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AbstratA simple, eÆient, spetrally-aurate numerial method for solving variable-oeÆient ellipti partial di�erential equations in periodi geometry is de-sribed. Numerial results show that the method is eÆient and aurateeven for diÆult problems inluding onvetion-di�usion equations. Gener-alizations and appliations to phase �eld models of rystal growth are dis-ussed.



1 IntrodutionThis paper presents a numerial method for solving the variable-oeÆientseond-order ellipti partial di�erential equationLu(x) := dXi;j=1aij(x)�i�ju(x) + dXi=1 bi(x)�iu(x) + (x)u(x) = f(x) (1.1)in the box B = [0; 1℄d in Rd, with periodi boundary onditions imposed onthe boundary �B of the box. We assume that the oeÆients are smoothand periodi, with (x) � 0, and we assume uniform elliptiity:M j�j2 � dXi;j=1aij(x)�i�j � mj�j2 (1.2)for all � 2 Rd and some onstants M;m > 0. We do not require self-adjointness.The method is based on representing u as a volume potentialu(x) = ZB �G(x; x0)�(x0)dx0 = �L�1�(x)formed with the Green funtion �G for the onstant-oeÆient averaged op-erator �L := dXi;j=1 �aij�i�j + dXi=1 �bi�i + �: (1.3)Here �g = RB g(x)dx. The operator A := L�L�1 is a bounded invertible op-erator on L2(B), and the equation A� = f is equivalent to (1.1) but easierto solve. The solution u of (1.1) an be reovered from � by evaluating thevolume potential.This method is spetrally aurate in the sense that the error dereasesfaster than any power of the grid size h as h!0, beause onvolution with theGreen funtion �G and di�erentiation an be applied with spetral auray.It is eÆient beause A is a bounded invertible operator on L2(B), so rea-sonable disretizations of A have bounded ondition numbers independent ofmesh size, and iterative methods then onverge in an asymptotially boundednumber of iterations. The method is extremely simple to program and triv-ial to parallelize, sine most of the omputational e�ort is spent performing1



the fast Fourier transform. It works well even for onvetion-di�usion prob-lems where the operator is far from self-adjoint; we note that the oeÆientshange sign frequently in our numerial examples, but the auray obtaineddepends only on the smoothness of the solution. The solution time grows asthe omplexity of the problem inreases, but for a �xed problem it remainsbounded as the mesh size dereases, one the solution is resolved.We disuss generalizations in x5; the most important is eÆient high-order aurate shemes for variable-oeÆient problems in arbitrary smoothdomains. The method also an be used to solve higher-order ellipti problemsand systems; an example of the latter is the appliation to BDF disretiza-tions of phase �eld models for rystal growth whih we disuss in x4.2 The methodConsider the equation (1.1), and average the oeÆients over B to produethe onstant-oeÆient operator �L given by (1.3). By uniform elliptiity(1.2) and the linearity and positivity of averaging, �L is ellipti with the samem;M as L. If � is stritly negative, then �L is invertible; otherwise, � = 0 andwe work with the subspae of L2(B) onsisting of funtions with mean zero,where �L is invertible. For simpliity of exposition, we assume from now onthat � < 0.Sine �L has onstant oeÆients and the boundary onditions are peri-odi, we use Fourier series. For onveniene, we use multiindex notation:Zd is the spae of d-dimensional integer sequenes k = (k1; k2; : : : ; kd) whereeah ki is a positive or negative integer, and jkj = max jkij. We take ourFourier series in the form �(x) = Xk2Zd e2��k�x�̂(k)where � = p�1 and the Fourier oeÆients �̂(k) are de�ned by�̂(k) = ZB e�2��k�x�(x)dx:Then we an apply A = L�L�1 expliitly:A�(x) = Xk2Zd Pdi;j=1 aij(x)2��ki2��kj +Pdi=1 bi(x)2��ki + (x)Pdi;j=1 �aij2��ki2��kj +Pdi=1 �bi2��ki + � e2��k�x�̂(k)2



