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Abstract

A simple, efficient, spectrally-accurate numerical method for solving variable-
coefficient elliptic partial differential equations in periodic geometry is de-
scribed. Numerical results show that the method is efficient and accurate
even for difficult problems including convection-diffusion equations. Gener-
alizations and applications to phase field models of crystal growth are dis-
cussed.



1 Introduction

This paper presents a numerical method for solving the variable-coefficient
second-order elliptic partial differential equation

Lu(x) :== Z a;;(r)0;0;u(x) + Zbl(x)@u(m) +c(z)u(z) = f(z) (1.1)

in the box B = [0,1]? in RY, with periodic boundary conditions imposed on
the boundary 0B of the box. We assume that the coefficients are smooth
and periodic, with ¢(x) < 0, and we assume uniform ellipticity:

d
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for all ¢ € R? and some constants M,m > 0. We do not require self-
adjointness.
The method is based on representing u as a volume potential

u(z) = /BG(m,x')a(x')dx' =L

formed with the Green function G for the constant-coefficient averaged op-
erator
d d
L= Z aijaﬁj + Z b;0; + . (13)
ij=1 i=1

Here § = [ g(x)dz. The operator A := ££ ' is a bounded invertible op-
erator on L?(B), and the equation Ao = f is equivalent to (1.1) but easier
to solve. The solution u of (1.1) can be recovered from o by evaluating the
volume potential.

This method is spectrally accurate in the sense that the error decreases
faster than any power of the grid size h as h—0, because convolution with the
Green function G and differentiation can be applied with spectral accuracy.
It is efficient because A is a bounded invertible operator on L?(B), so rea-
sonable discretizations of A4 have bounded condition numbers independent of
mesh size, and iterative methods then converge in an asymptotically bounded
number of iterations. The method is extremely simple to program and triv-
ial to parallelize, since most of the computational effort is spent performing



the fast Fourier transform. It works well even for convection-diffusion prob-
lems where the operator is far from self-adjoint; we note that the coefficients
change sign frequently in our numerical examples, but the accuracy obtained
depends only on the smoothness of the solution. The solution time grows as
the complexity of the problem increases, but for a fixed problem it remains
bounded as the mesh size decreases, once the solution is resolved.

We discuss generalizations in §5; the most important is efficient high-
order accurate schemes for variable-coefficient problems in arbitrary smooth
domains. The method also can be used to solve higher-order elliptic problems
and systems; an example of the latter is the application to BDF discretiza-
tions of phase field models for crystal growth which we discuss in §4.

2 The method

Consider the equation (1.1), and average the coefficients over B to produce
the constant-coefficient operator £ given by (1.3). By uniform ellipticity
(1.2) and the linearity and positivity of averaging, L is elliptic with the same
m, M as L. If ¢ is strictly negative, then £ is invertible; otherwise, ¢ = 0 and
we work with the subspace of L?(B) consisting of functions with mean zero,
where £ is invertible. For simplicity of exposition, we assume from now on
that ¢ < 0.

Since £ has constant coefficients and the boundary conditions are peri-
odic, we use Fourier series. For convenience, we use multiindex notation:
Z% is the space of d-dimensional integer sequences k = (ki, ks, ..., kq) where
each k; is a positive or negative integer, and |k| = max |k;|. We take our
Fourier series in the form

o(x) =Y ™5 (k)

keZd

where + = y/—1 and the Fourier coefficients (k) are defined by
g(k) = / e~ R (1) do.
B

Then we can apply A = ce! explicitly:

Ao(z) = Z szzl a;;(2)2mik;2muk; + S bi(2)2mik; + ox)
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where p(z, k) and p(k) are the symbols of £ and L. The ellipticity hypothesis
(1.2) and the assumption ¢ < 0 imply that the denominator p(k) never
vanishes. Thus A is a bounded invertible operator on L*(B), since ! maps
L? one-to-one and onto the Sobolev space H*(B), while £ maps H?(B) back
onto L?*(B) (by e.g. Theorem 9.15 of [7], modified for the periodic case). The
equation Ao = f therefore has a unique solution o € L*(B) if f € L*(B),
and we can recover u from o by applying the Green function u = Lo

The numerical method now has three independent components; first, we
need an iteration for solving Ao = f, second, we need to approximate A =
cet accurately, and third, we need to apply £ 'tooto get, u.

