
SUPPLEMENT TO ORTHOSYMPLECTIC LIE SUPERALGEBRAS,

KOSZUL DUALITY, AND A COMPLETE INTERSECTION ANALOGUE

OF THE EAGON–NORTHCOTT COMPLEX

STEVEN V SAM

This note is a supplement to [S2]. The main point is to prove Theorem 2.1.1, which is a
special case of [S2, Theorem 3.3.6], without the use of Lie superalgebras or Koszul duality.
The focus here is on the case of the symplectic group, though the proofs given here could be
adapted to the other cases from [S2]. The proof we give here was found before the one in
[S2] and we believe that it is of independent interest. We also include some combinatorial
lemmas regarding the modification rules which played a prominent role in [S2] but which
were ultimately not needed.

1. Preliminaries

Throughout, we work over a fixed field k of characteristic 0.

1.1. Partitions. A finite sequence of weakly decreasing integers λ = (λ1, . . . , λn) is a parti-

tion. We write ℓ(λ) = max{n | λn 6= 0} and |λ| =
∑

i λi. If i > ℓ(λ), we use the convention

that λi = 0. The transpose partition is λ† and is defined by λ†i = #{j | λj ≥ i}. This is
best explained in terms of Young diagrams, which we define via an example.

Example 1.1.1. If λ = (5, 3, 2), then λ† = (3, 3, 2, 1, 1):

λ = , λ† = .

So ℓ(5, 3, 2) = 3 and |(5, 3, 2)| = 10. �

The sum of two partitions is defined componentwise: (λ+ µ)i = λi + µi. The exponential
notation (ab) denotes the number a repeated b times. Its Young diagram is a rectangle, so
we also denote this by b × a. We say that λ ⊆ µ if λi ≤ µi for all i. If λ ⊆ b × a, then
the notation (b × a) \ λ refers to the partition (a − λb, . . . , a − λ1), i.e., rotate the Young
diagram of λ 180 degrees and remove it from the bottom-right corner of the b× a rectangle.
We set −λop = (0, . . . , 0,−λℓ(λ), . . . ,−λ2,−λ1); this notation is used in the context when we
consider integer sequences of a fixed length, in which case the number of 0’s above is implied.

Let λ be a partition. Then we can define the Schur functor Sλ (denoted Lλ′ in [W, §2.1]).
For a vector space E of dimension n, Sλ(E) is a representation of the general linear group
GL(E) and Sλ(E) 6= 0 if and only if ℓ(λ) ≤ n. If λ = (1n), then S(1n)(E) = detE =

∧n(E).
Furthermore, Sλ+(1n)(E) = Sλ(E)⊗ (detE). Using this, we can define Sλ(E) for any weakly
decreasing sequence of integers of length n: find N such that λ + (1N) is nonnegative, and
define Sλ(E) = Sλ+(1N )(E)⊗ (detE∗)N . This does not depend on the choice of N .
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Now let V be a symplectic or orthogonal space. Let λ be a partition with 2ℓ(λ) ≤ dim(V ).
Then we can define S[λ](V ), which is a representation of either the symplectic or orthogonal
group of V , respectively. It is irreducible when the base field has characteristic 0. We will
refer the reader to [FH, §§17.3, 19.5] for the details in characteristic 0 and to [SW, §2] for a
definition and basic properties in the general case.

Let Q−1 be the set of partitions with the following inductive definition. The empty par-
tition belongs to Q−1. A non-empty partition µ belongs to Q−1 if and only if the number
of rows in µ is one more than the number of columns, i.e., ℓ(µ) = µ1 + 1, and the partition
obtained by deleting the first row and column of µ, i.e., (µ2−1, . . . , µℓ(µ)−1), belongs to Q−1.
The first few partitions in Q−1 are 0, (1, 1), (2, 1, 1), (2, 2, 2). Define Q1 = {λ | λ† ∈ Q−1}.
We write Q−1(2i) for the set of λ ∈ Q−1 with |λ| = 2i, and similarly we define Q1(2i).
The significance of these sets are the following decompositions (see [M, I.A.7, Ex. 4,5]):

∧i(Sym2(E)) =
⊕

µ∈Q1(2i)

Sµ(E),
∧i(

∧2(E)) =
⊕

µ∈Q−1(2i)

Sµ(E).(1.1.2)

Lemma 1.1.3.

(a) If µ ∈ Q1, then
∑

imax(0, µi − i) = |µ|/2.
(b) If µ ∈ Q−1, then

∑
imax(0, µi − i+ 1) = |µ|/2.

Proof. (a) Let νi = µi+1 − 1. Then ν ∈ Q1 and
∑

imax(0, νi − i) = |ν|/2. So
∑

i

max(0, µi − i) = (µ1 − 1) +
∑

i

max(0, νi − i) = µ1 − 1 + |ν|/2 = |µ|/2.

(b) Let νi = µi+1 − 1. Then ν ∈ Q−1 and
∑

imax(0, νi − i+ 1) = |ν|/2. So
∑

i

max(0, µi − i+ 1) = µ1 +
∑

i

max(0, νi − i+ 1) = µ1 + |ν|/2 = |µ|/2. �

Lemma 1.1.4.

(a) If ν ∈ Q1 and ℓ(ν) ≤ n, then (νn − n, . . . , ν2 − 2, ν1 − 1) is a signed permutation of
(n, n−1, . . . , 1), i.e., there exists a permutation w and εi ∈ {±1} such that εiw(i) = νi−i.

(b) If ν ∈ Q−1 and ℓ(ν) ≤ n, then (νn − (n − 1), . . . , ν2 − 1, ν1) is a signed permutation of
(n − 1, . . . , 1, 0), i.e., there exists a permutation w and εi ∈ {±1}, such that εiw(i) =
νi − (i− 1).

Proof. We just prove (a); the proof of (b) is similar. Pick ν ∈ Q1 with ℓ(ν) ≤ n. We may
as well assume that ℓ(ν) = n since having trailing zeros will not affect the validity of the
statement. Set µ = (ν2 − 1, . . . , νn − 1). By induction, there exists a permutation w′ and
signs ε′i such that ε′iw

′(i) = µi− i = νi+1 − (i+1) for i = 1, . . . , n− 1. Note that ν1 = n+1,
so we define w(1) = n, ε1 = 1, and w(i) = w′(i− 1) and εi = ε′i−1 for i = 2, . . . , n. �

1.2. Type A Weyl group. Let U be the set of all integer sequences (a1, a2, . . .) which are
eventually 0. We identify partitions with non-increasing sequences in U (such sequences are
necessarily nonnegative). For i ≥ 1, let si be the transposition which switches ai and ai+1,
and let S be the group of automorphisms of U generated by the si. The group S is a Coxeter
group (in fact, the infinite symmetric group), and admits a length function ℓ : S → Z≥0.
The length of w ∈ S is the minimum number ℓ(w) so that there exists an expression

w = si1 · · · siℓ(w).(1.2.1)
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Alternatively, ℓ(w) = #{i < j | w(i) > w(j)} is the number of inversions of w, interpreted
as a permutation [BB, Proposition 1.5.2].

