
GROWTH OF THE ZETA FUNCTION FOR A QUADRATIC MAP ANDTHE DIMENSION OF THE JULIA SETJOHN STRAIN AND MACIEJ ZWORSKIAbstrat. We show that the zeta funtion for the dynamis generated by the map z 7! z2+, < �2, an be estimated in terms of the dimension of the orresponding Julia set. That impliesa geometri upper bound on the number of its zeros, whih are interpreted as resonanes forthis dynamial systems. The method of proof of the upper bound is used to onstrut a odefor ounting the number of zeros of the zeta funtion. The numerial results support theonjeture that the upper bound in terms of the dimension of the Julia set is optimal.1. IntrodutionIn this note we present theoretial upper bounds and numerial lower bounds for the numberof zeros of the Ruelle zeta funtion assoiated to a quadrati map with a real Cantor-like Juliaset.By adapting the methods of [9℄, whih beome easier for suh maps, we show that for s instrips parallel to the imaginary axis, the zeta funtion is bounded by exp(CjsjÆ) where Æ is thedimension of the Julia set. The proof of this upper bound suggests a fast algorithm for omputingthe number of zeros. The numerial results omputed with this algorithm indiate that the upperbound is optimal and that the density of zeros in strips is related to the dimension of the Juliaset.Our motivation omes from the study of the distribution of quantum resonanes | see [23℄for a general introdution and [9, 13℄ for disussions of the spei� bounds onsidered here. Therelation between the density of resonanes and the fratal dimensions of lassial trapped setswas �rst studied by Sj�ostrand [20℄ for quantum resonanes assoiated to Shr�odinger operators,�h2�+V (x) for whih the lassial ow, assoiated to the Hamiltonian �2+V (x), was hyperboli.A typial example is the three-bump potential shown in Fig. 1. After we de�ne the relevantobjets for z 7! z2 +  we will present the analogy to this setting in Table 1.Motivated by [9℄, where the model was a Shottky quotient, we an onsider the dynamialsystem assoiated to(1.1) f(z) = z2 +  ;  < �2 ;as the simplest model for the relation between sattering resonanes and haoti dynamis: thezeros of the dynamial zeta funtion provide a onvenient model for quantum resonanes. Itwould be interesting to see if they do oinide with suitably de�ned resonanes of hyperbolilaminations [14℄.The Ruelle zeta funtion is de�ned in terms of the Ruelle transfer operator(1.2) L(s)u(z) = Xf(w)=z[f 0(w)℄�su(w) ;where [f 0(w)℄ is the holomorphi ontinuation of jf 0(w)j de�ned on the real axis and z�s is theprinipal branh of the usual omplex power funtion. On an appropriately hosen spae of1
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Figure 1. A three-well on�ning potential and a three-bump potential withthe energy at whih the ow is hyperboli. The density of resonanes for thelatter was studied numerially in [11℄, [12℄.Table 1. Analogies between the Shr�odinger operator [20℄, onvex o-ompathyperboli quotient [9℄,[18℄,[22℄ and z 7! z2 +  settings [4℄.P (h) = �h2�+ V (x) X = �nH n z 7! z2 + quantum resonanes, z, of P (h), quantum resonanes, s(n� 1� s),Re z � E, Im z > �Ch j Im sj � 1=h and Re s > �C ?of ��Xzeros of the zeta funtion zeros of Z(s)? Z�(s) oiniding with the with j Im sj � 1=hquantum resonanes of �X and Re s > �CTrapped set at energy E Limit set of �, �(�) Julia set, J()on a Poinar�e setionDimension, m, of the trapped m = 2(Æ + 1), Æ = dim(�(�)) m = 2(Æ + 1),set for energies near E Æ = dim(J())funtions, L(s) is a trae lass operator so the Ruelle zeta funtion an be de�ned by(1.3) Z(s) = det(I �L(s)) :



