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AbstratVortex methods for invisid inompressible two-dimensional uid ow are usuallybased on blob approximations. This paper presents a vortex method in whih thevortiity is approximated by a pieewise polynomial interpolant on a Delaunaytriangulation of the vorties. An eÆient reonstrution of the Delaunay trian-gulation at eah step makes the method aurate for long times. The verties ofthe triangulation move with the uid veloity, whih is reonstruted from thevortiity via a simpli�ed fast multipole method for the Biot-Savart law with aontinuous soure distribution. The initial distribution of vorties is onstrutedfrom the initial vortiity �eld by an adaptive approximation method whih pro-dues good auray even for disontinuous initial data.Numerial results show that the method is highly aurate over long timeintervals. Experiments with single and multiple irular and elliptial rotatingpathes of both pieewise onstant and smooth vortiity indiate that the methodprodues muh smaller errors than blob methods with the same number of degreesof freedom, at little additional ost.Generalizations to domains with boundaries, visous ow and three spaedimensions are disussed.
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1 IntrodutionVortex methods simulate uid ow by moving a olletion of markers arryingvortiity. They are grid-free, with little or no numerial di�usion, and naturallyadaptive, and they preserve moments of the vortiity. They have been generalizedin many diretions and applied to omplex high-Reynolds-number ow [15, 16,29, 14, 4, 1, 36, 18, 40, 42℄.The lassial vortex-blob method due to Chorin [15℄ is based on smoothingpoint vorties [39℄ into smooth blobs of vortiity, to obtain higher auray anda more robust method. Various high-order methods have been onstruted [5, 6℄,but numerial tests show that the order of auray dereases sharply whenthe ow beomes disorganized. This paper presents an eÆient and auratenew vortex method whih maintains seond-order auray during long timeintegrations.Di�erent approximations of the vortiity within the same Lagrangian frame-work lead to other vortex methods. Pieewise onstant approximation of thevortiity has been used to study the evolution of vortex pathes [11, 49℄. Piee-wise linear approximation has been used for smooth ows in [2, 13℄. In thesemethods, the veloity is omputed from a pieewise polynomial approximatevortiity �eld, either from the Biot-Savart law or by solving a Poisson problem.At eah time step, the verties of the triangulation are moved aording to theomputed veloity and the vortiity at the verties is passively adveted. At thenext time step the vortiity is again approximated by a pieewise linear funtionon the triangulation and the proess is repeated. These methods onverge as thesize of the triangles goes to zero. We briey reall this bakground material inSetion 2.In this paper we present a vortex method based on the pieewise linear ap-proximation of vortiity on a triangulation. We introdue three important newfeatures whih make the method far more aurate, eÆient and robust: De-launay triangulation, fast veloity evaluation, and adaptive initial triangulation.Our algorithm is summarized in Setion 3.We update a Delaunay triangulation of the vorties at eah time step. ADelaunay triangulation is loally equiangular, so it maintains a uniform aurayover long times. This triangulation an be onstruted in O(N logN) operations,using a fast method desribed in Setion 4.The seond new feature is the fast evaluation of the veloity �eld. The velo-ity �eld due to a pieewise linear vortiity on a triangulation an be evaluatedexatly [13℄. A straightforward evaluation method, however, results in an O(N2)omputational ost. The omplexity an be redued by using a fast multipolemethod [12℄; we implemented a simpli�ed O(N4=3) version. For N = 51200 ourveloity evaluation is 200 times faster than diret evaluation, and the breakevenpoint is about N = 100. Our fast veloity evaluation method is desribed inSetion 5.A triangulation allows more exibility than equal-size blobs in approximat-3



ing the initial vortiity. We take advantage of this exibility to onstrut theinitial triangulation adaptively, to resolve the initial vortiity with few degreesof freedom. As a result, our method an be used to model disontinuous vortexpathes as well as smooth vortiity �elds. Our adaptive triangulation method isdisussed in Setion 6.In Setion 7 we present numerial results for smooth and non-smooth initialvortiity �elds. We ompute the evolution of single and multiple irular andelliptial pathes of smooth and onstant vortiity, and ompare with the exatsolution when available. Convergene studies for multiple pathes are performedby di�erening. We ompare our method with vortex-blob and Lagrangian �niteelement methods and show the long-time auray, eÆieny and robustness ofour method.In Setion 8 we disuss generalizations of the method. We onsider visos-ity, boundary onditions, three-dimensional problems, higher-order methods. InSetion 9 we disuss our onlusions.2 Vortex methodsIn this setion we review the vortiity formulation of the 2-D Euler equations,the vortex blob method and the Lagrangian �nite element method on whih thepresent method is based.The Euler equations of two-dimensional inompressible invisid ow are�u�t + (u � r)u = �1�rp; (2.1)r � u = 0; (2.2)where � is the (onstant) density of the uid, u = (ux; uy) is the veloity and pthe pressure. Both u and p are funtions of z � (x; y) and t. (We will �nd itonvenient on several oasions to use omplex notation, in whih z = (x; y) =x+ iy identi�es a point in IR2, thought of as the omplex plane.)The url of (2.1) gives the vortiity equation�!�t + (u � r)! = 0; (2.3)where ! := �xuy � �yux (2.4)is the vortiity. Thus the vortiity is transported passively along streamlines. By(2.2), u is the url of a vetor �eld; in two dimensions the vetor �eld has onlyone non-zero omponent, the stream funtion  . Thenux = � �y ; uy = �� �x : (2.5)4



and (2.4) beomes a Poisson equation for the stream funtion:�� = !:In unbounded ow with zero veloity far from the origin, this equation an besolved with the boundary ondition r !0 at 1 to get the \Biot-Savart law"u(z; t) = ZIR2 K(z � z0)!(z0; t) dz0; (2.6)where K = 12�jzj2  �yx ! : (2.7)Flow in a domain with boundary will be onsidered in Setion 8.The ow an also be desribed by the ow map z : IR2� [0; T ℄! IR2 de�nedso that z(�; t) is the position of the uid partile whih at time t = 0 is at theposition �.By (2.6), z(�; t) satis�esdzdt (�; t) = ZIR2 K(z(�; t)� z0)!(z0; t) dz0: (2.8)Putting z0 = z(� 0; t) inside the integral givesdzdt (�; t) = ZIR2 K(z(�; t)� z(� 0; t))!(z(� 0; t); t) d� 0= ZIR2 K(z(�; t)� z(� 0; t))!0(� 0) d� 0 (2.9)sine the Jaobian of z(�; t) is unity.Vortex methods are based on various reipes for evaluating the Biot-Savartintegral with a quadrature formula. Disretizations based on the formulation(2.9) give Lagrangian methods, where the spae variable is the initial loationof the uid marker �. The onvergene study of vortex-blob methods is oftenbased on this formulation, whih has the weakness ommon to most Lagrangianmethods: they beome inaurate as the grid is greatly distorted. A \Free-Lagrangian" method based on approximation of the vortiity at time t in (2.8)overomes this diÆulty and helps provide a more aurate approximation of theveloity.The \point-vortex method" [39℄ approximates (2.9) bydzidt =Xj 6=iK(zi � zj)!0(�j)h2; (2.10)it is very physial sine it moves N point vorties with irulations �i = !0(�i)h2.Although the method onverges [22℄, it presents some diÆulties. If two vortiesome too lose together, the veloity approximation beomes unbounded. Also,5



a distribution of point vorties is usually a poor approximation to a smoothvortiity distribution.Chorin [15℄ observed that the singularity an be molli�ed by onvolving thekernel with a blob funtion gÆ(z) to get a smoothed kernelKÆ = K � gÆ; gÆ(z) = 1Æ2 g �zÆ� :The resulting \vortex-blob" method isdzidt = NXj=1KÆ(zi � zj)!0(�j)h2: (2.11)Convergene results for this method are given in [24, 5, 1, 25℄. The numerialbehavior of this method has been studied in [34, 42℄; it has been very widelyused in pratie and generalized to model three-dimensional turbulent ows withboundaries and ombustion [29, 14, 16℄.Lagrangian �nite element methods, on the other hand, approximate ! in (2.8)by a pieewise linear funtion on a triangulation. For eah t let Th(t) = f�i(t)gNTi=1be a triangulation overing the support of ! with N verties fzj(t)gNj=1, and letVh = fv(z) 2 C0(IR2) : vj�i is linear for eah igbe the spae of ontinuous pieewise linear funtions over Th(t). At eah time tthe vortiity !(z; t) is approximated by the pieewise linear interpolant !h(z; t) 2Vh. The veloity is approximated byuh(z; t) = ZIR2 K(z � z0)!h(z0; t) dz0 = NTXi=1 Z�i K(z0)!h(z0; t) dz0 (2.12)in [13℄ and by solving a Poisson problem in [2℄. A natural algorithm is thenobtained by transporting the verties of the triangulation along the streamlinesde�ned by dzidt = uh(zi; t)and leaving the topology of the triangulation unhanged.In this paper, we use (2.12) to approximate the veloity. Eah termZ� K(z � z0)!h(z0; t) dz0 (2.13)in the sum (2.12) an be evaluated exatly, so the evaluation of the veloity at onevertex osts O(N) operations and the ost of the veloity evaluation is O(N2).To evaluate (2.13), we follow [13℄; �x a triangle � and a vertex z, and take aoordinate system with origin at z. Then we an write!h(x; y; t) = a+ bx+ y6