We define a second action of S on U , denoted •, as follows. For w ∈ S and λ ∈ U we put
w • λ = w(λ+ ρ)− ρ, where ρ = (−1,−2, . . .). If we add the same constant c to each entry
of ρ, then this action is unchanged, so we will do that if it simplifies notation. In terms of
the generators, this action is:

si • (. . . , ai, ai+1, . . .) = (. . . , ai+1 − 1, ai + 1, . . .).

1.3. Type C Weyl group. Fix k ≥ 0. We associate to a partition λ two quantities, ιC2k(λ)
and τC2k(λ), which will be of fundamental importance to the results of this paper. We give
two equivalent definitions of these quantities, one via a Weyl group action and one via border
strips. The presentation here follows [SSW, §3.5], where the reader can find further details
and references.

We begin with the Weyl group definition. In §1.6 we defined automorphisms si of the set
U of integer sequences, for i ≥ 1. We now define an additional automorphism: s0 negates
a1. We let W∞ be the group generated by the si, for i ≥ 0. Then W∞ is a Coxeter group of
type BC∞, and, as such, is equipped with a length function ℓ : W∞ → Z≥0, which is defined
just as in (1.2.1). Let ρ = (−(k + 1),−(k + 2), . . .). Define a new action of W∞ on U by
w • λ = w(λ+ ρ)− ρ. The action of s0 is given by

s0 • (a1, a2, . . .) = (2k + 2− a1, a2, . . .).

Given a partition λ ∈ U , exactly one of the following two possibilities hold:
• There exists a unique element w ∈ W∞ such that w • λ† = µ† is a partition and
ℓ(µ) ≤ k. We then put ιC2k(λ) = ℓ(w) and τC2k(λ) = µ.

• There exists a non-identity element w ∈ W∞ such that w • λ† = λ†. We then put
ιC2k(λ) = ∞ and leave τC2k(λ) undefined.

Note that if ℓ(λ) ≤ k, then we are in the first case with w = 1, and so ιC2k(λ) = 0 and
τC2k(λ) = λ.

We now give the border strip definition. If ℓ(λ) ≤ k we put ιC2k(λ) = 0 and τC2k(λ) = λ.
Suppose ℓ(λ) > k. A border strip is a connected skew Young diagram containing no 2× 2
square. Let Rλ be the connected border strip of length 2(ℓ(λ) − k − 1) which starts at the
first box in the final row of λ, if it exists. If Rλ exists, is non-empty and λ\Rλ is a partition,
then we put ιC2k(λ) = c(Rλ) + ιC2k(λ \ Rλ) and τC2k(λ) = τC2k(λ \ Rλ), where c(Rλ) denotes
the number of columns that Rλ occupies; otherwise we put ιC2k(λ) = ∞ and leave τC2k(λ)
undefined.

Example 1.3.1. Set k = 1 and λ = (6, 5, 5, 3, 2, 1, 1). Then 2(ℓ(λ)− k− 1) = 10. We shade
in the border strip Rλ of length 10 in the Young diagram of λ:

In this case c(Rλ) = 5. �

For the proof that these two definitions are equivalent, we refer to [SSW, Proposition 3.5]
(with a small gap corrected in [S1, Lemma 2.7]).
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Let ≤ denote the Bruhat order on W∞ [BB, §2]. Recall that a transposition t ∈ W∞ is
an element conjugate to some si.

Proposition 1.3.2. Fix λ with ℓ(λ) ≤ k. Given µ such that τC2k(µ) = λ, let wµ ∈ W∞ be
the unique element such that wµ • µ

† = λ†. Then wµ ≤ wν if and only if µ ⊆ ν.

Proof. Suppose that wµ ≤ wν . We can factor this relation into those of the form wµ < wµt
for some transposition t [BB, Definition 2.1.1], so it is enough to assume that wν = twµ
(Bruhat order is preserved under the map w 7→ w−1 [BB, Corollary 2.2.5]). The only
possibilities are that t negates the ith entry for some i or swaps the ith and jth entries for
i < j and negates them (if it just swapped two positions then ν would not be a partition).
We treat them simultaneously by allowing i = j. Under the transformation (a1, a2, . . . ) 7→
(. . . ,−a2 + k,−a1 + k), the action of W∞ becomes the standard action of the Weyl group

of type BC∞ and ρ becomes ρ′ = (. . . , 2, 1). So twµ > wµ if and only if µ†
i + µ†

j ≤ 2k. Note

that ν†i = 2k + i+ j − µ†
j and ν

†
j = 2k + i+ j − µ†

i and ν
†
j′ = µ†

j′ for j
′ 6= i, j. Hence ν†i > µ†

i

and ν†j > µ†
j (if not, then ν

†
i + ν†j ≤ µ†

i + µ†
j implies i+ j ≤ 0), so µ ⊆ ν.

Now suppose that µ ⊆ ν. Let µ = µ0 ⊃ µ1 ⊃ · · · ⊃ µr = λ and ν = ν0 ⊃ ν1 ⊃ · · · ⊃ νs = λ
be the sequence of partitions obtained by removing successive border strips as described in
the modification rule and let c(i) and d(i) be the number of columns of µi/µi+1 and νi/νi+1,
respectively. Consider the following two conditions:

(ai) (µi)†j ≤ (νi)†j for j = 1, . . . , c(i).
(bi) c(i) ≤ d(i).

We will prove them below, so assume that this has been done. Set ui = si−1 · · · s1s0.
By [SSW, Proof of Proposition 3.5], we have reduced expressions wµ = uc(r−1) · · · uc(1)uc(0)
and wν = ud(s−1) · · · ud(1)ud(0). If r > s, then νs = λ and c(s) > 0, which implies that

(µs)†1 > k ≥ λ†1, which contradicts (as). Since c(i) ≤ d(i), we have that uc(i) is a subword of
ud(i), and hence wµ ≤ wν [BB, Theorem 2.2.2].
Now we prove that (ai) implies (bi) and that (ai) and (bi) together imply (ai+1). Note

that (a0) holds by the assumption that µ ⊆ ν.
Assume that (ai) holds. Using the Weyl group definition of the modification rule, to remove

a border strip, we start with the sequences (µi)† + ρ and (νi)† + ρ, and apply sc(i)−1 · · · s1s0
and sd(i)−1 · · · s1s0, respectively, to them [SSW, Proof of Proposition 3.5]. Call the resulting
sequences α and β, which are both strictly decreasing. Then

−ρ1 − (νi)†1 = βd(i) > βd(i)+1 = (νi)†
d(i)+1 + ρd(i)+1.