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 3An equivalent purely dynamial produt representation, whih onverges for Re s � 1, is givenby [10℄(1.4) Z(s) = exp0�� 1Xn=1 1n Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A :Here we have dropped the parameter  from the notation and denoted by ffng = f Æ ffn�1g,ff0g = id, the n-fold omposition of f with itself. We prove the following asymptoti upperbound for Z in terms of the dimension Æ of the Julia set(1.5) J = [n�1fz : ffng(z) = zgof f :Theorem 1. Let f be the quadrati map de�ned by (1.1), let Æ be the dimension of the Julia setJ de�ned by (1.5), and let Z be the dynamial zeta funtion de�ned by (1.4). Then for any C0,there exists C1 suh that(1.6) jZ(s)j � C1 exp(C1jsjÆ)for jRe sj � C0.The proof of this result is quite simple; we design our spaes arefully and analyze the deter-minant of the Ruelle transfer operator by L2-tehniques. As in [9℄, more ompliated Cantor setrepellers an be treated by a self-similarity argument based on the Koebe Distortion Lemma inplae of the ookie-utter arguments used in Setion 3 below. However, for simpliity of exposi-tion we onsider only the ase z 7! z2 + . The ase of general hyperboli rational funtion wasreently proved by Christiansen [4℄.Sine the produt representation (1.4) of the zeta funtion onverges for Re s large, Jensen'stheorem yieldsCorollary 2. Let m(s) be the multipliity of the zero of Z at s and(1.7) n(r; x) =Xfm(s) : j Im sj � r ; Re s > xg:Then for any real x,(1.8) n(r + 1; x)� n(r; x) =Xfm(s) : r � j Im sj � r + 1 ; Re s > xg � C1rÆ ;where Æ = dim J . By summation,(1.9) n(r; x) � C2r1+Æ :As far as lower bounds are onerned we present the followingConjeture 3. The bound (1.9) is optimal, in the sense that for x > x0, with some �xedx0 = x0(), n(r; x) � C3(x)r1+Æfor suÆiently large r.As we will desribe in Setion 6 below this onjeture is strongly supported by the numerialevidene. These numerial results provide further evidene for the existene of fratal Weyl lawsin situations with haoti lassial dynamis.In view of the lak of rigorous examples for quantum resonanes, it would be very interestingto know whether this upper bound is optimal. When the Julia set is not a Cantor set the upper



4 J. STRAIN AND M. ZWORSKIbound may not be optimal, as in the simple example f(z) = z2 where J(f) = fz : jzj = 1g andZ(s) = 1� 2s�1. 2. The transfer operator on L2 spaesTo onnet the two de�nitions (1.3) and (1.4) of the zeta funtion, we modify the disussionin [10℄. Construt a neighborhood D of the Julia set J byD = D1 [D2; Dj open neighbourhoods of J \ (�1)j(0;1)gi(Dj) � Di ; f Æ gi(z) = z :(2.1)More expliitly, gi(z) = (�1)ipz �  with a branh of the square root hosen to be positive onthe positive real axis. The Dj 's an be neighbourhoods of (�1)j [p�� �; �℄, where� = (1 +p1=4� )=2is the largest �xed point of f.The Ruelle transfer operator (1.2) then beomes(2.2) L(s)u(z) = 2Xi=1 [g0i(z)℄su(gi(z)) ; z 2 Djating on funtions u inH2(D) = fu holomorphi in D : ZZD ju(z)j2dm(z) <1g :The only di�erene from (1.2) and [10℄ lies in hoosing L2 spaes of holomorphi funtions insteadof Banah spaes. However, we an still prove the analogue of (a speial ase of) a result of Ruelle[19℄ and Fried [7℄:Proposition 1. Suppose that the Ruelle operator L(s) : H2(D) ! H2(D) is de�ned by (2.2)and  < �2. Then for all s 2 C , the operator L(s) is trae-lass and(2.3) j det(I �L(s))j � exp(Cjsj2) :Proof. The proof is based on estimates of the singular values �l(L(s)). We will show that thereexists C > 0 suh that(2.4) �l(L(s)) � eCjsj�l=C :First we reall some basi properties of singular values of a ompat operator A : H1 ! H2where Hj 's are Hilbert spaes. We de�nekAk = �0(A) � �1(A) � � � � � �`(A)! 0 ;to be the eigenvalues of (A�A) 12 : H1 ! H1, or equivalently of (AA�) 12 : H2 ! H2. The min-maxpriniple shows that(2.5) �`(A) = minV�H1odim V=` maxv2VkvkH1=1 kAvkH2 :The following rough estimate suÆes: suppose that f�jg1j=0 is an orthonormal basis of H1. Then(2.6) �`(A) � 1Xj=` kA�jkH2 :