on � . For eah i and j, letF ij = Z� K(z � z0)x0iy0j dz0: (2.14)Then Z� K(z � z0)!h(z0) dz0 = aF 00 + bF 10 + F 01:Let z1; z2; z3 be the verties of � , as in Figure 1, and set z4 = z1; z5 = z2for onveniene. We ompute the three integrals F ij by splitting � into threetriangles with vertex z, as in Figure 1, and writingZ� = 3Xj=1�j Z�jwhere �j = 1 if point z is to the left of zj+1zj+2 and �j = �1 otherwise.
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Figure 1: Splitting up the omputation of the Biot-Savart integral.On eah subtriangle �k, eah term an be expressed in polar oordinates andevaluated: F 00 =  �dx log r + dy��dx� � dy log r !7



F 10 =  A sin � os � + 12(d2x � d2y) log r � dxdy�A os2 � + 12(d2x � d2y)� + dxdy log r !F 01 =  F 10y �A�F 10x !where (see Figure 2), dx = x2 � x1, dy = y2 � y1, r = jz � z1j=jz � z2j, � is theangle dz2zz1, � is the angle that ~z � z forms with the x-axis and A is the area oftriangle �3.
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Figure 2: Triangle �3.3 Formal desription of the algorithmIn this setion we summarize our algorithm in a proedural form. The next threesetions will be devoted to a detailed desription of the new features we haveadded. AlgorithmStep 1 - Input.Read the initial data from a �le. The initial �le ontains:� time integration parameters�nal time, time step, order of Runge-Kutta method� output ontrol parameters� triangulation parametersfrequeny of retriangulationtype of triangulation method (MLain, uniform, adaptive)� fast veloity evaluation parameters 8



number of terms in expansionsnumber of neighbor ellsuto� for re�nement� type of initial datavortiity pro�le (smooth or disontinuous)number of vortex pathes� parameters for the adaptive initial griderror toleranemaximum level of re�nementStep 2 - Initial onditions.Generate the initial distribution of verties fz0i ; i = 1 : : :Ng aording to the initialvortiity. The following options are available:� read the initial triangulation from a �le� uniform or randomly generated verties� adaptive triangulation to resolve ! [desribed in Setion 6℄Assign the initial values of the vortiity !i = !i(z0i ).Step 3 - Main loop.do n = 1 : : :MCompute the veloity assoiated to ! and z [see Veloity evaluation below℄:un�1 = F (!; zn�1)Store the output [every Ns time steps℄if the exat solution is known thenevaluate L1 and L1 relative error by omparison with the exat solutionend ifWrite output [errors, timing, triangulation, and so on℄ to �les.Move the pointsif [Euler's method℄thenzn = zn�1 + un�1�telse if [seond-order Runge-Kutta℄ then~z = zn�1 + un�1�t~u = F (!; ~z)zn = zn�1 + (un�1 + ~u)�t=2else [fourth order Runge-Kutta℄~z = zn�1 + un�1�t=2~u1 = F (!; ~z)~z = zn�1 + ~u1�t=2~u2 = F (!; ~z)~z = zn�1 + ~u2�t=2~u3 = F (!; ~z)zn = zn�1 + (un�1 + 2~u1 + 2~u2 + ~u3)�t=6end ifend do Veloity evaluation.9



u = F (!; z)� onstrut a Delaunay triangulation of fzig [desribed in Setion 4℄� evaluate the veloity u at eah point zi, i = 1 : : :Nwith the fast summation method [desribed in Setion 5℄4 Delaunay triangulation4.1 Triangulation and interpolationGiven a set Z of N points zj in IR2, there are many ways to onnet the pointsinto a mesh T of triangles overing the onvex hull CZ of Z. If funtion valuesfj = f(zj) are given at the verties, eah triangulation T produes a pieewiselinear interpolant T (z), the unique funtion whih is linear on eah triangle ofT , ontinuous and has T (zj) = fj for eah j. The erroreT (f) = maxz2CZ jf(z)� T (z)j: (4.1)in suh an interpolant an be bounded in terms of the seond derivatives of f ,the longest edge length of T , and the \ondition number" of T , a measure of theangles ourring in T [50℄.We annot ontrol the seond derivatives of f , but we an minimize the errorin linear interpolation given Z by hoosing the best triangulation for a lass off . Bad triangulations, for most lasses have long thin triangles and long edges.Good triangulations have short edges and very few long thin triangles. A simpleexample is shown in Figure 3. The best triangulation for a given f an be veryexpensive to �nd.
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Good������Figure 3: Good and bad triangulations of a simple point set Z.An a�ordable alternative is provided by the \Delaunay triangulation". It isalmost optimal for error bounds, yet an be onstruted in O(N logN) time.Indeed, [50℄ shows that no other triangulation an redue the error bounds bymore than a fator of two, while many fast methods for onstruting the Delau-nay triangulation have been proposed [9, 19, 21, 23, 27, 28, 30, 33, 43, 44℄. Inthis setion, we desribe the Delaunay triangulation and a fast method for itsonstrution, following [44℄. 10



4.2 De�nitions and data struturesThe Delaunay triangulation an be (and historially has been) de�ned in manyways. Currently one popular de�nition is in terms of the Voronoi diagram.Suppose Z = fzj : j = 1; 2; : : : ; Ng is a set of N points in a set 
 � IR2; foronveniene we assume 
 has a polygonal boundary. The Voronoi diagram of Zis the set of polygons Pj de�ned byPj = fz 2 
 : jz � zj j � jz � zij for all i 6= jg: (4.2)Thus Pj is the set of points in 
 whih are loser to zj than to any other point ziin Z. See Figure 4 for an example. The Voronoi diagram of Z is a useful tool foridentifying nearest neighbors, beause the nearest neighbors of zj are preiselythose points zi whose Voronoi polygons Pi share an edge with Pj . The Voronoidiagram is used to solve losest point problems in omputational geometry, forpreisely this reason, in [9℄ and [35℄.

Figure 4: Voronoi diagram assoiated with a set of points.The dual of the Voronoi diagram is the Delaunay triangulation, obtained byonneting two points with a triangle edge i� their Voronoi polygons share anedge. In the exeptional ase when four points of Z lie on a irle, some edgesof their Voronoi polygons have zero length, and one an triangulate the oir-ular points in any nondegenerate way, so the resulting Delaunay triangulationis not unique. This possibility requires areful treatment, beause the Delaunaytriangulation hanges by passing through suh a ase [47℄.Another de�nition, whih leads to our method of onstrution, is throughthe irumirle riterion; the irumirle of any triangle ontains no otherpoint of Z in its interior. This determines the Delaunay triangulation up to thenonuniqueness aused by oirular points.11



Before disussing the onstrution of the Delaunay triangulation, we mustspeify how it is to be stored. We store a triangulation by giving two integerarrays, itt and itv, in addition to the two real arrays needed to store theoordinates xi and yi of the points in Z. Let NT be the number of triangles inthe Delaunay triangulation. (By Euler's formula, NT � 2N , whih simpli�es theassignment of storage onsiderably.) Then k = itv(i; j) is the index of the ithvertex zk of triangle Tj , for i = 1 to 3 and j = 1 to NT . Also, k = itt(i; j) isthe index of the triangle Tk whih lies aross edge i of triangle Tj . If edge i oftriangle Tj lies on the onvex hull of Z, we set itt(i; j) = 0. See Figure 5 for anexample of itt and itv.
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j 1 2 3 4itv(1; j) 2 1 1 1itv(2; j) 1 4 5 6itv(3; j) 3 3 4 5 j 1 2 3 4itt(1; j) 0 3 4 0itt(2; j) 2 0 0 0itt(3; j) 0 1 2 3Figure 5: A small triangulation and the orresponding triangle to triangle andvertex pointers itt and itv.4.3 MLain's methodNext we desribe an algorithm due to MLain [31℄, whih starts with a trianglebelonging to the Delaunay triangulation and adds triangles one at a time untildone, using the irumirle riterion.To onstrut the �rst triangle T1, we hoose a vertex, zi say, at random fromZ. Then the seond vertex, say zj , is hosen as a losest point to zi. The thirdvertex zk of T1 is hosen by the irumirle riterion, applied to eah side of zizj .This riterion says that we selet the next vertex zk so that a) zk lies outside zizjand b) no other point of Z lies in the interior of the irumirle of the resulting12



