊗ C(W ) and C(−V ) ∼= C(V )op; (2.2.3)

here as throughout the paper ⊗ stands for the graded tensor product; here the adjective
‘graded’ stipulates that the product of elements a⊗ b, a′ ⊗ b′ ∈ A⊗ B is defined by

(a⊗ b) · (a′ ⊗ b′)
def
= (−1)|b||a

′|aa′ ⊗ bb′,

where |b|, |a′| are the degrees of b and a′ respectively. The opposite Bop of a graded

algebra B is B as graded vector space but with new a multiplication ∗ defined by a∗ b
def
=

(−1)|a||b|b ·a for homogeneous elements a, b ∈ B of degree |a|, |b| ∈ Z/2, respectively. Any
graded left A⊗B-module M can be interpreted as a bimodule over A−Bop via

a ·m · b
def
= (−1)|m||b|(a⊗ b)m

for homogeneous elements a ∈ A, b ∈ B, m ∈ M) and vice-versa. In particular, a left
module M over C(V ⊕−W ) may be interpreted as a left module over C(V )⊗C(W )op; or
equivalently, as a C(V ) − C(W )-bimodule, and we will frequently appeal to this move.
We note that this construction is compatible with ‘passing to the opposite module’,
where we define the opposite of a graded A − B-module M , denoted M , to be M with
the grading involution ε replaced by −ε and the right B-action modified by the grading
automorphism of B. This is consistent (by the above formula) with changing the grading
and keeping the same A⊗Bop-module structure.

Definition 2.2.4. (Fermionic Fock spaces). Let V be a Hilbert space with an iso-
metric involution as in Definition 2.2.1. There is a standard construction of modules
over the resulting Clifford algebra C(V ) (cf. [PS, Ch. 12], [A]); the input datum for
this construction is a Lagrangian L ⊂ V . By definition, this means that L is closed, b
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vanishes identically on L and that V = L⊕ L̄. Note that the existence of L is a serious
condition on our data, for example a Lagrangian cannot exist if the involution on V is
trivial.

Given a Lagrangian L, the exterior algebra

Λ(L̄) = Λev(L̄) ⊕ Λodd(L̄) =
⊕

p even

Λp(L̄) ⊕
⊕

p odd

Λp(L̄)

is a Z/2-graded module over the Clifford algebra C(V ):

• for v̄ ∈ L̄ ⊂ V ⊂ C(V ), the corresponding operator c(v̄) : Λ(L̄) → Λ(L̄) is given by
exterior multiplication by v̄ (‘creation operator’),

• for v ∈ L, the operator c(v) is given by interior multiplication by v (‘annihilation
operator’); i.e., c(v) acts as a graded derivation on Λ(L̄), and for w̄ ∈ L̄ = Λ1(L̄)
we have c(v)w̄ = b(v, w̄) = 〈w, v〉.

We define the fermionic Fock space F (L) to be the completion of Λ(L̄) with respect to the

inner product induced by the inner product on L̄ ⊂ V . We will refer to Falg(L)
def
= Λ(L̄)

as the algebraic Fock space; both of these C(V )-modules will play an important role for
us.

We note that the adjoint c(v)∗ of the operator c(v) : F (L) → F (L) is given by c(v)∗ =
−c(v̄) for any v ∈ V . It is customary to call 1 ∈ Λ0L̄ ⊂ F (L) the vacuum vector and
to write Ω ∈ F (L) for it. It is easy to see that Ω is a cyclic vector and hence F (L) is
a graded irreducible module over C(V ). The classification of these modules is given by
the following well-known result (cf. [A])

Theorem 2.2.5 (I. Segal-Shale equivalence criterion). Two Fock representations
F (L) and F (L′) of C(V, b) are isomorphic if and only if the composition of orthogonal
inclusion and projection maps,

L′ ↪→ V � L̄

is a Hilbert-Schmidt operator. Moreover, this isomorphism preserves the grading if and
only if dim(L̄ ∩ L′) is even.

We recall that an operator T : V → W between Hilbert spaces is a Hilbert-Schmidt
operator if and only if the sum

∑∞
i=1 ||Tei||

2 converges, where {ei} is a Hilbert space
basis for V . We note that the space L̄ ∩ L′ is finite dimensional if the map L′ → L̄ is a
Hilbert-Schmidt operator.

Remark 2.2.6. (Orientations and bimodules). Let V be a real inner product space
of dimension n <∞. Then there is a homeomorphism

{isometries f : R
n → V } −→ L

def
= {Lagrangian subspaces L ⊂ V ⊕−R

n}
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given by sending an isometry f to its graph. By passing to connected components, we
obtain a bijection between orientations on V and π0L. According to the Segal-Shale The-
orem (plus the fact that in finite dimensions any irreducible module is isomorphic to some
Fock space), sending a Lagrangian L to the Fock space F (L) induces a bijection between
π0L and the set of isomorphism classes of irreducible graded (left) C(V ⊕−Rn)-modules;
as explained in (2.2.3), these may in turn be interpreted as C(V )−Cn-bimodules. Sum-
marizing, we can identify orientations on V with isomorphism classes of irreducible
C(V ) − Cn-bimodules S(V ). We observe that the opposite bimodule S(V ), defined
above 2.2.4, corresponds to the opposite orientation.

Remark 2.2.7. (Functorial aspects of the Fock space construction). Let V1, V2

be Hilbert spaces with involutions as in definition 2.2.1 and let L1 ⊂ V2 ⊕ −V1 be a
Lagrangian. The associated algebraic Fock space Falg(L1) (cf. Definition 2.2.4) is then
a graded module over the Clifford algebra C(V2 ⊕ −V1); alternatively we can view it as
a bimodule over C(V2) − C(V1). We wish to discuss in which sense the constructions
V 7→ C(V ) and L 7→ Falg(L) give a functor (cf. [Se2, §8]). Here the objects of the
‘domain category’ are Hilbert spaces V with involutions, and morphisms from V1 to V2 are
Lagrangian subspaces of V2⊕−V1. Given morphisms L1 ⊂ V2⊕−V1 and L2 ⊂ V3⊕−V2,
their composition is given by the Lagrangian L3 ⊂ V3 ⊕ −V1 obtained by ‘symplectic’

reduction from the Lagrangian L
def
= L2 ⊕ L1 ⊂ V

def
= V3 ⊕−V2 ⊕ V2 ⊕−V1, namely

Lred
def
= L ∩ U⊥b/L ∩ U ⊂ V red def

= V ∩ U⊥b/U ;

Here U is the isotropic subspace U = {(0, v2, v2, 0) | v2 ∈ V2} ⊂ V and U⊥b is its
annihilator with respect to the bilinear form b. We note that the reduced space V red can
be identified with V3 ⊕−V1.

The objects of the ‘range category’ are graded algebras; the morphisms from A to
B are pointed, graded B − A-bimodules; the composition of a pointed B − A-bimodule
(M,m0) and a pointed C −B-bimodule (N, n0) is given by the C − A-bimodule (N ⊗B

M,n0 ⊗ m0). The following lemma shows that in the type I case composition of La-
grangians is compatible with the tensor product of pointed bimodules, i.e., the construc-
tion V 7→ C(V ), L 7→ (Falg(L),Ω) is a (lax) functor. Here ‘type’ refers to the type of
the von Neumann algebra generated by C(V ) in B(F (L)) as explained in Section 4.3.
Type I is the easiest case where the von Neumann algebra is just the bounded operators
on some Hilbert space. This corresponds geometrically to gluing along closed parts of the
boundary. Gluing along, say, arcs in the boundary corresponds to type III for which a
more difficult gluing lemma is needed: Connes fusion appears, see Proposition 4.3.10. It
actually covers all types, so we restrict in the arguments below to the finite dimensional
case. That is all one needs for 1-dimensional EFT’s, i.e. for K-theory.

Gluing Lemma 2.2.8. If the von Neumann algebra generated by C(V2) has type I, there
is a unique isomorphism of pointed, graded C(V3) − C(V1) bimodules

(Falg(L2) ⊗C(V2) Falg(L1),Ω2 ⊗ Ω1) ∼= (Falg(L3),Ω3).
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Here we assume that Li intersect Vj trivially (which is satisfied in the geometric appli-
cations if there are no closed components, cf. Definition 2.3.12).

Proof. We note that Falg(L2) ⊗C(V2) Falg(L1) is the quotient of Falg(L2) ⊗ Falg(L1) =
Falg(L2 ⊕ L1) = Falg(L) modulo the subspace ŪFalg(L). Here Ū ⊂ V is the sub-
space obtained from U defined above by applying the involution v 7→ v̄; explicitly,
Ū = {(0,−v2, v2, 0) | v2 ∈ V2}; we observe that for ū = (0,−v2, v2, 0) ∈ Ū , and
ψi ∈ Falg(Li) we have

c(ū)(ψ2 ⊗ ψ1) = (−1)|ψ2|(−ψ2c(v2) ⊗ ψ1 + ψ2 ⊗ c(v2)ψ1).

We recall that an element ū ∈ Ū ⊂ V , which decomposes as ū = u1 + ū2 ∈ V = L ⊕ L̄
with ui ∈ L acts on Falg(L) = Λ(L̄) as the sum c(u1) + c(ū2) of the ‘creation’ operator
c(u1) and the ‘annihilation’ operator c(ū2). We observe that by assumption the map
Lred ⊕ Ū → L given by (v, ū) 7→ v + u1 is an isomorphism. In finite dimensions, a
filtration argument shows that the C(V red)-linear map

Λ(L̄red) −→ Λ(L̄red ⊕ U)/c(Ū)Λ(L̄red ⊕ Ū)

is in fact an isomorphism.

Definition 2.2.9. (Generalized Lagrangian). For our applications to geometry, we
will need a slightly more general definition of a Lagrangian. This will also avoid the
assumption in the gluing lemma above. A generalized Lagrangian of a Hilbert space V
with involution is a homomorphism L : W → V with finite dimensional kernel so that
the closure LW ⊂ V of the image of L is a Lagrangian. In the geometric situation we are
interested in, W will be the space of harmonic spinors on a manifold Σ, V will be the
space of all spinors on the boundary ∂Σ, and L is the restriction map. Then we define
the algebraic Fock space

Falg(L)
def
= Λtop(kerL)∗ ⊗ Λ(L̄W ),

where Λtop(kerL)∗ = Λdim(kerL)(kerL)∗ is the top exterior power of the dual space of the
kernel of L. The algebraic Fock space is a module over the Clifford algebra C(V ) via its
action on Λ(L̄W ).

Unlike the case discussed previously, this Fock space has only a canonical vacuum
element Ω = 1⊗ 1 if kerL = 0. Otherwise the vacuum vector is zero which is consistent
with the geometric setting where it corresponds to the Pfaffian element of the Dirac
operator: it vanishes, if there is a nontrivial kernel. Therefore, the gluing Lemma 2.3.14
in the following section has to be formulated more carefully than the gluing lemma above.
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2.3 Clifford linear field theories

We recall that a d-dimensional field theory is a functor E : Bd → Hilb; in particular on
objects, it assigns to a closed oriented (d−1)-manifold Y a Hilbert space E(Y ). It is the
purpose of this section to define Clifford linear field theories E of degree n (for d = 1, 2).
Such a theory assigns to Y as above a Hilbert space E(Y ) which is a right module over
C(Y )⊗n, where C(Y ) is a Clifford algebra associated to Y . The formal definition (see
Definition 2.3.16 for d = 2 and Definition 2.3.20 for d = 1) is quite involved. The reader
might find it helpful to look first at Example 2.3.3, which will be our basic example of a
Clifford linear field theory (for d = 1) and which motivates our definition. This example
is a variation of Example 2.1.4 with the Laplace operator replaced by the square of the
Dirac operator.

Definition 2.3.1. (Spin structures on Riemannian vector bundles). Let V be
an inner product space of dimension d. Motivated by Remark 2.2.6 we define a spin
structure on V to be an irreducible graded C(V ) − Cd-bimodule S(V ) (equipped with a
compatible inner product as in the case of Fock spaces). If W is another inner product
space with spin structure, a spin isometry from V to W is an isometry f : V → W

together with an isomorphism f̂ : S(V )
∼=
→ f ∗S(W ) of graded C(V ) − Cd-bimodules

with inner products. We note that f ∗S(W ) is isomorphic to S(V ) if and only if f is
orientation preserving; in that case there are two choices for f̂ . In other words, the space
of spin isometries Spin(V,W ) is a double covering of the space SO(V,W ) of orientation
preserving isometries. It is clear that spin isometries can be composed and so they can
be regarded as the morphisms in a category of inner product spaces with spin structures.

Now we can use a ‘parametrized version’ of the above to define spin structures on
vector bundles as follows. Let E → X be a real vector bundle of dimension d with
Riemannian metric, i.e., a fiberwise positive definite inner product. Let C(E) → X be
the Clifford algebra bundle, whose fiber over x is the Clifford algebra C(Ex). A spin
structure on E is a bundle S(E) → X of graded irreducible C(E) − Cd-bimodules. It is
tempting (at least for topologists) to think of two isomorphic bimodule bundles as giving
the same spin structure. However, it is better to think of the ‘category of spin structures’
(with the obvious morphisms), since below we want to consider the space of sections of
S(E) and that is a functor from this category to the category of vector spaces. Then the
usual object topologists are interested in are the isomorphism classes of spin structures.
The group H1(X; Z/2) acts freely and transitively on the set of isomorphism classes.

To relate this to the usual definition of spin structure expressed in terms of a principal
Spin(d)-bundle Spin(E) → X (cf. [LM, Ch. II, §1]), we note that we obtain a C(E) −
Cd-bimodule bundle if we define

S(E)
def
= Spin(E) ×Spin(d) Cd.

Moreover, we note that S(E) determines an orientation of E by Remark 2.2.6. We define
the opposite spin structure on E to be S(E) (whose fiber over x ∈ X is the bimodule
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opposite to S(Ex) in the sense of Remark 2.2.6); this induces the opposite orientation
on E.

Remark 2.3.2. We note that there is a functor F from the category of spin-structures
on E ⊕R to the category of spin structures on E. Given a spin structure on E ⊕R, i.e.,

a C(E ⊕ R) − Cd+1-bimodule bundle S → X over, we define F (S)
def
= S+(E ⊕ R), the

even part of S(E ⊕ R). This is a graded C(E) − Cd-bimodule, if we define the grading
involution on S+(E ⊕ R) by ψ 7→ e1ψe1 (e1 ∈ R is the standard unit vector), the left
action of v ∈ E ⊂ C(E) by ψ 7→ ve1ψ and the right action of w ∈ Rd ⊂ Cd by ψ 7→ ψe1w.
The functor F is compatible with ‘passing to the opposite spin structure’ in the sense
that there is an isomorphism of spin structures F (S) ∼= F (S), which is natural in S.

Example 2.3.3. (EFT associated to a Riemannian spin manifold). Let M be
a closed manifold of dimension n with a spin structure; i.e., a spin structure on its
cotangent bundle T ∗M . In other words, M comes equipped with a graded irreducible
C(T ∗M) − Cn-bimodule bundle S →M . A Riemannian metric on M induces the Levi-
Civita connection on the tangent bundle TM which in turn induces a connection ∇ on
S. The Dirac operator D = DM is the composition

D : C∞(M ;S)
∇

−→ C∞(M ;T ∗M ⊗ S)
c

−→ C∞(M ;S),

where c is Clifford multiplication (given by the left action of T ∗M ⊂ C(T ∗M) on S).
The Dirac operator D is an (unbounded) Fredholm operator on the real Hilbert space
L2(M ;S) of square integrable sections of S. As in Example 2.1.4 we can construct a
1-dimensional EFT E : EB1 → Hilb by defining

E(pt) = L2(M ;S) ⊗R C E(It) = e−tD
2

.

However, there is more structure in this example: the fibers of S and hence the Hilbert
space L2(M ;S) is a Z/2-graded right module over Cn (or equivalently by Remark 2.2.2, a
left module over Cop

n = C−n). Moreover, D and hence E(It) commute with this action. It
should be emphasized that we are working in the graded world; in particular, saying that
the odd operator D commutes with the left C−n-action means D(c · x) = (−1)|x|c ·D(x)
for a homogeneous element c ∈ C−n of degree |c| and x ∈ E(pt).

Definition 2.3.4. (Spin structures on conformal manifolds). Let Σ be a manifold
of dimension d and for k ∈ R let Lk → Σ be the oriented real line bundle (and hence
trivializable) whose fiber over x ∈ Σ consists of all maps ρ : Λd(TxΣ) → R such that
ρ(λω) = |λ|k/dρ(ω) for all λ ∈ R. Sections of Ld are referred to as densities; they can be
integrated over Σ resulting in a real number.

Now assume that Σ is equipped with a conformal structure (i.e., an equivalence
class of Riemannian metrics where we identify a metric obtained by multiplication by a
function with the original metric). We remark that for any k 6= 0 the choice of a metric
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in the conformal class corresponds to the choice of a positive section of Lk. Moreover,
the conformal structure on Σ induces a canonical Riemannian metric on the weightless

cotangent bundle T ∗
0 Σ

def
= L−1 ⊗ T ∗Σ.

A spin structure on a conformal d-manifold Σ is by definition a spin structure on the
Riemannian vector bundle T ∗

0 Σ. The opposite spin structure on Σ is the opposite spin
structure on the vector bundle T ∗

0 Σ. We will use the notation Σ̄ for Σ equipped with the
opposite spin structure.

If Σ′ is another conformal spin d-manifold, a conformal spin diffeomorphism from Σ
to Σ′ is a conformal diffeomorphism f : Σ → Σ′ together with an isometry between the
C(T ∗

0 Σ)−Cd-bimodule bundles S(Σ) and f ∗S(Σ′). We observe that every conformal spin
manifold Σ has a canonical spin involution ε = εΣ, namely the identity on Σ together
with the bimodule isometry S(Σ) → S(Σ) given by multiplication by −1.

Example 2.3.5. (Examples of spin structures) The manifold Σ = Rd has the fol-
lowing ‘standard’ spin structure: identifying T ∗

0 Σ with the trivial bundle R
d, the bundle

S
def
= Rd × Cd → Rd becomes an irreducible graded C(T ∗

0 Σ) − Cd-bimodule bundle. Re-
stricting S we then obtain spin structures on codimension zero submanifolds like the disc
Dd ⊂ Rd or the interval It = [0, t] ⊂ R.

The above spin structure on Rd makes sense even for d = 0; here R0 consists of one
point and S = R is a graded bimodule over Cd = R (i.e., a graded real line). We will
write pt for the point equipped with this spin structure, and pt for the point equipped
with its opposite spin stucture (the bimodule for pt is an ‘even’ real line, while the
bimodule for pt is an ‘odd’ real line).

If Σ has a boundary ∂Σ, we note that the restriction T ∗
0 Σ|∂Σ is canonically isometric

to T ∗
0 ∂Σ ⊕ R. It follows by Remark 2.3.2 that a spin structure on Σ, i.e., a C(T ∗

0 Σ) −
C(Rd)-bimodule bundle S → Σ restricts to a spin structure S+ → ∂Σ on the boundary
∂Σ. In particular, the standard spin structure on D2 restricts to a spin structure on
S1 = ∂D2, which we refer to as the zero-bordant or anti-periodic spin structure; we’ll use
the notation Sap.

Definition 2.3.6. (The Cd−1-Hilbert space V (Y )). If Y d−1 is a conformal spin
manifold with spinor bundle S → Y , we define

V (Y )
def
= L2(Y, L

d−1
2 ⊗ S),

the space of square-integrable sections of the real vector bundle E = L
d−1
2 ⊗ S. We note

that using the fiberwise inner product of the spinor bundle S, we can pair sections ϕ, ψ
of E to obtain a section of Ld−1 which in turn may be integrated over Y to obtain a real
valued inner product 〈ϕ, ψ〉 on the space of smooth sections of E; completion then gives
the real Hilbert space V (Y ). We note that each fiber of E is a graded right Cd−1-module,
which induces the same structure on V (Y ).
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Definition 2.3.7. (The Clifford algebra C(Y ), d = 1, 2). Let Y d−1 be a conformal
spin manifold and let V (Y ) be as above. In particular, for d = 1, V (Y ) is just a graded
real Hilbert space; for d = 2, the Clifford algebra Cd−1 is isomorphic to C and hence
V (Y ) is a complex vector space on which the grading involution acts by a C-anti-linear
involution. After extending the R-valued inner product to a C-valued hermitian product,
we can regard V (Y ) as a graded complex Hilbert space. So for d = 1, 2, V (Y ) has

the structures needed to form the Clifford algebra C(Y )
def
= C(V (Y )) as described in

Definition 2.2.1. Here the involution α is given by the grading involution (which for
d = 2 anticommutes with the action of C1 = C).

Example 2.3.8. (Examples of Clifford algebras C(Y )). If pt, pt are the point
equipped with its standard resp. its opposite spin structure as defined in Definition 2.3.4,
then C(pt) = C1 and C(pt) = C−1.

If Y = ∅, then V (Y ) is zero-dimensional and consequently, C(∅) = R (for d = 1)
resp. C(∅) = C (for d = 2).

Definition 2.3.9. (The generalized Lagrangian L(Σ) : W (Σ) → V (∂Σ)). Let
Σd be a conformal spin manifold. Picking a Riemannian metric in the given conformal
class determines the Levi-Civita connection on the tangent bundle of Σ, which in turn
determines connections on the spinor bundle S = S(T ∗

0 Σ), the line bundles Lk and hence
Lk ⊗ S for all k ∈ R. The corresponding Dirac operator D = DΣ is the composition

D : C∞(Σ;Lk ⊗ S)
∇

−→ C∞(Σ;T ∗Σ ⊗ Lk ⊗ S)

= C∞(Σ;Lk+1 ⊗ T ∗
0 Σ ⊗ S)

c
−→ C∞(Σ;Lk+1 ⊗ S), (2.3.10)

where c is Clifford multiplication (given by the left action of T ∗
0 Σ ⊂ C(T ∗

0 Σ) on S). It
turns out that for k = d−1

2
the Dirac operator is in fact independent of the choice of the

Riemannian metric.
According to Green’s formula, we have

〈Dψ, φ〉 − 〈ψ,Dφ〉 = 〈c(ν)ψ|, φ|〉 ψ, φ ∈ C∞(Σ, L
d−1
2 ⊗ S),

where ψ|, φ| is the restriction of ψ resp. φ to ∂Σ and ν is the unit conormal vector
field (the section of T ∗

0 Σ|∂Σ corresponding to 1 ∈ R under the natural isomorphism
T ∗

0 Σ|∂Σ
∼= T ∗

0 ∂Σ ⊕ R). Replacing ψ by ψe1 in the formula above and using the fact that
multiplication by e1 is skew-adjoint, we obtain

〈Dψe1, φ〉 + 〈ψ,Dφe1〉 = 〈c(ν)ψ|e1, φ|〉. (2.3.11)

LetW (Σ)
def
= kerD+ where D+ has domain C∞(Σ, L

d−1
2 ⊗S+) and consider the restriction

map to the boundary

L(Σ) : W (Σ) −→ L2(∂Σ, L
d−1

2 ⊗ S) = V (∂Σ)
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The closure LΣ of the image of L(Σ) is the Hardy space of boundary values of harmonic

sections of L
d−1
2 ⊗ S+. The kernel of L(Σ) is the space of harmonic spinors on Σ which

vanish on the boundary. If Σ0 ⊆ Σ denotes the subspace of closed components of Σ then
kerL(Σ) = kerD+

Σ0
is the (finite dimensional) subspace of harmonic spinors on Σ0.

The Green formula shows that LΣ is isotropic with respect to the bilinear form
b(v, w) = 〈ε(v), w〉, where the involution ε is given by ε(v) = c(ν)ve1. Comparison with
Remark 2.3.2 shows that ε is precisely the grading involution on S+ defining the spin
structure on ∂Σ and it agrees with the grading involution on V (∂Σ). Analytically, much
more involved arguments show that LΣ is in fact a Lagrangian subspace [BW]. This
implies that L(Σ) is a generalized Lagrangian in the sense of Definition 2.2.9.

Moreover, the map L(Σ) : W (Σ) → V (∂Σ) is linear with respect to Cev
d = Cd−1, since

the Dirac operator D commutes with the right Cd-action.

We give the following definition only for dimensions d = 1, 2 because these are the
cases where Cd−1 is commutative and hence one has a good definition of the ‘exterior
algebra’ over Cd−1. For higher dimensions, one could ignore the Cd−1-action, but we will
not discuss this case as it’s not important for our applications.