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 5Indeed, for v 2 V` = span f�jg1j=` in (2.5), the Cauhy-Shwartz inequality and the usual `2 � `1inequality yield kAvk2H2 =  1Xj=`hv; �jiH1A�j � kvk2H1 0� 1Xj=` kA�jkH21A2 ;from whih (2.5) gives (2.6).We will also need some more sophistiated results about singular values. The �rst is the Weylinequality [8℄: if H1 = H2 and �j(A) are the eigenvalues of A, thenj�0(A)j � j�1(A)j � � � � � j�`(A)j ! 0 ;then for any N � 0, NỲ=0(1 + j�`(A)j) � NỲ=0(1 + j�`(A)j) :In partiular, if the operator A is trae-lass so P` �`(A) <1, then the de�nitiondet(I +A) := 1Ỳ=0(1 + �`(A))makes sense and(2.7) j det(I +A)j � 1Ỳ=0(1 + �`(A)) :We will also require the following standard inequality about singular values [8℄:(2.8) �`1+`2(A+B) � �`1(A) + �`2(B)We �nish the review, as we started, with an obvious equality: suppose that Aj : H1j ! H2j andwe formLJj=1 Aj :LJj=1H1j !LJj=1H2j , as usual,LJj=1 Aj(v1�� � ��vJ) = A1v1�� � ��AJvJ .Then(2.9) 1X̀=0 �`0� JMj=1 Aj1A = JXj=1 1X̀=0 �`(Aj) :With these preliminary fats taken are of, we see that (2.4) implies (2.3). In fat, (2.7) showsthat det(I �L(s)) � 1Ỳ=0(1 + eCjsj�`=C) � eC3jsj2 :Hene it remains to establish (2.4). For that we hoose the Dj 's to be symmetri diss ontaining(�1)j [(� + )1=2; �℄ and disjoint from iR. We deomposeH2(D) = 2Mj=1H2(Dj)and de�ne Lij(s) : H2(Di)! H2(Dj)by Lij(s)u(z) := [g0i(z)℄su(gi(z))



6 J. STRAIN AND M. ZWORSKIfor z 2 Dj . The standard inequality (2.8) and a version of (2.9) then yield�`(L(s)) � max1�i;j�2 2�[`=4℄(Lij(s)) :To estimate �k(Lij(s)) we use the rough estimate (2.6), with an orthonormal basis f�kg ofH2(Di)omposed of the entered and saled monomials�k(z) = p2k + 1ri �z � airi �k ;where Di = D(ai; ri) has enter ai and radius ri. Sine gi(Dj) � Dj ,k((gi(z)� ai)=ri)kkH2(Di) � C�k ;for some 0 < � < 1. Sine j[gi(z)℄sj � eCjsj, we obtain�`(Lij(s)) � CXk�` kLij(s)(�k)k � CXk�` eCjsj�k � CeCjsj �`1� � � C1eCjsj�`=C1 ;for some C1, whih ompletes the proof of (2.4). �The next proposition follows by an easy modi�ation of the standard argument (see for instane[10℄):Proposition 2. Let L(s) be de�ned by (1.2). De�ning the determinant as in Proposition 1 wehave det(I �L(s)) = exp0�� 1Xn=1 1n Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A ;for Re s� 0. Hene the left hand side provides an entire analyti ontinuation of the right handside.Proof. Fix s 2 C . Then (2.4) and (2.7) imply thath(�) := det(I � �L(s))is an entire funtion of order 0. For j�j suÆiently small, the power series of log(I � �L(s))onverges [8℄ sodet(I � �L(s)) = exp(tr log(I � �L(s))) = exp � 1Xn=1 �nn tr(L(s))n! :(2.10)To analyze the traes, we go bak to the �rst de�nition (1.2) of the transfer operator:L(s)u(z) = Xf(w)=z[f 0(w)℄�su(w) :The Shwartz kernel of L(s)n an be written in terms of the Bergman kernel for the Dj 's, sothe evaluation of the traey givestrL(s)n = Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�1 :yTo see how it works, onsider the simple ase where f is holomorphi in the unit dis, f(0) = 0, and jf(z)j < jzjfor z 6= 0. By Cauhy's formula, pullbak by f is an integral operator on H2(D(0; 1)) with kernel ��1(1�f(z)��)�2.and trae ��1 RRD(0;1)(1 � f(z)�z)�2dm(z) = (1 � f 0(0))�1. In our ase f 0(0) is always real and we obtain anabsolute value as we move between di�erent diss when f 0(0) < 0.