triangle; see Figure 6. This means that zk minimizes the signed distane t(z) ofthe irumirle enter from the line through zi and zjt(z) = (z � zi) � (z � zj)2(z � zm) � nwhere zm is the midpoint of zizj , n is the unit normal to zizj, and � is the dotprodut. Any minimizer of t(z) may be hosen as the third vertex of T1.
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Figure 6: Geometry of MLain's method.We now have the �rst triangle T1. We store the indies of zi, zj and zk in thearray itv(m; 1), and set itt(m;n) = �1 initially for 1 � m � 3 and 1 � n � 2N .We also swap two verties if neessary to orient zizjzk ounterlokwise.The triangulation is now built one triangle at a time|eah triangle belongsto the �nal Delaunay triangulation. We loop through the indies n of existingtriangles, adding a triangle (if possible) to eah edge m of triangle n whih is notalready oupied. It may be that it is impossible to add a triangle to edge m,beause there are no points of Z outside the line extending that edge. In thatase, we mark m as an edge of the onvex hull of Z by setting itt(m;n) = 0,and proeed to the next edge. If possible, however, we �nd the third vertex ofthe new triangle by the irumirle riterion, as a minimizer of t(z) over Z.If the minimizer is unique, it is taken as the third vertex of the new triangle.Otherwise, there are four or more oirular points in Z; the two verties of mand the minimizers of t(z). We then triangulate all oirular verties in anynondegenerate way.We now add the new triangle to itt and add its verties to the next emptyloation in itv. The new triangle may also be a neighbor of some previously on-struted triangle whih we have not yet aounted for, and if so the appropriateentries must be made in itt. 13



We now proeed to the next edge and repeat. When we run out of unoupiededges, the Delaunay triangulation will be omplete.4.4 A uniform ell methodMLain's method is robust and easy to program, but an be quite slow whenN is large. To speed it up, we introdue a ell struture and vertex-to-trianglepointers. Cells were also used in [9, 30, 33℄ to speed up Voronoi diagram alu-lations. The basi idea is that only nearby verties an a�et the addition of anew triangle, if the verties are reasonably uniform. Thus we an organize theverties into a spatial data struture [41℄ and searh only nearby verties. Theirumirle riterion allows us to hek that we have inluded all the vertieswhih matter. Let C be the irle produed by minimizing t(z) over a subsetof Z. Then no point outside C an be a global minimizer of t(z). Thus anyandidate for a new vertex exludes all verties of Z outside C.There are two stages of the triangle addition proess whih require O(N)work. First, we have to �nd the minimizer of t(z) over Z. Seond, we have tohek all previously found triangles to �nd those sharing an edge with the newtriangle.We redue the ost of the minimization step by organizing the verties Zinto a data struture aording to their spatial loation. We �rst put Z in aretangle C with sides parallel to the oordinate axes. Then we subdivide C intoNC = O(pN) � O(pN) retangular ells and store eah zi in the ell where itlies. To do this, we use an array iv of length N whih ontains the index ofeah vertex and an array iv1 of length NC whih ontains, in its jth loation,the loation in iv where storage for the verties in ell j begins. Thus thepoints zj in ell i have their indies j stored in iv between addresses iv1(i)and iv1(i+1)�1 inlusive; we set iv1(NC +1) = N +1 for onveniene. Thisdata struture an be onstruted in O(N) work. An example is shown in Figure7. Now we redue the ost of minimizing t(z) as follows. Say we are �ndingminimizers of t(z) outside zizj . Find the ells i1 and i2 whih ontain zi and zj(usually i1 = i2) and onstrut the smallest retangular union R of ells in theell struture whih ontains both i1 and i2. Rather than minimizing t(z) overall points, we now �nd only those minimizers of t(z) whih lie in R.If R ontains no points outside zizj , we revert to MLain's proedure for thisedge. If there is a point in R on the orret side of zizj , then we will �nd aminimizer zk of t(z) over Z \ R. This point may not be the global minimizer,beause R may not ontain the latter. But anyminimizer of t(z) over all N pointsof Z will lie inside the irumirle C of zizjzk. In pratie, the minimizer of t(z)over R will be the global minimizer almost all the time, if the point distributionis reasonably uniform.Hene if C � R, we have already found the minimizer of t(z) over Z. Other-wise, we expand R until it ontains C, and searh the new R. This produes all14
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the global minimizers of t(z).If more than one minimizer is found, we must hek previous triangles toavoid degeneray. The new triangle an ross only triangles whih have all threeverties on C. To hek these triangles eÆiently, we need pointers from thepoints of Z to triangles having them as verties. This requires 3NT � 6N integerloations, but eah point belongs to six triangles only on the average. Hene thestorage method must allow for variations in the length of triangle storage frompoint to point, and this struture must be onstruted simultaneously with thetriangulation rather than all at one.This situation is ideal for the use of a a linked list. This is a single arrayivt(i; j), where i = 1 to 2 and j = 1 to 3NT , with the triangle indies fora given point stored in a hain of non-ontiguous loations, with eah triangleindex stored in ivt(1; j) and ivt(2; j) oupied by a pointer to the next triangleindex. To get started, a triangle Tk to whih zj belongs is stored in ivt(1; j) for1 � j � N ; then ivt(2; j) points to the loation in ivt where the index of thelast triangle (in order of reation) to whih zj belongs is stored. If this loation isk and l = ivt(1; k) then Tl is the last triangle to whih zj belongs and ivt(2; k)is the loation in ivt where the next to last triangle index for zj is stored. Thestorage proeeds bakwards in this way until the end of the triangle list for thejth point is signaled by a �1 in ivt(2; n) for some n. We add a triangle to thelist of zj simply by resetting the end link ivt(2; j) and adding the triangle to thenext empty loation at the end of ivt. See Figure 8 for an example of the linkedlist.Given this storage arrangement, we an easily look up all triangles havingzk as a vertex, hek if all three verties lie on the irumirle, and hek fordegeneray if neessary.The linked list also speeds up the seond O(N) stage of the triangle addi-tion proess; hek all previously onstruted triangles and �nd those sharing aommon edge with the new triangle, to add to itt. This is easy to speed up,beause ivt points from verties to triangles ontaining them; hene we an �ndall the desired triangles immediately in time proportional to their number andindependent of N .Finally, we update the pointers and proeed to the next edge of the growingtriangulation. When there are no more edges to be augmented, the triangulationis onluded.4.5 An adaptive ell methodThe uniform ell method is highly eÆient when the points are reasonably uni-form. Unfortunately, in appliations, we do not have uniform points. Even forinterpolation of a funtion, we want more data points where the funtion variesmore rapidly [37℄. Pratial situations often lead to highly nonuniform pointdistributions, for whih both numerial experiments and theory indiate that theuniform ell method requires lose to its worst-ase O(N2) time. Even worse, the16
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j 1 2 3 4 5 6 7 8 9 10 11 12ivt(1; j) 1 1 1 2 3 4 2 2 3 3 4 4ivt(2; j) 11 �1 8 10 12 �1 �1 �1 7 �1 9 �1Figure 8: A small triangulation and the orresponding linked list of vertex-to-triangle pointers.uniform method an be fooled simply by adding a few outlying points at a largedistane from the rest of the points; it will then onstrut a ell struture whihis muh too oarse, and the only remedy for this is adaptivity.In this setion, we present an adaptive ell method whih runs muh fasterthan the uniform method on nonuniform point distributions. The idea is to sortpoints into ells of varying size, with no more than s points per ell. This isdone by reursively subdividing the retangle C until no ell ontains more thans points.At the end of the onstrution, we have partitioned C into NC subells ofvarying sizes, as shown in Figure 9 for a small example with s = 3 and NC = 22.For eah ell i, we store a) data on its spatial loation and b) the indies j ofthe points zj lying in ell i. Part a) is ahieved by storing three pointers perell, arranged in a 3�NC array ixy(n; i); L = ixy(3; i) is the level of i in thesense that ell i is 2�L times smaller in eah dimension than the original ell C.Two more pointers nx = ixy(1; i) and ny = ixy(2; i) give the spatial loationof the ell, as if it were part of a regular grid on C omposed entirely of ells oflevel L; its lower left orner is at the point (x = ax + nx � hx; y = ay + ny � hy).Here C = [ax; bx℄ � [ay; by℄ while the sides of i have lengths hx = 2�L(bx � ax)and hy = 2�L(by � ay) respetively. Part b) is ahieved by storing a list iv ofpoints lying in eah ell. Additional pointers iv1 and iv2 give the addressesin iv of the beginning and end of the list of points in ell i. Thus ell i ontains17