Definition 2.3.12. (The C(∂Σ)-modules Falg(Σ) and F (Σ)). Using the gener-

alized Lagrangian from the previous definition, we define Falg(Σ)
def
= Falg(L(Σ)), the

algebraic Fock module over C(∂Σ) from Definition 2.2.9. This is a real vector space for
d = 1 and a complex vector space for d = 2. Recall that

Falg(L(Σ)) = Λtop(kerL(Σ))∗ ⊗ Λ(L̄Σ) (2.3.13)

and that L̄Σ (and hence the exterior algebra) is equipped with a natural inner product.
If Σ0 ⊆ Σ denotes again the subspace of closed components of Σ then kerL(Σ) =
kerD+

Σ0
. We note that D+

Σ0
is is skew-adjoint by equation (2.3.11) with respect to the

natural hermitian pairing between the domain and range of this operator: for ψ ∈
C∞(Σ;L(d−1)/2⊗S+) and φ ∈ C∞(Σ;L(d+1)/2⊗S−) the point-wise inner product of ψ ·e1

and φ gives a section of L2 which may be integrated over Σ to give a complex number;
this allows us to identify L2(Σ, L(d+1)/2 ⊗ S−) with the dual of L2(Σ, L(d−1)/2 ⊗ S+). In
particular, Λtop(kerL(Σ))∗ = Λtop(kerD+

Σ0
)∗ is the Pfaffian line Pf(Σ) of the skew-adjoint

operator D+
Σ0

, which comes equipped with the Quillen metric [BF] (this is a real line for
d = 1 and a complex line for d = 2). Hence both factors on the right hand side of
equation 2.3.13 are equipped with natural inner products and we obtain a Hilbert space
F (Σ) as the completion of Falg(Σ), which is still a module over C(∂Σ). We note that
the Fock space F (Σ) can be regarded as a generalization of the Pfaffian line, since for a
closed Σ the Fock space F (Σ) is equal to Pf(Σ).
For d = 1 we have Falg(Σ) = F (Σ) because both are finite dimensional.

If Σ is a conformal spin bordism from Y1 to Y2, then F (Σ) is a left module over
C(∂Σ) = C(Y1)

op ⊗ C(Y2); in other words, a C(Y2) − C(Y1)-bimodule.
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We need to understand how these Fock modules behave under gluing surfaces together
(we shall not discuss the 1-dimensional analogue explicitly but the reader will easily fill
this gap). So let Σi be conformal spin surfaces with decompositions

∂Σ1 = Y1 ∪ Y2, ∂Σ2 = Y2 ∪ Y3,

where Yi ∩ Yi+1 could be nonempty (but always consists of the points ∂Yi).Let Σ3
def
=

Σ1 ∪Y2
Σ2. Then this geometric setting leads to the algebraic setting in Remark 2.2.7:

We have Vi
def
= V (Yi) and Li

def
= LΣi

so that we can derive a gluing isomorphism. Note
that there are two cases, depending on the type of the von Neumann algebra generated
by C(V2) = C(Y2): If Y is closed then we are in type I, and if Y has boundary we are
in type III where a more sophisticated gluing lemma is needed. Note also that we really
have generalized Lagrangians L(Σi) which are used in the gluing lemma below. It follows
from our algebraic gluing lemma (for type I) together with the canonical isomorphisms
of Pfaffian lines for disjoint unions of closed surfaces.

Gluing Lemma 2.3.14. If Y2 is a closed 1-manifold, there are natural isomorphisms
of graded C(Y3) − C(Y1) bimodules

Falg(Σ2) ⊗C(Y2) Falg(Σ1) ∼= Falg(Σ3).

Again there is a refined version of this lemma for all types of von Neumann algebras
which uses Connes fusion, see Proposition 4.3.10. It will actually imply that the above
isomorphism are isometries and hence carry over to the completions F (Σi).

Remark 2.3.15. A different way to see the isometry for completions is to observe that
our assumption on Y2 being closed (i.e. that the von Neumann algebra A(Y2) is of type I)
implies that A(Yi) ∼= B(Hi) for some Hilbert spaces Hi and also that

F (Σ1) ∼= HS(H2, H1), F (Σ2) ∼= HS(H3, H2), F (Σ3) ∼= HS(H3, H1).

Then the isomorphism for Lemma 2.3.14 is just given by composing these Hilbert-
Schmidt operators. Note that if Yi bound conformal spin surfaces Si then we may
choose Hi = F (Si) in which case everything becomes canonical. It is important to note
that in the case relevant for string vector bundles, this last assumption will be satisfied
because we will be working in a relative situation where Yi consists of two copies of the
same manifold, one with a trivial bundle, and with a nontrivial bundle over it.

After these preliminaries, we are now ready to define Clifford linear field theories of
degree n. To motivate the following definition, we recall Example 2.3.3 of a 1-dimensional
EFT: here the Hilbert space E(pt) associtated to the point pt has additional structure:
E(pt) is a Z/2-graded left module over the Clifford algebra C−n = (C(pt)op)⊗n (see
Example 2.3.8). Roughly speaking, a Clifford field theory of degree n is a field theory
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(of dimension d = 1 or 2) with extra structure ensuring that the Hilbert space E(Y )
associated to a manifold Y of dimension d− 1 is a graded left module over the Clifford

algebra C(Y )−n
def
= (C(Y )op)⊗n. To make this precise, we define Clifford linear field

theories of degree n as functors from CB2
n (resp. EB1

n) to the category of Hilbert spaces;
here CB2

n (resp. EB1
n) are ‘larger’ versions of the categories CB2 (resp. EB1) such that

the endomorphisms of the object given by Y contains the Clifford algebra C(Y )−n. This
implies that for such a functor E the Hilbert space E(Y ) is left module over C(Y )−n (or
equivalently, a right module over C(Y )⊗n).

Definition 2.3.16. (CFT of degree n). A Clifford linear conformal field theory of
degree n ∈ Z is a continuous functor

E : CB2
n −→ Hilb,

compatible with the additional structures in Definition 2.1.1 on both categories. We
recall that these are the monodial structures, involutions and anti-involutions, and ad-
junction transformations on both categories. In addition we require that the functor E
is compatible with the linear structure on morphisms in the sense that the equations
2.3.17 below hold. For brevity’s sake, we will refer to such a theory also just as CFT
of degree n (we note that we have defined the notion of ‘degree’ only for these Clifford
linear theories).

The objects of CB2
n are closed conformal spin 1-manifolds Y . If Y1, Y2 are objects of

CB2
n, there are two types of morphisms from Y1 to Y2, namely

• pairs (f, c) consisting of a spin diffeomorphism f : Y1 → Y2 and an element c ∈
C(Y1)

−n; here C(Y1)
k stands for the graded tensor product of |k| copies of C(Y1)

if k ≥ 0 resp. C(Y1)
op if k < 0. In particular, there are morphisms

f
def
= (f, 1 ∈ C(Y1)

−n) ∈ CB2
n(Y1, Y2) and c

def
= (1Y1

, c) ∈ CB2
n(Y1, Y1)

• pairs (Σ,Ψ), where Σ is a conformal spin bordism from Y1 to Y2, and Ψ ∈ Falg(Σ)−n.
Here F = Falg(Σ) is the algebraic Fock space, and F k stands for the graded tensor
product of |k| copies of F if k ≥ 0 resp. of F̄ if k ≤ 0. A conformal spin bordism
Σ from Y1 to Y2 is a conformal spin manifold together with a spin diffeomorphism
∂Σ ∼= Ȳ1 q Y2. More precisely, we identify the morphisms (Σ,Ψ) and (Σ′,Ψ′) if
there is a conformal spin diffeomorphism Σ → Σ′ compatible with the boundary
identification with Ȳ1qY2 such that Ψ is sent to Ψ′ under the induced isomorphism
on Fock spaces. We recall from definition 2.3.12 that if Σ has no closed components,
then Falg(Σ) is a Fock space which by definition 2.2.4 has a canonical cyclic vector
Ω. Then Ω−n ∈ Falg(Σ)−n and we will write

Σ
def
= (Σ,Ω−n) ∈ CB2

n(Y1, Y2).
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We note that every 1-manifold has a unique conformal structure; hence our definition of
spin structure and the construction of the Clifford algebra C(Y ) applies to every oriented
1-manifold Y . Composition of morphisms is given as follows:

• If (f1, c1) is a morphism from Y1 to Y2, and (f2, c2) is a morphism from Y2 to Y3,
then (f2, c2) ◦ (f1, c1) = (f2 ◦ f1, f

∗
1 c2 · c1). In particular, interpreting as above a

spin diffeomorphism f : Y1 → Y2 as a morphism from Y1 to Y2, and an element
c ∈ C(Y1)

−n as an endomorphism of Y1 we have (f, c) = f ◦ c.

• If (Σ1,Ψ1) is a morphism from Y1 to Y2, and (Σ2,Ψ2) is a morphism from Y2 to Y3,
their composition is given by (Σ2∪Y2

Σ1,Ψ2∪Y2
Ψ1), where Σ3 = Σ2∪Y2

Σ1 is obtained
by ‘gluing’ along the common boundary component Y2, and the fermion Ψ3 =
Ψ2∪Y2

Ψ1 on Σ3 is obtained by ‘gluing’ the fermions Ψ2 and Ψ1, i.e., it is the image
of Ψ2 ⊗ Ψ1 under the ((−n)-th power of the) ‘fermionic gluing homomorphism’
from Lemma 2.3.14:

Falg(Σ2) ⊗C(Y2) Falg(Σ1) −→ Falg(Σ3).

In the present context where Y2 is closed, the assumptions of Lemma 2.3.14 are
indeed satisfied.

• Composing a morphism (Σ,Ψ) from Y1 to Y2 with a diffeomorphism f : Y2 → Y3

is again (Σ,Ψ), but now regarding Σ as a bordism from Y1 to Y3, and Falg(Σ) as
a bimodule over C(Y3) − C(Y1) by means of f . Precomposition of (Σ,Ψ) by a
diffeomorphism is defined analogously.

• For ci ∈ C(Yi)
−n ⊂ CB2

n(Yi, Yi) we have

c2 ◦ (Σ,Ψ) = (Σ, c2 · Ψ) and (Σ,Ψ) ◦ c1 = (Σ,Ψ · c1).

We note that Falg(Σ) is a C(Y2) − C(Y1)-bimodule and hence Falg(Σ)−n is a
C(Y2)

−n − C(Y1)
−n-bimodule, which explains the products c2 · Ψ and Ψ · c1.

We require that a CFT E : CB2
n → Hilb is compatible with the linear structure on

morphisms in the sense that given a spin diffeomorphism f : Y1 → Y2 or a conformal spin
bordism Σ from Y1 to Y2 the maps

C(Y1)
−n −→ Hilb(E(Y1), E(Y1)) Falg(Σ)−n −→ Hilb(E(Y1), E(Y2)) (2.3.17)

given by c 7→ E(f, c) (resp. Ψ 7→ E(Σ,Ψ)) are linear maps.

Remark 2.3.18. (Basic properties of Clifford conformal field theories) Let Σ
be a bordism from Y1 to Y2 with no closed components. Then Ω−n is a cyclic vector
in the C(Y2)

−n − C(Y1)
−n-bimodule Falg(Σ)−n and hence every morphism (Σ,Ψ) can

be written as (Σ, c2Ω
−nc1) = c2 ◦ (Σ,Ω−n) ◦ c1. This shows that the morphisms in the
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category CB2
n are generated by diffeomorphisms f , Clifford elements c, and conformal

bordisms Σ = (Σ,Ω−n) (with no closed components).
We note that the spin involution ε = εY (see Definition 2.3.4) on a conformal spin

1-manifold Y induces the grading involution on the associtated Clifford algebra C(Y ).
This implies that as morphisms in the category CB2

n, it commutes with the even elements
of the Clifford algebra C(Y )−n, while it anti-commutes with the odd elements. In par-
ticular, if E : CB2

n → Hilb is a CFT of degree n, then the Hilbert space E(Y ) is a graded
left C(Y )−n-module (or equivalently, a right C(Y )n-module). If Σ is a conformal spin
bordism from Y1 to Y2, then the ‘spin involution’ εΣ restricts to εYi

on the boundary and
hence we have the relation

εY2
◦ Σ = Σ ◦ εY1

in CB2
n. In particular, the corresponding bounded operator E(Σ) : E(Y1) → E(Y2) is

even.
We claim that E(Σ) is in fact a Hilbert-Schmidt operator from E(Y1) to E(Y2). To

see this, observe that Σ ∈ CB2
n(Y1, Y2) is in the image of the natural transformation

CB2
n(∅, Ȳ1 q Y2) −→ CB2

n(Y1, Y2)

by regarding Σ as a bordism from ∅ to Ȳ1 q Y2. This implies that E(Σ) is in the image
of the corresponding natural transformation in Hilb

Hilb(C, E(Y1) ⊗ E(Y2)) −→ Hilb(E(Y1), E(Y2)),

which consists exactly of the Hilbert-Schmidt operators from E(Y1) to E(Y2).

Remark 2.3.19. We note that if Σ is a bordism from Y1 to Y2, and E is a Clifford linear
theory of degree n then the map F (Σ)−n −→ Hom(E(Y1), E(Y2)), Ψ 7→ E(Σ,Ψ) in fact
induces a C(Y2)

−n-linear map

E(Σ) : F (Σ)−n ⊗C(Y1)−n E(Y1) −→ E(Y2)

Definition 2.3.20. (EFT of degree n). A Clifford linear 1-dimensional Euclidean
field theory of degree n is a continuous functor

EB1
n −→ Hilb

compatible with the additional structures in Definition 2.1.1 and the linear structure
on the morphisms (equation 2.3.17). Here the 1-dimensional degree n bordism category
EB1

n is defined as for CB2
n, except that the dimension of all manifolds involved is down

by one: the objects of EB1
n are 0-dimensional spin manifolds Y and the bordisms Σ are

1-dimensional; furthermore the geometric structure on these bordisms are Riemannian
metrics rather than conformal structures. We want to emphasize that now the Clifford
algebras C(Y ) and the Fock spaces F (Σ) are finite dimensional real vector spaces.
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We note that we can define real EFT’s; these are functors from EB1
n to the category

HilbR of real Hilbert spaces with the same properties. In fact our motivating example
2.3.3 is the complexification of a real EFT.

It should be pointed out that there are no naive ‘real’ versions of CFT’s, since e.g.
the map C(Y )−n → Hilb(E(Y ), E(Y )) is required to be linear, which means complex
linear if Y is 1-dimensional (in which case C(Y ) is an algebra over C). Consequently, we
can’t restrict the vector spaces E(Y ) to be real.

Definition 2.3.21. (Clifford linear field theories over a manifold X). As in
definition 2.1.5 we define Clifford linear field theories over a manifold X as follows. Let
CB2

n(X) resp. EB1
n(X) be categories whose objects are as in the categories CB2

n resp. EB1
n

except that all objects Y (given by manifolds of dimension 1 resp. 0) come equipped
with piecewise smooth maps to X. Similarly all bordisms Σ come with piecewise smooth
maps to X. The additional structures on CB2

n and EB1
n extend in an obvious way to

CB2
n(X) and EB1

n(X), respectively. We define a Clifford linear CFT of degree n over X
to be a functor E : CB2

n → Hilb compatible with the additional structures.
Similarly a Clifford linear EFT of degree n over X is a functor E : EB1

n(X) → Hilb
compatible with the additional structures.

Example 2.3.22. (Basic example of a Clifford linear EFT over X). Let ξ → X
be an n-dimensional spin vector bundle with metric and compatible connection over
a manifold X. Let S(ξ) → X be the associated spinor bundle (a C(ξ) − Cn-bimodule
bundle, see Definition 2.3.1). Then there is a Clifford linear EFT over X of degree n: this
is a functor E : EB1

n(X) → Hilb which maps the object of EB1
n(X) given by pt 7→ x ∈ X

to the Hilbert space S(ξ)x; on morphisms, E(c) for c ∈ C(pt)−n = Cop
n is given by the

right Cn-module structure on S(ξ). If γ : It → X is a path from x to y representing a
morphism in EB1

n, then E(γ) : S(ξ)x → S(ξ)y is given by parallel translation along γ.
The properties of a Clifford linear field theory then determine the functor E.

2.4 Twisted Clifford algebras and Fock modules

In this section we shall generalize all the definitions given in Section 2.3 to the twisted
case, i.e. where the manifolds are equipped with vector bundles and connections. This
is a straightforward step, so we shall be fairly brief. At the end of the definition of the
twisted Clifford algebra (respectively twisted Fock module), we’ll explain the relative
version of the constructions, which involves the twisted and untwisted objects. It is
these relative objects which will be used in Section 5.

Definition 2.4.1. (The Cd−1-Hilbert space V (ξ)). Let Y d−1 be a conformal spin
manifold with spinor bundle S, and let ξ → Y be a vector bundle, equipped with a
Riemannian metric. Define

V (ξ)
def
= L2(Y, L

d−1
2 ⊗ S ⊗ ξ),
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the space of square-integrable sections of the real vector bundle E = L
d−1
2 ⊗S⊗ ξ. Each

fiber of E is a graded right Cd−1-module, which induces the same structure on V (ξ).

Definition 2.4.2. (The Clifford algebras C(ξ) and C(γ)). The above definition
gives for d = 1 a graded real Hilbert space V (ξ); for d = 2, the Clifford algebra Cd−1

is isomorphic to C and hence V (ξ) is a complex vector space on which the grading
involution acts by a C-anti-linear involution. As in Definition 2.3.7, V (ξ) has thus the

structures needed to form the Clifford algebra C(ξ)
def
= C(V (ξ)) for d = 1, 2.

In case that ξ = γ∗E is the pullback of an n-dimensional vector bundle E → X via
a smooth map γ : Y → X, we define the following relative Clifford algebra:

C(γ)
def
= C(γ∗E) ⊗ C(Y )−n

For example, if Y = pt and γ(pt) = x ∈ X then this gives the algebra C(x) = C(Ex) ⊗
C−n. Recall that a spin structure on Ex can then be described as a graded irreducible
(left) C(x)-module.

Definition 2.4.3. (The generalized Lagrangian L(ξ) : W (ξ) → V (∂ξ)). Let Σd

be a conformal spin manifold with boundary Y . Assume that the bundle ξ extends to a
vector bundle with metric and connection on Σ. We denote it again by ξ and let ∂ξ be
its restriction to Y . Let S be the spinor bundle of Σ and recall from Definition 2.3.4 that
the restriction of S+ to Y is the spinor bundle of Y . Consider the twisted (conformal)
Dirac operator

Dξ : C
∞(Σ;L

d−1
2 ⊗ S ⊗ ξ)

∇
−→ C∞(Σ;T ∗Σ ⊗ L

d−1
2 ⊗ S ⊗ ξ)

= C∞(Σ;L
d+1
2 ⊗ T ∗

0 Σ ⊗ S ⊗ ξ)
c

−→ C∞(Σ;L
d+1
2 ⊗ S ⊗ ξ), (2.4.4)

where ∇ is the connection on L
d−1
2 ⊗ S ⊗ ξ determined by the connection on ξ and the

Levi-Civita connection on L
d−1
2 ⊗ S for the choice of a metric in the given conformal

class. Let W (ξ)
def
= kerD+

ξ where D+
ξ has domain C∞(Σ, L

d−1
2 ⊗ S+ ⊗ ξ) and consider

the restriction map to the boundary

L(ξ) : W (ξ) −→ L2(∂Σ, L
d−1
2 ⊗ S ⊗ ξ) = V (∂ξ)

The closure Lξ of the image image of L(ξ) is the twisted Hardy space of boundary values

of harmonic sections of L
d−1
2 ⊗ S+ ⊗ ξ. kerL(ξ) is the space of twisted harmonic spinors

which vanish on the boundary. If Σ0 ⊆ Σ denotes the subspace of closed components of Σ
and ξ0 is the restriction of ξ, then kerL(ξ) = kerD+

ξ0
is the (finite dimensional) subspace

of twisted harmonic spinors on Σ0. As before, one shows that L(ξ) is Cd−1-linear and
that Lξ is a Lagrangian subspace of V (∂ξ).
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Definition 2.4.5. (The C(∂ξ)-modules Falg(ξ) and F (ξ)). We define Falg(ξ)
def
=

Falg(L(ξ)), the algebraic Fock module over C(∂ξ) determined by the generalized La-
grangian L(ξ) : W (ξ) → V (∂ξ), see Definition 2.2.9. As before, this is a real Hilbert
space for d = 1 and a complex Hilbert space for d = 2. As in Definition 2.3.12, Falg(ξ)
can be completed to the Hilbert space F (ξ) = F (L(ξ)).

In case that ξ = Γ∗E is the pullback of an n-dimensional vector bundle E → X via
a smooth map Γ : Σ → X, we define the following relative Fock modules:

F (Γ)
def
= F (Γ∗E) ⊗ F (Σ)−n and Falg(Γ)

def
= Falg(Γ

∗E) ⊗ Falg(Σ)−n

These are left modules over the relative Clifford algebra C(γ) from Definition 2.4.2,
where γ = Γ|Y . It is important to note that the vacuum vector for Γ is by definition
ΩΓ ∈ Falg(Γ

∗E).

If Σ is closed then Pf(Γ)
def
= Falg(Γ) is the relative Pfaffian line.

There are again gluing laws for twisted Fock spaces as in Lemma 2.3.14 and Propo-
sition 4.3.10.

3 K-theory and 1-dimensional field theories

3.1 The space of 1-dimensional Euclidean field theories

We recall from definition 2.3.20 that an EFT of degree n is a continuous functor E from
the Euclidean bordism category EB1

n to the category Hilb of Hilbert spaces compatible
with the symmetric monoidal structure, the (anti-) involutions ∗ and ·̄, the ‘adjunction
transformations’ (see 2.1.1) and the linear structure on morphisms (see equation 2.3.17).
An important feature is that the Hilbert space E(pt) associated to the point is a graded
left C−n-module, or equivalently, a graded right Cn-module. In our basic example 2.3.3,
E(pt) is the space of square integrable sections of the spinor bundle S → M of a spin
n-manifold, where the right Cn-action is induced by the right Cn-action on S.

It might be important to repeat the reason why the algebra C−n comes up: The
geometric example dictates that E(pt) be a right Cn module. (This goes back to the fact
that a frame for a vector space V is an isometry Rn → V , and hence O(n) acts on the
right on these frames.) However, from a functorial point of view, the endomorphisms of
an object in a category act on the left. This is preserved under the covariant functor E.
Since we built in C−n as the endomorphisms of the object pt ∈ EB1

n, E(pt) becomes a
left C−n-module. Equivalently, this is a right Cn-module, exactly what we want.

In this subsection we consider the space of EFT’s. We want to assume that the
(right) Cn-module E(pt) is a submodule of some fixed graded complex Hilbert space H
(equipped with a right Cn-action such that all irreducible modules occur infinitely often)
in order to obtain a set of such functors.
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Proposition 3.1.1. There is a bijection

{EFT’s of degree n}
R

−→ Hom(R+, HS
ev,sa
Cn

(H))

Here R+ is the additive semi-group of positive real numbers, and HSev,saCn
(H) is the

semi-group of Clifford linear, even (i.e., grading preserving), self-adjoint Hilbert-Schmidt
operators with respect to composition.

Definition 3.1.2. (Construction of R). Let R be equipped with the standard spin
structure (see Example 2.3.5). We note that the translation action of R on itself is by spin
isometries, allowing us to identify all the spin 0-manifolds {t} with the object pt of the
bordism category EB1

n. We recall C(pt) = C1 (Example 2.3.8) and hence C(pt)−n = C−n.
For t > 0 let It ∈ EB1

n(pt, pt) be the endomorphism given by the Riemannian spin
1-manifold [0, t] ⊂ R. We note that the composition It ◦ It′ is represented by gluing
together the spin 1-manifolds [0, t′] and [0, t], identifying 0 ∈ [0, t] with t′ ∈ [0, t′] by
means of the translation t′ ∈ R+. This results in the spin 1-manifold [0, t + t′]. We
note that I∗t = It, since reflection at the midpoint of the interval It is a spin structure
reversing isometry.

As discussed in remark 2.3.18, if E : EB1
n → Hilb is a Clifford linear EFT of degree

n, then E(pt) is a right Cn-module and E(It) : E(pt) → E(pt) is an even, Clifford linear
Hilbert-Schmidt operator. Furthermore, due to I∗t = It, and the required compatibility of
E with the anti-involution ∗, the operator E(It) is self-adjoint. The relation It◦It′ = It+t′
in the category EB1

n implies that

R+ −→ HSev,saCn
(E(pt)) t 7→ E(It) (3.1.3)

is a semi-group homomorphism. Extending the Hilbert-Schmidt endomorphism E(It)
of E(pt) ⊂ H to all of H by setting it zero on E(pt)⊥ defines the desired semi-group
homomorphism R(E) : R+ → HSev,saCn

(H).