We expect that almost any nonsymmetric iterative method (such as GM-
RES [13], QMR [6] or BI-CGSTAB [14]) can be used to solve Ao = f,
because A is bounded and invertible though neither symmetric nor positive
definite in general. The rate of convergence will not depend on the mesh
size, since we have no mesh size yet. For GMRES applied to Az = f, for
example, the residual r,, = f — Az, after m steps satisfies [13]

[Pl < KX )em||rol|

where A = XAX~!is a diagonalizable N x N matrix, £(X) = || X|[2||X "2,

and
D 14 R m—v
w<(7) (2)
d C

Here we assume that A has v eigenvalues Ay, ..., A, in the left half plane and
N —vin acircle |C — A < R with C' > R > 0, and we define

D= max |/\1,_/\]|

1<i<vv+1<j<N

and d = min;<;<, |A;|. Thus the restarted method GMRES(m) is guaranteed

to converge if
log k(X)) log D/d
> ———= 1
logC'/R v +logC/R ’
and the convergence rate depends on the problem size only through eigenvalue

bounds and k(X). For solving Ao = f, therefore, the convergence rate of
GMRES is independent of mesh size.




Our method can be seen as an analytic preconditioning of the differen-
tial operator, rather than a matrix preconditioning of a discretized problem.
Matrix preconditioning helps solve a discrete problem even when it is not
a good approximation to the continuous problem, but then the value of the
computation is unclear. Our method can be seen as an analytic version of
the preconditioning presented in [4] and more recently in [5, 8], extended to
more general operators. It is also closely related to the approach of [11].

We now approximate Ao in the natural way by evaluating the Fourier
coefficients of ¢ numerically, multiplying by the appropriate factors, and
truncating the Fourier series. Thus we lay down a uniform grid of N points
x; = (jih, j2h, ..., jgh), where h = 1/N and each j; runs from 1 to N. Since
the problem is periodic we identify x; = 0 with z; = 1. We approximate 6 (k)
for |k| < N/2 by the trapezoidal rule

N
6(k) ~ dp(k) == h" > e Tig(a;)

Ji=1
with an error which is spectrally small if ¢ is smooth;
6(k) = Gu(k)| < Clo]lmmm k| < N/2,

for every p > d+ 1. Here H?(B) is the pth-order Sobolev space on B [7] and
(' is a constant depending only on d.

These approximate Fourier coefficients can be evaluated by the FFT,
which requires O(N?log N) operations, and divided by p(k) to obtain &, (k)/p(k).
The averages a;; are approximated by trapezoidal sums over the mesh points;
since this is also an average, it preserves ellipticity just as well as integrating.
Then we approximate Ao by

d
Apon(x) = > ay(x) Y 2mik2mik;e”™ 6, (k)/pk)
ij=1 |k|<N/2
d
+ b)) Y 2mikie®™ 6, (k)/pk)
i=1 k| <N/2
+ o) o e an(k)/p(k)

[k|<N/2

We have to extract the x-dependence from the sums in order to evaluate
them on the mesh with the FFT. If we take advantage of the equality of
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mixed partials, we need 1+ (d+ 1)(d +2)/2 FFT’s and (d + 1)(d + 2)N?/2
multiplications and additions to evaluate 4,0, assuming that the (d+1)(d+
2)/2 distinct coefficients of £ have already been evaluated at the mesh points.

Thus each application of A, costs O(N?%log N) operations, even though
the matrix has N?¢ elements. If we can solve A0, = f in a number of iter-
ations independent of the mesh size, then the total cost will be O(N%log N),
only a constant factor times the cost of solving a constant-coefficient problem
and much smaller than the cost of solving Lu = f by standard iterative or
direct methods or even the cost of a standard multiplication by A;. Our
experiments with GMRES show that in fact, once the solution is resolved,
the number of iterations does not increase as the mesh is refined.