(xj ; yj), where j = iv(k) for k = iv1(i); : : : ; iv2(i).
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Figure 9: Adaptive ell struture with no more than three points per ell.The ells are sorted lexiographially within eah level, and arranged by level.Thus we use also pointers il1 suh that all the ells on level L are given byi = il1(L); il1(L) + 1; : : : ; il1(L + 1) � 1. The purpose of lexiographiordering on eah level is to speed up the operation of searhing for a ell withgiven values of nx, ny and L; we simply arry out a binary searh of ixy(1; i)and ixy(2; i) for i between il1(L) and il1(L + 1) � 1. This operation isimportant when we onstrut the list of neighbors of a given ell or when we �ndall ells whih interset a given geometri objet. This data struture is similarto that used in [12, 48℄.Next we desribe the onstrution of the adaptive ell struture. We beginwith the retangle C and subdivide it into four ells by biseting eah oordinate.We assign eah point zj to the ell in whih it lies. These ells onstitute level 1of the struture. To onstrut level 2, we run through ells reated at level 1 andbiset any whih ontain more than s points, reassigning points to the subellsin whih they lie. The resulting ells are added to the end of ixy, iv, iv1and iv2 in the order in whih they were formed. Cells whih are subdividedare marked for deletion, and when the level 2 ells have all been reated, the18



subdivided ells from level 1 are deleted and storage is reassigned. Thus emptyells are kept but subdivided ells are eliminated; the result is a partition of Cinto ells with disjoint interiors. After deletion, pointers il1 are made. Thealgorithm now proeeds reursively one level at a time. At eah level, the ellsreated in the previous level are subdivided where neessary, and the new ellsassigned numbers ixy and storage in iv1 and iv2. Subdivided ells aredeleted and storage moved up.When this proess terminates, either beause the maximum number of levelsis reahed or beause no ell has more than s points in it, the ells on eah levelare sorted and rearranged in lexiographi order. Finally we make pointers ivfrom points to ells, showing whih ell a point lies in, and we are done.We need to arry out two primitive operations on this data struture. First,we have to �nd the nearest neighbor ells of a given ell i, all ells having a pointin ommon with i. If all the ells were the same size, the spatial loation numbersof the desired ells would be obtained from ixy(n; i) by adding 0, �1 or +1 toixy(1; i) and ixy(2; i). A searh through the ells on level L = ixy(3; i)would produe them. The ells are not all the same size, so we must look on alllevels for neighbors.For example, suppose we are looking for the lower left orner neighbor of i. Webegin on the same level as i by setting nx = ixy(1; i)�1 and ny = ixy(2; i)�1.These are the values ixy(1; j) and ixy(2; j) would have if a ell j of the samesize as i oupied the lower left orner position. Thus we searh through ells onlevel L = ixy(3; i) for a ell with numbers nx and ny. If the searh sueeds,we are done. If it fails, we must look for a larger or smaller ell. A larger ell iseasier to �nd in general, so we set nx  bnx=2, ny  bny=2 and L  L � 1.and searh level L for the ell (nx; ny). This proedure is repeated until eitherwe �nd the ell or we reah the top level. If the latter ours, we need a smallerell. The orners and sides di�er here beause on the orners we are looking fora single ell, while on the sides we are looking for several smaller ells. On thelower left orner, for example, we seek a smaller ell by putting nx  2 � nx + 1,ny  2�ny+1, L L+1, and searhing on level L, then repeating this proedureas needed until the ell is found.On the sides, the searh for smaller neighbors is slightly more ompliated.We begin, say on the left side, with nx  nx � 1 and ny  ny. If no ell onlevel L with numbers (nx; ny) exists, then we look for smaller neighbors, possiblyseveral of them. First, we subdivide (nx; ny) into four ells and stak the right-hand two ells. The left two ells are disarded. We now run through the stak,searhing for eah ell on the level where it should exist. If found, it is addedto the neighbor list and we ontinue with the next stak entry. If no suh ellexists, it is subdivided, the right-hand two ells are staked and the left-handones disarded, and we ontinue with the next stak entry. When this proessterminates, we have the list of neighbors.Another operation we need to arry out with this data struture is to �ndall ells whih interset a given geometrial objet 
 suh as a square or the19



intersetion of a irle with a half-spae. A fast method uses reursion: Stakthe four top-level ells. Examine eah for existene and intersetion; if it existsand intersets 
 it is added to our list, if it does not interset it is disarded, andif it does not exist but intersets, then it is subdivided, its subells are staked,and we proeed.An adaptive ell method for Delaunay triangulation is now a straightforwardextension of the uniform method. Only the searh strategy hanges, as follows.The �rst step is to searh the ell or the two ells ontaining the verties ziand zj of the urrent edge. If zk minimizes t(z) over this searh area, we omputethe irumirle of zizjzk and test whether it is ontained in the searh area. Ifit is, we have found the global minimizer and an proeed. Otherwise, we mustenlarge the searh area.Our next step is then to �nd the nearest neighbor ells of the one or twoells of the �rst searh area and take their union as the seond searh area. Weexpet a single layer of nearest neighbors to be suÆient in most ases beausethey will \sreen" the urrent edge from further points. The seond searh anagain have three outomes. First suppose no point has yet been found whenthe seond searh terminates. Then it is quite likely but not ertain that zizj ison the boundary of the onvex hull of Z; thus we �nd all ells interseting thehalf-spae outside zizj and take their union as the third searh area. If, on theother hand, we have a loal minimizer zk, let C be the irumirle of zi, zj andzk. If the interior of C is ontained in the seond searh area, we have found theglobal minimizer and an proeed.Otherwise, we must enlarge our sope to the third and �nal searh area, om-prising all ells whih interset C. After searhing the third searh area, we haveeither found all global minimizers of t(z) whih lie outside zizj , or determinedthat zizj lies on the boundary of the onvex hull of Z, and an proeed.A onsiderable speedup is obtained by preomputing all neighbors of nonemptyells and storing them. This eliminates the neessity of repeatedly �nding theneighbors of ells, a onsiderable savings when s is large.4.6 Numerial resultsWe have implemented the three algorithms desribed in this setion in Fortranand tested their performane on many sets of data points. Results from onlyone set of test data will be reported here. The data onsists of four sets of N=4normally distributed points, entered at four points in [0; 1℄2 and with varianesgiven by � = 0:15; 0:15=7; 0:15=72 ; 0:15=73 . An example with N = 800 is shownin Figure 10, where the fourth set of points is inside the third set and thereforeinvisible.Table 1 reports the results of triangulating this set of data points, with Nranging from 100 to 51,200. The olumn headings have the following meanings;N is the number of data points. 20



Figure 10: Sample Delaunay triangulation of N = 800 nonuniform points.
21



NT is the number of triangles produed.Tq is the CPU time in seonds required by our implementation of MLain'smethod, estimated by extrapolation for N > 10; 000.Tu is the CPU time required by the uniform ell method, with NC = (bpN)2ells, estimated by extrapolation for N > 20; 000.Ta is the CPU time required by the adaptive ell method, using s = 25.NC is the number of ells reated by the adaptive method.CT = 104 �Ta=N logN is the saled CPU time onstant for the adaptive method.L is the highest level used in onstrution of the adaptive ell struture.We an draw the following onlusions from this table; �rst, both the uniformand adaptive methods are faster than the quadrati method as soon as N �200. Thus they are to be preferred for large problems if suÆient memory isavailable. The uniform method requires about 26N integer memory in additionto 2N real storage for x and y; about 12N of the integer storage is used justto store the triangulation. Thus the uniform method uses only about twie theminimum amount of memory. The adaptive method typially has similar storagerequirements, despite the larger amount of information it stores, beause wetake bigger ells and hene have fewer of them. It is diÆult to give a tightupper bound for its memory usage, espeially when the number of points per ellis hosen very small. However, on this example, with neighbor lists stored, itrequired about 4N additional integer loations for large N .Seond, on these nonuniformly distributed points, the uniform method runsquikly when N is small, but degenerates to O(N2) performane when N getslarge. This is to be expeted. The adaptive method, on the other hand, displaysa gratifyingly regular O(N logN) performane throughout the whole range of N .It beats the uniform method onsistently when N � 400, and outperforms thequadrati method as soon as N � 200. The onstany (and even slight derease)of CT indiates that the adaptive ell method is O(N logN) or better, even onthese extremely nonuniform point distributions.5 Fast veloity evaluationWe now onsider the most expensive part of our method, the veloity evaluation.Given ! pieewise linear on the triangulation T , we need to evaluate the veloityu(z) = Z K(z � z0)!(z0)dz0 (5.1)at eah vertex zj of T . Here we omit a onstant fator and ignore onjugationfor simpliity, so K(z) = 1=z, and we integrate over T , the support of !, withrespet to dz0 = dx0dy0. 22