Sketch of proof of Proposition 3.1.1. Concerning the injectivity of the mapR, we observe
that the functor E : EB1

n → Hilb can be recovered from E(pt) (as graded right module
over Cn) and E(It) as follows. Every spin 0-manifold Z is a disjoint union of copies of
pt and p̄t and hence E(Z) is determined by the Hilbert space E(pt), E(pt) = E(pt)
and the requirement that E sends disjoint unions to tensor products. Concerning the
functor E on morphisms, we note that E(c) for c ∈ C(pt)−n = C−n ⊂ EB1

n(pt, pt)
is determined by the (left) C−n-module structure on E(pt) ⊂ H. Similarly, the im-
age of the endomorphism ε ∈ Bn

1 (pt, pt) is the grading involution on E(pt). Now the
morphisms of the category EB1

n are generated by It, c ∈ C(pt)−n and ε using the opera-
tions of composition, disjoint union, the involution ·̄ and the adjunction transformations
EB1

n(∅, Z1 q Z2) → EB1
n(Z1, Z2). For example, It can be interpreted as an element of

EB1
n(pt, pt) or EB1

n(∅, pt q pt) or EB1
n(ptqpt, ∅). The second and third interpretation

correspond to each other via the involution ·̄; the first is the image of the second under
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the natural transformation EB1
n(∅, pt q pt) → EB1

n(pt, pt). It can be shown that the
composition

∅
It−→ pt q pt

It′−→ ∅ (3.1.4)

is the circle Sapt+t′ of length t+ t′ with the anti-periodic spin structure, while

∅
It−→ pt q pt

εq1
−→ pt q pt

It′−→ ∅ (3.1.5)

is Spert+t′ , the circle of length t + t′ with the periodic spin structure. The best way to
remember this result is to embed I as the upper semicircle into the complex plane. For
x ∈ I, the real line S+

x (I) can be identified with the complex numbers whose square lies in
TxI ⊂ C. It follows that the spinor bundle S+(I) is a band twisted by π/2 (or a ‘quarter
twist’). This is consistent with the fact that S(∂I) consists of one even line, and one
odd line (which are orthogonal). Gluing two such quarter twisted bands together gives
a half twisted band (i.e. the anti-periodic spin structure on the corresponding circle).
This also follows from the fact that this circle bounds a disk in the complex plane, and is
thus spin zero-bordant. Gluing together two quarter twisted bands using the half twist
ε gives a fully twisted band (i.e. the periodic spin structure on S1).

The fact that the morphisms in EB1
n are generated by It, ε and c ∈ C(pt)−n implies

that the functor E is determined by the semi-group homomorphism E(It). Hence the
map E 7→ E(It) is injective. Surjectivity of this map is proved by similar arguments by
analyzing the relations between these generators.

Remark 3.1.6. As in our motivating Example 2.3.3 for a Clifford linear field theory, let
M be a Riemannian spin manifold of dimension n and consider the semi-group of Hilbert-
Schmidt operators t 7→ e−tD

2

acting on the Hilbert space L2(M ;S). Then Proposition
3.1.1 (or rather its version for real EFT’s) shows that there is a real Clifford linear EFT
of degree n with E(pt) = L2(M ;S) and E(It) = e−tD

2

.
This EFT contains interesting information, namely the Clifford index ofD, an element

ofKOn(pt), see [LM, §II.10]. We recall (see e.g. [LM, Ch. I, Theorem 9.29]) thatKOn(pt)
can described asKOn(pt) = M(Cn)/i

∗M(Cn+1), where M(Cn) is the Grothendieck group
of graded right modules over the Clifford algebra Cn, and i∗ is induced by the inclusion
map Cn → Cn+1. Hence the Cn-module kerD2 represents an element of KOn(pt). The
crucial point is that [kerD2] ∈ KOn(pt) is independent of the choice of Riemannian
metric used in the construction of D. The argument is this: the eigenspace Eλ of D2

with eigenvalue λ is a Cn-module; for λ > 0 the automorphism λ−1/2εD of Eλ has square
−1 and anti-commutes with right multiplication by v ∈ Rn ⊂ Cn. In other words, the
graded Cn-module structure on Eλ extends to a Cn+1-module structure. This shows that
[kerD2] = [E<ρ] ∈ KOn(pt), where E<ρ(D

2) for ρ > 0 is the (finite dimensional) sum of
all eigenspaces Eλ with eigenvalue λ < ρ. Choosing a ρ not in the spectrum of D2, the
Cn-module E<ρ(D

2) can be identified with E<ρ((D
′)2) for any sufficiently close operator

D′, in particular for Dirac operators corresponding to slightly deformed metrics on M .
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This shows that [E<ρ(D
2)] ∈ KOn(pt) is independent of the choice of ρ > 0 as well as

the metric on M . We note that in terms of the EFT, the Clifford index can be described
as [E>ρ(E(It))] ∈ KOn(pt), where E>ρ(E(It)) is the sum of all eigenspaces of E(It) with
eigenvalue > ρ (a finite dimensional graded Cn-module); the argument above shows that
this is independent of t and ρ > 0.

This example suggests that the space of 1-dimensional EFT’s of degree n contains
interesting ‘index information’ and that we should analyze its homotopy type. Unfortu-
nately, the result is that it is contractible! To see this, use Proposition 3.1.1 to identify
this space with the space of semi-groups t 7→ Pt of even, self-adjoint, Cn-linear Hilbert-
Schmidt operators. We note that if Pt is such a semi-group, then so is t 7→ stPt for any
s ∈ [0, 1], which implies that the space of these semi-groups is contractible.

3.2 Super symmetric 1-dimensional field theories

After the ‘bad news’ expressed by the last remark, we’ll bring the ‘good news’ in this
section: if we replace 1-dimensional EFT’s by super symmetric EFT’s, then we obtain a
space with a very interesting homotopy type. Before stating this result and explaining
what a super symmetric EFT is, let us motivate a little better why super symmetry is
to be expected to come in here.

Remark 3.2.1. Let E be a real EFT of degree n. Then motivated by Remark 3.1.6, one
is tempted to define its Clifford index in KOn(pt) to be represented by the Cn-module
E>ρ(E(It)) (the sum of the eigenspace of E(It) with eigenvalue > ρ). However, in general
this does depend on t and ρ; moreover, for fixed t, ρ replacing the semi-group E(It) by
the deformed operator stE(It) leads to a trivial module for sufficiently small s! This
simply comes from the fact that this operator has no Eigenvalues > ρ for sufficiently
small s.

What goes wrong is this: the arguments in Remark 3.2.13 show that there is a
non-negative, self-adjoint, even operator A (not bounded!) on some subspace H ′ ⊂ H
which is an infinitesimal generator of the semi-group E(It) in the sense that E(It) =
e−tA ∈ HSev,saCn

(H ′) ⊂ HSev,saCn
(H) (this inclusion is given by extending by 0 on the

orthogonal complement of H ′ in H). However, in general A is not the square of an odd
operator D, and so the argument in Remark 3.1.6 showing that [E>ρ(E(It))] ∈ KOn(pt)
is independent of t, ρ fails.

The argument goes through for those semi-groups R+ → HSev,saCn
(H) whose genera-

tors are squares of odd operators; we will see that these are precisely those semi-group
which extend to ‘super homomorphims’ R

1|1
+ → HSsa

Cn
(H).

Definition 3.2.2. (Susy EFT of degree n). A super symmetric 1-dimensional Eu-
clidean field theory (or susy EFT) of degree n is a continuous functor

E : SEB1
n −→ Hilb
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satisfying the compatibility conditions 2.1.1. Here SEB1
n is the ‘super’ version of the

1-dimensional bordism category EB1
n, where 1-dimensional Riemannian manifolds (which

are morphisms in EB1
n) are replaced by super manifolds of dimension (1|1) with an

appropriate ‘super’ structure corresponding to the metric.

We refer to [DW] or [Fr2] for the definition of super manifolds. To a super manifold
M of dimension (n|m) we can in particular associate

• its ‘algebra of smooth functions’ C∞(M), which is a Z/2-graded, graded commu-
tative algebra;

• an ordinary manifold M red of dimension n so that C∞(M red) (the smooth functions
on M red) is the quotient of C∞(M) by its nil radical.

One assumes that C∞(M) is a locally free module over C∞(M red). A basic example of
a super manifold of dimension (n|m) is Rn|m with

(Rn|m)red = R
n and C∞(Rn|m) = C∞(Rn) ⊗ Λ∗

R
m.

More generally, if Σ is a manifold of dimension n and E → Σ is a real vector bundle of
dimension m, then there is an associated super manifold M of dimension (n|m) with

M red = Σ and C∞(M) = C∞(Σ,Λ∗E∗),

where C∞(Σ,Λ∗E∗) is the algebra of smooth sections of the exterior algebra bundle Λ∗E∗

generated by the dual vector bundle E∗.
In particular, if Σ is a spin bordism between 0-manifolds Y1 and Y2, then we can

interpret Σ as a super manifold of dimension (1|1) (using the even part S+ → Σ of
the spinor bundle) and Y1, Y2 as super manifolds of dimension (0|1); in fact then Σ is a
‘super bordisms’ between Y1 and Y2 with Σred being the original bordism between Y red

1

and Y red
2 . The question is what is the relevant geometric structure on Σ, which reduces to

the Riemannian metric on the underlying 1-manifold Σred? We note that a Riemannian
metric on an oriented 1-manifold determines a unique 1-form which evaluates to 1 on
each unit vector representing the orientation. Conversely, a nowhere vanishing 1-form
determines a Riemannian metric. We generalize this point of view by defining a metric
structure on a (1|1)-manifold Σ to be an even 1-form ω (see [DW, §2.6] for the theory of
differential forms on super manifolds) such that

• ω and dω are both nowhere vanishing (interpreted as sections of vector bundles
over Σred) and

• the Berezin integral of ω over (0|1)-dimensional submanifolds is positive.

On Σred ⊂ Σ such a form ω restricts to a nowhere vanishing 1-form which in turn
determines a Riemannian metric on Σred.
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Example 3.2.3. For example, on the (1|1)-dimensional super manifold R1|1 with even
coordinate t and odd coordinate θ, the form ω = dz+ ηdη is a metric structure (we note
that dω = dη ∧ dη 6= 0; the form dη is an odd 1-form and hence commutes with itself
according to equation (2.6.3) in [DW]). The Berezin integral of ω over {t} × R0|1 gives
the value 1 for every t (the form dt− ηdη gives the value −1 and hence is not a metric
structure). The form ω restricts to the standard form dz on (R1|1)red = R by setting
η = 0. In particular, the metric structure ω induces the standard Riemannian metric on
(R1|1)red = R.

With this terminology in place we can define SEB1
n. It is a category (enriched over

super manifolds!) and its morphisms consist of ‘super bordisms’ as in EB1
n, except

that 1-dimensional spin bordisms Σ equipped with Riemannian metrics are replaced by
(1|1)-dimensional super bordisms equipped with a metric structure. In particular, the
endomorphism spaces of each object are now super semigroups, compare Definition 3.2.7.

1-EFT’s and the K-theory spectrum. We can now give a precise formulation of
Theorem 1.0.1 from the introduction. It says that the space EFTn of susy EFT’s of degree
n has the homotopy type of K−n, the (−n)-th space in the Ω-spectrum K representing
periodic complex K-theory. Here K0 = Ω∞K is the 0-th space in the spectrum K, and
all the spaces Kn, n ∈ Z are related to each other by ΩKn ' Kn−1. Note that this
implies that the connected components of the space of susy EFT’s of degree n are the
homotopy groups of the spectrum:

π0(EFTn) = π0(K−n) = K−n(pt) = Kn(pt) (3.2.4)

Remark 3.2.5. There is an R-version of the above result (with the same proof), namely
that the space EFT R

n of real susy EFT’s of degree n is homotopy equivalent to KO−n,
the (−n)-th space in the real K-theory spectrum KO.

To convince the reader that one can really do explicit constructions in terms of these
spaces of field theories, we will describe the Thom class of a spin vector bundle and the
family Dirac index of bundle with spin fibers in terms of maps into these spaces (see
Remarks 3.2.22 and 3.2.21).

The ‘super’ analog of Proposition 3.1.1 is then the following result.

Proposition 3.2.6. There is a bijection

EFTn
R

−→ Hom(R
1|1
+ , HSsaCn

(H))

Here HSsaCn
(H) is the super (Z/2-graded) algebra of self-adjoint Cn-linear Hilbert-

Schmidt operators on a Hilbert space H which is a graded right module over Cn (con-

taining all irreducible Cn-modules infinitely often). The ‘super semi group’ R
1|1
+ and

homomorphisms between super semi groups are defined as follows.
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Definition 3.2.7. (The super group R1|1). We give R1|1 the structure of a ‘super
group’ by defining a multiplication

R
1|1 × R

1|1 −→ R
1|1 (t1, θ1), (t2, θ2) 7→ (t1 + t2 + θ1θ2, θ1 + θ2);

here the points of R
1|1 are parametrized by pairs (t, θ), where t is an even and θ is an

odd variable.
What do we mean by ‘odd’ and ‘even’ variables, and how do we make sense of the

above formula? A convenient way to interpret these formulas is to extend scalars by some

exterior algebra Λ and form R1|1(Λ)
def
= (R1|1 ⊗ Λ)ev, called the Λ-points of R1|1. Here

R1|1 = R⊕R is just considered as a graded vector space, with one copy of R in even, the
other copy of R of odd degree, so that (R1|1 ⊗ Λ)ev = Λev ⊕ Λodd. Now considering (t, θ)
as an element of R

1|1(Λ) the formula in Definition 3.2.7 makes sense: for t1, t2 ∈ Λev and
θ1, θ2 ∈ Λodd, we have t1 + t2 + θ1θ2 ∈ Λev and θ1 + θ2 ∈ Λodd and it is easy to check that
in this fashion we have given R1|1(Λ) the structure of a group. But how about a ‘super
group structure’ on R1|1 itself? Well, in one approach to super groups putting a super
group structure on R1|1 is by definition the same as putting a group structure on R1|1(Λ)
for every Λ, depending functorially on Λ. In particular, the formula in Definition 3.2.7
gives R1|1 the structure of a super group.

Hopefully, the reader can now guess what a homomorphism A → B between super
groups is: it is a family of ordinary group homomorphisms A(Λ) → B(Λ) depending
functorially on Λ. A particularly interesting example of a super homomorphism is given
in Example 3.2.9.

Remark 3.2.8. It is well-known that the group of orientation preserving isometries of
R equipped with its standard orientation and metric can be identified with R acting on
itself by translations. Similarly the group of automorphisms of the super manifold R1|1

preserving the metric structure ω = dz+ ηdη can be identified with the super group R1|1

acting on itself by translations. Let us check that for (t, θ) ∈ R1|1 the translation

Tt,θ : R
1|1 −→ R

1|1 (z, η) 7→ (t+ z + θη, θ + η)

preserves the form ω:

T ∗
t,θdz = d(t+ z + θη) = dz − θdη T ∗

t,θdη = d(θ + η) = dη

and hence
T ∗
t,θω = (dz − θdη) + (θ + η)dη = dz + ηdη = ω.

The Λ-points R
1|1
+ (Λ) of the super space R

1|1
+ consist of all (t, θ) ∈ Λev

+ ⊕ Λodd, where
the Λ0-component of t is positive. We note that the multiplication on R

1|1 restricts to
a multiplication on R

1|1
+ , but there are no inverses; i.e., R

1|1
+ is a ‘super semi-group’.

It is the analog of R+ (where ‘multiplication’ is given by addition): we can interpret
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R+ as the moduli space of of intervals equipped with Riemannian metrics; similarly,
R

1|1
+ can be interpreted as the moduli space of ‘super intervals with metric structures’.

The multiplication on R+ (resp. R
1|1
+ ) corresponds to the gluing of intervals (resp. super

intervals).

Example 3.2.9. (A super homomorphism). Let H be the Z/2-graded Hilbert space
of L2-sections of the spinor bundle on a compact spin manifold, let D be the Dirac
operator acting on H, and let HSsa(H) be the space of self-adjoint Hilbert-Schmidt

operators on H. Then we obtain a map of super spaces R
1|1
+ → HSsaC−n

(H) by defining
it on Λ-points in the following way:

R
1|1
+ (Λ) = Λev

+ × Λodd −→ HSsa(H)(Λ) = (HSsa(H) ⊗ Λ)ev

(t, θ) 7→ e−tD
2

+ θDe−tD
2

.

Here e−tD
2

is defined for real-valued t > 0 via functional calculus; for a general t, we
decompose t in the form t = tB + tS with tB ∈ R+ = Λ0

+ and tS ∈
⊕∞

p=1 Λ2p (physics
terminology: tB is the ‘body’ of t, while tS is the ‘soul’ of t). Then we use Taylor
expansion to define e−tD

2

= e−(tB+tS)D2

as an element of HSsa(H)⊗Λ (we note that the
Taylor expansion gives a finite sum since tS is nilpotent). We note that θ and D are both
odd, so that e−tD

2

+ θDe−tD
2

is indeed in the even part of the algebra HSsa(H) ⊗ Λ.
We will check in the proof of Lemma 3.2.14 that the map defined above is in fact a super
homomorphism.

Definition 3.2.10. (Construction of R). We recall from Remark 3.2.8 that for
(t, θ) ∈ R1|1 the translation Tt,θ : R1|1 −→ R1|1 preserves the metric structure given
by the even 1-form ω = dz+ ηdη from example 3.2.3. For t > 0, we will write It,θ for the
(1|1)-dimensional super manifold [0, t] × R0|1 ⊂ R1|1 equipped with the metric structure
given by ω (the Λ-points of [0, t]×R0|1 consist of all (z, η) ∈ R1|1 such that zB, the ‘body’

of z is in the interval [0, t]). We consider It,θ as a super bordism between pt
def
= 0 × R0|1

and itself by identifying 0 × R0|1 with {t} × R0|1 by means of the translation T(t,θ). The
composition of It1,θ1 and It2,θ2 in the category SEB1

n (given by gluing of these ‘super
bordisms’) is then given by

It2,θ2 ◦ It1,θ1 = It1+t2+θ1θ2,θ1+θ2,

since we use the translation Tt1 ,θ1 to identify [0, t2] × R0|1 with [t1, t1 + t2] × R0|1. This
then ‘fits’ together with [0, t1] × R0|1 to form the bigger domain [0, t1 + t2] × R0|1, the
relevant identification between {0} × R

0|1 and the right hand boundary {t1 + t2} × R
0|1

of this domain is given by Tt2 ,θ2 ◦ Tt1,θ1 = Tt1+t2+θ1θ2,θ1+θ2 .
This implies that

R(E) : R
1|1
+ −→ HS(E(pt)) ⊂ HS(H) (t, θ) 7→ E(It,θ)
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is a super homomorphism. As in Definition 3.1.2 it follows that E(It,θ) is a self-adjoint
operator. However, in general it won’t be even; unlike the situation in the category EB1

n

in the super bordism category SEB1
n the spin involution ε = εpt (see definition 2.3.4)

does not commute with It,θ; rather we have

ε ◦ It,θ ◦ ε = It,−θ. (3.2.11)

To see this, we recall that the spin involution εΣ of a conformal spin manifold Σ is the
identity on Σ and multiplication by −1 on the fibers of the spinor bundle S(Σ) → Σ. If
Σ is d-dimensional, this is an involution on the (d|2d)-dimensional super manifold S(Σ).
In particular for Σ = {0} ⊂ R, S(Σ) can be identified with {0}× R0|1 ⊂ R1|1 on which ε
acts by (z, η) 7→ (z,−η). It is easy to check that the translation Tt,θ and the involution
ε (considered as automorphism of R1|1) satisfy the relation ε ◦ Tt,θ ◦ ε = Tt,−θ. This in
turn implies the relation (3.2.11) between endomorphism of pt = {0} × R

0|1

The equation (3.2.11) shows that restricting a super symmetric EFT E : SEB1
n → Hilb

to the semi-group of morphisms It,θ ∈ SEB1
n(pt, pt) gives a Z/2-equivariant semi-group

homomorphism R(E) as desired.

The proof of Proposition 3.2.6 is analogous to the proof of Proposition 3.1.1, so we
skip it. The proof of Theorem 1.0.1 is based on a description of K-theory in terms of
homomorphisms of C∗-algebras. We recall that a C∗-algebra A is a subalgebra of the
algebra of bounded operators on some Hilbert space which is closed under the operation
a 7→ a∗ of taking adjoints and which is a closed subset of all bounded operators with
respect to the operator norm. Equivalently, A is an algebra (over R or C) equipped with
a norm and an anti-involution ∗ satisfying some natural axioms [BR],

[Co1], [HR].
The examples of C∗-algebras relevant to us are:

• The C∗-algebra C0(R) of continuous real valued functions on R which vanish at
∞ with the supremum norm and trivial ∗-operation. This is a Z/2-graded algebra
with grading involution ε : C0(R) → C0(R) induced by t 7→ −t for t ∈ R.

• The C∗-algebra K(H) of compact operators on a Hilbert space H; if H is graded,
K(H) is a graded C∗-algebra. More generally, if H is a graded module over the
Clifford algebra Cn, then the algebra KCn(H) of Cn-linear compact operators is a
graded C∗-algebra.

If A, B are graded C∗-algebras, let C∗(A,B) be the space of grading preserving ∗-homo-
morphisms f : A → B (i.e., f(a∗) = f(a)∗; such maps are automatically continuous)
equipped with the topology of pointwise convergence, i.e., a sequence fn converges to f
if and only if for all a ∈ A the sequence fn(a) converges to f(a).
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Theorem 3.2.12 (Higson-Guentner [HG]). Let H be a real Hilbert space which
is a graded right module over the Clifford algebra Cn (containing all irreducible Cn-
modules infinitely often). Then the space C∗(C0(R),KCn(H)) is homotopy equivalent to
the (−n)-th space in (the Ω-spectrum equivalent to) the real K-theory spectrum KO.

Remark 3.2.13. This picture of K-theory is derived from Kasparov’s KK-theory, see
e.g. [HR]. It is also closely related to a geometric picture of KO-homology due to
Graeme Segal [Se3]. We note that if ϕ : C0(R) → K(H) is a ∗-homomorphism (not
necessarily grading preserving), then ϕ(f) for f ∈ C0(R) is a family of commuting
self-adjoint compact operators. By the spectral theorem, there is a decomposition of
H into mutually perpendicular simultaneous eigenspaces of this family. On a particular
eigenspace the corresponding eigenvalue λ(f) of ϕ(f) determines a real number t ∈ R∪∞
such λ(f) = f(t) (any algebra homomorphism C0(R) → C is given by evaluation at some
point t ∈ R ∪ ∞). The eigenspaces are necessarily finite dimensional (except possibly
for t = ∞), and the only accumulation point of points t ∈ R corresponding to a non-
trivial eigenspace is ∞. Hence a C∗-homomorphism ϕ determines a configuration of
points on the real line with labels which are mutually perpendicular subspaces of H
(given by the corresponding eigenspaces); conversely, such a configuration determines a
C∗-homomorphism ϕ. The conjugation involution on the space of all ∗-homomorphisms
C0(R) → K(H) (whose fixed point set is C∗(C0(R),K(H))) corresponds to the involution
on the configuration space induced by t 7→ −t and the grading involution on H. We
observe that this implies that every grading preserving ∗-homomorphism ϕ : C0(R) →
K(H) is of the form f 7→ f(D) ∈ K(H ′) ⊂ K(H), where H ′ ⊂ H is the subspace given
by the direct sum of all subspaces Et of H which occur as ‘labels’ of points t ∈ R of the
configuration corresponding to ϕ. The operator D : H ′ → H ′ has Et as its eigenspace
with eigenvalue t; the equivariance condition implies that D is an odd operator.

A geometric model for C∗(C0(R),KCn(H)) is obtained by requiring that the points
t ∈ R are labeled by Cn-linear subspaces of H.

Theorem 1.0.1 follows from Theorem 3.2.12 and the following result.

Lemma 3.2.14. The inclusion map HSsaC−n
(H) → Ksa

C−n
(H) induces a homotopy equiv-

alence of the corresponding spaces of homomorphisms of super groups from R
1|1
+ to

HSsaC−n
(H) resp. Ksa

C−n
(H). Moreover, there is a homeomorphism

C∗(C0(R),KCn(H))
≈

−→ Hom(R
1|1
+ ,Ksa

Cn
(H))

Sketch of proof. Let us outline the proof of the second part. The homeomorphism is given
by sending a grading preserving ∗-homomorphism ϕ : C0(R) → KCn(H) (which may be

considered a super homomorphism!) to the composition R
1|1
+

χ
−→ C0(R)

ϕ
−→ KCn(H),

where χ is the map of super spaces given on Λ-points by

R
1|1
+ (Λ) = Λev × Λodd χ(Λ)

−→ C0(R)(Λ) = (C0(R,Λ))ev

(t, θ) 7→ e−tx
2

+ θxe−tx
2

.
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Here the expression e−tx
2

+ θxe−tx
2

is interpreted the same way as in example 3.2.9: for
t ∈ R+ ⊂ Λev

+ , e−tx
2

, xe−tx
2

are obviously elements of C0(R); for general t = tB + tS we
use Taylor expansion around tB.