Once we solve Apo, = f, we have 0, so we compute an approximate
solution uy, in the natural way. We divide the Fourier coefficients o), by p(k)
and evaluate the resulting truncated Fourier series u; on the mesh. Usually
uy is even more accurate than oy, since the higher modes are damped by
£

It may be worthwhile to compare our method with some of the many
other techniques available for this problem. The advantage of our method
over multigrid methods [1] (which are equally efficient for a given grid size
but less accurate) is its spectral accuracy, while the advantage over standard
spectral methods [3] (which are equally accurate but less efficient for a given
grid size) is its efficiency.

3 Numerical results
Our numerical results use d = 2 dimensions and a solution u given by

u(z) = exp(cos(2mkixy) cos(2mhoxs)).

We calculated o and f from u by applying £ and £ exactly, then solved the
problem numerically and calculated the error in o and wu.

The variable coefficients of £ were constructed from six (M + 1)%-term
Fourier cosine series

M
Fy(x) = Z Fy. cos(2mky 1) cos(2mkqas)
k1,k2=0



with coefficients Fj, generated randomly on [-1,1] for each s = 1 through
6. Since we want L elliptic, we generated a 2 by 2 upper triangular matrix
F with entries F}, F, and F3, and set (a;;) = I + F'F where I is the
2 by 2 identity matrix. Thus a;; = 1 + F?, a1p = 2F\F», ay = 0, and
asy = 1+ F} + FZ. The hypothesis of uniform ellipticity is satisfied with
m = 1. The first-order coefficients b; were given by random Fourier series F}
and Fj, multiplied by a convection coefficient 5 which was varied to increase
the convective terms. The zero-order coefficient ¢ was formed by setting
¢ = —F2, to ensure c(r) < 0. Note that the second-order and zero-order
coefficients can vary on scales twice as small as the first-order terms, since
they are quadratic functions of the Fj’s.

The choice of starting values is important in iterative methods; we ex-
perimented with four starting strategies of increasing accuracy. First o = 0,
second, o randomly generated, third, o = f; and fourth, o constructed re-
cursively by solving the problem on a coarser grid and using trigonometric
interpolation. The first three methods required more time than the last, so
we present results only for the last strategy, with the solution initialized on
the coarsest grid by setting 0 = f. We display results in Figure 1 in the form
of log-log plots of maximum error in u versus total CPU time T on a Cray-2
in seconds; the time plotted is the cumulative time required for all the solves
on smaller grids as well as the current grid. GMRES(10) was used, with a
stopping tolerance of 10! for the norm of the residual. We present results
for solution wavenumbers by = ko = 1, 5 and 9, with coefficient wavenum-
bers M =1, 5 and 9 and S = 10. More detailed information is presented in
Table 1. The number of iterations required to solve these problems depended
strongly on the regularity of the solution, weakly on the variation in the coef-
ficients, and not at all on the mesh size. This is extremely encouraging since
one of the main applications of this type of solver is to nonlinear problems,
where the coefficients are no smoother than the solution.

The numerical results clearly display the spectral accuracy and efficiency
of the method over a wide range of solution and coefficient parameters, and
reveal another interesting feature of the method; it informs the user when the
solution is sufficiently resolved on the current grid by requiring zero iterations
to satisfy the stopping criterion. If the solution on the previous grid is already
accurate to the desired tolerance, then the iteration is satisfied on the current
grid as well and only one matrix-vector multiplication is required, to compute
the residual. Thus if one computes the solution on a sequence of grids,