= Xk2Zd �(x; k)��(k) e2��k�x�̂(k)where �(x; k) and ��(k) are the symbols of L and �L. The elliptiity hypothesis(1.2) and the assumption � < 0 imply that the denominator ��(k) nevervanishes. Thus A is a bounded invertible operator on L2(B), sine �L�1 mapsL2 one-to-one and onto the Sobolev spae H2(B), while L maps H2(B) bakonto L2(B) (by e.g. Theorem 9.15 of [7℄, modi�ed for the periodi ase). Theequation A� = f therefore has a unique solution � 2 L2(B) if f 2 L2(B),and we an reover u from � by applying the Green funtion u = �L�1�.The numerial method now has three independent omponents; �rst, weneed an iteration for solving A� = f , seond, we need to approximate A =L�L�1 aurately, and third, we need to apply �L�1 to � to get u.We expet that almost any nonsymmetri iterative method (suh as GM-RES [13℄, QMR [6℄ or BI-CGSTAB [14℄) an be used to solve A� = f ,beause A is bounded and invertible though neither symmetri nor positivede�nite in general. The rate of onvergene will not depend on the meshsize, sine we have no mesh size yet. For GMRES applied to Ax = f , forexample, the residual rm = f � Axm after m steps satis�es [13℄jjrmjj � �(X)�mjjr0jjwhere A = X�X�1 is a diagonalizable N�N matrix, �(X) = jjXjj2jjX�1jj2,and �m � �Dd �� �RC�m�� :Here we assume that A has � eigenvalues �1; : : : ; �� in the left half plane andN � � in a irle jC � �j � R with C > R > 0, and we de�neD = max1�i��;�+1�j�N j�i � �jjand d = min1�i�� j�ij. Thus the restarted method GMRES(m) is guaranteedto onverge if m > log �(X)logC=R + �  1 + logD=dlogC=R! ;and the onvergene rate depends on the problem size only through eigenvaluebounds and �(X). For solving A� = f , therefore, the onvergene rate ofGMRES is independent of mesh size. 3



Our method an be seen as an analyti preonditioning of the di�eren-tial operator, rather than a matrix preonditioning of a disretized problem.Matrix preonditioning helps solve a disrete problem even when it is nota good approximation to the ontinuous problem, but then the value of theomputation is unlear. Our method an be seen as an analyti version ofthe preonditioning presented in [4℄ and more reently in [5, 8℄, extended tomore general operators. It is also losely related to the approah of [11℄.We now approximate A� in the natural way by evaluating the FourieroeÆients of � numerially, multiplying by the appropriate fators, andtrunating the Fourier series. Thus we lay down a uniform grid of Nd pointsxj = (j1h; j2h; : : : ; jdh), where h = 1=N and eah ji runs from 1 to N . Sinethe problem is periodi we identify xi = 0 with xi = 1. We approximate �̂(k)for jkj � N=2 by the trapezoidal rule�̂(k) � �̂h(k) := hd NXji=1 e�2��k�xj�(xj)with an error whih is spetrally small if � is smooth;j�̂(k)� �̂h(k)j � Cjj�jjHp(B)hp jkj � N=2;for every p � d+1. Here Hp(B) is the pth-order Sobolev spae on B [7℄ andC is a onstant depending only on d.These approximate Fourier oeÆients an be evaluated by the FFT,whih requires O(Nd logN) operations, and divided by ��(k) to obtain �̂h(k)=��(k).The averages �aij are approximated by trapezoidal sums over the mesh points;sine this is also an average, it preserves elliptiity just as well as integrating.Then we approximate A� byAh�h(x) := dXi;j=1aij(x) Xjkj�N=2 2��ki2��kje2��k�x�̂h(k)=��(k)+ dXi=1 bi(x) Xjkj�N=2 2��kie2��k�x�̂h(k)=��(k)+ (x) Xjkj�N=2 e2��k�x�̂h(k)=��(k)We have to extrat the x-dependene from the sums in order to evaluatethem on the mesh with the FFT. If we take advantage of the equality of4