N Tq Tu Ta CT NC L100 0.14 0.11 0.20 4.3 28 8200 0.54 0.32 0.44 4.2 40 10400 2.1 1.1 0.97 4.0 58 10800 8.8 3.9 2.1 3.9 109 111600 38 13.3 4.4 3.7 178 123200 136 51 9.2 3.6 319 136400 566 198 19.6 3.5 583 1412800 2267* 779 41 3.4 1144 1425600 9068* 3118* 82 3.2 2275 1551200 36274* 12475* 169 3.1 4426 16Table 1: Timings for onstruting the Delaunay triangulation of N nonuniformlydistributed points, using the quadrati, uniform and adaptive ell methods. As-terisks denote timings obtained by extrapolation for the quadrati and uniformmethods.Diretly evaluating u at the N verties of T via (2.12) osts O(N2) work witha large onstant. We now present a fast algorithm whih requires O(N4=3 log �)time to evaluate N values of u within an error tolerane �, when T is quasi-uniform (when there are upper and lower bounds proportional to N on the num-ber of triangles in any �xed area). Our algorithm is based on the fast multipolemethod [12℄, but di�ers in forming moments of a ontinuous soure rather thanpoint harges.5.1 SplittingOur �rst step is to split the veloity u at eah vertex into loal and far-�eld partsuL and uF . To do this, let C0 be a retangle ontaining T and divide C0 intoNC square ells C of equal side length, say 2h. Fix a vertex z = zj . Thenu(z) = XC ZC K(z � z0)!(z0)dz0= uL(z) + uF (z) (5.2)where uL is the sum of those terms due to ells C within r ells of z, and uF isthe remainder (see Figure 11). ThusuF (z) = Xd(z;C)>(2r+1)h ZC K(z � z0)!(z0)dz0 (5.3)where the distane from a ell C (with enter ) to the point z is de�ned byd(z; C) = max (j<(z � )j; j=(z � )j) : (5.4)23



Note that !(z0) is pieewise linear on the triangulation T ; thus the integralover eah ell C is a sum of integrals over subtriangles of triangles interseting C.The most eÆient way to evaluate these integrals is to arry out a preliminarystep in whih the triangulation is re�ned wherever neessary to make eah trianglelie ompletely within a single ell C. This re�nement is implemented reursively;we stak all triangles, then ut eah one whih rosses a ell boundary and putthe resulting pair of triangles bak on the stak. When the stak is exhausted,no triangle rosses a ell boundary.
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Figure 11: Cells and enters for fast veloity evaluation, with r = 1.5.2 Laurent expansion of uFNow onsider the far-�eld. Let C be a given ell (with enter ) ontributing tothe far-�eld veloity evaluated at point z. Then for eah z0 2 C, we an expandK about  in a Laurent series:K(z � z0) = 1z � z0= 1z �  1Xn=0�z0 � z �  �n : (5.5)How well does this series onverge? By elementary geometry, we have����z0 � z �  ���� � p22r + 1 = �: (5.6)24



(Typially r = 1 and � = 0:4714.) Hene the error (relative to 1=(z � )) intrunating the Laurent series of K after the pth term is bounded byEp = ������ 1Xn=p+1�z0 � z �  �n������ � �p+11� � � �p (5.7)sine � � 1=2. If r = 1, for example, we an guarantee Ep � 10�k with p � 3ksine �3 � 0:105. In any ase, we now assume an error tolerane � has beenspei�ed, and r, h and p are hosen to make Ep � �.Then we have, within error �j!j1 = � R j!j,uF (z) = Xd(z;C)>(2r+1)h ZC pXn=0 1z �  �z0 � z �  �n !(z0)dz0= Xd(z;C)>(2r+1)h pXn=0Cn(z � )�n�1 (5.8)where the oeÆients Cn for ell C are de�ned byCn = ZC(z0 � )n!(z0)dz0: (5.9)Sine ! is pieewise linear and we subdivided the triangulation where neessaryto make it ompatible with the ell struture, we haveCn = XT�C Tn (5.10)where Tn = ZT (z0 � )n!(z0)dz0 (5.11)is the moment of a linear funtion over a single triangle T . Clearly we need onlyevaluate the modi�ed momentsT��n = ZT (z � )nn! x�y�dxdy (5.12)where �+ � � 1, and we have added a fator of n! to simplify later formulas.Let's write z�  = ax+ by�  for the time being, where a and b are arbitrary.Then after evaluating T 00n , we an get the rest by di�erentiation:T��n = � ��a�� � ��b�� T 00n+�+� : (5.13)To evaluate T 00n , we apply the Divergene Theorem to getT 00n = ZT r � Fdxdy = Z�T F � �ds: (5.14)25



Here znn! = r � F = r �  zn+1a(n+ 1)! ; 0! = r �  0; zn+1b(n+ 1)!! (5.15)and �ds = (�yk;��xk)d�; 0 � � � 1 (5.16)if zk = xk + iyk are the three verties of T . Here � is the forward di�ereneoperator �fk = fk+1 � fk with respet to the index k = 1; 2; 3 and we putz4 = z1. It follows thatT 00n = 3Xk=1 �yka�zk� zn+2k(n+ 2)!! (5.17)= 3Xk=1 ��xkb�zk � zn+2k(n+ 2)!! (5.18)To simplify the alulation of T 10n and T 01n , we di�erentiate (5.17) with respetto b and (5.18) with respet to a. Finally, we set a = 1 and b = i to getT 00n = i2 3Xk=1 �zk�zk� zn+2k(n+ 2)!! (5.19)T 10n = i 3Xk=1�(�xk)2(�zk)2� zn+3k(n+ 3)!!+ �xk�zk� xkzn+2k(n+ 2)!! (5.20)T 01n = 3Xk=1�(�yk)2(�zk)2� zn+3k(n+ 3)!!+ �yk�zk� ykzn+2k(n+ 2)!! : (5.21)Note as a hek that T 10n + iT 01n = (n+ 1)T 00n+1. Note also that this alulationworks for any polygon, not just a triangle.5.3 An O(N3=2 log �) algorithmSeparation of loal interations from the far-�eld and Laurent expansion of thelatter leads already to algorithms whih ost O(N3=2 log �) time with N quasi-uniformly distributed triangles and an error tolerane �. To onstrut suh analgorithm, divide T into NC ells C of side length 2h, eah ontaining O(N=NC )triangles (we an ignore preliminary subdivision as it only a�ets the onstant)and hoose parameters r and p = O(log �) to make Ep � �. The number NCwill be hosen later to ahieve maximal eÆieny. Then evaluate uL(zj), for eahvertex zj , diretly in O(N=NC ) time per vertex or O(N2=NC) total time. Forthe far-�eld, form Laurent oeÆients for eah ell in O(pN) time (sine eahtriangle ontributes to p oeÆients) and evaluate O(NC) p-term Laurent seriesat N points in O(pNNC) time. Choosing NC = O(N1=2) minimizes the totaltime whih is then O(N3=2p) where p = O(log �). Thus this gives an O(N3=2 log �)algorithm with N quasi-uniformly distributed triangles.26



5.4 An O(N4=3 log �) algorithmWe next add a further observation whih redues the time to O(N4=3 log �) withN quasi-uniformly distributed triangles. The observation is that the far-�eld issmooth, hene well approximated by a Taylor series in eah ell. The Taylor seriesan be omputed by summing over the far-�eld ontributions from eah far-�eldell, then evaluated one and for all at eah vertex. This further deoupling ofsoures from points of evaluation leads to an O(N4=3 log �) algorithm.Thus onsider a ell B, with enter b, ontaining triangle verties zj where wewish to evaluate uF (z). Eah term in eah Laurent series has a Taylor expansion1(z � )n+1 = 1Xm=0 n+mm !(b� )�n�m�1(b� z)m (5.22)about the ell enter b. Thus,uF (z) = 1Xm=0Bm(b� z)m (5.23)where the Taylor oeÆient Bm in ell B is given byBm = 1m!XC (b� )�m pXn=0(n+m)!(b� )�n�1Cnn! : (5.24)The error in trunating the Taylor series after p terms is bounded byEp = ������ 1Xm=p+1Bm(b� z)m������ (5.25)� 1Xm=p+1 2j!j1(2(r + 1)h)�m�1(p2h)m (5.26)� j!j1(r + 1)h�p (5.27)with � = 1=(p2(r + 1)). Clearly this an be made � � by hoie of p one r andh are �xed, and p = O(log �).This transformation leads to an O(N4=3 log �) algorithm as follows. As before,we divide T into NC ells eah with O(N=NC) triangles. The loal part ostsO(N2=NC) as before. The far-�eld part osts O(pN) to form Laurent oeÆients,O(N2Cp2) to onvert Laurent to Taylor series and O(Np) to evaluate Taylor series.Hene NC = O((N=p)2=3) gives the minimum time and it is O(N4=3j log �j2=3) =O(N4=3 log �).5.5 Re�nementsThere are three or four re�nements to the �nal algorithm whih olletively pro-due a fator of three or four speedup for large N , and one whih makes thealgorithm O(N logN log �) for large N .27