]{31:]62:5,M:5,€:10711 k1:k2:9,M29,€:10711
N I T E N I T E

16 | 84 | 0.80 | 0.84E+00 16 | 152 | 1.43 | 0.10E+401
32 | 112 | 3.44 | 0.35E+00 32 [ 171 | 5.33 | 0.10E+01
48 | 111 | 6.72 0.14E-01 48 | 242 | 14.81 | 0.72E+00
64 | 105 | 10.37 | 0.13E-03 64 | 276 | 27.48 | 0.19E+00
80 | 82 | 12.49 | 0.33E-06 80 | 298 | 44.92 | 0.12E-01
96 | 64 | 14.31 | 0.12E-08 96 | 297 | 65.54 | 0.19E-02
112 | 39 | 17.09 | 0.39E-10 112 | 276 | 117.72 | 0.61E-04
128 | 11 | 4.48 | 0.79E-11 128 | 239 | 89.58 | 0.64E-05
144 | 3 1.87 | 0.73E-11 144 1 199 | 96.35 | 0.12E-06
160 | 1 1.09 | 0.50E-11 160 | 169 | 93.74 | 0.50E-07
176 | O 1.03 | 0.47E-11 176 | 134 | 142.05 | 0.56E-08
192 0O 0.79 | 0.49E-11 192 | 97 | 81.28 | 0.71E-09
2081 0 1.48 0.42E-11 208 | 53 | 80.72 | 0.11E-09
2241 0 1.57 0.45E-11 224 | 18 | 30.34 | 0.46E-10
240 | 0O 1.21 0.42E-11 240 | 5 7.34 0.36E-10
256 | 0O 1.41 0.44E-11 256 | 1 2.86 0.42E-10

Table 1: Maximum error F in u, divided by the maximum of u, versus the
mesh size N, the number of GMRES iterations required I and the CPU time
required 1" per mesh.

the method will become extremely inexpensive as the desired resolution is
approached.

4 Application to crystal growth

One of our motivations in developing the elliptic solvers presented above is
the phase field model of crystal growth, a continuum problem requiring the
solution of 2 by 2 second-order parabolic systems in two or three space di-
mensions [2]. The boundary conditions are simple, since the interest is in
fundamental physics rather than engineering, and periodic boundary con-
ditions are thus appropriate. The phase field equations can be put in the
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Figure 1: Graphs of maximum error in u versus Cray-2 CPU time for our
method, with K = 1, 5 and 9 (left to right) and M = 1, 5 and 9(top to
bottom), with 5 = 10. For each plot, N = 16 through 256 in steps of
16. The starting value was constructed by trigonometric interpolation of the
solution on the previous mesh, except for N = 16 where we set 0 = f.
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form

U, = AAU + F(U)

where U = (uy,us)!, A is the Laplacian, A is a 2 by 2 matrix of contants,
and F(U) is a cubically nonlinear function. This system is stiff, and there-
fore should be discretized in time by implicit backward difference formulae
[9]. At each time step, one needs to solve a nonlinear elliptic system with a
good initial guess available from the previous time step. The elliptic system
can be linearized with a damped Newton method, giving a sequence of linear
variable-coefficient elliptic systems which are ideal applications for the tech-
nique developed in this paper. The extension of our method to solve these
systems is straightforward; since the principal part is constant-coefficient
already, it need not be averaged.

5 Generalizations

The method employed in this paper admits generalizations to elliptic systems,
to other boundary conditions, and to arbitrary domains. Elliptic systems
appear trivial once single equations can be solved.

When we have Dirichlet or Neumann boundary conditions on 0B, spec-
tral accuracy requires the use of orthogonal polynomial basis functions rather
than trigonometric functions [3]. These bases do not diagonalize constant-
coefficient operators, so other operators should be used to form more appro-
priate potentials. In each case, the averaged operator should be constructed
with a weighted average and a structure which is diagonalized by the basis
used. Thus the method generalizes to any domain which admits spectrally
accurate methods for classes of operators produced by averaging.

The method also generalizes to arbitrary domains, using fast Helmholtz
solvers. The basic idea is the same: given a linear variable-coefficient elliptic
equation Lu = f with homogeneous boundary conditions, we convert it to
an integral equation Ao = f with the averaged constant-coefficient operator
L with the same boundary conditions. Iteration of A (using GMRES, QMR
or BI-CGSTAB) converges in a number of steps independent of the mesh size
since A is invertible and bounded on L?. The operator £ can no longer be
approximated with the FFT, since the problem is not periodic; but £ can be
transformed to the Helmholtz operator A + K by change of variable. The



Helmholtz operator can be inverted efficiently with a fast Helmholtz solver
[12, 10].
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