Let us check that χ(Λ) is in fact a homomorphism:

(e−t1x
2

+ θ1xe
−t1x2

)(e−t2x
2

+ θ2xe
−t1x2

)

= e−(t1+t2)x2

− θ1θ2x
2e−(t1+t2)x2

+ (θ1 + θ2)xe
−(t1+t2)x2

= e−(t1+t2+θ1θ2)x2

+ (θ1 + θ2)xe
−(t1+t2)x2

= e−(t1+t2+θ1θ2)x2

+ (θ1 + θ2)xe
−(t1+t2+θ1θ2)x2

Here the minus sign in the second line comes from permuting the odd element x past
the odd element θ2; the second equality follows by taking the Taylor expansion of
e−(t1+t2+θ1θ2)x2

around the point t1 + t2; the third equality follows from the observation
that the higher terms of that expansion are annihilated by multiplication by θ1 + θ2.

To finish the proof, one needs to show that the above map χ induces an isomorphism
of graded C∗-algebras

C∗(R
1|1
+ ) ∼= C0(R)

where the left hand side is the C∗-algebra generated by the super semigroup R
1|1
+ .

Theorem 1.0.1 and its real analog identify in particular the components of the space
EFTn (resp. EFT R

n ) of complex (resp. real) super symmetric 1-field theories of degree n;
there is a commutative diagram

π0EFT R

n
Θ

−−−→
∼=

KOn(pt)
def
= M(Cn)/i

∗M(Cn+1)
y

y

π0EFTn
Θ

−−−→
∼=

Kn(pt)
def
= MC(Cn)/i

∗MC(Cn+1)

,

where the horizontal isomorphisms are given by the theorem and the vertical maps
come from complexification; M(Cn) (resp. MC(Cn)) is the Grothendieck group of real
(resp. complex) graded modules over the Clifford algebra Cn, and i∗ is induced by the
inclusion map Cn → Cn+1 (this way of relating K-theory and Clifford algebras is well-
known; see for example [LM, Ch. I, Theorem 9.29]). Explicitly, the map Θ is given by
associating to a field theory E (real or complex) the graded Cn-module E>ρ(E(It)) (the
finite dimensional sum of the eigenspaces of E(It) with eigenvalue > ρ); the argument
in Remark 3.1.6 shows that its class in K-theory is independent of t, ρ and depends only
on the path component of E in EFTn.

By Bott-periodicity, K2k+1(pt) = 0 and K2k
∼= Z. This isomorphism can be described

explicitly as follows.
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Lemma 3.2.15. For n even the map

MC(Cn)/i
∗MC(Cn+1) −→ Z [M ] 7→ str(γ⊗n : M →M)

is an isomorphism. Here γ
def
= 2−1/2i1/2e1 ∈ C1 ⊗ C and γ⊗n = γ ⊗ · · · ⊗ γ ∈ C`n =

C`1 ⊗ · · · ⊗ C`1, where C`n = Cn ⊗R C is the complexified Clifford algebra.

Proof. The complex Clifford algebra C`2 is isomorphic to the algebra of complex 2 ×
2-matrices. Let ∆ = C2 be the irreducible module over C`2; make ∆ a graded module by
declaring the grading involution ε to be multiplication by the ‘complex volume element’
ωC = ie1e2 ∈ C`2 [LM, p. 34]. It is well-known that ∆⊗k (the graded tensor product of k
copies of ∆) represents a generator of MC(C2k)/i

∗MC(C2k+1) [LM, Ch. I, Remark 9.28].
We have

γ⊗2 = γ ⊗ γ =
i

2
e1e2 =

1

2
ωC ∈ C`1 ⊗ C`1 = C`2.

We note that for any homomorphism f : M →M on a graded vector space with grading
involution ε we have str(f) = tr(εf). In particular, for M = ∆ with grading involution
ε = ωC we obtain

str(ωC : ∆ → ∆) = tr(ω2
C
) = tr(1∆) = dim ∆ = 2.

This implies str(γ⊗2 : ∆ → ∆) = 1 and hence str(γ⊗2k : ∆⊗k → ∆⊗k) = 1.

The above lemma motivates the following

Definition 3.2.16. If M is a finite dimensional graded Cn module we define its Clifford
super dimension as

sdimCn(M)
def
= str(γ⊗n : M →M)

More generally, if f : M → M is a Cn-linear map then we define its Clifford super trace
as

strCn(f)
def
= str(γ⊗nf : M →M).

We note that the definition of the Clifford super trace continues to make sense for not
necessarily finite dimensional modules M , provided f is of trace class, i.e., f is the
composition of two Hilbert-Schmidt operators (this guarantees that the infinite sums
giving the super trace above converge).

The simplest invariants associated to a field theory E are obtained by considering a
closed d-manifold Σ equipped with a fermion Ψ ∈ Falg(Σ), and to regard (Σ,Ψ) as an
endomorphism of the object ∅; then E(Σ,Ψ) ∈ Hilb(E(∅), E(∅)) = Hilb(C,C) = C. For
d = 1 we obtain the following result:
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Lemma 3.2.17. Let It the interval of length t, let Spert (resp. Sapt resp. St) be the circle
of length t with the periodic (resp. anti-periodic resp. unspecified) spin structure. Let
µ : Falg(It) → Falg(St) be the fermionic gluing map and let Ψ ∈ Falg(It)

−n. If E is a
EFT, then

E(Spert , µ(Ψ)) = str(E(It,Ψ)) E(Sapt , µ(Ψ)) = tr(E(It,Ψ)).

This lemma follows from decomposing Spert+t′ resp. Sapt+t′ as in equation 3.1.4 (resp.
3.1.5) and noting that the algebraic analog of this chain of morphisms is just the trace
(resp. super trace) of E(It1 ◦ It2) = E(It1+t2).

Remark 3.2.18. We remark that unlike tr(E(It,Ψ)) the function str(E(It,Ψ)) is inde-
pendent of t: super symmetry implies that the generator A of the semi-group E(It) =
e−tA : E(pt) → E(pt) is the square of an odd operator. This implies that for any
c ∈ C(pt)−n = C−n the contributions to the super trace of E(It, cΩ

−n) = E(c)E(It) =
E(c)e−tA coming from eigenspaces of A with non-zero eigenvalues vanish and hence
str(E(c)e−tA) = str(E(c) : kerA→ kerA) is independent of t (cf. Remark 3.2.1).

Definition 3.2.19. If E is a EFT of degree n, we will call the function

ZE(t)
def
= strCn(E(It)) = str(γ⊗nE(It)) = E(Spert , µ(γΩ)⊗n)

the partition function of E. The previous remark shows that this function is constant
if E is super symmetric. This terminology is motivated by the fact that physicists refer
to the analogous function for higher dimensional field theories as partition function (see
Definition 3.3.5 for the case of 2-dimensional conformal field theories).

Putting Theorem 1.0.1, Lemma 3.2.15 and Lemma 3.2.17 together, we obtain:

Corollary 3.2.20. There is a bijection

π0EFT2k −→ Z

which sends the EFT E to its (constant) partition function ZE(t) ∈ Z.

It is desirable to describe certain important K-theory classes (like the families index
or the Thom class) as maps to the space EFTn of field theories of degree n. Below we

do something a little less: we describe maps to the space Hom(R
1|1
+ , HSsaCn

(H)), which is
homeomorphic to EFTn by Proposition 3.2.6; in other words, we describe the associated
EFT only on the standard super interval It,θ.

Remark 3.2.21. (The index of a family of spin manifolds). Let π : Z → X be
a fiber bundle with fibers of dimension n. Assume that the tangent bundle τ along the
fibers has a spin structure; this implies that π induces a map π∗ : KO(Z) → KO−n(X)
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called ‘Umkehr map’ or ‘integration over the fiber’. If ξ → Z is a real vector bundle, the
element

π∗(ξ) ∈ KO−n(X) = [X,KO−n] = [X, EFT R

n ]

can be described as follows. Let S → Z be the C(τ)−Cn-bimodule bundle representing
the spin structure on τ . Then we obtain a Cn-bundle over X whose fiber over x ∈ X
is L2(Zx, (S ⊗ ξ)|Zx), the Hilbert space Hx of L2-sections of S ⊗ ξ restricted to the fiber
Zx. The Dirac operator Dx ⊗ ξ on Zx ‘twisted by ξ’ acts on Hx and commutes with the
(right) Cn-action on Hx induced by the action on S. Since the space of Cn-linear grading
preserving isometries is contractible, we may identify Hx with a fixed real Hilbert space
HR with Cn-action. Then the map

X −→ Hom(R
1|1
+ , HSsaCn

(HR)) ∼= EFT R

n x 7→ ((t, θ) 7→ ft,θ(Dx ⊗ ξ))

represents the element π∗(ξ); here ft,θ = e−tx
2+θx = e−tx

2

+ θxe−tx
2

∈ C0(R) for (t, θ) ∈
R

1|1; functional calculus can then be applied to the self-adjoint operatorDx⊗ξ to produce
the super semi-group ft,θ(Dx ⊗ ξ) of even self-adjoint Hilbert-Schmidt operators.

Remark 3.2.22. (The KO-theory Thom class). Let π : ξ → X be an n-dimensional
vector bundle with spin structure given by the C(ξ) − Cn-bimodule bundle S → X (see
Remark 2.3.1). We may assume that there is a real Hilbert space HR which is a graded
Cn-module, and that S is a Cn-linear subbundle of the trivial bundle X ×HR. We note
that for v ∈ ξ the Clifford multiplication operator c(v) : Sx → Sx is skew-adjoint, and
εc(v) is selfadjoint (ε is the grading involution); moreover, εc(v) commutes with the right
action of the Clifford algebra C−n = C(−R

n) if we let w ∈ R
n act via εc(w). Then the

map

ξ −→ Hom(R
1|1
+ , HSsaC−n

(HR)) ∼= EFT R

−n

v 7→ ((t, θ) 7→ ft,θ(εc(v)) ∈ HSsaC−n
(Sπ(v)) ⊂ HSsaC−n

(HR)

extends to the Thom space Xξ and represents the KO-theory Thom class of ξ in
KOn(Xξ) = [Xξ, EFT R

−n].

3.3 Conformal field theories and modular forms

In this section we will show that CFT’s of degree n (see Definition 2.3.16) are closely
related to modular forms of weight n/2. For a precise statement see Theorem 3.3.4
below. Let us first recall the definition of modular forms (cf. [HBJ, Appendix]).

Definition 3.3.1. A modular form of weight k is a function f : h → C which is holo-
morphic (also at i∞) and which has the following transformation property:

f(aτ+b
cτ+d

) = (cτ + d)kf(τ) for all ( a bc d ) ∈ SL2(Z). (3.3.2)
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Let us recall what ‘holomorphic at i∞’ means. The transformation property for the
matrix ( 1 1

0 1 ) implies the translation invariance

f(τ + 1) = f(τ).

It follows that f : h → C factors through h/Z, which is conformally equivalent to the
punctured open unit disc D2

0 by means of the map

h −→ D2
0 τ 7→ q = e2πiτ .

Then f(τ) is holomorphic at i∞ if the resulting function f(q) on D2
0 extends over the

origin (note that τ → i∞ corresponds to q → 0). Equivalently, in the expansion

f(τ) =
∑

n∈Z

anq
n (3.3.3)

of f(q) as a Laurent series around 0 (this is called the q-expansion of f), we require that
an = 0 for n < 0.

Theorem 3.3.4. If E is a CFT of degree n, then its partition function ZE : H → C (see
definition 3.3.5 below) has the transformation property 3.3.2 of a modular form of weight
n/2.

Definition 3.3.5. (Partition function). We recall from Definition 2.3.12 that for a
closed conformal spin surface Σ the fermionic Fock space Falg(Σ) is the Pfaffian line

Pf(Σ). Given a CFT E of degree n and an element Ψ ∈ Pf−n(Σ)
def
= Falg(Σ)−n, the pair

(Σ,Ψ) represents a morphisms in the category CB2
n from ∅ to ∅; hence we can apply the

functor E to (Σ,Ψ) to obtain an element E(Σ,Ψ) ∈ Hilb(E(∅), E(∅)) = Hilb(C,C) = C.
Since E(Σ,Ψ) depends linearly on Ψ, we obtain an element

ZE(Σ) ∈ Pfn(Σ) = Hom(Pf−n(Σ),C) given by Ψ 7→ E(Σ,Ψ).

We recall that if g : Σ → Σ′ is a conformal spin diffeomorphism and g : Pf−n(Σ) →
Pf−n(Σ′) is the induced isomorphism of Pfaffian lines, then for any Ψ ∈ Pf−n(Σ) the
pairs (Σ,Ψ) and (Σ′, gΨ) represent the same morphism in CB2

n(∅, ∅). In particular we
have

E(Σ,Ψ) = E(Σ′, gΨ) ∈ C and g(ZE(Σ)) = ZE(Σ′) ∈ Pfn(Σ′). (3.3.6)

This property can be used to interpret ZE as a section of a complex line bundle Pfn

over the Teichmüller spaces of conformal spin surfaces which is equivariant under the
action of the mapping class groups. The partition function of E is obtained by restrict-
ing attention to conformal surfaces of genus one with the non-bounding spin structure.
This spin structure is preserved up to isomorphism by any orientation preserving dif-
feomorphism, i.e. by SL2(Z), whereas the other 3 spin structure are permuted. This
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will ultimately have the effect of obtaining a modular form for the full modular group
SL2(Z) rather than for an (index 3) subgroup.

Let us describe the Teichmüller space of this spin torus explicitly. Given a point τ

in the upper half plane h ⊂ C, let Στ
def
= C/(Z + Zτ) be the conformal torus obtained

as the quotient of the complex plane (with its standard conformal structure) by the free
action of the group Z+Zτ ⊂ C acting by translations. Let Aτ be the conformal annulus
obtained as a quotient of the strip {z ∈ C | 0 ≤ im(z) ≤ im(τ)} by the translation group
Z. The annulus is a bordism from S1 = R/Z to itself if we identify R with the horizontal
line {z ∈ C | im(z) = im(τ)} via s 7→ s + τ . So while Aτ as a manifold depends only on
the imaginary part of τ , the identification between ∂Aτ and the disjoint union of Sper

(circle with periodic spin structure) and S̄per depends on the real part of τ . Note that if
we equip C with the standard spin structure given by the bimodule bundle S = C×C2,
then the translation action of C on itself lifts to an action on S (trivial on the second
factor). This implies that the spin structure on C induces a spin structure on Στ (which
is the non-bounding spin structure) and Aτ .

For Y = Sper the space Hilbert V (Y ) from Definition 2.3.6 can be identified with
complex valued functions on the circle. In particular, the constant real functions give us
an isometric embedding R ⊂ V (Sper) and hence an embedding of Clifford algebras C1 =
C(R) → C(Sper). Let Ω ∈ Falg(Aτ ) be the vacuum vector, let γ ∈ C1 ⊗C ⊂ C(Sper)⊗C

be the element constructed in Lemma 3.2.15, and let ξτ ∈ Falg(Στ ) be the image of γΩ
under the fermionic gluing map µ : Falg(Aτ ) → Falg(Στ ). If E is a CFT of degree n (not
necessarily super symmetric), we define its partition function to be the function

ZE : h −→ C τ 7→ E(Στ , ξ
−n
τ ).

We note that for g = ( a bc d ) ∈ SL2(Z) and τ ∈ h the map C → C, z 7→ (cτ + d)−1z
sends the lattice Z+Zτ to Z+Zgτ , gτ = aτ+b

cτ+d
. This conformal diffeomorphism lifts to a

conformal spin diffeomorphism g : Στ → Σgτ , which induces an isomorphism of Pfaffian
lines g∗ : Pf(Στ ) → Pf(Σgτ ).

Lemma 3.3.7. The induced map Pf(Στ )
⊗2 → Pf(Σgτ )

⊗2 sends ξ⊗2
τ to (cτ + d)ξ⊗2

gτ .

Proof of Theorem 3.3.4. We note that the previous lemma and equation 3.3.6 implies
that if E is a CFT of degree 2k, then

ZE(τ) = E(Στ , ξ
−2k
τ ) = E(Σgτ , g∗(ξ

−2k
τ )) = E(Σgτ , (cτ + d)−kξ−2k

gτ ))

= (cτ + d)−kE(Σgτ , ξ
−2k
gτ ) = (cτ + d)−kZE(gτ) (3.3.8)

This shows that the partition function of E has the transformation property (3.3.2) of a
modular form of weight k as claimed by Theorem 3.3.4.

Now we would like to discuss whether the partition function ZE(τ) of a conformal
field theory E of degree 2k is a modular form of weight k; in other words, whether
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ZE(τ) is holomorphic and holomorphic at i∞. The key to this discussion is the following
result whose proof is analogous to that of the corresponding result Lemma 3.2.17 for the
partition function of a 1-dimensional EFT.

Lemma 3.3.9. ZE(τ) = str(E(Aτ , (γΩ)−n)).

We note that E(Sper) is a graded module over the Clifford algebra C(Sper)−n by
letting c ∈ C(Sper)−n act on E(Sper) via the operator E(c). We note that the operator
E(Aτ ) does not commute with the action of the algebra C(Sper)−n, but it does commute
with the subalgebra C−n = C−n

1 ⊂ C(Sper)−n generated by constant functions. Express-
ing (Aτ , (γΩ)−n)) ∈ CB2

n(S
per, Sper) as the composition γ−n ◦Aτ we obtain the following

alternative expression for the partition function (cf. Definition 3.2.16):

ZE(τ) = str(E(γ⊗n)E(Aτ )) = strCn(E(Aτ )). (3.3.10)

The compatibility of E : CB2
n → Hilb with the involution ∗ on both categories implies

that the homomorphism

h → HSevCn
(E(Sper)) τ 7→ E(Aτ ) (3.3.11)

is Z/2-equivariant, where Z/2 acts on h by τ 7→ −τ̄ and on HSCn(H) by taking adjoints.
Any homomorphism ρ : h → HSevCn

(H) has the form

ρ(τ) = qL0 q̄L̄0 q = e2πiτ

where L0, L̄0 are two commuting, even, Cn-linear operators (in general unbounded),
such that the eigenvalues of L0 − L̄0 are integral. Moreover, the homomorphism is
Z/2-equivariant if and only if the operators L0, L̄0 are self-adjoint.

We want to emphasize that the homomorphism (3.3.11) is completely analogous to
the homomorphism

R+ −→ HSev,saCn
(E(pt)) t 7→ E(It)

associated to a 1-dimensional EFT (see Equation (3.1.3)). We’ve shown that E(It)
is always of the form E(It) = e−tA for an (unbounded) self-adjoint, even operator A.
Moreover, if E is the restriction of a super symmetric EFT, i.e., if E extends from the
bordism category EB1

n to the ‘super bordism category’ SEB1
n, then A is the square of an

odd operator. This had the wonderful consequence that for any c ∈ Cn the super trace
str(cE(It)) is in fact independent of t.

Similarly, we would like to argue that if the Clifford linear CFT E is the restriction
of a ‘super conformal’ field theory of degree n, then the infinitesimal generator L̄0 of

E(Aτ ) = qL0 q̄L̄0 (3.3.12)

is the square of an odd self-adjoint operator Ḡ0. Here by ‘super conformal’ field theory of
degree n we mean a functor E : SCB2

n → Hilb (satisfying the usual requirements), where
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SCB2
n is the ‘super version’ of the category CB2

n, in which the conformal spin bordisms are
replaced by super manifolds equipped with an appropriate ‘geometric super structure’,
which induces a conformal structure on the underlying 2-dimensional spin manifold.
Unfortunately our ignorance about super geometry has kept us from identifying the
correct version of this ‘geometric super structure’, but we are confident that this can
be done (or has been done already). In this situation it seems reasonable to proceed
assuming this. In other words, from now on the results in this section all will be subject
to the following

Hypothesis 3.3.13. There is an appropriate notion of ‘super conformal structure’ with
the following properties:

1. on the underlying 2-dimensional spin manifold it amounts to a conformal structure;

2. if E : CB2
n → Hilb is a CFT of degree n which extends to a (yet undefined ‘super

symmetric CFT of degree n’ then L̄0 is the square of an odd operator Ḡ0 (where
L̄0 is as in equation (3.3.12)).

We want to emphasize that the usual notion of ‘super conformal structure’ is not
what is needed here; we will comment further in Remark 3.3.18.

Theorem 3.3.14. Assuming Hypothesis 3.3.13, the partition function ZE of a susy CFT
of degree n is a weak integral modular form of weight n

2
.

Definition 3.3.15. (Weak integral modular forms). A weak modular form is a holo-
morphic function f : h → C with the transformation property (3.3.2), whose q-expansion
(3.3.3) has only finitely many terms with negative powers of q; equivalently, the function
f(q) on the disc has a pole, not an essential singularity at q = 0.

A (weak) modular form is integral if all coefficients an in its q-expansion are integers
(this low-brow definition is equivalent to more sophisticated definitions). An example of
an integral modular form is the discriminant ∆ whose q-expansion has the form

∆ = q
∞∏

n=1

(1 − qn)24.

Other examples of integral modular forms are the the Eisenstein series

c4 = 1 + 240
∑

k>0

σ3(k)q
k c4 = 1 − 504

∑

k>0

σ5(k)q
k,

(modular forms of weight 4 respectively 6) where σr(k) = Σd|kd
r. The ring of integral

modular forms is equal to the quotient of the polynomial ring Z[c4, c6,∆] by the ideal
generated by c34 − c26 − (12)3∆.

Let us denote by MF∗ the graded ring of weak integral modular forms; it is graded
by the degree of a modular form to be twice its weight; the motivation here being that
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with this definition the degree of the partition function of a susy CFT E agrees with the
degree of E. Recall that the discriminant ∆ has a simple zero at q = 0. It follows that
if f is a weak modular form, then f∆N is a modular form for N sufficiently large. As a
consequence,

MF∗ = Z[c4, c6,∆,∆
−1]/(c34 − c26 − (12)3∆).

Proof of Theorem 3.3.14. By equations (3.3.10) and (3.3.12) we have

ZE(τ) = strCn(qL0 q̄L̄0).

We recall that the eigenvalues of L0 − L̄0 are integral; let Hk ⊂ E(Sper) be the subspace
corresponding to the eigenvalue k ∈ Z. According to our hypothesis 3.3.13 we have
L̄0 = Ḡ2

0. This allows us to calculate the partition function ZE(τ) as follows:

ZE(τ) = strCn(qL0 q̄L̄0) = strCn(qL0

| ker L̄0
) (3.3.16)

=
∑

k∈Z

strCn(qL0

| ker L̄0∩Hk
) =

∑

k∈Z

qk sdimCn(ker L̄0 ∩Hk) (3.3.17)

Here the second equality follows from the fact that the eigenspace of L̄0 with non-zero
eigenvalue don’t contribute to the supertrace (see remark 3.2.1); the last equality follows
from the fact that restricted to the kernel of L̄0 the operator L0 = L0 − L̄0 which in turn
is just multiplication by k on Hk. This implies that ZE(τ) is a holomorphic function
with integral coefficients in its q-expansion.

To see that all but finitely many coefficients ak with negative k must be zero, we note
that if ker L̄0 ∩ Hk were 6= 0 for an infinite sequence of negative values of k, we would
run into a contradiction with the fact that qL0 q̄L̄0 is a Hilbert-Schmidt operator.

The above proof suggests to associate to a susy CFT E of degree n the following
homomorphism of super groups

ψk : R
1|1 −→ HSCn(Hk) (t, θ) 7→ e2πi(itL̄0+i1/2θḠ0).

By the result of the previous section, the super homomorphism ψk represents an element
Ψk(E) ∈ π0(EFTn) ∼= Kn(pt). Let us calculate the image of this element under the
isomorphism Kn(pt) ∼= Z (for n even), which is given by associating to Ψk(E) its partition
function. By the arguments leading to corollary 3.2.20, it is given by

strCn(e2πi(itL̄0) acting on Hk) = sdimCn(ker L̄0 ∩Hk)

which is the coefficient ak in the q-expansion of ZE(τ) by comparison with the proof of
theorem 3.3.4.
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Sketch of proof of Theorem 1.0.2. This is a ‘parametrized’ version of the above argu-
ment: if C is a Clifford elliptic object over X, then given a point x ∈ X, we obtain

a susy Clifford linear CFT as the composition Ex : SCB2
n → SCB2

n(X)
C

−→ Hilb; here
the first map is given by using the constant map to x ∈ X. From Ex we manufacture
a collection of homomorphisms ψk(x) : R1|1 → HSCn(Hk) as above; these depend con-
tinuously on x. By the results of the last subsection, the map ψk from X to the space
of homomorphisms represents an element of K−n(X), giving the coefficient of qk in the
Laurent series MF (C) ∈ K−n(X)[[q]][q−1].

