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Abstra
tA simple, eÆ
ient, spe
trally-a

urate numeri
al method for solving variable-
oeÆ
ient ellipti
 partial di�erential equations in periodi
 geometry is de-s
ribed. Numeri
al results show that the method is eÆ
ient and a

urateeven for diÆ
ult problems in
luding 
onve
tion-di�usion equations. Gener-alizations and appli
ations to phase �eld models of 
rystal growth are dis-
ussed.



1 Introdu
tionThis paper presents a numeri
al method for solving the variable-
oeÆ
ientse
ond-order ellipti
 partial di�erential equationLu(x) := dXi;j=1aij(x)�i�ju(x) + dXi=1 bi(x)�iu(x) + 
(x)u(x) = f(x) (1.1)in the box B = [0; 1℄d in Rd, with periodi
 boundary 
onditions imposed onthe boundary �B of the box. We assume that the 
oeÆ
ients are smoothand periodi
, with 
(x) � 0, and we assume uniform ellipti
ity:M j�j2 � dXi;j=1aij(x)�i�j � mj�j2 (1.2)for all � 2 Rd and some 
onstants M;m > 0. We do not require self-adjointness.The method is based on representing u as a volume potentialu(x) = ZB �G(x; x0)�(x0)dx0 = �L�1�(x)formed with the Green fun
tion �G for the 
onstant-
oeÆ
ient averaged op-erator �L := dXi;j=1 �aij�i�j + dXi=1 �bi�i + �
: (1.3)Here �g = RB g(x)dx. The operator A := L�L�1 is a bounded invertible op-erator on L2(B), and the equation A� = f is equivalent to (1.1) but easierto solve. The solution u of (1.1) 
an be re
overed from � by evaluating thevolume potential.This method is spe
trally a

urate in the sense that the error de
reasesfaster than any power of the grid size h as h!0, be
ause 
onvolution with theGreen fun
tion �G and di�erentiation 
an be applied with spe
tral a

ura
y.It is eÆ
ient be
ause A is a bounded invertible operator on L2(B), so rea-sonable dis
retizations of A have bounded 
ondition numbers independent ofmesh size, and iterative methods then 
onverge in an asymptoti
ally boundednumber of iterations. The method is extremely simple to program and triv-ial to parallelize, sin
e most of the 
omputational e�ort is spent performing1



the fast Fourier transform. It works well even for 
onve
tion-di�usion prob-lems where the operator is far from self-adjoint; we note that the 
oeÆ
ients
hange sign frequently in our numeri
al examples, but the a

ura
y obtaineddepends only on the smoothness of the solution. The solution time grows asthe 
omplexity of the problem in
reases, but for a �xed problem it remainsbounded as the mesh size de
reases, on
e the solution is resolved.We dis
uss generalizations in x5; the most important is eÆ
ient high-order a

urate s
hemes for variable-
oeÆ
ient problems in arbitrary smoothdomains. The method also 
an be used to solve higher-order ellipti
 problemsand systems; an example of the latter is the appli
ation to BDF dis
retiza-tions of phase �eld models for 
rystal growth whi
h we dis
uss in x4.2 The methodConsider the equation (1.1), and average the 
oeÆ
ients over B to produ
ethe 
onstant-
oeÆ
ient operator �L given by (1.3). By uniform ellipti
ity(1.2) and the linearity and positivity of averaging, �L is ellipti
 with the samem;M as L. If �
 is stri
tly negative, then �L is invertible; otherwise, �
 = 0 andwe work with the subspa
e of L2(B) 
onsisting of fun
tions with mean zero,where �L is invertible. For simpli
ity of exposition, we assume from now onthat �
 < 0.Sin
e �L has 
onstant 
oeÆ
ients and the boundary 
onditions are peri-odi
, we use Fourier series. For 
onvenien
e, we use multiindex notation:Zd is the spa
e of d-dimensional integer sequen
es k = (k1; k2; : : : ; kd) whereea
h ki is a positive or negative integer, and jkj = max jkij. We take ourFourier series in the form �(x) = Xk2Zd e2��k�x�̂(k)where � = p�1 and the Fourier 
oeÆ
ients �̂(k) are de�ned by�̂(k) = ZB e�2��k�x�(x)dx:Then we 
an apply A = L�L�1 expli
itly:A�(x) = Xk2Zd Pdi;j=1 aij(x)2��ki2��kj +Pdi=1 bi(x)2��ki + 
(x)Pdi;j=1 �aij2��ki2��kj +Pdi=1 �bi2��ki + �
 e2��k�x�̂(k)2