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 7Returning to (2.10), we obtain for Re s suÆiently large,det(I � �L(s)) = exp0�� 1Xn=1 �nn Xffng(z)=z [(ffng)0(z)℄�s1� [(ffng)0(z)℄�11A :Setting � = 1 and employing (1.4) proves the proposition. �Note that the proof did not use any properties of the open sets Dj other than the ones givenin (2.1). 3. Estimates in terms of the dimension of J.For the proof of the Theorem 1, we will hoose the Dj 's in the de�nition of L(s) to dependon the size of s. Let h = 1=jsj. The self-similar struture of J suggests that Dj = Dj(h) shouldbe a union of O(h�Æ) disjoint diss with radii r � h, separated from J by d(�Dj ; J) � h. Theargument used in the proof of Proposition 1 will then give (1.6).We begin withProposition 3. Let J � R be the Julia set for (1.1). Then there exist onstants Æ0 and K = K()suh that for Æ < Æ0, the onneted omponents of J + [�Æ; Æ℄ have length at most KÆ.Proof. The disussion of \ookie-utter sets" in [6℄ and in partiular [6, Corollary 4.4℄ show thatJ is a quasi-self-similar set. More preisely, there exist  > 0 and r0 > 0 suh that for any x0 2 Jand r < r0 there exists a map g : [x0 � r; x0 + r℄! R with the propertiesg(J \ [x0 � r; x0 + r℄) � Jr�1jx� yj � jg(x)� g(y)j � �1r�1jx� yj ; x; y 2 [x0 � r; x0 + r℄(3.1)Hene the proposition follows by a saling argument. We remark that (3.1) also follows from theKoebe distortion lemma [3, Theorem 1.5℄. �Proof of Theorem 1. As outlined in the beginning of the setion, we put h = 1=jsj, where j Im sjis large but jRe sj is uniformly bounded. We deompose the Julia set J into disjoint subsets:Ij(h) := J \Dj + [�h; h℄) = Pj(h)[p=1 [xjp � rjp; xjp + rjp℄ ; xjp+1 � rjp+1 > xjp + rjp ;so that the intervals [xjp � rjp; xjp + rjp℄ ontain the onneted omponents of Ij(h). Proposition 3shows that rjp < Kh as h! 0.The open set D(h) is de�ned asD(h) = 2[j=1Dj(h) ; Dj(h) = Pj[p=1Djp(h) ; Djp(h) = (xjp � rjp; xjp + rjp) + i(�h; h) ;and sine gi : J \D0j ! J \D0i we see that the ondition (2.1) holds: for eah Djp there existsa p0 = p(i; j; p) for whih d(�Dip0 (h); gi(Djp(h))) > (1� �)h ;for a �xed onstant 0 < � < 1. From this we also see that Pj(h) = P (h) is independent ofj = 1; 2.It is lassial that the Hausdor� measure of the Julia set is �nite (see for instane [17℄ and thereferenes given there) and hene P (h) = O(h�Æ).