If c(i) > d(i), then we have

(µi)†
d(i)+1 + ρd(i)+1 = αd(i) > αc(i) = −ρ1 − (µi)†1.

Using (ai), we get (νi)†
d(i)+1 ≥ (µi)†

d(i)+1. Combining these inequalities implies that (µi)†1 >

(νi)†1, which contradicts (ai). Hence (ai) implies (bi).
Now suppose that (ai) and (bi) hold. We have c(i + 1) < c(i) by [S1, Lemma 2.7]. So

(µi+1)†j = (µi)†j+1 − 1 for j = 1, . . . , c(i+1) and by (bi) we also have (νi+1)†j = (νi)†j+1 − 1 for
j = 1, . . . , c(i+ 1). Now use (ai) to get (ai+1). �

Lemma 1.3.3. Fix k and pick two partitions µ ⊆ ν with ℓ(ν) ≤ 2k such that τC2k(µ) =
τC2k(ν) = λ, and ιC2k(µ) + 1 = ιC2k(ν). Then µd − µ2k+1−d ≥ νd − ν2k+1−d for all d = 1, . . . , k.
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Proof. By Proposition 1.3.2, there exist wµ, wν ∈ W∞ such that wµ ≤ wν , ℓ(wµ)+1 = ℓ(wν),
and

wµ(λ
† + ρ)− ρ = µ†, wν(λ

† + ρ)− ρ = ν†.

As explained in the proof of Proposition 1.3.2, there is a transposition t such that wν = twµ
and there exists i ≤ j so that t swaps the ith and jth positions and negates them. Then
ν†i = 2k + i+ j − µ†

j, ν
†
j = 2k + i+ j − µ†

i , and ν
†
j′ = µ†

j′ for j
′ 6= i, j. So ν ⊃ µ implies

• νe = µe + 1 for e = µ†
j + 1, . . . , µ†

i ,

• νe = µe + 2 for e = µ†
i + 1, . . . , 2k + i+ j − µ†

i ,

• νe = µe + 1 for e = 2k + i+ j − µ†
i + 1, . . . , 2k + i+ j − µ†

j,
• νe = µe otherwise.

This allows us to conclude:
• If d = 1, . . . , µ†

j, then νe = µe, so the inequality holds.

• If µ†
j < d ≤ min(µ†

i , k), then νd = µd + 1. Also µ†
j < 2k + 1− d ≤ 2k + i+ j − µ†

j, so
ν2k+1−d ≥ µ2k+1−d + 1, and the inequality holds.

• If µ†
i < d ≤ k, then µ†

i < 2k + 1 − d < 2k + i + j − µ†
i , so ν2k+1+d = µ2k+1+d + 2, so

the inequality holds. �

Lemma 1.3.4. Pick a partition µ such that τC2k(µ) is well-defined and ιC2k(µ) > 0. Then
|µ| − (µ1 + · · ·+ µk) ≥ ιC2k(µ) + 1. In case of equality, we have µ = (µ1, . . . , µk, 1, 1), and in
particular, ιC2k(µ) = 1.

Proof. Write |α≤k| = α1 + · · ·+ αk for any partition α. Let Rµ be the border strip of length
2ℓ(µ) − 2k − 2 that we remove from µ to follow the modification rule and set ν = µ \ Rµ.
Let c be the number of columns that Rµ occupies. We separate the cases ν†c ≤ k and ν†c > k.

First assume that ν†c ≤ k. Let i ≥ 1 be defined by the property ν†i−1 > k and ν†i ≤ k.

Then i ≤ c. Note that ν†j + 1 = µ†
j+1 for j = 1, . . . , c− 1 and ν†j = µ†

j for j > c. So

2ℓ(µ)− 2k − 2 = |Rµ| = |µ| − |ν| = ℓ(µ)− ν†c + c− 1.

Rewrite this as ℓ(µ)− k = k− ν†c + c+1. If we remove all boxes in the first k rows from Rµ,
we get a border strip that occupies ℓ(µ)− k = k − ν†c + c+ 1 rows and ≥ i columns. So

|µ| − |µ≤k| ≥ |ν| − |ν≤k|+ (i+ k − ν†c + c) ≥ |ν| − |ν≤k|+ (i+ c).

If i = 1, then ℓ(ν) ≤ k, so |ν| = |ν≤k|, and c = ιC2k(µ). Hence we get |µ| − |µ≤k| ≥ ιC2k(µ) + 1.
Going back, we see that this can only be an equality if ν†c = k, and then µ = (µ1, . . . , µk, c, 1

c).
Then 2c = |µ| − |µ≤k| = c + 1, so c = 1 and we are done in this case. Otherwise, if i > 1,
i.e., ℓ(ν) > k, then by induction, we get |ν| − |ν≤k| ≥ 1 + ιC2k(ν), and hence |µ| − |µ≤k| ≥
i+ ιC2k(µ) + 1 > ιC2k(µ) + 1.

Now suppose that ν†c > k. Then Rµ does not contain any boxes in the first k rows, so
µi = νi for i = 1, . . . , k and hence |µ| − |µ≤k| = |Rµ| + |ν| − |ν≤k|. Since ℓ(ν) > k, we get
|ν| − |ν≤k| ≥ ιC2k(ν) + 1 by induction. If this is an equality, then ν = (ν1, . . . , νk, 1, 1) and
|Rµ| > c. Otherwise, if it is strict, we can at least say that |Rµ| ≥ c. In either case, we get
|µ| − |µ≤k| > c+ ιC2k(ν) + 1 = ιC2k(µ) + 1. �
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1.4. Type D Weyl group. Now pick k ∈ 1
2
Z with k ≥ 0. We now associate to a partition λ

two quantities ιD2k(λ) and τ
D
2k(λ). We again give two equivalent definitions. The presentation

here follows [SSW, §4.4], where more details and references can be found.
We begin with the Weyl group definition. Let s0 be the automorphism of the set U which

negates and swaps the first and second entries, and let W∞ be the group generated by the si
with i ≥ 0. This is a Coxeter group of type D∞. Let ℓ : W∞ → Z≥0 be the length function,
which is defined just as in (1.2.1). Let ρ = (−k,−k − 1, . . .). Define a new action of W∞ on
U by w • λ = w(λ+ ρ)− ρ. The action of s0 is given by

s0 • (a1, a2, a3, . . .) = (2k + 1− a2, 2k + 1− a1, a3, . . .).