Remark 3.3.18. We would like to conclude this section with some comments on our
Hypothesis 3.3.13. The function ρ(τ) = qL0 q̄L̄0 can be rewritten in the form

ρ(τ) = qL0 q̄L̄0 = e2πi[uL0+vL̄0 ],

where u = τ and v = −τ̄ . Geometrically, the new coordinates u, v can be interpreted as
follows: If we think of τ = x + iy with coordinates x, y of h ⊂ R2 and with Euclidean
metric ds2 = dx2 + dy2, then the Wick rotation y 7→ t = iy gives a new coordinate t
with respect to which the metric becomes the Minkowski metric dx2 −dt2. We note that
u, v are the light cone coordinates with respect to the Minkowski metric (i.e., the light
cone consists of the points with uv = 0). In other words, if we write R

2
E for R

2 with
coordinates x, y and the usual Euclidean metric and R2

M for R2 with x, t coordinates
and the Minkowski metric, then the Wick rotation gives us an identification R2

E ⊗ C =
R2
M ⊗ C between the complexifications. Let ρ∗ : Lie(R2

E) ⊂ Lie(R2
E)C → EndCn(H) be

the Lie algebra homomorphism induced by ρ, extended to the complexification Lie(R2
E)C.

Interpreting the translation invariant vectorfields ∂
∂x

, ∂
∂y

on R2
E as elements of Lie(R2

E)

and ∂
∂u

, ∂
∂v

as elements of Lie(R2
M)C, the above equation shows that

ρ∗(
∂

∂u
) = 2πiL0 ρ∗(

∂

∂v
) = 2πiL̄0.

Let R
2|1
M be the super Minkowski space (super space time) of dimension (2|1) with

even coordinates u, v and one odd coordinate θ (see [Wi2, §2.8] or [Fr2, Lecture 3]). This
comes equipped with a natural geometric ‘super structure’ extending the Minkowski
metric on the underlying R2

M . It has a group structure such that the translation action
on itself preserves that geometric structure. The corresponding super Lie algebra is
given by the space of invariant vector fields; a basis is provided by the two even vector
fields ∂

∂u
, ∂
∂v

and the odd vector field Q = ∂θ + θ ∂
∂v

. The odd element Q commutes (in
the graded sense) with the even elements; the crucial relation in this super Lie algebra

Lie(R
2|1
M ) is (see [Wi2, p. 498]):

1

2
[Q,Q] = Q2 =

∂

∂v
.
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This shows that if the representation ρ : R2
M → EndCn(H) extends to a representation

of the super Poincaré group R
2|1
M , then the operator L̄0 isthe square of an odd operator.

We note that the usual ‘super conformal structure’ on super manifolds of dimension
(2|2) [CR], [Ba] is not the geometric structure we are looking for. This is too much super
symmetry in the sense that if a Clifford linear conformal field theory E : CB2

n → Hilb
would extend over these super manifolds, then both generators L0 and L̄0 of the semi-
group E(Aτ ) would be squares of odd operators, thus making the partition function
ZE(τ) constant.

4 Elliptic objects

In this section we describe various types of elliptic objects (over a manifold X). We start
by recalling Segal’s original definition, then we modify it by introducing fermions. After
adding a super symmetric aspect (as in Section 3.2) we arrive at so called Clifford elliptic
objects. These are still not good enough for the purposes of excision, as explained in the
introduction. Therefore, we add data associated to points, rather than just circles and
conformal surfaces. These are our enriched elliptic objects, defined as certain functors
from a geometric bicategory Dn(X) to the bicategory of von Neumann algebras vN.

4.1 Segal and Clifford elliptic objects

We first remind the reader of a definition due to Segal [Se1, p.199].

Definition 4.1.1. A Segal elliptic object over X is a projective functor C(X) → V satis-
fying certain axioms. Here V is the category of topological vector spaces and trace class
operators; the objects of C(X) are closed oriented 1-manifolds equipped with maps to
X and the morphisms are 2-dimensional oriented bordisms equipped with a conformal
structure and a map to X. In other words, C(X) is the subcategory of the bordism cate-
gory CB2(X) (see definition 2.1.5) with the same objects, but excluding those morphisms
which are given by diffeomorphisms.

The adjective ‘projective’ basically means that the vector space (resp. operator) asso-
ciated to map of a closed 1-manifold (resp. a conformal 2-manifold) to X is only defined
up to a scalar. As explained by Segal in §4 of his paper [Se2] (after Definition 4.4), a
projective functor from C(X) to V can equivalently be described as a functor

Ê : Cn(X) −→ V,

where n ∈ Z is the central charge of the elliptic object. Here Cn(X) is some ‘extension’
of the category C(X), whose objects and morphisms are like those of C(X), but the
1-manifolds and 2-manifolds (giving the objects resp. morphisms) are equipped with an

extra structure that we will refer to as n-riggings. The functor Ê is required to satisfy a
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linearity condition explained below. We will use the notation Ê for Segal elliptic objects
and E for Clifford elliptic objects (Definition 4.1.3).

The following definition of n-riggings is not in Segal’s papers, but it is an obvious
adaptation of Segal’s definitions if we work with manifolds with spin structures as Segal
proposes to do at the end of §6 in [Se1].

Definition 4.1.2. (Riggings) Let Y be a closed spin 1-manifold which is zero bordant.
We recall that associated to Y is a Clifford algebra C(Y ) (see Definitions 2.3.6 and
2.3.7), and that a conformal spin bordism Σ′ from Y to the empty set determines an
irreducible (right) C(Y )-module F (Σ′) (the ‘Fock space’ of Σ′; see Definition 2.3.12).
The isomorphism type of F (Σ′) is independent of Σ′.

Given an integer n, we define an n-rigging of Y to be a right C(Y )−n-module R
isomorphic to F (Σ′)−n for some Σ′. In particular, such a conformal spin bordism Σ′

from Y to ∅ determines an n-rigging for Y , namely R = F (Σ′)−n. This applies in
particular to the case Segal originally considered: if Y is parametrized by a disjoint
union of circles then the same number of disks can be used as Σ′.

Let Σ be a conformal spin bordism from Y1 to Y2 and assume that Yi is equipped
with an n-rigging Ri. An n-rigging for Σ is an element λ in the complex line

Pfn(Σ, R1, R2)
def
= HomC(Y1)⊗n(R1, R2 �C(Y2)−n F (Σ)−n)

which is well defined since by Definition 2.3.12 F (Σ) is a left module over C(Y1)
op⊗C(Y2).

If Σ is closed, this is just the (−n)-th power of the Pfaffian line Pf(Σ) = F (Σ). More
generally, if the riggings Ri come from conformal spin bordisms Σ′

i from Yi to ∅, then
the line Pfn(Σ, R1, R2) can be identified with the (−n)-th power of the Pfaffian line of

the closed conformal spin surface Σ′
2 ∪Y2

Σ ∪Y1
Σ

′

1.
We want to point out that our definition of a 1-rigging for a closed spin 1-manifold Y

is basically the ‘spin version’ of Segal’s definition of a rigging (as defined in section 4 of
[Se2], after Definition 4.4). As Segal mentions in a footnote in §6 of [Se2] a rigging (in his
sense) is the datum needed on the boundary of a conformal surface Σ in order to define
the determinant line Det(Σ) (which is the dual of the top exterior power of the space of
holomophic 1-forms on Σ for a closed Σ). Similarly, an n-rigging on the boundary of a
conformal spin surface Σ makes it possible to construct the n-th power of the Pfaffian
line of Σ.

Our notion of rigging for a conformal surface, however, is different from Segal’s (see
Definition 5.10 in [Se2]); his is designed to give the datum needed to define non-integral
powers of the determinant line Det(Σ) (corresponding to a non-integral central charge).
This is then used to resolve the phase indeterminancy and get a non-projective functor.
In our setting, only integral powers of the Pfaffian line arise, so that our definition has
the same effect.
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A Segal elliptic object Ê : Cn(X) → V is required to be linear on morphisms in the

sense that the operator Ê(Σ,Γ, λ) associated to a bordism Σ equipped with an n-rigging
λ depends complex linearly on λ.

If Σ is a torus, Pf−2(Σ) is canonically isomorphic to the determinant line Det(Σ). In
particular, an n-rigging on a closed conformal spin torus amounts to the choice of an el-
ement λ ∈ Detn/2(Σ). Evaluating a Segal elliptic object Ê over X = pt of central charge
n on the family of tori Στ = C/(Z + Zτ) parametrized by points τ ∈ h of the upper
half plane (equipped with the non-bounding spin structure), we obtain a section of the

complex line bundle Pfn → h; it is given by τ 7→ (λ 7→ Ê(Στ , λ)) ∈ Hom(Pf−n(Στ ),C)
(compare Definition 3.3.5). By construction, this section is SL2(Z)-equivariant; it is

holomorphic by Segal’s requirement that the operator Ê(Σ, λ) associated to a conformal
spin bordism Σ equipped with a rigging λ depends holomorphically on the conformal
structure (the Teichmüller space of conformal structures on Σ is a complex manifold);
such CFT’s are referred to as chiral. Moreover, the section is holomorphic at infinity
thanks to the ‘contraction condition’ on Ê (see [Se1, §6]). In other words, this construc-
tion associates a modular form of weight n/2 to a Segal elliptic object over X = pt.

Chiral CFT’s are ‘rigid’ in a certain sense so that they are not general enough to
obtain an interesting space of such objects (this is not to say that elliptic cohomology
couldn’t be described in terms of chiral CFT’s; in fact it might well be possible to
obtain the elliptic cohomology spectrum from a suitable symmetric monoidal category of
chiral CFT’s the same way that the K-theory spectrum is obtained from the symmetric
monoidal category of finite dimensional vector spaces). We propose to study ‘super
symmetric’ CFT’s which are non-chiral, but whose partition functions are holomorphic
as a consequence of the built-in super symmetry, see the proof of Theorem 1.0.2 in section
3.3.

Definition 4.1.3. A Clifford elliptic object over X is a Clifford linear 2-dimensional
CFT in the sense of Definition 2.3.21, together with a super symmetric refinement. The
latter is given just like in the K-theoretic context described in Section 3.2 by replacing
conformal surfaces by their (complex) (1|1)-dimensional partners. This is explained in
more detail in Section 3.3.

Roughly speaking, the relationship between a Segal elliptic object of central charge
n and a Clifford elliptic object of degree n is analogous to the relationship between the
complex spinor bundle SC(ξ) and the Clifford linear spinor bundle S(ξ) associated to a
spin vector bundle ξ of dimension n = 2k over a manifold X (see [LM, II.5]). Given a
point x ∈ X the fiber SC(ξ)x is a vector space, while S(ξ)x is a graded right module
over Cn, or equivalently, a graded left module over C−n = C(pt)−n; we can recover SC(ξ)
from S(ξ) as SC(ξ) = ∆⊗k ⊗C−n S(ξ).

Similarly, given a Clifford elliptic object E over X of degree n, we can produce an
associated functor

Ê : Cn(X) −→ V
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as follows:

• given an object of Cn(X), i.e. a closed spin manifold Y with a rigging R and a map

Γ: Y → X, we define Ê(Y,R,Γ) to be the Hilbert space R�C(Y )−n E(γ);

• Given a morphism (Σ, λ,Γ) in Cn(X) from (Y1, γ1, R1) to (Y2, γ2, R2), i.e. a confor-
mal spin bordism Σ from Y1 to Y2 equipped with an n-rigging λ ∈ Pfn(Σ, R1, R2),
we define the operator E(Σ,Γ, λ) to be the composition

Ê(γ1) = R1 �C(Y1)−n E(γ1)
λ�1
−→ R2 �C(Y2)−n F (Σ)−n �C(Y1)−n E(γ1)

1�E(Σ)
−→ R2 �C(Y2)−n E(γ2) = Ê(γ2); (4.1.4)

see Remark 2.3.19 for the meaning of E(Σ).

It should be emphazised that the resulting functor Ê is not a Segal elliptic object: in
general the operators Ê(Σ, λ) won’t depend holomorphically on the complex structure
on Σ, since there is no such requirement for E(Σ) in the definition of Clifford elliptic
objects. However, as mentioned above, the built in super symmetry for E will imply
that the partition function (for X = pt) of Ê is holomorphic and so we obtain a (weak)
modular form of weight n/2.

4.2 The bicategory Dn(X) of conformal 0-,1-, and 2-manifolds

A bicategory D consists of objects (represented by points), 1-morphisms (horizontal ar-
rows) and 2-morphisms (vertical double arrows). There are composition maps of 1-
morphisms which are associative only up to a natural transformation between functors,
and an identity 1-morphism exists (but it is only an identity up to natural transforma-
tions). There are also compositions of 2-morphisms (which are strictly associative) and
strict identity objects. In particular, given objects a, b there is a category D(a, b) whose
objects are the 1-morphisms from a to b and whose morphisms are the 2-morphisms be-
tween two such 1-morphisms; the composition in D(a, b) is given by vertical composition
of 2-morphisms in D. Given another object c, horizontal composition gives a functor

D(b, c) ×D(a, b) −→ D(a, c),

which is associative only up to a natural transformation. We refer to [Be] for more
details.

We will first describe the geometric bicategory Dn(X). The objects, morphisms and
2-morphisms will be manifolds of dimension 0, 1 and 2, respectively, equipped with con-
formal and spin structures, and maps to X as well as the fermions from Definition 2.3.16.
Note that the conformal structure is only relevant for surfaces.

Following is a list of data necessary to define a bicategory. We only spell out the case
X = pt, in the general case one just has to add piecewise smooth maps to X, for all the
0-,1-, and 2-manifolds below. So it will be easy for the reader to fill in those definitions.
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objects: The objects of Dn = Dn(pt) are 0-dimensional spin manifolds Z, i.e. a finite
number of points with a graded real line attached to each of them.

morphisms: A morphism in Dn(Z1, Z2) is either a spin diffeomorphism Z1 → Z2, or
a 1-dimensional spin manifold Y , together with a spin diffeomorphism ∂Y → Z̄1 q Z2.

Composition of morphisms: For two diffeomorphisms, one uses the usual compo-
sition, and for 2 bordisms, composition is given by gluing 1-manifolds, and pictorially
by

Z3 Z2
Y2oo Z1

Y1oo = Z3 Z1

Y2∪Z2
Y1oo ,

The composition of a diffeomorphism and a bordism is given as for the category Bd,
namely by using the diffeomorphism to change the parametrization of one of the bound-
ary pieces of the bordism.

2-morphisms: Given two bordism type morphisms Y1, Y2 from the object Z1 to the
object Z2, then a 2-morphism in Dn(Y1, Y2) consists either of a spin diffeomorphism
Y1 → Y2 (rel. boundary), or it is given by a conformal spin surface Σ together with a
diffeomorphism ∂Σ ∼= Y1 ∪Z1∪Z2

Y2; this is schematically represented by the following
picture:

Z2 Z1

Y1

��

Y2

^^ Σ

��

As in the category CBn2 , we need in addition the following datum for a 2-morphism from
Y1 to Y2: In the case of a diffeomorphism, we have an element c ∈ C(Y1)

⊗n; in the case
of a bordism, we need a fermion Ψ in the n-th power of the algebraic Fock space Falg(Σ)
from Definition 2.3.12. Moreover, we define two such pairs (Σ,Ψ) and (Σ′,Ψ′) to give the
same 2-morphism from Y1 to Y2, if there is a conformal spin diffeomorphism α : Σ → Σ′

sending Ψ to Ψ′.
Given one spin diffeomorphism φ : Z1 → Z2 and one bordism Y , then one can form a

closed spin 1-manifold Yφ by gluing the ends of Y together along φ. Then a 2-morphism
from φ to Y is a conformal spin surface Σ together with a fermion in Falg(Σ) and a
diffeomorphism ∂Σ ∼= Yφ. Again, two such 2-morphisms are considered equal if they are
related by a conformal spin diffeomorphism.

Composition of 2-morphisms: Depending on the case at hand, (horizontal and
vertical) composition in the 2-category Dn is either given by gluing surfaces or composing
diffeomorphisms. This is very similar to the category CBn2 , so details are omitted.
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As for K-cocycles, it will be important that our enriched elliptic objects preserve a
symmetric monoidal structure, certain involutions on the bicategories, as well as certain
adjunction transformations. The monoidal structure on Dn is simply given by disjoint
union, which has a unit given by the empty set.

The involutions in Dn. In the case of Bd we mentioned two involutions, called ·̄ and
∗. The first reversed the spin structure on (d− 1)-manifolds, the second on d-manifolds.
So in the case of Dn it is natural to have 3 involutions in the game, each of which reverses
the spin structure of manifolds exactly in dimension d = 0, 1 respectively 2. We call these
involutions (in that order), op, ·̄ and ∗ even though it might seem funny to distinguish
these names. Note however, that there’ll be analogous involutions on the von Neumann
bicategory vN and we wish to be able to say which involutions are taken to which by
our enriched elliptic object.

The adjunction transformation in Dn. Given objects Z1, Z2 of Dn, there is a
functor

Dn(∅, Z1 q Z2) −→ Dn(Z
op
1 , Z2). (4.2.1)

On objects, it reinterprets a bordism Y from ∅ to Z1 q Z2 as a bordism from Zop
1 to

Z2. Similarly, if Y1, Y2 are two such bordisms, and Σ is a morphism from Y1 to Y2 in
the category Dn(∅, Z1 q Z2), then it can be reinterpreted as a morphism between Y1

and Y2 considered as morphisms in Dn(Z
op
1 , Z2). This is natural in Z1, Z2; expressed in

technical terms, it is a natural transformation between the two functors from Dn × Dn

to the category of topological categories given by the domain resp. range of the functor
4.2.1. It is clear that the functor 4.2.1 is not surjective on objects or morphisms, since
no diffeomorphisms can lie in the image.

4.3 Von Neumann algebras and their bimodules

References for this section are [vN], [Co1], [BR] and [Ta] for the general theory of von
Neumann algebras. For the fusion aspects we recommend in addition [J2], [J4] and [Wa].
We thank Antony Wassermann for his help in writing this survey.

General facts on von Neumann algebras. A von Neumann algebra A is a unital
∗-subalgebra of the bounded operators B(H), closed in the weak (or equivalently strong)
operator topology. We assume here that H is a complex separable Hilbert space. For
example, if S is any ∗-closed subset of B(H), then the commutant (or symmetry algebra)

S ′ def
= {a ∈ B(H) | as = sa ∀s ∈ S}

is a von Neumann algebra. By von Neumann’s double commutant theorem, any von
Neumann algebra arises in this way. In fact, the double commutant S ′′ is exactly the
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von Neumann algebra generated by S. For example, given two von Neumann algebras
Ai ⊆ B(Hi) one defines the spatial tensor product A1⊗̄A2 ⊆ B(H1 ⊗H2) to be the von
Neumann algebra generated by A1 and A2.

Just like a commutative C∗-algebra is nothing but the continuous functions on a
topological space, one can show that a commutative von Neumann algebra is isomorphic
to the algebra of bounded measurable functions on a measure space. The corresponding
Hilbert space consists of the L2-functions which are acted upon by multiplication.

On the opposite side of the story, one needs to understand factors which are von
Neumann algebras with center C. By a direct integral construction (which reduces
to a direct sum if the measure space corresponding to the center is discrete), one can
then combine the commutative theory with the theory of factors to understand all von
Neumann algebras.

The factors come in 3 types, depending on the range of the Murray-von Neumann
dimension function d(p) on projections p ∈ A. This function actually characterizes
equivalence classes of projections p, or equivalently, isomorphism classes of A′-modules
pH. Type I factors are those von Neumann algebras isomorphic to B(H) where the range
of the dimension is just {0, 1, 2, . . . , dimC(H)} (where dimC(H) = ∞ is not excluded).
For type II1 factors, d(p) can take any real value in [0, 1] and for type II∞ any value
in [0,∞] (‘continuous dimension’). Finally, there are type III factors for which the
dimension function can only take the values 0 and ∞. Thus all nontrivial projections are
equivalent. It is an empirical fact that most von Neumann algebras arising in quantum
field theory are of this type.

Example 4.3.1. (Group von Neumann algebras). For a discrete countable group
Γ one defines the group von Neumann algebra as the weak operator closure of the group
ring CΓ in the bounded operators on `2(Γ). It is always of type II1 and a factor if and
only if each conjugacy class (of a nontrivial group element) is infinite. There are many
deep connections between such factors and topology described for example in [Lu]. An
application to knot concordance is given in [COT].

Example 4.3.2. (Local Fermions). Consider the Fock space H = F (Σ) of a conformal
spin surface Σ as in Definition 2.3.12. If Y is a compact submanifold of the boundary
of Σ we can consider the Clifford algebra C(Y ) inside B(H). The weak operator closure
is a factor A(Y ) which is of type I if Y itself has no boundary. Otherwise A(Y ) is a
type III factor known as the local fermions [Wa].

We remark that by taking an increasing union of finite dimensional subspaces of the
Hilbert space of spinors V (Y ), it follows that A(Y ) is hyperfinite, i.e. it is (the weak
operator closure of) an increasing union of finite dimensional von Neumann algebras.
It is a much deeper fact that a group von Neumann algebra as in Example 4.3.1 is
hyperfinite if and only if the group is amenable.

There is a classification of all hyperfinite factors due to Connes [Co1, p.45] (and
Haagerup [H] in the III1 case). The complete list is very short:
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In: A = B(H) where n = dimC(H) is finite or countably infinite.

II1: Group von Neumann algebras (of amenable groups with infinite conjugacy classes).
All of these turn out to be isomorphic!

II∞: The tensor product of types I∞ and II1.

III0: The Krieger factor associated to a non-transitive ergodic flow.

IIIλ: The Powers factors, where λ ∈ (0, 1) is a real parameter coming from the ‘flow of
weights’.

III1: The local fermions explained in Example 4.3.2. Again, these are all isomorphic.

This classification is obtained via the modular theory to which we turn in the next
section. For example, a factor is of type III1 if and only if there is a vacuum vector Ω
for which the modular flow ∆it on the vacuum representation only fixes multiples of Ω.

Tomita-Takesaki theory. We start with a factor A ⊆ B(H0) and assume that there
is a cyclic and separating vector Ω ∈ H0. (Recall that this just means that AΩ and
A′Ω are both dense in H0). Then H0 is called a vacuum representation (or standard
form) for A, and the vector Ω is the vacuum vector. It has the following extra structure:
Consider the (unbounded) operator aΩ 7→ a∗Ω and let S be its closure. Then S has a
polar decomposition S = J∆1/2, where J is a conjugate linear isometry with J2 = id and
∆ is a positive operator (usually unbounded). By functional calculus one gets a unitary
flow ∆it, referred to as the modular flow corresponding to Ω, and the main fact about
this theory is that

JAJ = A′ and ∆itA∆−it = A.

Note that in particular H0 becomes a bimodule over A by defining a right action of A on

H0 by π0(a)
def
= Jπ(a)∗J in terms of the original left action π(a). This structure encodes

the ‘flow of weights’ which classifies all hyperfinite factors as explained in the previous
section.

It turns out that up to unitary isomorphism, there is a unique pair (H0, J) consisting
of a (left) A-module H0 and a conjugate linear isometry J : H0 → H0 with JAJ = A′;
such a pair is refered to as vacuum representation of A. For a given von Neumann
algebra A there is a more sophisticated construction of such a pair, even in the absence
of a cyclic and separating vector. In this invariant definition (see [Co1, p.527]), the
vacuum representation is denoted by L2(A), in analogy to the commutative case where
A = L∞(X) and L2(A) = L2(X) for some measure space X. Similarly, if A is a group
von Neumann algebra corresponding to Γ then L2(A) = `2(Γ). If one chooses Ω to be
the δ-function concentrated at the unit element of Γ, then J(

∑
i aigi) =

∑
i āig

−1
i and

∆ = id.

55



Remark 4.3.3. A vacuum vector Ω defines a faithful normal state on A via

ϕΩ(a)
def
= 〈aΩ,Ω〉H0

Defining σ(a)
def
= ∆1/2a∆−1/2 ∈ A for entire elements a ∈ A (this is a dense subset of A

for which σ is defined, see [BR, I 2.5.3]) one can then verify the relation [BR, I p.96]

ϕΩ(ba) = ϕΩ(σ−1(a)σ(b))

for all entire elements a, b in A. It follows that ϕΩ is a trace if and only if ∆ = id. Such
vacuum vectors can be found for types I and II.

Remark 4.3.4. The independence from Ω implies that the image of the modular flow

(given by conjugation with ∆it on A) defines a canonical central subgroup of Out(A)
def
=

Aut(A)/ Inn(A). As discussed in the previous remark, this quotient flow is nontrivial
exactly for type III. Alain Connes sometimes refers to it as an ‘intrinsic time’, defined
only in the most noncommutative setting of the theory.