8 J. STRAIN AND M. ZWORSKIWe an now apply the same proedure as in the proof of Proposition 1. What we have gainedis a bound on the weight: sine jRe sj � C and g0i is real on the real axisj[g0i(z)℄sj � C exp(jsjj arg g0i(z)j) � C exp(C1jsjj Im zj) � C2 ; z 2 Dj(h) :We write L(s) as a sum of four operators Lij(s) eah of whih is a diret sum of P (h) operators.The retangles and the ontrating prperties of gi's are uniform after resaling by h and henethe singular values of eah of these operators satisfy the bound �l � Cl, 0 <  < 1. Using (2.7)and (2.9) we obtain the boundlog j det(I �L(s))j � CP (h) = O(h�Æ) ;and this is (1.6).Proof of Corollary 2. Proposition 2 shows that Z(s) is given by (1.4) for Re s large. Hene forRe s > C1 we have jZ(s)j > 1=2. The Jensen formula then shows that the left hand side of (1.8)is bounded by Xfm(s) : js� ir � C1j � C2g � 2 maxjsj�r+C3jRe sj�C0 log jZ(s)j+ C4 ;and (1.8) follows from (1.6).4. Numerial evaluation of the zeta funtionWe have arried out an extensive set of numerial omputations whih suggest that the upperbound proved above is optimal. We have developed a fast algorithm for numerial evaluationof the zeta funtion, whih we use for large-sale parallel omputations of its zero pattern. Theevaluation algorithm is based on the following onvenient analytial setup. We have de�nedL(s) as an operator on holomorphi funtions de�ned on an open neighbourhood D of the Juliaset: in the analysis above we hose D = D1 [ D2 with Dj = (�1)j(p�� � ; �) where � =(1 + p1� 4)=2 is the largest �xed point of f. The Ruelle operator (1.2) is then given by(2.2). For numerial omputations, we would like to hoose another domain D to speed up thenumerial evaluation of the determinant Z(s) = det(I � L(s)).Assume p = jj > 4. Then a �rst approximation to J is the union D0 of two intervalsDj = (�1)j((p� �) 12 � 1=4; � + 1=4) ; � = (1 + (1 + 4p) 12 )=2 :Sine f(��) = � ; f(�(p� �) 12 ) = �� ;the set of �xed points of iterates of f is ontained in D0 = D1SD2. Moreover,gi(Dj) � Di ; gj(D1) \ gj(D2) = ; :Thus this onstrution an be iterated. LetDi = gi1 Æ � � � Æ gin�1(Din)where the multiindex i is de�ned by i = (i1; � � � ; in) 2 f1; 2gn. ThenDn = [i2f1;2gnDiapproximates the Julia set aurately for large n. Sine the gj 's are monotone, eah Di is mappedinto another by eah gj :gj(Di) � D�j(i) ; �j(i1; � � � ; in) = (j; i1; � � � ; in�1)



ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 9When p is large, � = (1 + (1 + 4p) 12 )=2 ' p 12 + 1=2 + p� 12 =8 ;(p� �) 12 ' p 12 � 1=2� p� 12 =8 :On D0 the derivatives of gij 's are approximately p�1=2=2. Thus the sizes of the subintervals Di'sare ontrolled by jDij ' 2�np�n=2 ; i 2 f1; 2gn :The dimension should satisfy the following approximate relation( size of the interval)�Æ ' number of intervals,or Æ ' 2 log 22 log 2 + log pwhih agrees with rigorous estimates [10, 17℄.4.1. Determinant evaluation. An eÆient evaluation sheme hoosesD = Dn where n is largeenough that jDij ' jsj�1 ; i 2 f1; 2gnassuming that the intervals in the partition have roughly the same size 2�np�n=2. We expandeah Di into a dis entered at the middle ai of Di, and radius ri equal to half of the length ofDi. We denote the expanded diss also by Di for onveniene. They an be omputed in pratieby mapping interval endpoints with the g funtions and sorting the resulting intervals.The transfer operator L(s) : Mi2f1;2gnH2(Di) �! Mi2f1;2gnH2(Di)then beomes a sparse 2n � 2n matrix of operators de�ned by(L(s))km u(z) = � [g0j(z)℄su(gj(z)) ; u 2 H2(Dm) m = �j(k)0 otherwiseNumerially, we approximate I �L by a blok matrix I �L suh as the ones shown in Figure 2.Eah matrix blok approximates one operator L(s)km by a small matrix Lkm, whih repre-sents the ompression of L(s)km onto the �rst P + 1 elements of eah orthonormal basis f�kp gand f�mq g for H2(Dk) and H2(Dm) respetively. Thus the matrix blok Lkm has elementsapq = ZDk �kp (z)[g0j(z)℄s�mq (gj(z))dzwhere m = �j(k). [Note: it would probably be nie to add the formula for Z as the determinantof I � PGsH .℄ This integral ould perhaps be evaluated exatly, sine only powers, logarithmsand roots our. However, exat formulas are likely to be umbersome and expensive to evaluate,so we apply numerial integration tehniques instead. The standard 21-point formula no. 25.4.61on p. 892 of [2℄ is highly aurate, integrating up to tenth-degree polynomials exatly over a dis;adaptive quadrature ould be used if even higher auray is desired. One the blok matrix L isomputed, we evaluate the determinant Z(s) by LU-fatorization via standardLAPACK routines[1℄. EÆieny is improved by areful preomputation and tabulation of ommon subexpressions.It ould perhaps be improved further by sparse blok QR deomposition as in [21℄, in view ofthe simple regular blok struture evident in Figure 2.