First and most trivially, empty ells ontaining zero vortiity should be ig-nored in forming moments, and the powers of verties required to form andtransform the moments should be preomputed and stored.Somewhat less trivially, we observe that the far-�eld beomes smoother atlonger distanes. Thus more distant ells need ontribute to fewer terms inLaurent or Taylor series. If we need p0 terms for the nearest far-�eld ells toget error �, then a ell at distane (2ih; 2jh) from the evaluation ell need onlyontribute to p oeÆients wherep = p0 log((2r + 1)2h2=2)log(((2i � 1)2 + (2j � 1)2)h2=2) : (5.28)This re�nement usually speeds up large omputations by a fator of 2.Another re�nement onerns the preliminary subdivision of triangles to makethem lie preisely in ells. Clearly we want to ut as few triangles as possible,sine the ost of the loal part inreases with the number of triangles. Also,it is not neessary to have triangles ompletely ontained in ells if they arenearly ontained. Thus we speify a distane q by whih a triangle may extendoutside a ell boundary, so a triangle must go 2qh outside to be ut. Typial uttriangulations for various values of q are shown in Figure 12. The error boundswill be a�eted by q sine the far-�eld an ome nearer, but in pratie even suhlarge values as q = 0:32 produe little or no hange in the error. This is beausemost triangles are far away, where q is irrelevant. The CPU time, however, anbe drastially redued by taking q large, beause many fewer loal interationsneed be omputed. For example, the number of triangles is ut in half by takingq = 0:32 instead of q = 0:02, with no inrease in the error. This leads to a fatorof two speedup in the loal interations.The algorithm requires a hoie of ell size, and its speed depends on thehoie. Suh a parameter is diÆult to estimate a priori; ells too small requiretoo many subdivisions, and too many Laurent-Taylor onversions, while ells toolarge require too muh loal work. The real remedy for this is adaptivity, asused in our Delaunay triangulation method or [12, 48℄, but this ompliates thehandling of Taylor expansions. We implemented instead a simple method forhoosing ell sizes, based on minimizing the CPU time at eah step. We keepan inrement i = �1, and do nx  nx + i at eah step, where nx is the numberof ells in the x-diretion. The number of ells in the y-diretion is hosen tokeep the ells approximately square. The inrement i hanges sign wheneverthe CPU time required for the urrent fast veloity evaluation exeeds the CPUtime required for the last one. This hoie of parameter keeps us within oneell of a loal minimum of CPU time, even if we start the omputation with thewrong number of ells. It also adapts automatially to odd-shaped distributionsof vortiity.We also observe that the algorithm an easily be made to run inO(N logN log �)time on quasi-uniform triangulations. To do this, we simply observe that the for-mula (5.24) whih onverts Laurent to Taylor oeÆients at a ost of O(N2Cp2)28



Figure 12: The original and (alternate ells of the) subdivided triangulationwith N = 500 and q = 0:02, 0.08 and 0.32. The subdivided triangulations have1146, 750 and 507 verties respetively.
29



is a orrelation whih an be omputed in O(NC logNCp log p) with the FFT.Then hoosing NC = O(N) gives an O(N logN log �) algorithm. However, webelieve the overhead of this approah would be large enough that little speedupwould result in pratial problems; hene we have not implemented it. It wouldbe important in three-dimensional problems.Finally, the restrition to quasi-uniform triangulations an be removed bymaking the algorithm adaptive, exatly as in [12℄. In our omputations, however,we did not implement an adaptive method beause of its omplexity.5.6 Numerial resultsWe now present numerial results whih show that our algorithm ahieves on-siderable speedups over diret evaluation. Table 2 gives the result of fast anddiret veloity evaluations for uniformly distributed random vorties in [�1; 1℄2with random ! values uniformly distributed on [�1; 1℄. We take q = 0:2 and� = 10�3, whih requires p = 10 with r = 1. The other numerial parameters aregiven in the table along with the times Td and Tf for diret and fast evaluationand the maximum relative error Ef in fast evaluation. Here N is the number ofverties, NT the number of triangles, and N 0T is the number of triangles after thesubdivision of the triangulation required to put eah triangles within q of lyingin a single ell.N NT Td Tf 100Tf=N4=3 Ef pNC N 0T100 183 2.31 2.36 0.51 0:48 � 10�6 4 243200 378 9.63 4.88 0.42 0:72 � 10�6 6 493400 773 39.5 10.9 0.37 0:11 � 10�5 9 1053800 1566 161 24.3 0.33 0:90 � 10�6 12 20201600 3161 658 55.5 0.30 0:48 � 10�6 15 38403200 6352 2655 122 0.26 0:54 � 10�6 20 73776400 12744 10683 271 0.23 0:77 � 10�6 27 1440512800 25529 42732* 627 0.21 0:14 � 10�5 34 2757625600 51115 170928* 1453 0.19 0:92 � 10�6 45 5419751200 102295 683712* 3431 0.18 0:93 � 10�6 59 106686Table 2: Timings for fast and diret veloity evaluation methods with NT trian-gles. Asterisks denote timings obtained by extrapolation for the diret method.We observe that the fast method breaks even for about N = 100 and ahievesa speedup of about 200 when N = 51200. For N � 1000, we get a tenfoldspeedup. The fast veloity evaluation is slightly faster than O(N4=3) in pratie,and the error is muh smaller than the error bound.30



6 Initial triangulationWe must address one more omputational issue, in order to have a robust method:where do we put the verties initially? Say we are given an initial vortiity�eld; smooth, disontinuous, or worse. Then we should plae the verties zjto minimize the error in representing ! by a pieewise linear funtion on theDelaunay triangulation of the verties. To do this, we use adaptive re�nement ofa oarse initial triangulation.Thus we begin with a uniform square mesh overing the support of !, andut eah square into a pair of isoseles right triangles. This is our oarse ini-tial triangulation, whih we now re�ne as follows. We put all the triangles ona stak, and sweep through the stak, testing whether eah triangle needs to besubdivided. To test a triangle, we �rst evaluate ! at the node whih would beprodued by subdividing the triangle. We also evaluate the linear interpolantat the same node, and ompute the di�erene between the two values. If ! iswithin a tolerane � (relative to the maximum value of ! so far enountered) ofthe interpolant at the new node, the triangle is aepted. Otherwise, the trian-gle is subdivided by Mithell's newest-node bisetion method [32℄, maintainingompatibility by subdividing neighbors as neessary, and the new triangles arestaked. We then repeat the proedure with the next triangle in the stak, untilthe stak is �nished. Using the maximum value of j!j so far enountered produesa triangulation on whih the error is likely to be smaller than �j!j1 rather thanlarger, though of ourse any method an be fooled into aepting a substandardtriangle with errors whih are atually too large.Mithell's subdivision proedure begins by assigning one vertex of eah trian-gle in the initial triangulation as a \peak," and the side opposite the peak as thebase. (In our ase, the initial triangulation onsists of isoseles right trianglesand the peak is the vertex at the right angle, opposite the hypotenuse.) Then itsubdivides triangles by dividing the base and the neighboring triangle oppositethe peak, with the new vertex being assigned as the peak of eah of the fournew triangles reated by the subdivision. Compatibility is maintained by alwayssubdividing ompatible pairs of triangles; if the neighbor opposite the peak isnot ompatibly subdivisible, it is itself divided reursively until ompatibility ismaintained: See Figure 13. Beause we begin with isoseles right triangles, thereursion is always �nite. The fat that we subdivide triangles ompatibly givesa slight safety fator, beause even if a triangle is wrongly aepted, it will stillbe subdivided if one of its neighbors with peak opposite it is subdivided.7 Numerial resultsIn this setion we present numerial results that show the auray, eÆienyand robustness of the method. Our results show that the method maintains itsauray for very long periods of time, on simple and omplex test ases. Itis exible and robust, and an ompute even disontinuous solutions, with no31
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numerial parameters exept the resolution and time step, and little numerialdi�usion.First, we disuss the norms and onserved quantities we plan to measure.There are six reasonable quantities to measure, the L1, L2 and L1 errors in theveloity and the vortiity, and for smooth solutions the results are essentiallyindependent of the hoie of norm. Sine we present numerial results withnonsmooth as well as smooth vortiity �elds, we prefer the errors in veloity, asmoother quantity and a primitive variable with diret physial meaning. Theerror in veloity is appropriate for omparing our method to other methods, sinethe representation of the vortiity in other methods is quite di�erent. The L1norm seems more appropriate than L1 or L2, sine the veloity �eld of a singlevortex blob is not in L1 or L2, so these norms depend on the support of the grid,and not only on h, even if the vortiity has ompat support. Thus our mainmeasure of error is the relative L1 norm of the veloity errorEu � maxz ju(z; t) � uh(z; t)jmaxz ju(z; t)jwhere u is the exat and uh the omputed veloity �eld. The maximum over z isapproximated by the larger of the maximum over the verties and the maximumerror in the linear interpolant of uh at one random point per triangle.There are also two useful onserved quantities whih we hek, the irulation� := ZIR2 !(z; t) dz (7.1)and the seond moment of the vortiityM2 := ZIR2 jzj2!(z; t) dz: (7.2)Conservation of irulation follows from onservation of vortiity along the stream-lines; ZIR2 !(z; t) dz = ZIR2 !(z(�; t); t) d� = ZIR2 !0(�) d�:The Jaobian j�z=��j = 1 beause the ow is inompressible. Conservation ofthe seond moment is proved for example on page 528 of [3℄. The seond momentis a good measure of numerial di�usion, beause physial di�usion makes theseond moment nononstant in time.7.1 Comparison with vortex-blob methodsIn a vortex-blob method the veloity �eld is omputed using (2.11). The on-vergene properties of suh a method depend on the blob funtion. Several on-vergene results for vortex-blob methods are given in [1℄. Here we briey reallsome of the main results. Let u(z; t) be the exat veloity �eld at position z and33