We say that a partition λ is admissible if λ†1 + λ†2 ≤ 2k. For an admissible partition λ,

define another admissible partition λσ by (λσ)†1 = 2k − λ†1 and (λσ)†i = λ†i for i > 1.
Given a partition λ ∈ U , exactly one of the following two possibilities hold:

• There exists a unique element w ∈ W∞ such that w • λ† = µ† is an admissible
partition. We then put ιD2k(λ) = ℓ(w) and τD2k(λ) = µ.

• There exists a non-identity element w ∈ W∞ such that w • λ† = λ†. We then put
ιD2k(λ) = ∞ and leave τD2k(λ) undefined.

Note that if λ is admissible, then we are in the first case with w = 1, and so ιD2k(λ) = 0 and
τD2k(λ) = λ.

The border strip definition is the same as the one given in §1.3, except for three differences
(D1) the border strip Rλ has length 2ℓ(λ)− 2k,
(D2) in the definition of ι2k(λ), we use c(Rλ)− 1 instead of c(Rλ), and
(D3) if the total number of border strips removed is odd, then replace the result µ with µσ.

Let ≤ denote the Bruhat order on W∞ [BB, §2].

Proposition 1.4.1. Fix an admissible partition λ. Given µ such that τD2k(µ) = λ, let wµ ∈
W∞ be the unique element such that wµ • µ

† = λ†. Then wµ ≤ wν if and only if µ ⊆ ν.

Proof. Same as Proposition 1.3.2. �

1.5. Geometric technique for free resolutions. Let X be a projective variety. Let

0 → ξ → ε→ η → 0

be an exact sequence of vector bundles on X, with ε trivial, and let V be another vector
bundle on X. Put

A = H0(X; Sym(ε)) = Sym(H0(X; ε)), M (i)(V) = Hi(X; Sym(η)⊗ V).

Then each M (i)(V) is an A-module. Let A(−i) denote the module A with a grading shift:
A(−i)d = Ad−i. For the following, see [W, §5.1].

Theorem 1.5.1. There is a minimal graded A-free complex F• with terms

Fi =
⊕

j≥0

Hj(X;
∧i+j(ξ)⊗ V)⊗ A(−i− j)

with the property that for all i ≥ 0, we have H−i(F•) = M (i)(V) and Hj(F•) = 0 for j > 0.
In fact, F• is quasi-isomorphic to the derived pushforward of the twisted Koszul complex∧•(ξ)⊗ V along the projection ε→ Spec(A).
In particular, Fi = 0 for all i < 0 if and only if M (j)(V) = 0 for all j > 0. In this case,

F• is a minimal free resolution of M (0)(V).
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1.6. Borel–Weil–Bott theorem. Let E be a vector space and let Gr(n,E) be the Grass-
mannian of n-dimensional subspaces of E. We have a tautological sequence on Gr(n,E)

0 → R → E ⊗OGr(n,E) → Q → 0,

where R has rank n. Recall the notation S and ℓ from §1.2. The Borel–Weil–Bott theorem
[W, §4.1] is then:

Theorem 1.6.1 (Borel–Weil–Bott). Let λ be a partition with at most n parts, let µ be
any partition and let V be the vector bundle Sλ(R

∗) ⊗ Sµ(Q
∗) on Gr(n,E). Set β =

(λ1, . . . , λn, µ1, µ2, . . . ). Exactly one of the following happens:
• There is a unique w ∈ S such that w•β = α is a partition. Then Hℓ(w)(Gr(n, V );V) =
Sα(E

∗) and all other cohomology groups vanish.
• There is a non-identity w ∈ S such that w • β = β. Then all cohomology of V
vanishes.

Now let V be a symplectic vector space of dimension 2n with symplectic form ωV . For
m ≤ n, IGr(m,V ) is the subvariety of Gr(m,V ) consisting of subspaces W such that
ωV |W ≡ 0. Let R be the tautological subbundle on Gr(m,V ) restricted to IGr(m,V ). We
will need an analogue of Theorem 1.6.1 for IGr(m,V ). We only need the case m = n, so we
only state it in that case. See [W, Corollary 4.3.4] for the case of general m.
We consider sequences of length n and define ρ = (n, n− 1, . . . , 1). The simple reflections

are: for 1 ≤ i ≤ n− 1, we have si that swaps positions i and i + 1, and sn negates the last
entry. The group generated by the si is the Weyl group W of type BCn and we define the
length function of an element w ∈ W as in (1.2.1) (for some details and references, see [S1,
§2.3]). We define the dotted action of W on sequences analogously.

Theorem 1.6.2 (Borel–Weil–Bott). Let λ = (λ1, . . . , λn) be a weakly decreasing sequence of
integers. Exactly one of the following happens:

• There is a unique w ∈ W such that w • λ = α is a partition. In this case,
Hℓ(w)(IGr(n, V );Sλ(R

∗)) = S[α](V ) and all other cohomology groups vanish.
• There is a non-identity w ∈ W such that w • λ = λ. Then all cohomology of Sλ(R

∗)
vanishes.

Lemma 1.6.3. Assume λ ⊆ n× (n+ 2k + 1).
(a) H•(IGr(n, V );Sλ(R)⊗ (detR∗)k) 6= 0 if and only if τC2k(λ

†) is well-defined.
(b) Let α = n× k \ τC2k(λ

†)†. Then

HιC2k(λ
†)(IGr(n, V );Sλ(R)⊗ (detR∗)k) = S[α](V )

and the cohomology vanishes in all other degrees.

Proof. In the notation of Theorem 1.6.2, the vector bundle Sλ(R) ⊗ (detR∗)k corresponds
to the weight µ = (k − λn, . . . , k − λ1). All cohomology vanishes for this vector bundle if
and only if the absolute values of two entries of µ + ρ agree, where ρ = (n, n − 1, . . . , 2, 1).
To calculate τC2k(λ

†), we perform a dotted Weyl group action on λ with the group of infinite
signed permutations with ρ′ = (−(k+1),−(k+2),−(k+3), . . . ). The first n entries of λ+ρ′

are the negatives of those of µ+ ρ. Since λ1 ≤ n+2k+1, none of the first n entries of λ+ ρ′

are equal in absolute value to the remaining entries. So the absolute values of the entries of
µ+ ρ are distinct if and only if τC2k(λ

†) is well-defined, which proves (a).
Now assume that τC2k(λ

†) is well-defined. If w is the signed permutation such that w(λ +
ρ′) − ρ′ = τC2k(λ

†)†, then there is a signed permutation v with ℓ(v) = ℓ(w) = ιC2k(λ
†) such
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that v(−λop + ρ+(kn))− ρ− (kn) = −(τC2k(λ
†)†)op (we are reversing and negating sequences

to get v from w). Since −λop + (kn) = µ, we see that the value of our cohomology is
n× k \ τC2k(λ

†)†. �

2. Main result

2.1. Statement and outline. Let V be a vector space of dimension 2n+2d equipped with
a symplectic form. Let IGr(n, V ) be the variety of n-dimensional isotropic subspaces of V
and let R ⊂ V × IGr(n, V ) be the tautological subbundle. With respect to the symplectic
form, letR⊥ be its orthogonal complement. Define the following vector bundle on IGr(n, V ):

Eλ = Sλ(R
⊥)⊗ (detR∗)k.