Example 4.3.5. Consider the example of local fermions in the special case that Σ = D2

and ∂Σ = Y ∪Yc is the decomposition into the upper and lower semicircle. It was shown
in [Wa] that in this case the operators J and ∆it can be described geometrically: J
acts on the Fock space F (Σ) by reflection in the real axis, which clearly is of order two
and interchanges A(Y ) and A(Yc) = A(Y )′. Moreover, the modular flow ∆it on A(Y ) is
induced by the Möbius flow on D2 (which fixes ±1 = ∂Y ). This implies in particular
that the Fock space is a vacuum representation (with ΩΣ as the vacuum vector):

F (Σ) ∼= L2(A(Y ))

The last statement is actually true for any surface Σ and any Y ⊂ ∂Σ which is not
the full boundary. In the latter case, A(∂Σ) = B(F (Σ)), so F (Σ) is not the vacuum
representation of A(∂Σ)). In fact, the vacuum representation L2(B(H)) of B(H) is
given by the ideal of all Hilbert-Schmidt operators on H (with the operator J given by
taking adjoints, and ∆ = id). This is a good example of a construction of the vacuum
representation without any canonical vacuum vector in sight.

Bimodules and Connes fusion. Given two von Neumann algebras Ai, an A2 −
A1-bimodule is a Hilbert space F together with two normal (i.e. weak operator continu-
ous) ∗-homomorphisms A2 → B(F ) and Aop

1 → B(F ) with commuting images. Here Aop

denotes the opposite von Neumann algebra which is the same underlying vector space
(and same ∗ operator) as A but with the order of the multiplication reversed. One can
imagine A2 acting on the left on F and A1 acting on the right.

Given an A3 − A2 bimodule F2 and an A2 − A1 bimodule F1, on can construct an
A3 − A1 bimodule F2 �A2

F1 known as the Connes fusion of F2 and F1 over A2. This
construction is not the algebraic tensor product but it introduces a certain twist (by the
modular operator ∆) in order to stay in the category of Hilbert spaces.
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Definition 4.3.6. (Connes fusion). It is the completion of the pre-Hilbert space given
by the algebraic tensor product F2 � F1, where

F2
def
= BAop

2
(H0, F2)

are the bounded intertwiners from the vacuum H0 = L2(A2) to F2. An inner product is
obtained by the formula

〈x⊗ ξ, y ⊗ η〉
def
= 〈ξ, (x, y) · η〉F1

ξ, η ∈ F1, x, y ∈ F2

where we have used the following A2-valued inner product on F2:

(x, y)
def
= x∗y ∈ BAop

2
(H0, H0) = A2.

Note that this makes F2 into a right Hilbert module over A2 and that the Connes fusion
is nothing but the Hilbert module tensor product with F1 and its A2-action. Since Aop

1

and A3 still act in the obvious way, it follows that the Hilbert space F = F2 �A2
F1 is

an A3 − A1-bimodule.

This definition looks tantalizingly simple, for example one can easily check that the
relations

xa⊗ ξ − x⊗ aξ = 0, a ∈ A2, ξ ∈ F1, x ∈ F2

are satisfied in F2 �A2
F1 (because this vector is perpendicular to all elements of F2 �F1

with respect to the above inner product). This assertion is true using the obvious Aop
2 -

action on F2 for which xa(v) = x(av), v ∈ H0. However, if one wants to write elements
in the Connes fusion in terms of vectors in the original bimodules F1 and F2 (rather than
using the intertwiner space F2), then it turns out that this action has to be twisted by ∆.
This can be seen more precisely as follows: First of all, one has to pick a vacuum vector
Ω ∈ H0 (or at least a normal, faithful semifinite weight) and the construction below will
depend on this choice. There is an obvious embedding

iΩ : F2 ↪→ F2, x 7→ x(Ω)

and the crucial point is that this map is not Aop
2 -linear. To do this calculation carefully,

write π(a) for the left A2 action on H0 and π0(a) for the right action. Recall from
the previous section that π0(a) = Jπ(a)∗J which implies the following formulas, using
JΩ = Ω = ∆Ω and that S = J∆1/2 has the defining property S(π(a)Ω) = π(a)∗Ω.

x(Ω) · a = x(π0(a)Ω) = x(Jπ(a)∗JΩ)

= x(J∆1/2∆−1/2π(a)∗∆1/2Ω)

= x(S(∆1/2π(a)∆−1/2)∗Ω)

= x(∆1/2π(a)∆−1/2)Ω)

57



Recall from Remark 4.3.3 that σ(a) = ∆1/2a∆−1/2 ∈ A2 is defined for entire elements
a ∈ A2. Then we see that iΩ has the intertwining property

iΩ(xσ(a)) = iΩ(x)a for all entire a ∈ A2. (4.3.7)

This explains the connection between the Connes fusion defined above and the one
given in [Co1, p.533] as follows. Consider the Aop

2 -invariant subset F2Ω = im(iΩ) of the
bimodule F2. These are exactly the ‘ν-bounded vectors’ in [Co1, Prop.6, p.531] where
in our case the weight ν is simply given by ν(a) = 〈aΩ,Ω〉H0

. One can then start with
algebraic tensors

ξ2 ⊗ ξ1 with ξ1 ∈ F1, ξ2 ∈ F2Ω ⊂ F2

instead of the space F1 � F2 used above. This is perfectly equivalent except that the
σ-twisting of the map iΩ translates the usual algebraic tensor product relations into the
following ‘Connes’ relations which hold for all entire a ∈ A2:

ξ2a⊗ ξ1 = ξ2 ⊗ σ(a)ξ1 = ξ2 ⊗ ∆1/2a∆−1/2ξ1, ξ1 ∈ F1, ξ2 ∈ F2Ω ⊂ F2

Remark 4.3.8. (Symmetric form of Connes fusion) There is the following more
symmetric way of defining the Connes fusion which was introduced in [Wa] in order to
actually calculate the fusion ring of positive energy representations of the loop group
of SU(n). One starts with the algebraic tensor product F2 � F1 and defines the inner
product by

〈x2 ⊗ x1, y2 ⊗ y1〉
def
= 〈x∗1y1Ω, x

∗
2y2Ω〉H0

= 〈y∗2x2x
∗
1y1Ω,Ω〉H0

for xi, yi ∈ Fi

One can translate this ‘4-point formula’ to the definition given above by substituting
ξ = x1(Ω), η = y1(Ω). It uses again that x∗i yi ∈ A2 and also the choice of a vacuum
vector. After translating this definition into the subspaces FiΩ of Fi, one can also write
the Connes relations (for entire a in A2) in the following symmetric form:

ξ2∆
−1/4a∆1/4 ⊗ ξ1 = ξ2 ⊗ ∆1/4a∆−1/4ξ1, ξi ∈ FiΩ ⊂ Fi

Remark 4.3.9. (Subfactors). We should mention that the fusion of bimodules has had
a tremendous impact on low dimensional topology through the work of Jones, Witten
and many others, see [J3] for a survey. In the context of the Jones polynomial for knots,
only the hyperfinite II1 factor was needed, so the subtlety in the Connes fusion disappears
(because ∆ = id if one uses the trace to define the vacuum). However, the interesting
data came from subfactors A ⊂ B, i.e. inclusions of one factor into another. They give
rise to the A−B bimodule L2(B). Iterated fusion leads to very interesting bicategories
and tensor categories, compare Remark 4.3.13.

The main reason Connes fusion arises in our context, is that we want to glue two
conformal spin surfaces along parts of their boundary. As explained in Section 2.2, the
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surfaces lead naturally to Fock modules over Clifford algebras. Using the notation from
the Gluing Lemma 2.3.14, the question arises how to express F (Σ3) as a C(Y3) − C(Y1)
bimodule in terms of F (Σ2) and F (Σ1). In Lemma 2.3.14 we explained the case of
type I factors, where the modular operator ∆ = id so there is no difference between the
algebraic tensor product and Connes fusion. This case includes the finite dimensional
setting (and hence K-theory) as well as the gluing formulas for Segal and Clifford elliptic
objects (as explained in Example 4.3.2, type I corresponds exactly to the case where the
manifold Y along which one glues is a closed 1-manifold).

After all the preparation, the following answer might not come as a surprise. We
only formulate it in the absence of closed components in Σi, otherwise the vacuum
vectors might be zero. There is a simply modification in the general case which uses
isomorphisms of Pfaffian lines of disjoint unions of closed surfaces. Similarly, there is a
twisted version of this result which we leave to the reader. We note that in the following
the definition of fusion has to be adjusted to take the grading on the Fock modules into
account. This can be done by the usual trick of Klein transformations.

Proposition 4.3.10. There is a unique unitary isometry of C(Y3) − C(Y1) bimodules

F (Σ2) �A(Y2) F (Σ1)
∼=

−→ F (Σ3)

sending Ω2 ⊗ Ω1 to Ω3.

Recall that A(Y2) is the von Neumann algebra generated by C(Y2) in the bounded
operators on F (Σ2). One knows that F (Σ2) is a vacuum representation for A(Y2) with
vacuum vector Ω2 [Wa]. Therefore, the above expression Ω2 ⊗ Ω1 is well defined in the
Connes fusion. The uniqueness of the isomorphism follows from the fact that both sides
are irreducible C(Y3) − C(Y1) bimodules.

The bicategory vN of von Neumann algebras. The objects of vN are von Neumann
algebras and a morphism from an object A1 to an object A2 is a an A2 − A1 bimodule.

Composition of morphisms: Is given by Connes fusion which will be denoted pic-
torially by

A3 A2
F2oo A1

F1oo = A3 A1

F2�A2
F1oo ,

Recall that this operation is associative up to higher coherence (which is fine in a bi-
category). Moreover, the identity morphism from A to A is the vacuum representation
H0 = L2(A) which therefore plays the role of the ‘trivial’ bimodule. This is in analogyto
the trivial 1-dimensional representation of a group.
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2-morphisms: Given two morphisms F1, F2 from the object A1 to the object A2, then
a 2-morphism from F1 to F2 is a bounded intertwining operator T ∈ BA2−A1

(F1, F2), i.e.
a bounded operator which commutes with the actions of A1 and A2. Pictorially,

A2 A1

F1

��

F2

^^
T

��

vertical composition: Let Fi, i = 1, 2, 3 be three morphisms from A1 to A2, let T1

be a 2-morphism from F1 to F2 and let T2 be a 2-morphism from F2 to F3. Then their
vertical composition is the 2-morphism T2 ◦ T1, which is just the composition of the
bounded operators T1 and T2. Pictorially,

A2 A1

F1

�� F2oo

F3

^^

T1��

T2

��

= A2 A1

F1

{{

F3

cc
T2◦T1

��

horizontal composition: The following picture should be self explaining.

A3 A2

F3

��

F4

^^
T2

��

A1

F1

��

F2

^^
T1

��

= A3 A1

F3�A2
F1

{{

F4�A2
F2

cc
T2�T1

��

Additional structures on vN. The bicategory vN has a symmetric monoidal struc-
ture given on objects by the spatial tensor product of von Neumann algebras. There
are also monodial structures on the categories of bimodules by considering the Hilbert
tensor product of the underlying Hilbert spaces.

Involutions on vN. There are also 3 involutions

A 7→ Aop, F 7→ F̄ , T 7→ T ∗

on the bicategory vN, where the first was explained above and the third is the usual
adjoint map. The conjugate A1 − A2 bimodule F̄ (for a A2 − A1 bimodule F ) is given
by the formula

a1 · v̄ · a2
def
= (a∗2 · v · a

∗
1), v ∈ F.
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We leave it to the reader to extend the above definitions so that they really define
involutions on the bicategory vN. This should be done so that the functoriality agrees
with the 3 involutions in the bicategory Dn(X) because our enriched elliptic object will
have to preserve these involutions.

Adjunction transformations on vN. Just like in Dn(X), we are looking for adjunc-
tion transformations of 1- respectively 2-morphisms

vN(C, A1⊗̄A2) −→ vN(Aop
1 , A2) and vN(C, F2 �A F1) −→ vN(F̄2, F1).

where the left hand side is defined by considering the inclusion of the algebraic tensor
product in A1⊗̄A2. The resulting bimodule is still referred to as a A1⊗̄A2-module because
the bimodule structure is in some sense boring.

To address the right hand side, let A = A1⊗̄A2 and consider an A-module F1 and an
Aop-module F2 (both thought of as lying in the image of the left hand side transforma-
tion). Then we may form the Connes fusion F2 �A F1 as the completion of F2 � F1, see
Definition 4.3.6. There is a natural map

Θ : F2 � F1 −→ BA(F̄2, F1), x⊗ η 7→ θx,η where θx,η(ȳ)
def
= (y, x)η.

Here we have used again the A-valued inner product (y, x) = y∗x on F2, as wellas the
linear isometry

F2 = BAop(H0, F2) −→ F̄2
def
= BA(H0, F̄2) x 7→ x̄

def
= xJ.

Recall that F̄2 is an A-module and so is F̄2.

Lemma 4.3.11. In the above setting, the mapping θx,η is indeed A-linear.

Proof. We use the careful notation used to derive equation 4.3.7, where π(a) denotes the
A-action on H0 and π0(a) = Jπ(a)∗J the Aop-action. Then we get that for a ∈ A and
y ∈ F2

aȳ = ȳπ0(a) = yJ(Jπ(a)∗J) = (yπ(a)∗)J = ya∗

This implies

θx,η(aȳ) = (ya∗, x)η = (ya∗)∗xη

= ay∗xη = a(y, x)η

= aθx,η(ȳ)

which is exactly the statement of our lemma.
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Note that Θ takes values in the Banach space of A-intertwiners with the operator
norm. It actually turns out that it is an isometry with respect to the fusion inner product.
To check this statement, we assume for simplicity that A is of type III. Then there is a
unitary A-intertwiner U : H0 = L2(A) → F2 and hence y∗x = (y∗U)(U∗x) is a product
of two elements in A and ||y∗U || = ||ȳ||. Now let f =

∑
i xi⊗ηi be and arbitrary element

in F2 � F1. Then the norm squared of Θ(f) is calculated as follows:

||Θ(f)||2 = sup
06=ȳ∈F̄2

||
∑

i(y, xi)ηi||
2

||ȳ||2

= sup
06=ȳ∈F̄2

||
∑

i(y
∗U)(U∗xi)ηi||

2

||ȳ||2

= ||
∑

i

(U∗xi)ηi||
2 =

∑

i,j

〈ηi, x
∗
iUU

∗xjηj〉F1

=
∑

i,j

〈ηi, (xi, xj)ηj〉F1
= 〈

∑

i

xi ⊗ ηi,
∑

j

xj ⊗ ηj〉F2�F1

= ||f ||2F2�F1

This implies the following result because we have a functorial isometry which for F2 =
L2(A) clearly is an isomorphism. Note that the same result holds for bimodules, if there
are two algebras acting on the left of F2 respectively the right of F1.

Proposition 4.3.12. The above map Θ extends to an isometry

Θ : F2 �A F1

∼=
−→ BA(F̄2, F1)

In order to define our adjunction transformation announced above, we now have to
compare the right hand side of the isometry to vN(F̄2, F1). If one thinks of the latter
as all A-intertwiners then there is a serious problem in relating the two, because of the
twisting property 4.3.7 of the inclusion iΩ : F2 ↪→ F2. This is where the modular operator
∆ has to come in. At this moment in time, we don’t quite know how to resolve the issue,
but it seems very likely that one has to change the definition of vN(F̄2, F1) slightly. Note
that one can’t use the right hand side of the above isometry because these intertwiners
cannot be composed, certainly not in an obvious way. This problem is related to the
fact that in the example of a string vector bundle, we can only associate vectors in the
fusion product to conformal spin surfaces.

Remark 4.3.13. It is interesting to point out the following special subcategories of the
bicategory above. In the Jones example for a subfactor A ⊂ B, there are two objects
(namely A and B) and the morphisms are all bimodules obtained by iterated fusion from

AL
2(B)B. The crucial finite index property of Jones guarantees that for all irreducible

bimodules AFB that arise the vacuum representation H0 is contained exactly once in
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F �B F̄ and F̄ �A F . This condition expresses the fact that F has finite ‘quantum
dimension’. In [Oc], these bicategories were further developed and applied to obtain
3-manifold invariants.

If one fixes a single von Neumann algebra A, then one can consider the bicategory
‘restricted to A’. This means that one has only A−A bimodules and their intertwiners,
together with the fusion operation. This is an example of a tensor category. Borrowing
some notation from Section 5.4 we get the following interesting subcategory: Fix a
compact simply connected Lie group G and a level ` ∈ H4(BG). Then there is a
canonical III1-factor A and an embedding

Φ : G ↪→ Out(A) = Aut(A)/ Inn(A).

We can thus consider those bimodules which are obtained from twisting L2(A) by an
element in Aut(A) which projects to Φ(g) for some g ∈ G. We believe that a certain
‘quantization’ of this tensor category gives the category of positive energy representation
of the loop group LG at level `.

4.4 Enriched elliptic objects and the elliptic Euler class

Definition 4.4.1. An enriched elliptic object of degree n over X is a continuous functor
Dn(X) → vN to the bicategory of von Neumann algebras. It is assumed to preserve the
monodial structures (disjoint union gets taken to tensor product), the 3 involutions op,
·̄ and ∗, as well as the adjunction transformations explained above. Finally, it has to be
C-linear in an obvious sense on Clifford algebra elements and fermions.

Again, this is only a preliminary definition because some of the categorical notions
have not been defined yet, and it does not contain super symmetry. The main example
of an enriched elliptic object comes from a string vector bundle, hopefully leading to
an Euler class and a Thom class in elliptic cohomology. In fact, we hope that it will
ultimately lead to a map of spectra

M String −→ tmf

We explain the construction of the Euler class momentarily class but we shall use several
notions which are only developed in the coming sections. Thus the following outline can
be thought of as a motivation for the reader to read on.

We next outline the construction of a degree n enriched elliptic object corresponding
to an n-dimensional vector bundle E → X with string connection. This is our proposed
‘elliptic Euler class’ of E and it is the main example that guided many of our definitions.
In Remark 5.0.7 we explain briefly how the analogous K-theory Euler class is defined for
a vector bundle with spin connection. As usual, this will be our guiding principle.

Recall from Definition 4.4.1 that an enriched elliptic object of degree n in the manifold
X is a certain functor between bicategories

EE : Dn(X) −→ vN
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So we have to explain the values of EE in dimensions d = 0, 1, 2. Let S be the string
connection on E as explained in Definition 5.0.9. This definition is crucial for the under-
standingof our functor EE and we expect the reader to come back to this section once
she is familiar with the notion of a string connection.

The functor EE in dimension 0. This is the easiest case because we can just set
EE(xxx) = S(xxx) for a map xxx : Z → X of a 0-dimensional spin manifold Z. Recall that
S(xxx) is a von Neumann algebra which is completely determined by the string structure
on E (no connection is needed). By construction, the monoidal structures on the objects
of our bicategories are preserved.

The functor EE in dimension 1. For each piecewise smooth map γ : Y → X of a spin
1-manifold Y , the string connection S(γ) is a graded irreducible C(γ)−S(∂γ) bimodule.
Here C(γ) is the relative Clifford algebra from Definition 2.4.2. To define EE(γ) we use
the same Hilbert space but considered only as a C(Y )−n − S(∂γ)-bimodule. Note that
this means that the module is far from being irreducible. If one takes orientations into
account, one gets a bimodule over the incoming-outgoing parts of ∂γ. The gluing law
of the string connection S translates exactly into the fact that our functor EE preserves
composition of 1-morphisms, i.e.it preserves Connes fusion.

The functor EE in dimension 2. Consider a conformal spin surface Σ and a piecewise
smooth map Γ : Σ → X, and let Y = ∂Σ and γ = Γ|Y . Then the string connection on
Γ is a unitary isometry of left C(γ)-modules

S(Γ) : F (Γ) ∼= S(γ)

Here we used the relative Fock module F (Γ) = F (Γ∗E)⊗ F (Σ)−n from Definition 2.4.5.
Recall from the same definition that the vacuum vector ΩΓ of Γ lies in F (Γ∗E). Given
a fermion Ψ ∈ Falg(Σ)−n, we may thus define

EE(Γ,Ψ)
def
= S(Γ)(ΩΓ ⊗ Ψ) ∈ S(γ) = EE(γ).

This is exactly the datum we need on 2-morphisms (Γ,Ψ) in D(X)n. The behavior of the
string connection with respect to a conformal spin diffeomorphism φ : Σ → Σ′ implies the
following important condition on an enriched elliptic object. Assuming that φ restricts
to the identity on the boundary and noting that conformality implies ΩΓ′ = F (φ)(ΩΓ),
we may conclude that

EE(Γ′, F (φ)(Ψ)) = S(Γ′)(F (φ)(ΩΓ ⊗ Ψ) = S(Γ)(ΩΓ ⊗ Ψ) = EE(Γ,Ψ).

Finally, EE preserves horizontal and vertical composition by the gluing laws of the string
connection S as well as those of the vacuum vectors.

64



5 String structures and connections

Given an n-dimensional vector bundle E → X, we want to introduce a topological notion
of a string structure and then the geometric notion of a string connection on E. As usual
we start with the analogy of a spin structure. It is the choice of a principal Spin(n)-
bundle P → X together with an isomorphism of the underlying principal GL(n)-bundle
with the frame bundle of E. In particular, one gets an inner product and an orientation
on E because one can use the sequence of group homomorphisms

Spin(n)
2
→ SO(n) ≤ O(n) ≤ GL(n).

Recall that the last inclusion is a homotopy equivalence and that, for n > 8, the first
few homotopy groups of the orthogonal groups O(n) are given by the following table:

k 0 1 2 3 4 5 6 7
πkO(n) Z/2 Z/2 0 Z 0 0 0 Z

It is well known that there are topological groups and homomorphisms

S(n) → Spin(n) → SO(n) → O(n)

which kill exactly the first few homotopy groups. More precisely, SO(n) is connected,
Spin(n) is 2-connected, S(n) is 6-connected, and the above maps induce isomorphisms
on all higher homotopy groups. This homotopy theoretical description of k-connected
covers actually works for any topological group in place of O(n) but it only determines
the groups up to homotopy equivalence. For the 0-th and 1-st homotopy groups, it is also
well known how to construct the groups explicitly, giving the smallest possible models:
one just takes the connected component of the identity, and then the universal covering.
In our case this gives SO(n), an index 2 subgroup of O(n), and Spin(n), the universal
double covering of SO(n). In particular, both of these groups are Lie groups. However,
a group S(n) cannot have the homotopy type of a Lie group since π3 vanishes. To our
best knowledge, there has yet not been found a canonical construction for S(n) which
has reasonable ‘size’ and a geometric interpretation.

The groups String(n). In Section 5.4 we construct such a concrete model for S(n)
as a subgroup of the automorphism group of ‘local fermions’ on the circle. These are
certain very explicit von Neumann algebras, the easiest examples of hyperfinite type III1

factors. We denote by String(n) our particular models of the groups of homotopy type
S(n), and we hope that the choice of this name will become apparent in the coming
sections. In fact, Section 5.4 deals with the case of compact Lie groups rather than just
Spin(n), and we thank Antony Wassermann for pointing out to us this generalization. It
is also his result that the unitary group U(A) of a hyperfinite III1-factor is contractible
(see Theorem 5.3.3). This is essential for the theorem below because it implies that the

corresponding projective unitary group PU(A)
def
= U(A)/T is a K(Z, 2).
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Theorem 5.0.2. Consider a compact, simply connected Lie group G and a level ` ∈
H4(BG). Then one can associate to it a canonical von Neumann algebra AG,` which is
a hyperfinite factor of type III1. There is an extension of topological groups

1 −→ PU(AG,`)
i

−→ G` −→ G −→ 1

such that the boundary map π3G → π2PU(AG,`) ∼= Z is given by ` ∈ H4(BG) ∼=
Hom(π3G,Z). Moreover, there is a monomorphism

Φ : G` ↪→ Aut(AG,`)

such that the composition Φ ◦ i is given by the inclusion of inner automorphisms into all
of Aut(AG,`).

Applied to G = Spin(n) and ` = p1/2 ∈ H4(B Spin(n)) (or ‘level 1’) this gives type
III1 factors An (∼= A⊗̄n

1 ) and groups String(n) as discussed above.

Definition 5.0.3. A G`-structure on a principal G-bundle is a lift of the structure group
through the above extension. In particular, a string structure on a vector bundle is a
lift of the structure group from SO(n) to String(n) using the homomorphisms explained
above.

Corollary 5.0.4. A G`-structure on a principal G-bundle E → X gives a bundle of von
Neumann algebras over X.