time t, and uh;Æ(z; t) the veloity �eld produed by a vortex-blob method of gridsize h and blob size Æ. The disrete L2 error, or \onsisteny error" is de�ned bye2(t) = (Xi ju(zi; t)� uh;Æ(zi; t)j2h2)1=2 ;where zi(t) is the exat position of the i-th partile of uid at time t. It anbe shown that, for a �nite time interval T and for smooth initial onditions, thefollowing estimate holds:max0�t�T e2(t) � C  Æp + �hÆ �L Æ! :Here the onstant C depends on the initial ondition and on T , and the onstantsp and L are determined by the blob funtion. For Gaussian blob funtions,L =1, so with Æ = hq, the error estimate beomesmax0�t�T e2(t) � Chpq;where p is the order of the blob funtion. In theory it is possible to obtain anarbitrarily high order of onvergene by hoosing p large and q lose to one. Ex-periene shows, however, that for p large and q lose to one there is a onsiderableloss of auray after a short time. We used the Gaussian blob funtion of orderp = 4 [34℄ g(r) = 1� (2e�r2 � 12e�r2=2);where r = jzj.As a test problem we onsider Perlman's test ase [34℄ with vortiity!(z) = ( (1� jzj2)7 jzj � 10 jzj > 1 : (7.3)The orresponding veloity �eld is given byu(z) = f(jzj) y�x ! ; (7.4)where f(r) = 8><>: � 116r2 (1� (1� r2)8) r � 1� 116r2 r > 1 :The ow is radially symmetri and rotates about the origin. The partiles nearthe origin omplete one rotation at time t = 4�, while the partiles on jzj = 1omplete one rotation at t = 32�. 34



At time t = 0 we plae the partiles on a regular square grid of size h = 0:4,0.2, 0.1 or 0.05, inside a irle of radius R = 1:2, and set !i = !(zi) where ! isde�ned by (7.3). The system of ODEs_zi = uÆ(zi; t)is integrated up to t = 32� by a Runge-Kutta method of order 4, with time step�t = 0:05. The results reported in Figure 14 show that large q gives a higherorder of onvergene for short times, but for smaller q the auray is maintainedfor longer times.We repeated the alulations with our algorithm, using the same initial on-ditions, and solving the system of ODEs by a Runge-Kutta method of order 4,with n = 64, 96, 128 and 192 time steps up to T = 32�. Figure 15 plots the rel-ative L1 error in veloity and the moment errors versus time. It is evident thatour method is more aurate than the vortex-blob method for a given number ofdegrees of freedom. The errors are not smooth funtions of time, beause of thereonnetion, but remain uniformly small.The omputation of the veloity �eld with a fast multipole-based vortex-blobmethod is slightly faster than with our method; Figure 15 also plots the time-averaged errors against the total CPU time. However, our method ahieves betterauray, so the average error dereases faster as CPU time inreases. Note,however, that we are omparing very simple versions of these algorithms; littlean be inferred about the relative performane of possible prodution versions ofthese odes.Vortex-blob methods preserve some onservation properties of the Euler equa-tions. In a vortex-blob method, the disrete analogues of � and M2 are�(N) := NXi=1 !ih2 (7.5)M (N)2 := NXi=1 !ijzij2h2 (7.6)and �(N) is obviously onserved. It is easy to show that M (N)2 is also onserved[40℄. Conservation of the seond moment is important, sine the rate of hangeof the seond moment is related to the numerial di�usion of the method. This isone reason why vortex-blob methods are attrative for invisid ow. They havebeen used for slightly visous ow in onjuntion with random and deterministimethods for the treatment of vortiity di�usion [15, 18, 40℄.Our method does not preserve the irulation and the seond moment. Figure15 plots the relative errors in the irulation and seond moment; with h = 0:05the seond moment errors are less than 0:4% up to t = 32�. In view of theextension of the method to the Navier-Stokes equations, we use this to estimatethe minimum visosity that is possible to treat with suh a method for a givengrid parameter h. For the Navier-Stokes equations!t + u � r! = ��!35



the seond moment of Perlman's test ase evolves aording toM2(t) =M2(0) + 4�t:Sine M2(0) = �=72, m2 � M2(t)�M2(0)M2(0) = 288�t� :At t = 32�, m2 = 9216�. An error of 0:4% orresponds to � = 8 � 10�7, afairly small visosity. This suggests that our method an be ombined with themethod of [40℄ to solve the Navier-Stokes equations for small Reynolds numberows. Note, however, that we do not observe a linear growth of error with time.Rather, the seond moment is roughly onstant, suggesting that our method maybe even less di�usive than this simple estimate would imply.
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Figure 14: Errors versus time for the vortex blob method with h = 0:4, 0.2,0.1 and 0.05 and n = 64, 96, 128 and 192 time steps. Top row: Relative L1errors in veloity versus time. Seond row: Time-averaged relative L1 errorsin veloity versus SPARC-2 CPU time in seonds. Left olumn: Supergaussianblob, q = 0:7. Center: Supergaussian blob, variable q = 0:9, 0.8, 0.7 and 0.6.Right: Finite-ore blob, q = 0:4.7.2 Reonnetion versus �xed topologyWe next reprodue the results presented in [13℄ and ompare them with thoseprodued with our method, for Perlman's test ase (7.3). The initial triangulation36
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Figure 15: Comparison with vortex-blob methods; relative L1 veloity, irula-tion and moment errors (left to right) versus time (�rst row) and the orrespond-ing time-averaged errors versus SPARC-2 CPU time (seond row) for our method.The four runs plotted used the following parameters: Mesh sizes h = 0:4, 0.2,0.1 and 0.05. N = 29, 113, 441 and 1793 verties. n = 64, 96, 128 and 192 timesteps.
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was produed by the MODULEF library of �nite element odes [10℄, with h =1=6; 1=8; 1=12; 1=16 and 1=24. The system of ODEs is integrated by a Runge-Kutta method of order 2, with �t = �=8. For eah value of h we make two runs.In the �rst we keep the topology of the triangulation unhanged and evaluatethe veloity diretly, as in [13℄. In the seond run we onstrut a Delaunaytriangulation at eah time step, using the adaptive ell tehnique of Setion4, and use the fast veloity evaluation of Setion 5. Figure 16 ompares thetriangulations in the two ases, for h = 1=12 and t = 0; 2�; 4�, and also showsthe Delaunay triangulation for later times t = 8�; 16�; 32�. Clearly withoutreonnetion the grid beomes very distorted and degenerates after a ertaintime, when triangles with negative area form, while the Delaunay triangulationremains regular for long times. Figure 17 shows the veloity and moment errorsas a funtion of time up to T = 8�. The distortion of the �xed grid ausesa dramati inrease in the error, while with a Delaunay triangulation the errorremains small. Note that thin triangles our even with a Delaunay triangulation,but that the error remains small nonetheless. This is di�erent from �nite elementmethods, for example, where suh thin triangles would produe disaster. Here,we use the triangulation only to evaluate the Biot-Savart integral, we need notsolve a linear system. The time-averaged errors versus CPU times are reportedin Figure 18. It is lear that the fast veloity evaluation method is essential forattaining small errors in reasonable omputation times.7.3 The adaptive methodWe now test our method on Perlman's test ase, without the handiap of a uni-form initial grid. We �rst �x a grid re�nement tolerane � = 0:064 and halve thetime step until the �rst two digits of the errors do not hange for 0 � t � 32�, us-ing fourth-order Runge-Kutta. This gives us a time step �t = �=2 whih makestime disretization errors negligible in omparison with spatial disretization er-rors for this �. Then we run three more ases, with � = 0:016, 0.004 and 0.001,reduing �t eah time. Figure 19 displays the resulting triangulations at t = 0;t = 4� and t = 32�. Figure 20 plots the errors against time and CPU time;they remain uniformly small over time and derease very rapidly with inreasingomputational e�ort.7.4 Kirhho�'s elliptial vortexWe now turn to a more hallenging test ase, a path of pieewise onstantvortiity. An exat irular path of onstant vortiity is easy to onstrut, butshares with Perlman's test ase an unrealisti radial symmetry. We use a moreinteresting test ase, the Kirhho� elliptial vortex, a uniformly rotating elliptialpath of onstant vortiity with exat veloity �eld given in Appendix A. TheKirhho� vortex is of onsiderable physial interest [7℄ as well as numeriallyuseful. 38