In the notation of [S2], Eλ is called E
(kd)
λ .

Theorem 2.1.1. Let λ ⊆ n× (n+ 2d) be a partition.
(a) If k ≥ ℓ(λ), then Hi(IGr(n, V ); Eλ†) = 0 for i > 0 and H0(IGr(n, V ); Eλ†) 6= 0.
(b) The cohomology of Eλ† vanishes unless τC2k(λ) = µ is defined, in which case the cohomol-

ogy is nonzero only in degree ιC2k(λ) = i, and we have an Sp(V )-equivariant isomorphism

Hi(IGr(n, V ); Eλ†) ∼= H0(IGr(n, V ); Eµ†).

We use the notation L = detR∗, where R is the rank n tautological subbundle of either
Gr(n, V ) or IGr(n, V ). Before proceeding with the proof of Theorem 2.1.1, we give its
outline.

(1) The bundle Eµ† is not an irreducible homogeneous bundle as soon as d > 0, so we
cannot apply the usual Borel–Weil–Bott theorem (Theorem 1.6.2). Instead, we will
resolve Eµ† by irreducible homogeneous bundles in a larger homogeneous space (2.1.2)
and analyze the resulting spectral sequence.

(2) The first step is to show that the terms of the spectral sequence for µ† and λ† match
as representations of Sp(V ) (up to simultaneous homological shift), which is done in
Proposition 2.2.4 by using Theorem 1.6.1 and careful combinatorial analysis.

(3) The spectral sequence comes from a double complex and we need to calculate the
homology of its total complex. The action of Sp(V ) does not provide enough struc-
ture to compare the two complexes. Instead, we lift these complexes to minimal
complexes of free modules over Sym(

∧2(V )) such that the original complexes are
specializations of the lifted complexes (Proposition 2.3.1). This is inspired by the
equivalence between the categories of modules of Sp(∞) and Sym(

∧2(C∞)) in [SS,
Theorem 4.3.2].

(4) The lifted complexes have more structure and allow us to reduce to the case that
R⊥ is irreducible (i.e., d = 0). They have enough structure so that we can show
that they are isomorphic (Proposition 2.3.4), which implies the desired properties.
A priori, they contain more information than just the cohomology of Eµ† since the

specialization mentioned above kills modules whose support is not all of Sym(
∧2(V )).

Now we begin the proof.
Embed IGr(n, V ) into Gr(n, V ). Then R⊥ is the restriction of Q∗. By [W, Proposition

4.3.6], we have a locally free resolution on Gr(n, V ):

0 →
∧(n2)(

∧2(R)) → · · · →
∧2(

∧2(R)) →
∧2(R) → OGr(n,V ) → OIGr(n,V ) → 0.(2.1.2)
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Tensoring this locally free resolution with Sν(Q
∗)⊗ Lk gives us a spectral sequence

E−p,q
1 = Hq(Gr(n, V );

∧p(
∧2(R))⊗ Sν(Q

∗)⊗ Lk) ⇒ Hq−p(IGr(n, V ); Eν).(2.1.3)

By (1.1.2), we have
∧i(

∧2(R)) =
⊕

θ∈Q−1(2i)
Sθ(R).

Proof of Theorem 2.1.1. (a) is a special case of (b).
(b) If τC2k(λ) is not defined, then we set α = λ† and use Proposition 2.2.1 to conclude that

Hi(IGr(n, V ); Eλ†) = 0 for all i. So suppose that τC2k(λ) = µ is defined. Then the result
follows from Propositions 2.3.1 and 2.3.7. �

2.2. Combinatorial lemmas.

Proposition 2.2.1. Let α be a partition with α1 ≤ n and suppose that τC2k(α
†) is not defined.

Then for all θ ∈ Q−1 and all i ≥ 0, we have Hi(Gr(n, V );Sα(Q
∗) ⊗ Lk ⊗ Sθ(R)) = 0. In

particular, for all i ≥ 0, we have Hi(IGr(n, V ); Eα) = 0.

Proof. Since α† is a partition, all of the values αi − (k + i) are distinct. So if τC2k(α
†) is not

defined, then there exist i ≤ j such that αi− (k+ i) = −(αj− (k+ j)). Set D = αi− (k+ i).
Since αi − (k + i) ≥ αj − (k + j), we conclude that D ≥ 0. Also D ≤ n− 1 because α1 ≤ n.
Since θ ∈ Q−1, Lemma 1.1.4 implies that −θi + i − 1 = ±D for some i with 1 ≤ i ≤ n. So
the sequence (−θn + n− 1, . . . ,−θ1, α1 − k − 1, α2 − k − 2, . . . ) has a duplicate entry since
{αi−k− i, αj−k−j} = {D,−D}. To calculate the cohomology of Sα(Q

∗)⊗Lk⊗Sθ(R), we
apply Theorem 1.6.1 to the sequence (k−θn, . . . k−θ1, α1, α2, . . . ). The sequence above has a
duplicate, so all cohomology vanishes. The last statement is now an immediate consequence
of (2.1.3). �

Each partition ν ∈ Q−1 can be written uniquely as the union of hook partitions of the
form (i, 1i) so that no i is used more than once. We will use the notation [i1, . . . , id] for the
partition ν that is the union of the hooks (i1, 1

i1), . . . , (id, 1
id) (for convenience, we allow the

values to be unsorted; the ordering does not affect the definition of the partition).

Lemma 2.2.2. Let α be a partition with ℓ(α) ≤ k. Then there is a set {b1, . . . , be} so that
Sθ(R)⊗Lk ⊗ Sα†(Q∗) (θ ∈ Q−1) has nonzero cohomology if and only if θ = [bi1 , . . . , bir ] for
some subset of {b1, . . . , be}.

Proof. Let b1 > · · · > be be any set of values so that Sbi,1bi (R)⊗Lk⊗Sα†(Q∗) has nonzero co-

homology for i = 1, . . . , e. This corresponds to the weight (kn−bi−1, (k−1)bi , k−bi, α
†
1, α

†
2, . . . );

since k ≥ ℓ(α), this is equivalent to k − bi + 1 /∈ {α†
j − j + 1 | j ≥ 1}. Let θ = [b1, . . . , be].