This bundle is simply induced by the monomorphism Φ above, and hence over each
x ∈ X the fiber A(x) comes equipped with a G-equivariant map

αx : IsoG(G,Ex) −→ Out(AG,`, A(x))

where Out(A,B)
def
= Iso(A,B)/ Inn(A) are the outer isomorphisms. G-equivariance is

defined using the homomorphism Φ̃ : G → Out(A). It is not hard to see that the pair
(A(x), αx) contains exactly the same information as the string structure on Ex. We
shall use this observation in Definition 5.3.4 and hence introduce the following notation
(abstracting the case V = Ex above):

Definition 5.0.5. Given (G, `) and a G-torsor V , define a G` − V -pointed factor to be
a factor A together with a G-equivariant map

α : IsoG(G, V ) −→ Out(AG,`, A)

where G-equivariance is defined using the homomorphism Φ̃ : G → Out(A). The choice
of (A, α) is a G`-structure on V .

For the purposes of our application, it is actually important that all the von Neumann
algebras are graded. It is possible to improve the construction for G = Spin(n) so that
the resulting algebra is indeed graded by using local fermions rather than local loops,
see Section 5.4. The above algebra An is then just the even part of this graded algebra.
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Characteristic Classes. The homotopy theoretical description given at the beginning
of Section 5 implies the following facts about existence and uniqueness of additional
structures on a vector bundle E in terms of characteristic classes. We point out that
we are more careful about spin (and string) structure as is customary in topology: A
spin structure is really the choice of a principal Spin(n)-bundle, and not only up to
isomorphism. In our language, we obtain the usual notion of a spin structure by taking
isomorphism classes in the category of spin structures. Similar remarks apply to string
structures. The purpose of this refinement can be seen quite clearly in Proposition 5.0.6.

Let E be a vector bundle over X. Then

• E is orientable if and only if the Stiefel-Whitney class w1E ∈ H1(X; Z/2) vanishes.
Orientations of E are in 1-1 correspondence with H0(X; Z/2).

• In addition, E has a spin structure if and only if the Stiefel-Whitney class w2E ∈
H1(X; Z/2) vanishes. Isomorphism classes of spin structures on E are in 1-1 cor-
respondence with H1(X; Z/2).

• In addition, E has a string structure if and only if the characteristic class p1/2(E) ∈
H4(X; Z) vanishes. Isomorphism classes of string structures on E are in 1-1 corre-
spondence with H3(X; Z).

More generally, a principal G-bundle E (classified by c : X → BG) has a G`-structure
if and only if the characteristic class c∗(`) ∈ H4(X; Z) vanishes. Isomorphism classes of
G`-structures on E are in 1-1 correspondence with H3(X; Z).

In the next two sections we will enhance these topological data by geometric ones,
namely with the notion of a string connection. These are needed to construct our enriched
elliptic object for a string vector bundle, just like a spin connection was needed to define
the K-cocycles in Section 3.

Since String(n) is not a Lie group, it is necessary to come up with a new notion of
a connection on a principal String(n)-bundle. We first present such a new notion in the
spin case, assuming the presence of a metric connection on the bundle.

Spin connections. By Definition 2.3.1, a spin structure on an n-dimensional vector
bundle E → X with Riemannian metric is a graded irreducible bimodule bundle S(E)
over the Clifford algebra bundle C(E)−Cn. For a point x ∈ X, we denote the resulting
bimodule S(Ex) by S(x). It is a left module over the algebra C(x) = C(Ex)⊗C−n from
Definition 2.4.2. We now assume in addition that X is a manifold and that E is equipped
with a metric connection.

Proposition 5.0.6. A spin connection S on E gives for each piecewise smooth path γ

from x1 to x2, an isomorphism between the following two C(∂γ)
def
= C(x1)

op⊗C(x2) (left)
modules:

S(γ) : F (γ)
∼=

−→ HomR(S(x1),S(x2)),

67



where F (γ) is the relative Fock module from Definition 2.4.5 (defined using the con-
nection on E). We assume that S varies continuously with γ and is independent of the
parametrization of I. Moreover, S satisfies the following gluing condition: Given another
path γ′ from x2 to x3, there is a commutative diagram

F (γ′ ∪x2
γ)

∼=
��

S(γ′∪x2
γ)

// Hom(S(x1),S(x3))

F (γ′) ⊗C(x2) F (γ) ∼=

S(γ′)⊗S(γ) // Hom(S(x2),S(x3)) ⊗C(x2) Hom(S(x1),S(x2))

◦ ∼=

OO

where the left vertical isomorphism is the gluing isomorphisms from Lemma 2.3.14.

Remark 5.0.7. The vacuum vectors in the Fock modules Ωγ ∈ F (γ∗E) define a parallel
transport in S(E) as follows: Recall that F (γ) = F (γ∗E) ⊗ F (I)−n and that F (I) =
C1. Thus the vector Ωγ ∈ F (γ∗E) together with the identity id ∈ C−n = F (I)−n

gives a homomorphism from S(x1) to S(x2) via S(γ)(Ωγ ⊗ id). One checks that this
homomorphism is in fact Cn-linear and coincides with the usual parallel transport in the
spinor bundle S(E).

It is interesting to observe that these vacuum vectors Ωγ exist for any vector bundle
E with metric and connection but it is the spin connection in the sense above which
makes it possible to view them as a parallel transport.

Remark 5.0.8. There is a unique spin connection in the setting of the above proposition.
In the usual language, this is well known and follows from the fact that the fiber of the
projection Spin(n) → SO(n) is discrete. For our definitions, existence and uniqueness
follows from the fact that all the bimodules are irreducible (and of real type) and hence
the isometries S(γ) are determined up to sign. Since they vary continuously and satisfy
the gluing condition above, it is possible to see this indeterminacy in the limit where γ
is the constant map with image x ∈ X. Then the right hand side contains a canonical
element, namely idS(x) and our gluing condition implies that it is the image under S(γ)
of Ωγ ⊗ id. Hence the indeterminacy disappears.

These are the data a spin structure associates to points in X and a spin connec-
tion associates to paths in X. It is easy to extend the spin connection to give data
associated to arbitrary 0- and 1-dimensional spin manifolds mapping to X, just like in
Proposition 3.1.1.

In the next section, and in particular Lemma 5.1.4, we shall explain how all these
data are really derived from ‘trivializing’ a 2-dimensional field theory (called Stiefel-
Whitney theory in this paper). This derivation is necessary to motivate our definition of
a string connection as a ‘trivialization’ of the Chern-Simons (3-dimensional) field theory.
Because of the shift of dimension from 2 to 3, a string connection will necessarily have
0-, 1- and 2-dimensional data. As above, it is enough to formulate the top-dimensional
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data for manifolds with boundary (intervals in the case of spin, conformal surfaces in the
case of string), since the usual gluing formulas determines the data on closed manifolds.
Also as above, the 0-dimensional data are purely topological, and in the case of a string
structure are given by the von Neumann algebra bundle from Corollary 5.0.4.

String connections. We recall from Definition 2.4.2 that there is a (relative) complex
Clifford algebra C(γ) defined for every piecewise smooth map γ : Y → X, where Y is
a spin 1-manifold and X comes equipped with a metric vector bundle E. If Y is closed
then a connection on γ∗E gives a preferred isomorphism class of graded irreducible (left)
C(γ)-modules as follows: Consider the conformal spin surface Y × I and extend the
bundle

γ∗E ∪ R
dim(E) def

= (γ∗E × 0) q (Y × 1 × R
dim(E))

over Y × {0, 1} to a bundle E ′ (with connection) on Y × I (this uses the fact that E is
orientable, and hence trivial over 1-manifolds). In Definition 2.4.5 we explained how to
construct a Fock module F (E ′) from boundary values of harmonic sections on Y ×I. It is
a graded irreducible C(γ) module and the isomorphism class of F (E ′) is independent of
the extension of the bundle with connection. It will be denoted by [F (γ)]. If Γ : Σ → X
is a piecewise smooth map of a conformal spin surface with boundary γ : Y → X, then
a connection on Γ∗E gives a particular representative F (Γ) in this isomorphism class as
explained in Definition 2.4.5.

Definition 5.0.9. Let E → X be an n-dimensional vector bundle with spin connection.
Assume further that a string structure on E has been chosen and denote by A(x) the
fiber of the corresponding von Neumann algebra bundle. A string connection S on E
consists of the following data.

dim 0: For each map xxx : Z → X of a 0-dimensional spin manifold Z, S(xxx) is a von
Neumann algebra given by the von Neumann tensor product A(x1)⊗̄ . . . ⊗̄A(xn)
if xxx(Z) consists of the spin points x1, . . . , xn. By definition, A(x̄) = A(x)op and
S(∅) = C. All these data are completely determined by the string structure alone.

dim 1: For each piecewise smooth map γ : Y → X of a spin 1-manifold Y , S(γ) is a
graded irreducible C(γ)−S(∂γ) bimodule. These fit together to bimodule bundles
over Maps(Y,X) and we assume that on these bundles there are lifted actions S(φ)
of the spin diffeomorphisms φ ∈ Diff(Y, Y ′) which are the identity on the boundary.
It is clear that these are bimodule maps only if one takes the action of φ on C(γ)
into account, as well as the action of φ|∂γ on S(∂γ).

Given another such γ ′ : Y ′ → X with 0-dimensional intersection on the boundary

xxx
def
= ∂γ ∩ ∂γ′ = ∂inγ = ∂outγ

′, there are C(γ ∪xxx γ
′) − S(∂(γ ∪xxx γ

′)) bimodule
isomorphisms

S(γ, γ′) : S(γ ∪xxx γ
′)

∼=
−→ S(γ) �S(xxx) S(γ′)
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where we used Connes fusion of bimodules on the right hand side, and also the
identifications

C(γ ∪xxx γ
′) ∼= C(γ) ⊗ C(γ′) and S(∂(γ ∪xxx γ

′)) ⊂ S(∂γ)⊗̄S(∂γ′)

The isomorphisms S(γ, γ ′) must satisfy the obvious associativity constraints. Note
that for closed Y , we just get an irreducible C(γ)-module S(γ), multiplicative
under disjoint union. We assume that S(γ) is a (left) module in the preferred
isomorphism class [F (γ)] explained above.

dim 2: Consider a conformal spin surface Σ and a piecewise smooth map Γ : Σ → X,
and let Y = ∂Σ and γ = Γ|Y . Then there are two irreducible (left) C(γ)-modules
in the same isomorphism class, namely F (Γ) and S(γ). The string connection on
Γ is a unitary isometry of left C(γ)-modules

S(Γ) : F (Γ) ∼= S(γ)

such that for each conformal spin diffeomorphism φ : (Σ,Γ) → (Σ′,Γ′) the following
diagram commutes:

F (Γ)

F (φ)
��

S(Γ)

∼=
// S(γ)

S(φ|∂γ)

��
F (Γ′)

S(Γ′)

∼=
// S(γ′)

The module maps S(Γ) fit together to continuous sections of the resulting bundles
over the relevant moduli spaces. The irreducibility of the modules in question
implies that there is only a circle worth of possibilities for each S(Γ). This is the
conformal anomaly.

Finally, there are gluing laws for surfaces which meet along a part Y of their bound-
ary. If Y is closed this can be expressed as the composition of Hilbert-Schmidt op-
erators,. If Y has itself boundary one uses Connes fusion, see Proposition 4.3.10.

Note that the irreducible C(γ)-module S(γ) for γ ∈ LM plays the role of the spinor
bundle on loop space LM . We explain in Section 4.4 how the vacuum vectors for con-
formal surfaces lead to a ‘conformal connection’ of this spinor bundle. All of Section 5.2
is devoted to discuss the motivation behind our above definition of a string connection.
This definition can also be given in the language of gerbes with 1- and 2-connection, see
e.g. [Bry]. But the gerbe in question needs to be defined on the total space of the prin-
cipal Spin(n)-bundle, restricting to the Chern-Simons gerbe on each fiber. We feel that
such a definition is at least as complicated as ours, and it lacks the beautiful connection
to von Neumann algebras and Connes fusion.

70



5.1 Spin connections and Stiefel-Whitney theory

We first explain a 2-dimensional field theory based on the second Stiefel-Whitney class.
We claim no originality and thus skip most proofs. Stiefel-Whitney theory is defined on
manifolds with the geometric structure (or classical field) given by an oriented vector
bundle with inner product, and hence is a functor

SW : BSO2 −→ HilbR

where BSO2 is the category explained in Section 2.1, where the geometric structure is an
oriented vector bundle with inner product. In the following definitions we could used
Z/2 instead of R as the values, but it will be convenient for further use to stay in the
language of (real) Hilbert spaces. We use the embedding Z/2 = {±1} ⊂ R and note
that these are the numbers of unit length. Note also that a Z/2-torsor is the same thing
as a 1-dimensional real Hilbert space, also called a real line below.

Definition of Stiefel-Whitney theory. Stiefel-Whitney theory SW associates to a
closed geometric 2-manifold E → Σ the second Stiefel-Whitney number

SW(E → Σ)
def
= 〈w2(E), [Σ]〉 ∈ Z/2 = {±1} ⊂ R

To a closed geometric 1-manifold E → Y it associates the real line

SW(E → Y )
def
= {(F, r) | r ∈ R, F → Y × I, F |Y×{0,1} = E ∪ R

dim(E)}/ ∼

where R
n denotes the trivial bundle and (F1, r1) ∼ (F2, r2) if and only if w2(F1 ∪ F2 →

Y × S1) · r1 = r2. If ∂Σ = Y and E ′ → Σ extends E → Y , then the equivalence class of
(F,w2(E ∪ F ∪ R

dim(E))) is a well defined element

SW(E ′ → Σ) ∈ SW(E → ∂Σ).

It is independent of the choice of the bundle F by additivity of w2. This theory by itself
is not very interesting but we shall make several variations, and ultimately generalize
it to Chern-Simons theory. The first observation is that one can also define the value
SW(E → Z) for a 0-manifold Z. According to the usual field theory formalism we expect
that this is a category whose morphism spaces are real lines (which can then be used
to calculated the value of the field theory on 1-manifolds). In the spirit of the above
definition, we start with vector bundles F → Z× I which extend the bundle E ∪Rdim(E)

on Z ×{0, 1}. These are the objects in a category SW(E → Z) with morphisms defined
by

Mor(F1, F2)
def
= SW(F1 ∪ F2 → Z × S1) = Mor(F2, F1)

To complete the description of the theory, we need to associate something to a bundle
E ′ → Y over a 1-manifold with boundary Z = ∂Y (with restricted bundle E = E ′|Z). It
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should be an ‘element’ in the category SW(E → Z) which can then be used to formulate
the appropriate gluing laws of the theory. There are various possible interpretations of
such an ‘element’ but in the best case, it would mean an object a in the category. In
order to find such an object, we slightly enlarge the above category, allowing as objects
not just vector bundles over Z × I but more generally, vector bundles over Y with
∂Y = Z × {0, 1}. The reader will easily see that this has the desired effect.

Definition 5.1.1. Stiefel-Whitney theory is the extended 2-dimensional field theory de-
scribed above, where the geometric structure on Y is given by an oriented vector bundle.
Here the word extended refers to the fact that SW also assigns a small category to
0-manifolds, and objects of this category to 1-manifolds with boundary.

Relative, real Dirac theory. There is an interesting reformulation of the theory
which uses that fact that our domain manifolds Σ are equipped with a spin structure
and that the bundle E comes a with connection. Enhance for a moment the geometrical
structure on Σ by a conformal structure. Then we have the Dirac operator DΣ, as well
as the twisted Dirac operator DE. If Σ2 is a closed, we get an index in KO2

∼= Z/2. For
a closed conformal 1-manifold Y the Dirac operator is just covariant differentiation in
the spinor bundle from Definition 2.3.1. Hence it comes equipped with a real Pfaffian
line Pf(DY ), see Definition 2.3.12. If Y = ∂Σ then the relative index of Σ is an element
of unit length in Pf(DY ). The same holds for the twisted case. Finally, for a bundle
with metric over a 0-manifold, we define the following relative, real Dirac category: The
objects are Lagrangian subspaces L in V ⊥ −Rn, where V is again the orthogonal sum
of the fibers and n is the dimension of V . These Lagrangians should be thought of as
boundary conditions for the Dirac operator on a bundle on Z×I which restricts to V ∪Rn

on the boundary. In particular, the boundary values of harmonic sections of a bundle E
over 1-manifold Y define an object in the category for E|∂Y = V0 ∪ V1 by rewriting the
spaces in question as follows

−(V0 ⊥ −R
n) ⊥ (V1 ⊥ −R

n) = (−V0 ⊥ V1) ⊥ (Rn ⊥ −R
n)

This is in total analogy to the above rewriting of the isometry groups. The morphisms
in the category are given by the real lines

Mor(L1, L2)
def
= HomC(V )−Cn(F (L1), F (L2)),

where F (Li) are the Fock spaces from Definition 2.2.4. They are irreducible graded
bimodules over the Clifford algebras C(V ) − Cn. Recall from Remark 2.2.6 that the
orientation of V specifies a connected component of such Lagrangians L and we only
work in this component.

Lemma 5.1.2. There is a canonical isomorphism between the two extended 2-dim. field
theories, Stiefel-Whitney theory and relative, real Dirac theory. For n = dim(E) this
means the following statements in the various dimensions
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dim 2: SW(E → Σ) = index(DΣ ⊗ E) − n · index(DΣ) ∈ Z/2,

dim 1: SW(E → Y ) ∼= Pf(DY ⊗ E) ⊗ Pf−n(DY ), such that for Y = ∂Σ the element
SW(E ′ → Σ) is mapped to the relative index.

dim 0: For an inner product space V , the category SW(V ) is equivalent to the above rel-
ative Dirac category, in a way that the objects defined by 1-manifolds with boundary
correspond to each other.

The extra geometric structure of bundles with connection is needed to define the right
hand side theory, as well as for the isomorphisms above.

Proof. The 2-dimensional statement follows from index theory, and for the 1-dimensional
statement one uses the relative index on Y × I. In dimension zero, recall from Re-
mark 2.2.6 that a Lagrangian subspace L in V ⊥ −Rn is given by the graph of a unique
isometry V → Rn. Moreover, parallel transport along a connection gives exactly the
Lagrangian of boundary values of harmonic spinors along an interval.

Spin structures as trivializations of Stiefel-Whitney theory. Fix a manifold X
and an n-dimensional oriented vector bundle E → X with metric connection. One may
restrict the Stiefel-Whitney theory to those bundles (with connection) that are pull-backs
of E via a piecewise smooth map Y → X. Thus geometric structures on Y make up the
set Maps(Y,X), and we call the resulting theory SWE.

Lemma 5.1.3. A spin structure on E → X gives a trivialization of the Stiefel-Whitney
theory SWE in the following sense:

dim 2: SWE(Σ → X) = 0 if Σ is a closed 2-manifold.

dim 1: SWE(Y → X) is canonically isomorphic to R for a closed spin 1-manifold and
all elements SWE(Σ → X) with ∂Σ = Y are mapped to 1.

dim 0: The set of objects ob(SWE(Ex)) = SO(Ex,R
n) of the category for a point

x ∈ X comes with a nontrivial real line bundle ξ and isomorphisms Mor(b1, b2) ∼=
Hom(ξb1 , ξb2) which are compatible with composition in the category.

Moreover, the last item is equivalent to the usual definition of a spin structure, and
so all the other items follow from it.

Proof. The 2-dimensional statement follows from the fact that w2(E) = 0, and the
isomorphism in dimension 1 is induced by the relative second Stiefel-Whitney class. To
see why the last item is the usual definition of a spin structure on Ex, recall that the
real line bundle is the same information as a double covering Spin(Ex,R

n), and that the
isomorphisms between the morphism spaces follow from the group structures on SO(n)
and Spin(n).
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Spin connections as trivializations of relative, real Dirac theory. For the next
lemma, we recall from Remark 2.2.6 that for a inner product space Ex of dimension n, the
isometries O(Ex,R

n) are homeomorphic to the space L(x) of Lagrangians of Ex ⊥ −Rn.

Lemma 5.1.4. A spin connection S on an oriented bundle E → X with metric and
connection gives a trivialization of the relative, real Dirac theory on Maps(· , X) in the
following sense:

dim 2: index(Df∗E) = n · index(DΣ) ∈ Z/2 if Σ is a closed 2-manifold and f : Σ → X
is used to twist the Dirac operator on Σ by E.

dim 1: For f : Y → X, Y a closed spin 1-manifold, there is an isomorphism S(f) :
Pf(f ∗E) ∼= Pfn(Y ), taking twisted to untwisted indices of Dirac operators of sur-
faces Σ with ∂Σ = Y .

dim 0: For each x ∈ X, there is a graded irreducible C(Ex) − Cn bimodule S(x) =
S(Ex) which gives a nontrivial line bundle over the connected component of L(x)
(given by the orientation of Ex). Here the line over a Lagrangian L ∈ L(x) is
HomC(x)(S(x), F (L)), where C(x) = C(Ex) ⊗ C−n (and hence S(x) is a left C(x)-
module). Moreover, for each path γ from x1 to x2, the spin structure on E induces
an isomorphism between the following two left modules over C(x1)

op ⊗ C(x2):

S(γ) : F (γ)
∼=

−→ HomR(S(x1),S(x2))

where F (γ) is the relative Fock module from Definition 2.4.5. When two paths are
composed along one point, then the gluing laws from Proposition 5.0.6 hold.

Note that the bimodules S(x) = S(Ex) fit together to give the Cn-linear spinor bundle
S(E), so we have finally motivated our Definition 2.3.1 of spin structures. The vacuum
vectors in the Fock modules F (γ∗E) define a parallel transport in S(E). It is interesting
to note that these vacuum vectors exist even for an oriented vector bundle E (with metric
and connection) but it is the spin structure in the sense above which makes it possible
to view them as a parallel transport in the spinor bundle.

Proof. The result follows directly from Lemmas 5.1.2 and 5.1.3. In dimension 0 one
defines S(Ex) in the following way: For a given Lagrangian L we have a Fock space
F (L) but also the line ξL from Lemma 5.1.3 (since L is the graph of a unique isometry).
Moreover, given two Lagrangians Li we have given isomorphisms

F (L1) ⊗ ξL1
∼= F (L2) ⊗ ξL2

which are associative with respect to a third Lagrangian. Therefore, we may define S(Ex)
as the direct limit of this system of bimodules. Note that S(Ex) is then canonically
isomorphic to each bimodule of the form F (L) ⊗ ξL and so one can recover the line
bundle ξ from S(Ex). In fact, the bimodule and the line bundle ξ contain the exact same
information.
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5.2 String connections and Chern-Simons theory

We want to explain the steps analogous to the ones in the previous section with w2 ∈
H2(BSO(n); Z/2) replaced by a “level” ` ∈ H4(BG; Z). The most interesting case for
us is the generator p1/2 of H4(B Spin(n); Z) which will lead to string structures. The
analogue of Stiefel-Whitney theory is (classical) Chern-Simons theory which we briefly
recall, following [Fr1]. We shall restrict to the case where the domain manifolds are spin
as this is the only case we need for our applications.

Let G be a compact Lie group and fix a level ` ∈ H4(BG; Z). For d = 0, . . . , 4 we
consider compact d-dimensional spin manifolds M d together with connections a on a
G-principalbundle E →M . The easiest invariant is defined for a closed 4-manifold M 4,
and is given by the characteristic number 〈c∗E(`), [M ]〉 ∈ Z, where cE : M → BG is a
classifying map for E. It is independent of the connection and one might be tempted
to view it as the analog of SW(E → Σ) ∈ Z/2 of a closed surface Σ. However, this is
not quite the right point of view. In fact, Chern-Simons theory is a 3-dimensional field
theory

CS = CS` : BG3 −→ HilbC

in the sense of Section 2.1, with geometric structure being given by G-bundles with
connection. The value CS(M 3, a) ∈ S1 for a closed 3-manifold is obtained by extending
the bundle and connection over a 4-manifold W with boundary M , and then integrating
the Chern-Weil representative of ` over W . By the integrality of ` on closed 4-manifolds,
it follows that one gets a well defined invariant in S1 = R/Z, viewed as the unit circle in
C (just like Z/2 = {±1} was the unit circle in R). Thus we think of this Chern-Simons
invariant as the analogue of SW(E → Σ). One can then use the tautological definitions
explained in the previous sections to get the following values for the invariant CS(M d, a),
leading to an extended 3-dimensional field theory.

d Md closed ∂Md 6= ∅

4 element in Z element in R reducing to invariant of ∂M
3 element in S1 point in the hermitian line for ∂M
2 hermitian line object in the C-category for ∂M
1 C-category

By a C-category we mean a category where all morphism spaces are hermitian lines.
In Stiefel-Whitney theory we associated an R-category to 0-manifolds. So R has been
replaced by C and all dimensions have moved up by one. It will be crucial to understand
the 0-dimensional case in Chern-Simons theory, where von Neumann algebras enter the
picture.