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ZETA FUNCTION AND THE DIMENSION OF THE JULIA SET 1114-digit auray with n = 6 and P = 3 in 12.45 se, running on one proessor of a dual 1.8 GHzXeon workstation running Red Hat Linux version 8 and matlab version 12. Three-digit aurayrequired less than one seond, but our prototype matlab implementation was still far too slowfor the large-sale zero-ounting whih we report in Setion 6 below. Thus the algorithm wasrewritten in Fortran 77 and run on the UC Berkeley \Millennium" luster ontaining about250 Intel CPUs arranged in about 100 nodes.Table 2. Dimension Æ of the Julia set J for  = �5, omputed with ourevaluation sheme using n levels of intervals and P basis funtions per dis.P = 1 2 3 4n = 3 0.48478348721389 0.48479099537140 0.48479829294510 0.48479829372883n = 4 0.48479741542081 0.48479784089445 0.48479829442433 0.48479829443523n = 5 0.48479823885691 0.48479826617332 0.48479829443815 0.48479829443815n = 6 0.48479829098609 0.48479829267778 0.48479829443816 0.48479829443816n = 7 0.48479829422308 0.48479829432851 0.48479829443816 0.48479829443816This should be ompared to the numerial results of [10℄ where a di�erent method of evaluatingthe zeta funtion was used. It follows the yle expansion method based on rigorous results ofRuelle [19℄, and numerial investigations by Cvitanovi�, Ekhardt and others [5℄. Although theyle expansion method has been used suesfully for omputation of zeros (see [13℄ for a reentappliation), we found that our method allows larger values of Im s (see [9℄ for the use of theyle expansion method following [10℄ in the ontext of Shottky groups).Cyle expansions require areful grouping of large summands to detet the anellations, whihbeomes inreasingly diÆult and unstable as the imaginary part of s inreases; the summandsgrow exponentially. 5. Zero-ounting algorithmWe apply a zero-ounting algorithm to our Fortran implementation of Z(s) to ount thenumber of zeroes to the right of a line Re z = x between two horizontal lines Im z = s0 andIm z = s1. Sine Z is holomorphi, the argument priniple ounts the number N of zeroes insidea losed urve � by the integral formulaN = 12�i Z� Z 0(s)Z(s) ds:Numerial implementation of this formula turns out to be surprisingly triky, beause zeroes ofZ indue poles of the integrand. (Figures 3 and 4 suggest how ompliated and interesting thepole struture of Z 0=Z an be.) Thus numerial integration over � with resolution h will workonly if the zeroes of Z lie distane O(h) or more from �. Sine the unknown zero loationsmay luster anywhere, our hoie of � must take Z values into aount. Thus we have adoptedthe following zero-ounting tehnique. First, we approximate only the integral over the vertialinterval � = [x+ is0; x+ is1℄ as the two horizontal lines ontribute very little to the total. Next,we enlose the vertial interval V by zigzag ontours �L and �R whih give approximate upperand lower bounds NU � NL for the number N of zeros; see Figures 3 and 4. Finally, we integratethe logarithmi derivative exatly over eah segment of the ontour.Eah zigzag ontour is a polygonal line onneting a sequene of grid points zm = x+ Imh+i(s0+mh), where h = 0:025 is the half-width of the band enlosing �. The indies Im are hosen
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Figure 3. Surfae and ontours of jZ 0=Zj with  = �10, over the retangle�3 < Re s < 1, 1960 < Im s < 2000 and its entral subretangle �2 < Re s < 0,1970 < Im s < 1990. The zigzag ontours shown in blak steer to the right asmuh as possible, to avoid zeros and minimize the value of jZ 0=Zj.