We claim that Sθ(R)⊗Lk⊗Sα†(Q∗) has nonzero cohomology. This is equivalent to showing

that the set {k − θi + i} is disjoint from {α†
j − j + 1}. If i ≤ e, then we have θi = bi + i− 1,

so k − θi + i = k − bi + 1, in which case we use the assumption. If i > e, then θi ≤ e, so
k − θi + i ≥ k − e+ i > k, which is disjoint since ℓ(α) ≤ k.
Conversely, assume that θ = [b1, . . . , be] and that Sθ(R) ⊗ Lk ⊗ Sα†(Q∗) has nonzero

cohomology. The above shows that this is equivalent to k− bi + 1 /∈ {α†
j − j + 1 | j ≥ 1} for

all i, and hence Sbi,1bi (R)⊗ Lk ⊗ Sα†(Q∗) has nonzero cohomology. �

Lemma 2.2.3. Let θ = [b1, . . . , be] and pick ν so that Sθ(R) ⊗ Lk ⊗ Sν(Q
∗) has nonzero

cohomology (in a single degree). Assume also that ν† is obtained from η† by removing a border
strip of length 2η1− 2k− 2 ≤ 2n− 2. Then η1− k− 1 /∈ {b1, . . . , be}; set θ

′ = [b1, . . . , be, η1−
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k − 1]. Then ignoring cohomological degree, Sθ′(R)⊗ Lk ⊗ Sη(Q
∗) has nonzero cohomology

which is isomorphic, as GL(V )-representations, to the cohomology of Sθ(R)⊗Lk⊗Sν(Q
∗).

Conversely, if η is a partition with 0 ≤ η1 − k − 1 ≤ n− 1 and Sθ′(R)⊗Lk ⊗ Sη(Q
∗) has

nonzero cohomology, and θ′ = [c1, . . . , ce], then η1 − k − 1 ∈ {c1, . . . , ce}.

Proof. The border strip assumption means there exists i so that η1−k−1 = −(νi−k− i). In
particular, k−(η1−k−1)+1 = νi−i+1, so η1−k−1 /∈ {b1, . . . , be} (see proof of Lemma 2.2.2).
Set θ′ = [b1, . . . , be, η1 − k − 1] (then ℓ(θ′) ≤ n since ℓ(θ) ≤ n and η1 − k − 1 ≤ n − 1). We
claim that the two sequences

(k − θn + n, . . . , k − θ1 + 1, ν1, ν2 − 1, . . . ) (k − θ′n + n, . . . , k − θ′1 + 1, η1, η2 − 1, . . . )

are permutations of each other. Suppose that when we sort {b1, . . . , be, η1−k−1}, η1−k−1
becomes the jth largest number. Then θ′j = j− 1+ (η1 − k− 1), so k− θ′j + j = 2k+2− η1.
Swap this entry of the second sequence with η1. Then (2k+2− η1, η2− 1, . . . ) can be sorted
to become (ν1, ν2 − 1, . . . ) (see [SSW, Proof of Proposition 3.5]).

Similarly, (k− θ′n+ n, . . . , η1, . . . , k− θ′1 +1) can be sorted to become (k− θn+ n, . . . , k−
θ1 + 1). To see this, subtract k + 1 from both sequences and negate and reverse them to
get (θ1, θ2 − 1, . . . , θn − n + 1) and (θ′1, . . . , (k + 1) − η1, . . . , θ

′
n − n + 1). It is enough to

assume that j = 1: the first j − 1 entries of both are the same, so we can ignore them and
subtract j − 1 from the result to reduce to this case. Adapting the argument from [SSW,
Proof of Proposition 3.5], removing the border strip of length 2η1 − 2k − 2 from θ′ amounts
to negating the first entry (k + 1)− η1 and then sorting. So the claim is proven and implies
that Sθ′(R)⊗ Lk ⊗ Sη(Q

∗) has nonzero cohomology.
On the other hand, assume that Sθ′(R)⊗Lk ⊗ Sη(Q

∗) has nonzero cohomology and that
0 ≤ η1 − k − 1 ≤ n − 1. Set θ′ = [c1, . . . , ce]. By Lemma 1.1.4, there exists i such that
k+1−η1 = ±(−θ′i+ i−1). If k+1−η1 = −θ′i+ i−1, then k−θ′i+ i = 2k+2−η1, so we can
reverse the steps above to get η1−k−1 ∈ {c1, . . . , ce}. Otherwise, we have k+1−η1 = θ′i−i+1,
which shows that the sequence (k− θ′n+n, . . . , k− θ′1+1, η1, η2− 1, . . . ) has a repeat, which
contradicts our assumption. �

Proposition 2.2.4. Suppose that τC2k(β) = α and β1 ≤ n+ 2d. Set s = (|β| − |α|)/2. Then

Hi(Gr(n, V );
∧j(

∧2R)⊗ Lk ⊗ Sα†Q∗) ∼= Hi+ιC2k(β)+s(Gr(n, V );
∧j+s(

∧2R)⊗ Lk ⊗ Sβ†Q∗)

as representations of GL(V ) for all i, j.

Proof. Let {b1, . . . , be} be the set in Lemma 2.2.2 for the partition α. Let 2B1, . . . , 2Bf be
the lengths of the border strips removed from β to get α. By Lemma 2.2.3, {B1, . . . , Bf} ∩
{b1, . . . , be} = ∅; set θ = [bi1 , . . . , bir ] and θ′ = [B1, . . . , Bf , bi1 , . . . , bir ] for some subset
{i1, . . . , ir} ⊆ {1, . . . , e}. Also by Lemma 2.2.3, Sθ′(R) ⊗ Lk ⊗ Sβ†(Q∗) and Sθ(R) ⊗ Lk ⊗
Sα†(Q∗) have isomorphic cohomology (ignoring homological degree), and we just need to
determine where it is. If the degree for the non-vanishing cohomology of the second vector
bundle is N , then we claim that the degree for the first one is N + ιC2k(β) + (|β| − |α|)/2.

Let γ be the partition obtained from β by removing a border strip of length 2β†
1 − 2k − 2

and let θ′′ be obtained by removing a hook partition of length 2β†
1 − 2k − 2 from θ′. Let

c be the number of columns that this border strip occupies. At the end of the proof of
Lemma 2.2.3, it is shown that there is a unique index i such that 2k + 2− β†

1 = k − θ′i + i.
Let ta,b be the transposition that swaps a and b. Define the permutation

v = tn+c−1,n+c · · · tn+1,n+2ti−(β†
1−k−2),i−(β†

1−k−2)+1 · · · ti−1,iti,n+1.
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Then

v(k − θ′n + n, . . . , k − θ′1 + 1, β†
1, β

†
2 − 1, . . . ) = (k − θ′′n + n, . . . , k − θ′′1 + 1, γ†1, γ

†
2 − 1, . . . ).