Relative, complex Dirac theory. First we stick to dimensions 1 to 4 as above and
explain the relation to Dirac operators.
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Theorem 5.2.1. For G = Spin(n) at level ` = p1/2, the above extended Chern-Simons
theory is canonically isomorphic to relative, complex Dirac theory.

In Dirac theory one has conformal structures on the spin manifolds M which enables
one to define the Dirac operator DM , as well as the twisted Dirac operator Da. Here we
use the fundamental representation of Spin(n) to translate a principal Spin(n)bundle into
a spin vector bundle, including the connections a. In the various dimensions d = 1, . . . , 4,
relative, complex Dirac theory is given by the following table of classical actions. It is a
(well known) consequence of our theorem that the relative theory is metric independent.
Let M be a closed d-manifold and E an n-dimensional vector bundle E over M with
connection a.

d D(Md, a)
def
=

4 indexrel(M, a)
def
= 1

2
index(Da) −

n
2

index(DM) ∈ Z

3 ηrel(M3, a) ∈ S1

2 Pfrel(M2, a), a hermitian line
1 [F rel(M1, a)], a C-category of representations

Proof of Theorem 5.2.1. The statement in dimension 4 follows from the index theorem
(see below) which implies that the relative index in the above table equals the char-
acteristic class 〈p1(E)/2, [M4]〉 on closed 4-manifolds. In dimension 3, we first need to
explain the invariant ηrel. It is one half of the reduced η-invariant which shows up in the
Atiyah-Patodi-Singer index theorem for 4-manifolds with boundary (where we are using
the Dirac operator twisted by the virtual bundle E ⊕−R

n):

index(DM4,a) − n · index(DM) =

∫

M

Â(M)c̃h(E ⊗ C, a) − η̃(∂M, a) ∈ R

Both indices above are even dimensional because of a quaternion structure on the bundles
(coming from the fact that the Clifford algebra C4 is of quaternion type). Applying this
observation together with the fact that the Chern character in degree 4 is given by
p1(E ⊗ C)/2 = p1(E) one gets

∫

M

p1(E, a) ≡ η̃(∂M, a) mod 2Z

Since we are assuming that E is a spin bundle, the left hand side is an even integer for
closed M . Therefore, we may divide both sides by 2 to obtain a well defined invariant
ηrel(∂M, a) in R/Z which equals CS(∂M, a).

In dimension 2, one needs to understand the Pfaffian line of the skew-adjoint operator
D+

a , as well as the corresponding relative Pfaffian line

Pfrel(M, a) = Pf(a) ⊗ Pf(DM)⊗n
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in the above table. The main point is that the relative η-invariant above can be extended
to 3-manifolds with boundary so that it takes values in this relative Pfaffian line. There-
fore, one can define an isomorphism of hermitian lines CS(M 2, a) → Pfrel(M2, a) by
associating this relative η-invariant to a connection on M 2 × I (extending a respectively
the trivial connection).

Finally, for a closed 1-manifold, [F rel(M1, a)] is the isomorphism class of twisted Fock
spaces explained in Definition 2.3.12. They can be defined from harmonic boundary
values of twisted Dirac operators on M × I. The isomorphism class of the bimodule does
not depend on the extension of bundle and connection to M × I. Each of these Fock
spaces is a complex graded irreducible representation of the Clifford algebra

Crel(M, a) = C(E, a)op ⊗ C(M)⊗ dim(E),

the latter replacing Cn = C(pt)⊗n from Stiefel-Whitney theory. Given the isomorphism
class of such a bimodule, there is an associated C-category whose objects are actual
representations in this isomorphism type, and whose morphisms are intertwiners. The
equivalence of categories from CS(M, a) to the C-category defined by [F rel(M, a)] is on
objects given by sending a connection on M 1 × I (extending a respectively the trivial
connection) to the Fock space defined from harmonic boundary values of twisted Dirac
operators on M × I. By definition, this is an object in thecorrect category. To define
the functor on morphisms, one uses the canonical isomorphism

Pfrel(M1 × S1, a) ∼= HomCrel(M×S1,a)(F
rel(M × I, a0), F

rel(M × I, a1))

where a is a connection on a bundle over M × S1 which is obtained by gluing together
two connections a0, a1 on M × I.

5.3 Extending Chern-Simons theory to points

Fix a compact, simply connected, Lie group G and a level ` ∈ H4(BG). Recall from
Theorem 5.0.2 that there is a von Neumann algebras A = AG,` and a G-kernel (see
Remark 5.4.3)

Φ̃ : G −→ Out(A)
def
= Aut(A)/ Inn(A)

canonically associated to (G, `). Moreover, Φ̃ defines the extension G` of G by PU(A) =
Inn(A) and lifts to a monomorphism Φ : G` → Aut(A). We want to use these data to
define the Chern-Simons invariant of a point.

On a G-bundle V over a point, we first pick a G`-structure. Recall from Defini-
tion 5.0.5 that this is an algebra AV together with a G-equivariant map

αV : IsoG(G, V ) −→ Out(A,AV )
def
= Iso(A,AV )/ Inn(A)

It turns out that the Out(A)-torsor Out(A,AV ) is actually defined independently of the
choice of such a G`-structure.
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Definition 5.3.1. We define CS(V ) to be the Out(A)-torsor Out(A,AV ).

The above independence argument really shows that there is a map

IsoG(V1, V2) −→ Out(AV1
, AV2

)

which is well defined without choosing G`-structures. In particular, without knowing
what the algebras AVi

really are. When applying this map to the parallel transport of a
G-connection a an interval I, we get the value CS(I, a).

To motivate why this definition really extends Chern-Simons theory to points, we
propose a whole new picture of the theory.

Chern-Simons theory revisited. We propose a rigidified picture of the Chern-
Simons actions motivated by our definition in dimension 0. For a given (G, `), the
Chern-Simons invariant CS(M d, a) for connected d-manifolds would then take values
in mathematical objects listed in the table below. Note that the values for closed spin
manifolds are special cases of manifolds with boundary, i.e. the entries in the middle
column are subsets of the entries in the right hand column.

d Md closed ∂Md 6= ∅

4 Z R

3 S1 U(A)
2 PU(A) Aut(A)
1 Out(A) Out(A)-equivariant maps
0 space of Out(A)-torsors

Here A = AG,` is the von Neumann algebra discussed in the previous section. The guiding
principle in the table above is that for closed connected d-manifoldsM , the Chern-Simons
invariant CS(Md, a) should be a point in a particular version of an Eilenberg-MacLane
space K(Z, 4 − d) (whereas for manifolds M with boundary one gets a point in the
corresponding contractible space). More precisely, for K(Z, 4 − d) we used the models

Z, S1 = R/Z, Inn(A) ∼= PU(A) = U(A)/S1, Out(A) = Aut(A)/ Inn(A),

for d = 4, 3, 2, 1. Our model of a K(Z, 4) is the space of Out(A)-torsors. This is only
a conjectural picture of classical Chern-Simons theory but it should be clear why it
rigidifies the definitions in Section 5.2: Every point in PU(A) defines a hermitian line
via the S1-torsor of inverse images in U(A). Moreover, every point in g ∈ Out(A) defines
an isomorphism class of [Fg] of A−A-bimodules by twisting the standard bimodule L2(A)
by an automorphism in Aut(A) lying above g. This defines the C-category of A − A-
bimodules isomorphic to [Fg].
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Remark 5.3.2. The homomorphism Φ̃ : G −→ Out(A) should be viewed as follows: An
element in G gives a G-bundle with connection ag on S1 via the clutching construction.

Then Φ̃(g) = CS(S1, ag). In the previous section we explained a similar construction
which gives CS(I, a), and also the value of CS on points. Thus we haven’t explained the
definition of the rigidified Chern-Simons invariant only for surfaces.

We will not seriously need the new picture of Chern-Simons theory in the following
because we really only want to explain what a ‘trivialization’ of it is. But we do spell
out the basic results which are necessary to make this picture precise. Since we couldn’t
find these statements in the literature (only the analogous results for II1-factors were
known before), were originally formulated them as conjectures. We recently learned
from Antony Wassermann that they are also true in the III1-context. His argument for
the contractibility of U(A) is a variation of the argument for type I given in [DD], for
Aut(A) he reduces the problem to the type II case.

Theorem 5.3.3. (Wassermann). If A is a hyperfinite type III1-factor then the unitary
group U(A) is contractible in the weak (or equivalently strong) operator topology. More-
over, the automorphism group Aut(A) is also contractible in the topology of pointwise
norm convergence in the predual of A.

It follows that PU(A) = U(A)/T is a K(Z, 2). One has to be more careful with
the topology on Out(A) = Aut(A)/PU(A) because with the quotient topology this is
not a Hausdorff space (using the above topologies, PU(A) is not closed in Aut(A)). A
possible strategy could be to define a continuous map X → Out(A) to be any old map
but together with local continuous sections to Aut(A).

String connections as trivializations of Chern-Simons theory. Let E → X be a
principal G-bundle with connection. We get a Chern-Simons theory for E by restricting
to those bundles with connection on spin manifolds M d which come from piecewise
smooth maps M → X via pullback. Thus the new geometric structures on M are
Maps(M,X) and we get the Chern-Simons theory CSE.

Definition 5.3.4. Let G` be the group extension of G at level ` constructed in Sec-
tion 5.4. Then a geometric G`-structure S on E is a trivialization of the extended
Chern-Simons theory CSE. For a closed spin manifold M in dimension d this amounts to
the following ‘lifts’ of the Chern-Simons action on piecewise smooth maps f : M d → X:

d values of S(f) = S(f : M d → X)

4 the equation CS(f) = 0, no extra structure!
3 S(f) ∈ R reduces to CS(f) ∈ R/Z
2 S(f) is a point in the line CS(f)
1 S(f) is an object in the C-category CS(f)
0 for x ∈ X, S(x) is a G` − Ex-pointed factor
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The last line uses Definition 5.0.5. There are also data associated for manifolds M
with boundary, and these data must fit together when gluing manifolds and connections.
Note that for d ≤ 3, S(f : M d → X) takes values in the same objects as CS(F ) if
F : W d+1 → X extends f , i.e. ∂W = M . By construction, they both project to the
same point in the corresponding quotient given by CS(f). The geometric G`-structure
on F : W d+1 → X gives by definition a point in this latter group. For example, if d = 2
then S(F ) is the element of S1 such that

S(F ) · S(f) = CS(F ) ∈ CS(f)

Finally, we assume that these data fit together to give bundles (respectively sections in
these bundles) over the relevant mapping spaces.

Note that the data associated to points combine exactly to a G`-structure on E as
explained in Definition 5.0.3. Thus a geometric G`-structure has an underlying (topo-
logical) G`-structure.

Theorem 5.3.5. Every principal G-bundle with G`-structure admits a geometric G`-
structure, unique up to isomorphism.

In fact, the ‘space’ of geometric G`-structures is probably contractible. The proof
of this theorem will appear elsewhere but it is important to note that the construction
uses a ‘thickening’ procedure at every level, i.e. one crosses all manifolds M d with I
and extends the bundle f ∗E with connection over M × I in a way that it restricts to
the trivial bundle on the other end. So one seriously has to use the fact that all the
structures explained above are really ‘relative’, i.e. twisted tensor untwisted, structures.

In the case G = Spin(n) and ` = p1/2 we need a more geometric interpretation. This
is given by the following result which incorporates Definition 5.0.9. There, a geometric
String(n)p1/2 structure was called a string connection and we stick to this name.

Corollary 5.3.6. Given an n-dimensional vector bundle E → X with spin connection.
Then a string connection S on E induces the following data for closed conformal spin
manifolds Md. In the table below, DM,f is the conformal Dirac operator twisted by
f ∗(E) for a piecewise smooth map f : M → X and the data fit together to give bundles
(respectively sections in these bundles) over the relevant mapping spaces.

d values of S(f) = S(f : M d → X)

4 the equation index(Df∗E) = n index(DM), no extra structure!
3 S(f) ∈ R reduces to ηrel(M, f ∗E) ∈ R/Z
2 an isomorphism S(f) : Pf(f ∗E)∼= Pf(M)⊗n

1 a representation S(f) isomorphic to [F (f)]
0 for x ∈ X, S(x) is a String(n) − Ex-pointed factor
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Again, the last line uses Definition 5.0.5 and the data in dimension 0 give exactly a string
structure on E.

The precise gluing conditions in dimensions 0, 1, 2 were explained in Definition 5.0.9
and that’s all we shall need. The main point is that the von Neumann algebras for
0-manifolds can be used to decompose the representations of closed 1-manifolds into the
Connes fusion of bimodules. That’s the locality condition we need for our purposes of
constructing a cohomology theory in the end. Note that by Theorem 5.3.5 such string
connections exist and are up to isomorphism determined by the topological datum of a
string structure.

Remark 5.3.7. In this Section 5.2 we have not taken care of the actions of diffeomor-
phisms of d-manifolds, d = 0, 1, 2, 3, 4. This is certainly necessary if one wants the correct
theory and we have formulated the precise conditions only in Definition 5.0.9 (which is
important for elliptic objects). However, we felt that the theory just presented is com-
plicated enough as it stands and that the interested reader will be able to fill the gaps if
necessary.

5.4 Type III1-factors and compact Lie groups

In this section we discuss canonical extensions of topological groups

1 −→ PU(Aρ) −→ Gρ −→ G −→ 1, (5.4.1)

one for each projective unitary representation ρ of the loop group LG of a Lie group
G. The above extensions were first found for G = Spin(n) and ρ the positive energy
vacuum representation at level ` = p1/2. We used ‘local fermions’ in the construction,
and arrived at the groups String(n) = Gρ. Antony Wassermann explained to us the
more general construction (in terms of ‘local loops’) which we shall discuss below.

In the extension above, Aρ is a certain von Neumann algebra, the ‘local loop alge-
bra’, and one can form the projective unitary group PU(Aρ) = U(Aρ)/T. If U(Aρ) is
contractible, the projective group has the homotopy type of a K(Z, 2). In that case one
gets a boundary map

π3G −→ π2PU(Aρ) ∼= Z

which we call the level of ρ. In the special case where G is compact and ρ is the vacuum
representation of LG at level ` ∈ H4(BG), this leads to an extension G` → G which
was used in Theorem 5.0.2. By Wassermann’s Theorem 5.3.3, the unitary group is
contractible in this case.

Lemma 5.4.2. If G is simply connected and compact, then the two notions of level above
agree in the sense that

` ∈ H4(BG) ∼= Hom(π3G,Z)

gives the boundary map π3G→ π2PU(Aρ) ∼= Z in extension 5.4.1 if ρ is the positive
energy vacuum representation of LG at level `.
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The proof is given at the end of this section. It is interesting to remark that the
‘local equivalence’ result in [Wa, p.502] implies that the construction leads to canonically
isomorphic algebras Aρ and groupsGρ if one uses any other positive energy representation
of LG at the same level `.

Remark 5.4.3. The extension 5.4.1 is constructed as a pullback from a homomorphism
G → Out(Aρ). Such homomorphisms are also called G-kernels and they were first
studied by Connes in [Co2]. He showed that for G a finite cyclic group, G-kernels into the
hyperfinite II1 factor are classified (up to conjugation) by an obstruction in H3(G; T) ∼=
H4(BG). This result was extended in Jones’ thesis to arbitrary finite groups [J1]. In
a sense, the above construction is anextension of this theory to compact groups (and
hyperfinite III1 factors). More precisely, Wassermann pointed out that the extensions
5.4.1 are extensions of Polish groups and by a general theorem have therefore Borel
sections. There is then an obstruction cocycle in C. Moore’s [Mo] third Borel cohomology
of G which measures the nontriviality of the extension. By a a result of D. Wigner [Wig],
one in fact has H4(BG) ∼= H3

Borel(G; T). In the simply connected case (and for tori),
Wassermann has checked that the obstruction cocycle in Borel cohomology actually
agrees with the level ` ∈ H4(BG). This lead Wassermann to a similar classification as
for finite groups, using the unique minimal action (cf. [PW]) of the constant loops on
Aρ.

For our applications to homotopy theory, this Borel cocycle is not as important as
the boundary map on homotopy groups in Lemma 5.4.2. However, it might be an
important tool in the understanding of non-simply connected groups because the iso-
morphism H4(BG) ∼= H3

Borel(G; T) continues to hold for all compact Lie groups (even
non-connected).

Remark 5.4.4. One drawback with this more general construction is that the von
Neumann algebras Aρ are not graded, whereas our original construction in terms of local
fermions gives graded algebras via the usual grading of Clifford algebras. Whenever such
a grading is needed, we shall revert freely to this other construction.

Remark 5.4.5. The ‘free loop group’ LG is the group consisting of all piecewise smooth
(and continuous) loops. The important fact is that the theory of positive energy repre-
sentations of smooth loop groups extends to these larger groups (cf. [PS] and [J4]).

Let ρ be a projective unitary representation of LG, i.e., a continuous homomorphism

ρ : LG → PU(H) from LG to the projective unitary group PU(H)
def
= U(H)/T of some

complex Hilbert space H. This group carries the quotient topology of the weak (or equiv-
alently strong) operator topology on U(H). Note that by definition, we are assuming
that ρ is defined for all piecewise smooth loops in G. Pulling back the canonical circle
group extension

1 −→ T −→ U(H) −→ PU(H) −→ 1
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via ρ, we obtain an extension T −→ L̃G −→ LG, and a unitary representation ρ̃ : L̃G→
U(H).

Let I ⊂ S1 be the upper semi-circle consisting of all z ∈ S1 with non-negative
imaginary part. Let LIG ⊂ LG be the subgroup consisting of those loops γ : S1 → G
with support in I (i.e., γ(z) is the identity element of G for z /∈ I). Let L̃IG < L̃G be
the preimage of LIG. Define

Aρ
def
= ρ̃(L̃IG)′′ ⊂ B(H).

to be the von Neumann algebra generated by the operators ρ̃(γ) with γ ∈ L̃IG. Re-
call that von Neumann’s double commutant theorem implies that this is precisely the
weak operator closure (in the algebra B(H) of all bounded operators on H) of linear
combinations of group elements L̃IG.

To construct the group extension (5.4.1) we start with the group extension

1 −→ LIG −→ P I
11G −→ G −→ 1, (5.4.6)

where P I
11G = {γ : I → G | γ(1) = 11}, the left map is given by restriction to I ⊂ S1

(alternatively we can think of LIG as maps γ : I → G with γ(1) = γ(−1) = 11), and
the right map is given by evaluation at z = −1. The idea is to modify this extension
by replacing the normal subgroup LIG by the projective unitary group PU(Aρ) of the
von Neumann algebra Aρ (the unitary group U(Aρ) ⊂ Aρ consists of all a ∈ Aρ with
aa∗ = a∗a = 1), using the homomorphism

ρ : LIG −→ PU(Aρ),

given by restricting the representation ρ to LIG ⊂ LG. We note that by definition of
Aρ ⊂ B(H), we have ρ(LIG) ⊂ PU(Aρ) ⊂ PU(H).

We next observe that P I
11G acts on LIG by conjugation and that this action extends

to a left action on PU(Aρ). In fact, this action exists for the group P IG of all piecewise
smooth path I → G (of which P I

11G is a subgroup): To describe how δ ∈ P IG acts on
PU(Aρ), extend δ : I → G to a piecewise smooth loop γ : S1 → G and pick a lift γ̃ ∈ L̃G
of γ ∈ LG. We decree that δ ∈ P IG acts on PU(Aρ) via

[a] 7→ [ρ̃(γ̃)aρ̃(γ̃−1)].

Here a ∈ U(Aρ) ⊂ B(H) is a representative for [a] ∈ PU(Aρ). It is clear that ρ̃(γ̃)aρ̃(γ̃−1)
is a unitary element in B(H); to see that it is in fact in Aρ, we may assume that a is
of the form a = ρ̃(γ̃0) for some γ̃0 ∈ L̃IG (these elements generate Aρ as von Neumann
algebra). Then ρ̃(γ̃)aρ̃(γ̃−1) = ρ̃(γ̃γ̃0γ̃

−1), which shows that this element is in fact in Aρ

and that it is independent of how we extend the path δ : I → G to a loop γ : S1 → G,
since γ0(z) = 1 for z /∈ I.
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Lemma 5.4.7. With the above left action of P IG on PU(Aρ), the representation ρ :
LIG→ PU(Aρ) is P IG-equivariant. Therefore, there is a well defined monomorphism

r : LIG −→ PU(Aρ) o P IG, r(γ)
def
= (ρ(γ−1), γ)

into the semidirect product, whose image is a normal subgroup.

Before giving the proof of this Lemma, we note that writing the semidirect product
in the order given, one indeed needs a left action of the right hand group on the left hand
group. This follows from the equality

(u1g1)(u2g2) = u1(g1u2g
−1
1 )g1g2

because u 7→ gug−1 is a left action on u ∈ U .

Proof. The first statement is obvious from our definition of the action on PU(Aρ). To
check that r is a homomorphism, we compute

r(γ1)r(γ2) = (ρ(γ−1
1 ), γ1)(ρ(γ

−1
2 ), γ2)

= (ρ(γ−1
1 )[ρ(γ1)ρ(γ

−1
2 )ρ(γ−1

1 )], γ1γ2)

= (ρ(γ−1
2 )ρ(γ−1

1 ), γ1γ2) = (ρ(γ1γ2)
−1, γ1γ2)

= r(γ1γ2)

To check that the image of r is normal, it suffices to check invariance under the two
subgroups PU(Aρ) and P IG. For the latter, invariance follows directly from the P IG-
equivariance of ρ. For the former, we check

(u−1, 1)(ρ(γ−1), γ)(u, 1) = (u−1ρ(γ−1), γ)(u, 1)

= (u−1ρ(γ−1)ρ(γ)uρ(γ)−1, γ)

= (r(γ−1), γ)

This actually shows that the two subgroups r(LIG) and PU(Aρ) commute in the semidi-
rect product group. Finally, projecting to the second factor P IG one sees that r is
injective.

Definition 5.4.8. We define the group Gρ to be the quotient of PU(Aρ) o P I
11G by the

normal subgroup r(LIG), in short

Gρ
def
= PU(Aρ) oLIG P

I
11G

Then there is a projection onto G by sending [u, γ] to γ(−1) which has kernel PU(Aρ).
This gives the extension in 5.4.1.
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The representation of Gρ into Aut(Aρ). We observe that there is a group extension

Gρ −→ PU(Aρ) oLIG P
IG −→ G

where the right hand map sends [u, γ] to γ(1). This extension splits because we can map
g to [11, γ(g)], where γ(g) is the constant path with value g. This implies the isomorphism

Gρ oG ∼= PU(Aρ) oLIG P
IG

with the action of G on Gρ defined by the previous split extension. Note that after
projecting Gρ to G this action becomes the conjugation action of G on G because the
splitting used constant paths.

Lemma 5.4.9. There is a homomorphism

Φ : PU(Aρ) oLIG P
IG −→ Aut(Aρ) Φ([u], γ)

def
= cu ◦ φ(γ)

where cu is conjugation by u ∈ U(Aρ) and φ(γ) is the previously defined action of P IG
on Aρ (which was so far only used for its induced action on PU(Aρ)).

Proof. The statement follows (by calculations very similar to the ones given above) from
the fact that

φ(γ) ◦ cu = cρ(γ)uρ(γ)−1 ◦ φ(γ)

We summarize the above results as follows.

Proposition 5.4.10. There is a homomorphism Φ : Gρ oG −→ Aut(Aρ) which reduces
to the conjugation action PU(Aρ) � Inn(Aρ) ⊂ Aut(Aρ) on

PU(Aρ) = ker(Gρ −→ G) = ker(Gρ oG −→ GoG)

The action of G on G in the right hand semidirect product is given by conjugation.
This implies that the correct way to think about the homomorphism Φ is as follows: It is
a homomorphism Φ0 : Gρ → Aut(Aρ), together with a lift to Aut(Aρ) of the conjugation

action of G on Out(Aρ) (which is given via Φ̃0 : G→ Out(Aρ)).

Proof of Lemma 5.4.2. Since P I
11G is contractible, the boundary maps in extension 5.4.6

are isomorphisms. Therefore, we need to show that ρ∗ : π2LIG→ π2PU(Aρ) is the same
map as the level ` ∈ H4(BG). If G is simply connected the latter can be expressed as the
induced map ρ∗ : π2LG→ π2PU(H). Note that we use the same letter ρ for the original
representation ρ : LG→ PU(H) as well as for its restriction to LIG. Now the inclusion
LIG ↪→ LG induces an isomorphism on π2 and so does the inclusion PU(Aρ) ↪→ PU(H).
For the latter one has to know that U(Aρ) is contractible by Theorem 5.3.3 (which is
well known for U(H)). Putting this information together, one gets the claim of our
lemma.
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[Bry] J.-L. Brylinski, Loop spaces, Characteristic classes and Geometric quantization.
Progress in Math. 107, Birkhäuser 1993.
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