= Xk2Zd �(x; k)��(k) e2��k�x�̂(k)where �(x; k) and ��(k) are the symbols of L and �L. The ellipti
ity hypothesis(1.2) and the assumption �
 < 0 imply that the denominator ��(k) nevervanishes. Thus A is a bounded invertible operator on L2(B), sin
e �L�1 mapsL2 one-to-one and onto the Sobolev spa
e H2(B), while L maps H2(B) ba
konto L2(B) (by e.g. Theorem 9.15 of [7℄, modi�ed for the periodi
 
ase). Theequation A� = f therefore has a unique solution � 2 L2(B) if f 2 L2(B),and we 
an re
over u from � by applying the Green fun
tion u = �L�1�.The numeri
al method now has three independent 
omponents; �rst, weneed an iteration for solving A� = f , se
ond, we need to approximate A =L�L�1 a

urately, and third, we need to apply �L�1 to � to get u.We expe
t that almost any nonsymmetri
 iterative method (su
h as GM-RES [13℄, QMR [6℄ or BI-CGSTAB [14℄) 
an be used to solve A� = f ,be
ause A is bounded and invertible though neither symmetri
 nor positivede�nite in general. The rate of 
onvergen
e will not depend on the meshsize, sin
e we have no mesh size yet. For GMRES applied to Ax = f , forexample, the residual rm = f � Axm after m steps satis�es [13℄jjrmjj � �(X)�mjjr0jjwhere A = X�X�1 is a diagonalizable N�N matrix, �(X) = jjXjj2jjX�1jj2,and �m � �Dd �� �RC�m�� :Here we assume that A has � eigenvalues �1; : : : ; �� in the left half plane andN � � in a 
ir
le jC � �j � R with C > R > 0, and we de�neD = max1�i��;�+1�j�N j�i � �jjand d = min1�i�� j�ij. Thus the restarted method GMRES(m) is guaranteedto 
onverge if m > log �(X)logC=R + �  1 + logD=dlogC=R! ;and the 
onvergen
e rate depends on the problem size only through eigenvaluebounds and �(X). For solving A� = f , therefore, the 
onvergen
e rate ofGMRES is independent of mesh size. 3



Our method 
an be seen as an analyti
 pre
onditioning of the di�eren-tial operator, rather than a matrix pre
onditioning of a dis
retized problem.Matrix pre
onditioning helps solve a dis
rete problem even when it is nota good approximation to the 
ontinuous problem, but then the value of the
omputation is un
lear. Our method 
an be seen as an analyti
 version ofthe pre
onditioning presented in [4℄ and more re
ently in [5, 8℄, extended tomore general operators. It is also 
losely related to the approa
h of [11℄.We now approximate A� in the natural way by evaluating the Fourier
oeÆ
ients of � numeri
ally, multiplying by the appropriate fa
tors, andtrun
ating the Fourier series. Thus we lay down a uniform grid of Nd pointsxj = (j1h; j2h; : : : ; jdh), where h = 1=N and ea
h ji runs from 1 to N . Sin
ethe problem is periodi
 we identify xi = 0 with xi = 1. We approximate �̂(k)for jkj � N=2 by the trapezoidal rule�̂(k) � �̂h(k) := hd NXji=1 e�2��k�xj�(xj)with an error whi
h is spe
trally small if � is smooth;j�̂(k)� �̂h(k)j � Cjj�jjHp(B)hp jkj � N=2;for every p � d+1. Here Hp(B) is the pth-order Sobolev spa
e on B [7℄ andC is a 
onstant depending only on d.These approximate Fourier 
oeÆ
ients 
an be evaluated by the FFT,whi
h requires O(Nd logN) operations, and divided by ��(k) to obtain �̂h(k)=��(k).The averages �aij are approximated by trapezoidal sums over the mesh points;sin
e this is also an average, it preserves ellipti
ity just as well as integrating.Then we approximate A� byAh�h(x) := dXi;j=1aij(x) Xjkj�N=2 2��ki2��kje2��k�x�̂h(k)=��(k)+ dXi=1 bi(x) Xjkj�N=2 2��kie2��k�x�̂h(k)=��(k)+ 
(x) Xjkj�N=2 e2��k�x�̂h(k)=��(k)We have to extra
t the x-dependen
e from the sums in order to evaluatethem on the mesh with the FFT. If we take advantage of the equality of4