This is a product of c + (|β| − |γ|)/2 transpositions and they are all simple transpositions
except for ti,n+1. Let u be the permutation that takes the above sequence to a strictly
decreasing sequence δ. Each of the simple transpositions in the expression for v above
creates a new inversion so each adds 1 to the length of u. We have

ti,n+1v
−1u−1δ = ti,n+1(k − θ′n + n, . . . , k − θ′1 + 1, β†

1, β
†
2 − 1, . . . ) = ε.

Note that εn+1 = k− θ′i+ i = 2k+2− β†
1 and εi = β†

1, so we have εn+1 < εi, which is not an
inversion, but becomes one upon applying ti,n+1. Furthermore, for each i + 1 ≤ j ≤ n, we
have εn+1 > εj and hence εi > εj, so none of these can create new inversions. We conclude
that ℓ(uv) = ℓ(u) + c+ (|β| − |γ|)/2. By induction, ℓ(u) = N + ιC2k(γ) + (|γ| − |α|)/2. Since
c + ιC2k(γ) = ιC2k(β) by definition of ιC2k, we get ℓ(uv) = N + ιC2k(β) + (|β| − |α|)/2, and the
claim is proven.

By Lemma 2.2.3, we have exhausted all possible θ′ with nonzero cohomology, so this
finishes the proof. �

2.3. Lifting argument. Set ξ =
∧2(R) and define η by the sequence of vector bundles over

Gr(n, V ∗):

0 →
∧2(R) →

∧2(V ∗) → η → 0

where V ∗ is the trivial bundle V ∗ ×Gr(n, V ∗). For a partition ν, set Vν = Sν(Q
∗) ⊗ Lk ⊗

(detV ∗)k and let Kν =
∧•(

∧2(R)) ⊗ Vλ be the twisted Koszul complex over
∧2(V ∗) ×

Gr(n, V ∗). The factor of (detV ∗)k is just for normalization purposes; the final claims are
about Sp(V ) (and detV is trivial when restricted to Sp(V )). Let π :

∧2(V ∗)×Gr(n, V ∗) →∧2(V ∗) be the projection map. Apply Theorem 1.5.1 to get a minimal complex Fν
• of free

Sym(
∧2(V ))-modules with Fν

• ≃ Rπ∗(Kν). The symplectic form gives a map
∧2(V ) → k and

we get an algebra homomorphism Sym(
∧2(V )) → k. Let kω denote k with this Sym(

∧2(V ))-
module structure.

Proposition 2.3.1. For i ≥ 0 and any partition ν, we have a Sp(V )-equivariant isomor-
phism H−i(F

ν
• ⊗Sym(

∧2(V )) kω) = Hi(IGr(n, V ); Eν).

Proof. The derived projection formula [H, Proposition II.5.6] gives a quasi-isomorphism

Rπ∗(Kν)⊗
L
Sym(

∧2(V ))
kω ≃ Rπ∗(Kν ⊗O∧2(V ∗)×Gr(n,V ∗)

Lπ∗kω).

Theorem 1.5.1 implies that Rπ∗(Kν) ≃ Fν
•. Since Fν

• is a complex of free Sym(
∧2V )-

modules, we do not need to derive the tensor product in the left hand side, and it simplifies
to Fν

• ⊗Sym(
∧2(V )) kω. Since π is flat, we can replace Lπ∗ with π∗. The right hand side is then

Rπ∗ applied to the complex (2.1.2) twisted by Vν . Using the spectral sequence (2.1.3), the
homology of the resulting complex is H•(IGr(n, V ); Eν). �

Let V ′ be a symplectic vector space of dimension 2d and let Ṽ = V ⊕V ′. Let R̃ and Q̃ be

the tautological subbundle and quotient bundle on Gr(n + 2d, Ṽ ∗). Define ξ̃ =
∧2(R̃) and

η̃ by

0 →
∧2(R̃) →

∧2(Ṽ ∗) → η̃ → 0.
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Set Ṽν = Sν(Q̃
∗)⊗ (det R̃∗)k⊗ (det Ṽ ∗)k. Let π̃ :

∧2(Ṽ ∗)×Gr(n+2d, Ṽ ∗) →
∧2(Ṽ ∗) be the

projection map. Theorem 1.5.1 gives us a minimal complex F̃ν
• of free Sym(

∧2(Ṽ ))-modules

with F̃ν
• ≃ Rπ̃∗K̃ν where K̃ν =

∧•(
∧2(R̃)) ⊗ Ṽµ is the twisted Koszul complex which lives

on
∧2(Ṽ ∗)×Gr(n+2d, Ṽ ∗). Also let kω̃ be the Sym(

∧2(Ṽ ))-module structure on k coming

from the symplectic form on Ṽ .

Order the basis of Ṽ as x1, . . . , x2n+4d so that the symplectic form is defined by ω̃(xi, x2n+4d+1−j) =
δi,j and ω̃(xi, xj) = ω̃(x2n+4d+1−i, x2n+4d+1−j) = 0 for i, j = 1, . . . , n + 2d. With respect to

this basis, the set of upper triangular matrices in Sp(Ṽ ) is a Borel subgroup.
Pick a partition α with ℓ(α) ≤ 2n+4d and set α′ = (α1−α2n+4d, α2−α2n+4d−1, . . . , αn+2d−

αn+2d+1). With the above choice of Borel subgroup, the highest weight vector for GL(Ṽ ) of

weight α in Sα(Ṽ ) is a highest weight vector for Sp(Ṽ ) of weight α′.

Lemma 2.3.2. If S[γ](Ṽ ) ⊆ Sα(Ṽ ) and γ ⊇ α′, then γ = α′.