mixed partials, we need 1 + (d+ 1)(d+ 2)=2 FFT's and (d+ 1)(d+ 2)Nd=2multipliations and additions to evaluate Ah�, assuming that the (d+1)(d+2)=2 distint oeÆients of L have already been evaluated at the mesh points.Thus eah appliation of Ah osts O(Nd logN) operations, even thoughthe matrix has N2d elements. If we an solve Ah�h = f in a number of iter-ations independent of the mesh size, then the total ost will be O(Nd logN),only a onstant fator times the ost of solving a onstant-oeÆient problemand muh smaller than the ost of solving Lu = f by standard iterative ordiret methods or even the ost of a standard multipliation by Ah. Ourexperiments with GMRES show that in fat, one the solution is resolved,the number of iterations does not inrease as the mesh is re�ned.One we solve Ah�h = f , we have �h, so we ompute an approximatesolution uh in the natural way. We divide the Fourier oeÆients �̂h by ��(k)and evaluate the resulting trunated Fourier series uh on the mesh. Usuallyuh is even more aurate than �h, sine the higher modes are damped by�L�1.It may be worthwhile to ompare our method with some of the manyother tehniques available for this problem. The advantage of our methodover multigrid methods [1℄ (whih are equally eÆient for a given grid sizebut less aurate) is its spetral auray, while the advantage over standardspetral methods [3℄ (whih are equally aurate but less eÆient for a givengrid size) is its eÆieny.3 Numerial resultsOur numerial results use d = 2 dimensions and a solution u given byu(x) = exp(os(2�k1x1) os(2�k2x2)):We alulated � and f from u by applying �L and L exatly, then solved theproblem numerially and alulated the error in � and u.The variable oeÆients of L were onstruted from six (M + 1)2-termFourier osine seriesFs(x) = MXk1;k2=0Fk os(2�k1x1) os(2�k2x2)5



with oeÆients Fk generated randomly on [-1,1℄ for eah s = 1 through6. Sine we want L ellipti, we generated a 2 by 2 upper triangular matrixF with entries F1, F2 and F3, and set (aij) = I + F TF where I is the2 by 2 identity matrix. Thus a11 = 1 + F 21 , a12 = 2F1F2, a21 = 0, anda22 = 1 + F 22 + F 23 . The hypothesis of uniform elliptiity is satis�ed withm = 1. The �rst-order oeÆients bi were given by random Fourier series F4and F5, multiplied by a onvetion oeÆient � whih was varied to inreasethe onvetive terms. The zero-order oeÆient  was formed by setting = �F 26 , to ensure (x) � 0. Note that the seond-order and zero-orderoeÆients an vary on sales twie as small as the �rst-order terms, sinethey are quadrati funtions of the Fi's.The hoie of starting values is important in iterative methods; we ex-perimented with four starting strategies of inreasing auray. First � = 0,seond, � randomly generated, third, � = f ; and fourth, � onstruted re-ursively by solving the problem on a oarser grid and using trigonometriinterpolation. The �rst three methods required more time than the last, sowe present results only for the last strategy, with the solution initialized onthe oarsest grid by setting � = f . We display results in Figure 1 in the formof log-log plots of maximum error in u versus total CPU time T on a Cray-2in seonds; the time plotted is the umulative time required for all the solveson smaller grids as well as the urrent grid. GMRES(10) was used, with astopping tolerane of 10�11 for the norm of the residual. We present resultsfor solution wavenumbers k1 = k2 = 1, 5 and 9, with oeÆient wavenum-bers M = 1, 5 and 9 and � = 10. More detailed information is presented inTable 1. The number of iterations required to solve these problems dependedstrongly on the regularity of the solution, weakly on the variation in the oef-�ients, and not at all on the mesh size. This is extremely enouraging sineone of the main appliations of this type of solver is to nonlinear problems,where the oeÆients are no smoother than the solution.The numerial results learly display the spetral auray and eÆienyof the method over a wide range of solution and oeÆient parameters, andreveal another interesting feature of the method; it informs the user when thesolution is suÆiently resolved on the urrent grid by requiring zero iterationsto satisfy the stopping riterion. If the solution on the previous grid is alreadyaurate to the desired tolerane, then the iteration is satis�ed on the urrentgrid as well and only one matrix-vetor multipliation is required, to omputethe residual. Thus if one omputes the solution on a sequene of grids,6