mixed partials, we need 1 + (d+ 1)(d+ 2)=2 FFT's and (d+ 1)(d+ 2)Nd=2multipli
ations and additions to evaluate Ah�, assuming that the (d+1)(d+2)=2 distin
t 
oeÆ
ients of L have already been evaluated at the mesh points.Thus ea
h appli
ation of Ah 
osts O(Nd logN) operations, even thoughthe matrix has N2d elements. If we 
an solve Ah�h = f in a number of iter-ations independent of the mesh size, then the total 
ost will be O(Nd logN),only a 
onstant fa
tor times the 
ost of solving a 
onstant-
oeÆ
ient problemand mu
h smaller than the 
ost of solving Lu = f by standard iterative ordire
t methods or even the 
ost of a standard multipli
ation by Ah. Ourexperiments with GMRES show that in fa
t, on
e the solution is resolved,the number of iterations does not in
rease as the mesh is re�ned.On
e we solve Ah�h = f , we have �h, so we 
ompute an approximatesolution uh in the natural way. We divide the Fourier 
oeÆ
ients �̂h by ��(k)and evaluate the resulting trun
ated Fourier series uh on the mesh. Usuallyuh is even more a

urate than �h, sin
e the higher modes are damped by�L�1.It may be worthwhile to 
ompare our method with some of the manyother te
hniques available for this problem. The advantage of our methodover multigrid methods [1℄ (whi
h are equally eÆ
ient for a given grid sizebut less a

urate) is its spe
tral a

ura
y, while the advantage over standardspe
tral methods [3℄ (whi
h are equally a

urate but less eÆ
ient for a givengrid size) is its eÆ
ien
y.3 Numeri
al resultsOur numeri
al results use d = 2 dimensions and a solution u given byu(x) = exp(
os(2�k1x1) 
os(2�k2x2)):We 
al
ulated � and f from u by applying �L and L exa
tly, then solved theproblem numeri
ally and 
al
ulated the error in � and u.The variable 
oeÆ
ients of L were 
onstru
ted from six (M + 1)2-termFourier 
osine seriesFs(x) = MXk1;k2=0Fk 
os(2�k1x1) 
os(2�k2x2)5



with 
oeÆ
ients Fk generated randomly on [-1,1℄ for ea
h s = 1 through6. Sin
e we want L ellipti
, we generated a 2 by 2 upper triangular matrixF with entries F1, F2 and F3, and set (aij) = I + F TF where I is the2 by 2 identity matrix. Thus a11 = 1 + F 21 , a12 = 2F1F2, a21 = 0, anda22 = 1 + F 22 + F 23 . The hypothesis of uniform ellipti
ity is satis�ed withm = 1. The �rst-order 
oeÆ
ients bi were given by random Fourier series F4and F5, multiplied by a 
onve
tion 
oeÆ
ient � whi
h was varied to in
reasethe 
onve
tive terms. The zero-order 
oeÆ
ient 
 was formed by setting
 = �F 26 , to ensure 
(x) � 0. Note that the se
ond-order and zero-order
oeÆ
ients 
an vary on s
ales twi
e as small as the �rst-order terms, sin
ethey are quadrati
 fun
tions of the Fi's.The 
hoi
e of starting values is important in iterative methods; we ex-perimented with four starting strategies of in
reasing a

ura
y. First � = 0,se
ond, � randomly generated, third, � = f ; and fourth, � 
onstru
ted re-
ursively by solving the problem on a 
oarser grid and using trigonometri
interpolation. The �rst three methods required more time than the last, sowe present results only for the last strategy, with the solution initialized onthe 
oarsest grid by setting � = f . We display results in Figure 1 in the formof log-log plots of maximum error in u versus total CPU time T on a Cray-2in se
onds; the time plotted is the 
umulative time required for all the solveson smaller grids as well as the 
urrent grid. GMRES(10) was used, with astopping toleran
e of 10�11 for the norm of the residual. We present resultsfor solution wavenumbers k1 = k2 = 1, 5 and 9, with 
oeÆ
ient wavenum-bers M = 1, 5 and 9 and � = 10. More detailed information is presented inTable 1. The number of iterations required to solve these problems dependedstrongly on the regularity of the solution, weakly on the variation in the 
oef-�
ients, and not at all on the mesh size. This is extremely en
ouraging sin
eone of the main appli
ations of this type of solver is to nonlinear problems,where the 
oeÆ
ients are no smoother than the solution.The numeri
al results 
learly display the spe
tral a

ura
y and eÆ
ien
yof the method over a wide range of solution and 
oeÆ
ient parameters, andreveal another interesting feature of the method; it informs the user when thesolution is suÆ
iently resolved on the 
urrent grid by requiring zero iterationsto satisfy the stopping 
riterion. If the solution on the previous grid is alreadya

urate to the desired toleran
e, then the iteration is satis�ed on the 
urrentgrid as well and only one matrix-ve
tor multipli
ation is required, to 
omputethe residual. Thus if one 
omputes the solution on a sequen
e of grids,6