Proof. Set N = 2n + 4d. First, as a representation of the diagonal matrices in GL(Ṽ ),

the weights (ν1, . . . , νN) of Sα(Ṽ ) correspond to semistandard Young tableaux of shape α
and weight ν (see, for example, [W, Proposition 2.1.15(b)]), i.e., a filling of the Young
diagram of α with the numbers 1, . . . , N where i appears with multiplicity νi, the entries
in each row are weakly increasing from left to right, and the entries in each column are

strictly increasing from top to bottom. Upon restriction to Sp(Ṽ ), this weight becomes
ν ′ = (ν1 − νN , . . . , νn+2d − νn+2d+1). So in our situation, we have some ν so that ν ′ = γ and
so that there exists a semistandard Young tableau of shape α and weight ν.
We will prove by induction on i that νi = αi and νN+1−i = αN+1−i. First note that by

definition of semistandard Young tableaux, one gets the dominance inequalities α1 + · · · +
αm ≥ ν1 + · · · + νm for all 1 ≤ m ≤ N . Using that |α| = |ν|, we also get the inequalities
−(αN + · · ·+αN−m) ≥ −(νN + · · ·+ νN−m). Since γ ⊇ α′, we have ν1 − νN = γ1 ≥ α1 −αN .
Combining this with α1 ≥ ν1, we get −νN ≥ −αN , but we also know that the reverse
inequality holds, so νN = αN and hence ν1 ≥ α1 (which again implies ν1 = α1).
Now suppose we have shown that νi = αi and νN+1−i = αN+1−i. Consider the dominance

inequality α1 + · · ·+ αi+1 ≥ ν1 + · · ·+ νi+1. Then αi+1 ≥ νi+1 by our induction hypothesis.
Also, we have νi+1 − νN−i = γi+1 ≥ αi+1 − αN−i, so −νN−i ≥ −αN−i. Now consider the
dominance inequality −(αN + · · ·+αN−i) ≥ −(νN + · · ·+ νN−i) to get the reverse inequality.
As before, we conclude that νN−i = αN−i and νi+1 = αi+1. �

Lemma 2.3.3. Let µ ⊆ (n+2d+2k+1)× (n+2d) be a partition such that τC2k(µ) is defined.

For all i > −ιC2k(µ), the minimal generators of F̃µ†

i map injectively into F̃
µ†

i−1.

Proof. Let Sα(Ṽ ) be a subset of the minimal generators of F̃µ†

i and that i > −ιC2k(µ). Suppose

that its image in F̃
µ†

i−1 is zero. Set G• = F̃µ†

• ⊗Sym(
∧2(Ṽ )) kω̃. By Proposition 2.3.1 and

Lemma 1.6.3, Hi(G•) = 0. Note that G• is equivariant for Sp(Ṽ ) and that S[α′](Ṽ ) ⊆

Sα(Ṽ ) ⊆ Gi where α
′ = (α1 − α2n+4d, . . . , αn+2d − αn+2d+1). Hence there must be minimal

generators Sβ(Ṽ ) ⊆ F̃
µ†

i+1 which map to Sα(Ṽ ) such that we have S[α′](Ṽ ) ⊆ Sβ(Ṽ ) ⊆ Gi+1

mapping isomorphically to this copy of S[α′](Ṽ ) in Gi. Since F̃µ†

• is GL(Ṽ )-equivariant,
we have α ⊆ β. Using (2.3.5), we can apply Lemma 1.3.3 (with n + 2d in place of k) to
conclude that β′ ⊆ α′ where β′ = (β1 − β2n+4d, . . . , βn+2d − βn+2d+1). Lemma 2.3.2 implies
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β′ = α′. Since α ⊆ β, this implies β = α. But Sym(
∧2(Ṽ )) does not contain non-constant

GL(Ṽ )-invariants, so this contradicts that the map F̃
µ†

i+1 → F̃
µ†

i is minimal. �

Proposition 2.3.4. Suppose τC2k(β) = α and β ⊆ (n+2d+2k+1)× (n+2d). We have an

isomorphism of chain complexes F̃β†

• [ιC2k(β)]
∼= F̃α†

• .

Proof. Set I = ιC2k(β). We have F̃α†

i
∼= F̃

β†

i−I for all i by Proposition 2.2.4. Set ν = (k −

α†
n+2d, . . . , k − α†

1). Then Ṽα† = Sν(Q), so we are in the situation of [SSW, §3.5, Step b]. In

particular, F̃α†

• is acyclic, and

F̃α†

i =
⊕

θ
τC2n+4d(θ)=α

†

ιC2n+4d(θ)=i

Sθ(Ṽ )⊗ Sym(
∧2(Ṽ ))(−(|θ| − |α|)/2).(2.3.5)

The GL(Ṽ )-equivariant map F̃α†

1 → F̃α†

0 (which is nonzero) is unique up to scalar multiple

(see [SSW, Proof of Proposition 3.15]). Similarly, the same is true for F̃β†

1−I → F̃
β†

−I (and it is

nonzero by Lemma 2.3.3). So we have an isomorphism coker(F̃β†

1−I → F̃
β†

−I)
∼= coker(F̃α†

1 →

F̃α†

0 ) which lifts to a GL(Ṽ )-equivariant chain map ψ : F̃β†

• [I] → F̃α†

• which is unique up to
homotopy. We will show by induction on i ≥ 0 that ψi is an isomorphism. We have just
explained that this is true for i = 0. Suppose it is true for i. By Lemma 2.3.3, the minimal

generators of F̃β†

i+1−I map injectively into F̃
β†

i−I . So in order for the diagram

F̃α†

i+1
// F̃α†

i

F̃
β†

i+1−I

ψi+1

OO

// F̃
β†

i−I

ψi

OO

to commute, the minimal generators of F̃β†

i+1−I must map injectively under ψi+1. By Proposi-

tion 1.3.2, the partitions indexing the Schur functors in the minimal generators of F̃β†

i+1−I
∼=

F̃α†

i+1 are incomparable, so ψi+1 maps minimal generators to minimal generators. So ψi+1

induces an isomorphism between the minimal generators of F̃β†

i+1−I and F̃α†

i+1, and hence is
an isomorphism. �

Remark 2.3.6. The idea for Proposition 2.3.4 comes from the uniqueness of BGG resolu-
tions for irreducible representations of Kac–Moody algebras with integral dominant highest
weight (roughly, any complex that looks like the BGG resolution is isomorphic to it; see [K,

Theorem 9.2.18] for a precise statement). The resolution F̃α†

• can be given the structure of
a BGG resolution, but it resolves an irreducible representation whose highest weight is not
integral dominant (see [EH] which builds on [E]). �

Corollary 2.3.7. Suppose τC2k(β) = α and β ⊆ (n + 2d + 2k + 1) × (n + 2d). We have an

isomorphism of chain complexes Fβ†

• [ιC2k(β)]
∼= Fα†

• . Furthermore, Fα†

j = 0 for j < 0.

Proof. Let i : Gr(n, V ) → Gr(n + 2d, Ṽ ) be the map W 7→ W ⊕ V ′. Then i∗(R̃) = R⊕ V ′

and i∗(Q̃) = Q. So for any partition ν with ℓ(ν) ≤ n + d, Kν is the GL(V ′)-invariant

subcomplex of i∗(K̃ν), and hence Fν
• is the GL(V ′)-invariant subcomplex of F̃ν

•. Now use
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Proposition 2.3.4. The last statement follows from the fact that F̃α†

j = 0 for j < 0 which
was discussed in the proof of Proposition 2.3.4. �
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