k1 = k2 = 5;M = 5; � = 10�11N I T E16 84 0.80 0.84E+0032 112 3.44 0.35E+0048 111 6.72 0.14E-0164 105 10.37 0.13E-0380 82 12.49 0.33E-0696 64 14.31 0.12E-08112 39 17.09 0.39E-10128 11 4.48 0.79E-11144 3 1.87 0.73E-11160 1 1.09 0.50E-11176 0 1.03 0.47E-11192 0 0.79 0.49E-11208 0 1.48 0.42E-11224 0 1.57 0.45E-11240 0 1.21 0.42E-11256 0 1.41 0.44E-11

k1 = k2 = 9;M = 9; � = 10�11N I T E16 152 1.43 0.10E+0132 171 5.33 0.10E+0148 242 14.81 0.72E+0064 276 27.48 0.19E+0080 298 44.92 0.12E-0196 297 65.54 0.19E-02112 276 117.72 0.61E-04128 239 89.58 0.64E-05144 199 96.35 0.12E-06160 169 93.74 0.50E-07176 134 142.05 0.56E-08192 97 81.28 0.71E-09208 53 80.72 0.11E-09224 18 30.34 0.46E-10240 5 7.34 0.36E-10256 1 2.86 0.42E-10Table 1: Maximum error E in u, divided by the maximum of u, versus themesh size N , the number of GMRES iterations required I and the CPU timerequired T per mesh.the method will beome extremely inexpensive as the desired resolution isapproahed.4 Appliation to rystal growthOne of our motivations in developing the ellipti solvers presented above isthe phase �eld model of rystal growth, a ontinuum problem requiring thesolution of 2 by 2 seond-order paraboli systems in two or three spae di-mensions [2℄. The boundary onditions are simple, sine the interest is infundamental physis rather than engineering, and periodi boundary on-ditions are thus appropriate. The phase �eld equations an be put in the7
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Figure 1: Graphs of maximum error in u versus Cray-2 CPU time for ourmethod, with K = 1, 5 and 9 (left to right) and M = 1, 5 and 9(top tobottom), with � = 10. For eah plot, N = 16 through 256 in steps of16. The starting value was onstruted by trigonometri interpolation of thesolution on the previous mesh, exept for N = 16 where we set � = f .
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form Ut = �AU + F (U)where U = (u1; u2)t, � is the Laplaian, A is a 2 by 2 matrix of ontants,and F (U) is a ubially nonlinear funtion. This system is sti�, and there-fore should be disretized in time by impliit bakward di�erene formulae[9℄. At eah time step, one needs to solve a nonlinear ellipti system with agood initial guess available from the previous time step. The ellipti systeman be linearized with a damped Newton method, giving a sequene of linearvariable-oeÆient ellipti systems whih are ideal appliations for the teh-nique developed in this paper. The extension of our method to solve thesesystems is straightforward; sine the prinipal part is onstant-oeÆientalready, it need not be averaged.5 GeneralizationsThe method employed in this paper admits generalizations to ellipti systems,to other boundary onditions, and to arbitrary domains. Ellipti systemsappear trivial one single equations an be solved.When we have Dirihlet or Neumann boundary onditions on �B, spe-tral auray requires the use of orthogonal polynomial basis funtions ratherthan trigonometri funtions [3℄. These bases do not diagonalize onstant-oeÆient operators, so other operators should be used to form more appro-priate potentials. In eah ase, the averaged operator should be onstrutedwith a weighted average and a struture whih is diagonalized by the basisused. Thus the method generalizes to any domain whih admits spetrallyaurate methods for lasses of operators produed by averaging.The method also generalizes to arbitrary domains, using fast Helmholtzsolvers. The basi idea is the same: given a linear variable-oeÆient elliptiequation Lu = f with homogeneous boundary onditions, we onvert it toan integral equation A� = f with the averaged onstant-oeÆient operator�L with the same boundary onditions. Iteration of A (using GMRES, QMRor BI-CGSTAB) onverges in a number of steps independent of the mesh sizesine A is invertible and bounded on L2. The operator �L�1 an no longer beapproximated with the FFT, sine the problem is not periodi; but �L an betransformed to the Helmholtz operator � + K by hange of variable. The9
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