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Figure 4. Surfae and ontours of jZ 0=Zj with  = �160, over the retangle�3 < Re s < 1, 1960 < Im s < 2000 and its entral subretangle �2 < Re s < 0,1970 < Im s < 1990.



14 J. STRAIN AND M. ZWORSKIbetween �Q and Q inlusive (usually Q = 5 or so) to minimize the integrand:jZ 0(zm)jjZ(zm)j = minjqj�Q jZ 0(x+ qh+ i(s0 +mh)jjZ(x+ qh+ i(s0 +mh))j :Integrating over this ontour gives exatlyNJ = 12�i Z�J Z 0(s)Z(s) ds = 12�i M�1Xm=1 log�Z(zm+1)Z(zm) �for J = U;L. 6. Numerial onlusionsWe used the above algorithm to ompute the density of zeros of the zeta funtion Z(s) formany values of the parameter  < �2. The numerial results strongly support Conjeture 3stated after Corollary 2 in Setion 1. We stress that our omputations are empirial, that is weannot prove the onvergene rigorously { we only see onvergene when the parameters whihimprove auray inrease. The upper bounds tehniques of Setion 2 give estimates guaranteeingonvergene but they are numerially feasible for small values of j Im sj only: the size of L andP required grows too fast.The zero ounting algorithm presented in Setion 5 gives us upper and lower bounds for thenumber of zeros, n(r; x) with Re s > �x and 0 � j Im sj � r:nL(r; x) � n(r; x) � nU (r; x) :As seen in Figures 3 and 4 the density of zeros is large and the distribution too irregular to obtaina ompletely aurate evaluation of n(r; x) when r large. The upper bound given in Corollary 2is the same as lognU (r; x) � (1 + Æ) log r +BU (x) ;and ideally we would like to have(6.1) lognL(r; x) � (1 + Æ) log r +BL(x) ; x > x0() :For a given  we alulate n�(r; x) for r � R using parameters L; P suggested by the proof of theupper bound, that is ones for whih the behaviour of the transfer operator is niely ontrolledfor Im s � R. That means that we require 2L � j Im sjÆ , and we take P = 1 or 2. As explainedin Setion 4.1 the inrease of L is very ostly and we use larger values of the parameters only totest the auray of our results. The plots of logn�(r; x) against log r for di�erent values of xare shown on the left of Figure 5.To see if (6.1) has a hane of being true we use the least squares method to approximatelogn� as a funtion of log r:(6.2) n�(r; x) ' A�(x) log r +B�(x) ; r � R ;where � = L;U orresponds to the upper and lower bounds respetively. Although nL(r; x) �nU (r; x) it may happen that AL(x) > AU (x) due to the irregularities in distributions.The lower bound (6.1) an be loosely reformulated asAL(x) ' AU (x) ' 1 + Æ ; x � x0 :That this happens for  = �10 and  = �100 is shown in on the right of Figure 5These results are typial for what we obtained for other values of . Although for largerjj's we an use a lower L to reah higher values of Im s aurately, we observe a phenomenonof \onservation of diÆulty". That is seen in the omparison between Figures 5 (a) and (b):onvergene to the dimension for  = �160 requires Im s ten times as large as for  = �10.
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(b)Figure 5. Number of zeroes n(r; x) vs. log r and orresponding exponents 1+Æ.(a)  = �10, L = 6,P = 2, 0 � r � 20000, 0:3822 > x > �0:4178 in 17 steps of0:05. (b)  = �160, L = 5, P = 1; 0 � r � 200000, 0:58534 > x > �0:28534 in 9steps of 0:1.
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