k1 = k2 = 5;M = 5; � = 10�11N I T E16 84 0.80 0.84E+0032 112 3.44 0.35E+0048 111 6.72 0.14E-0164 105 10.37 0.13E-0380 82 12.49 0.33E-0696 64 14.31 0.12E-08112 39 17.09 0.39E-10128 11 4.48 0.79E-11144 3 1.87 0.73E-11160 1 1.09 0.50E-11176 0 1.03 0.47E-11192 0 0.79 0.49E-11208 0 1.48 0.42E-11224 0 1.57 0.45E-11240 0 1.21 0.42E-11256 0 1.41 0.44E-11

k1 = k2 = 9;M = 9; � = 10�11N I T E16 152 1.43 0.10E+0132 171 5.33 0.10E+0148 242 14.81 0.72E+0064 276 27.48 0.19E+0080 298 44.92 0.12E-0196 297 65.54 0.19E-02112 276 117.72 0.61E-04128 239 89.58 0.64E-05144 199 96.35 0.12E-06160 169 93.74 0.50E-07176 134 142.05 0.56E-08192 97 81.28 0.71E-09208 53 80.72 0.11E-09224 18 30.34 0.46E-10240 5 7.34 0.36E-10256 1 2.86 0.42E-10Table 1: Maximum error E in u, divided by the maximum of u, versus themesh size N , the number of GMRES iterations required I and the CPU timerequired T per mesh.the method will be
ome extremely inexpensive as the desired resolution isapproa
hed.4 Appli
ation to 
rystal growthOne of our motivations in developing the ellipti
 solvers presented above isthe phase �eld model of 
rystal growth, a 
ontinuum problem requiring thesolution of 2 by 2 se
ond-order paraboli
 systems in two or three spa
e di-mensions [2℄. The boundary 
onditions are simple, sin
e the interest is infundamental physi
s rather than engineering, and periodi
 boundary 
on-ditions are thus appropriate. The phase �eld equations 
an be put in the7
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Figure 1: Graphs of maximum error in u versus Cray-2 CPU time for ourmethod, with K = 1, 5 and 9 (left to right) and M = 1, 5 and 9(top tobottom), with � = 10. For ea
h plot, N = 16 through 256 in steps of16. The starting value was 
onstru
ted by trigonometri
 interpolation of thesolution on the previous mesh, ex
ept for N = 16 where we set � = f .
8



form Ut = �AU + F (U)where U = (u1; u2)t, � is the Lapla
ian, A is a 2 by 2 matrix of 
ontants,and F (U) is a 
ubi
ally nonlinear fun
tion. This system is sti�, and there-fore should be dis
retized in time by impli
it ba
kward di�eren
e formulae[9℄. At ea
h time step, one needs to solve a nonlinear ellipti
 system with agood initial guess available from the previous time step. The ellipti
 system
an be linearized with a damped Newton method, giving a sequen
e of linearvariable-
oeÆ
ient ellipti
 systems whi
h are ideal appli
ations for the te
h-nique developed in this paper. The extension of our method to solve thesesystems is straightforward; sin
e the prin
ipal part is 
onstant-
oeÆ
ientalready, it need not be averaged.5 GeneralizationsThe method employed in this paper admits generalizations to ellipti
 systems,to other boundary 
onditions, and to arbitrary domains. Ellipti
 systemsappear trivial on
e single equations 
an be solved.When we have Diri
hlet or Neumann boundary 
onditions on �B, spe
-tral a

ura
y requires the use of orthogonal polynomial basis fun
tions ratherthan trigonometri
 fun
tions [3℄. These bases do not diagonalize 
onstant-
oeÆ
ient operators, so other operators should be used to form more appro-priate potentials. In ea
h 
ase, the averaged operator should be 
onstru
tedwith a weighted average and a stru
ture whi
h is diagonalized by the basisused. Thus the method generalizes to any domain whi
h admits spe
trallya

urate methods for 
lasses of operators produ
ed by averaging.The method also generalizes to arbitrary domains, using fast Helmholtzsolvers. The basi
 idea is the same: given a linear variable-
oeÆ
ient ellipti
equation Lu = f with homogeneous boundary 
onditions, we 
onvert it toan integral equation A� = f with the averaged 
onstant-
oeÆ
ient operator�L with the same boundary 
onditions. Iteration of A (using GMRES, QMRor BI-CGSTAB) 
onverges in a number of steps independent of the mesh sizesin
e A is invertible and bounded on L2. The operator �L�1 
an no longer beapproximated with the FFT, sin
e the problem is not periodi
; but �L 
an betransformed to the Helmholtz operator � + K by 
hange of variable. The9



Helmholtz operator 
an be inverted eÆ
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