Figure 16: Fixed (top row) and Delaunay (seond row) triangulations at timest = 0, 2� and 4� (left to right), and Delaunay triangulations at later times t = 8�,16� and 32� (last row).
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Figure 17: Comparison between �xed topology and Delaunay triangulation withh = 1=6; 1=8; 1=12; 1=16; 1=24. First row: Relative L1 error in veloity, irula-tion errors and seond moment errors versus time, for Delaunay triangulation.Seond row: the same quantities for �xed topology.
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Figure 18: Comparison between �xed topology and Delaunay triangulationwith h = 1=6; 1=8; 1=12; 1=16; 1=24. First row: Time-averaged relative L1 errorin veloity, irulation errors and seond moment errors versus Cray-2 CPU time,for Delaunay triangulation. Seond row: the same quantities for �xed topology.
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Figure 19: Adaptive triangulation of Perlman's test ase at times t = 0, 4� and32� (left to right), with � = 0:064 (top row), 0.016 (seond row), and 0.004 (lastrow).
42



   0.0   20.1   40.2   60.3   80.4  100.5

 Time 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

  L
og

2(
m

ax
im

um
 e

rr
or

 in
 v

el
oc

ity
) 

   
   

   
 

   0.0   20.1   40.2   60.3   80.4  100.5

 Time 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

   
 L

og
2(

er
ro

r 
in

 c
irc

ul
at

io
n)

   
   

   
   

  

   0.0   20.1   40.2   60.3   80.4  100.5

 Time 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

   
Lo

g2
(e

rr
or

 in
 s

ec
on

d 
m

om
en

t)
   

   
   

   
 

   0.0    4.0    8.0   12.0   16.0

 Log2(CPU seconds) 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

 L
og

2(
<

m
ax

im
um

 e
rr

or
 in

 v
el

oc
ity

>
) 

   
   

   

   0.0    4.0    8.0   12.0   16.0

 Log2(CPU seconds) 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

   
Lo

g2
(<

er
ro

r 
in

 c
irc

ul
at

io
n>

) 
   

   
   

   

   0.0    4.0    8.0   12.0   16.0

 Log2(CPU seconds) 

 -12.0 

 -10.0 

  -8.0 

  -6.0 

  -4.0 

  -2.0 

   0.0 

   
   

  L
og

2(
<

er
ro

r 
in

 s
ec

on
d 

m
om

en
t>

) 
   

   
   

  

Figure 20: Errors for Perlman's test ase, with an adaptive grid reonnetedat every step. First row: Relative L1 error in veloity, irulation errors andseond moment errors versus time. Seond row: Time-averaged quantities versusCray-2 CPU time. The four runs plotted used the following parameters: Meshtoleranes � = 0:064, 0.016, 0.004 and 0.001. N = 50, 205, 725 and 2709 verties.n = 64, 96, 128 and 192 time steps.
43



Resolving the elliptial vortex with an adaptive grid requires that we varythe number L of re�nement levels allowed together with the tolerane �. We take� = 0:064, 0.016, 0.004 and 0.001, with L = 8, 10, 12 and 14 levels of re�nementof an initial uniform grid with h = 0:48, and n = 32, 48, 64 and 96 time steps,using fourth-order Runge-Kutta.Figure 21 shows the vortiity �eld at t = 0, T=4 and T=2, where T = 9� =28:274334 is the rotational period of the Kirhho� ellipse with aspet ratio 2,and strength 1. The vortiity �eld is plotted by giving eah triangle a gray-salevalue equal to �!=j!j1, where �! is the average over the triangle, 0 is lightest and1 is darkest. In the more aurate alulations, the ellipse returns very losely toits original position after one period. Note that the uid inside the ellipse rotatesas a rigid body (sine ! is onstant there); the uid outside undergoes a moreompliated deformation.Figure 22 plots the L1 and L1 errors in veloity and vortiity and the momenterrors against time. Clearly the L1 error in vortiity isO(1), as one would expet,while the L1 error in veloity is uniformly small.

Figure 21: Graysale plots of the Kirhho� elliptial vortex at times t = 0, T=4and T=2 (left to right), with � = 0:016 (top row) and 0.004 (last row).44
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Figure 22: Errors for the Kirhho� elliptial vortex. First row: Relative L1 andL1 errors in vortiity and L1 error in veloity versus time. Seond row: RelativeL1 error in veloity, irulation and seond moment errors versus time. Thefour runs plotted used the following parameters: L = 8, 10, 12 and 14 levels ofre�nement. N = 468, 1064, 2320 and 4700 verties. n = 32, 48, 64 and 96 timesteps.
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7.5 Interating vortex pathesOur �nal numerial examples are ows omposed of several interating vortexpathes. Sine exat solutions are unavailable, we estimate the errors in vortiityand veloity by di�erening. We evaluate the vortiity and veloity �elds, storedon the triangulation, by linear interpolation to �xed uniform grid, then di�erenesuessive alulations. This gives error estimates whih agree well with the exaterrors when the latter are available.Our �rst test ase without an exat solution uses three randomly plaedpathes, eah a saled version of Perlman's test ase. The triangulation is plottedin Figure 23, for � = 0:016 and 0.004, at times t = 0, 25 and 200. The errorsestimated by di�erening are plotted in Figure 24, using � = 0:064, 0.016 and0.004 and fourth-order Runge-Kutta with n = 96, 128 and 192 time steps up tot = 200.Our seond test ase is the interation of irular pathes of onstant vortiity,as studied in [11, 51, 49℄ by speialized methods. We do not expet great aurayfrom our general-purpose ode; we are pushing the limits of adaptivity. Figure 25shows the vortiity omputed with � = 0:004 and 0.001, at times t = 0, 10 and 40.The errors estimated by di�erening are plotted in Figure 26, using � = 0:064,0.016, 0.004 and 0.001 with fourth-order Runge-Kutta with n = 64, 96, 128 and192 time steps up to t = 40.
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Figure 23: Three interating pathes of smooth vortiity, at times t = 0, 25 and200 (left to right), with � = 0:016 (top row) and 0.004 (seond row).
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Figure 24: Errors for smooth pathes of vortiity, estimated by di�erening.Relative L1 error in veloity, irulation errors and seond moment errors vstime. 47



Figure 25: Three interating pathes of onstant vortiity, at times t = 0, 10and 40 (left to right), with � = 0:004 (top row) and 0.001 (bottom row).
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Figure 26: Errors for onstant pathes of vortiity, estimated by di�erening.Relative L1 error in veloity, irulation errors and seond moment errors versustime. 48



8 GeneralizationsOur method an be extended to model more general ows. In this setion weonsider the following generalizations:� Boundary onditions for the 2-D Euler equations.� The Navier-Stokes equations in IR2.� Boundary onditions for the 2-D Navier-Stokes equations and vortiity gen-eration at the boundaries.� Higher order methods.� Euler and Navier-Stokes equations in IR3.We have not implemented these generalizations; this is work in progress.8.1 Boundary onditions for the 2-D Euler equationsLet 
 be the domain ontaining the ow, �
 its boundary, and � the outwardunit normal (see Figure 27).

Ω ∂Ω

ν

Figure 27: A domain 
 and its boundary �
.The no-ow boundary ondition readsu � � = 0 on �
: (8.1)In the vortiity formulation, this ondition must be translated from the veloityto the vortiity. This an be obtained in the following way. From equation (2.5)49



it follows that the tangential derivative of  along the boundary vanishes:� �� = 0 on �
;where � denotes the unit vetor tangent to �
. This means that  is onstantalong the boundary and, sine the stream funtion is determined only up to aonstant anyway, we an set it to be zero. The Poisson equation for  is therefore8><>: �� = ! in 
 = 0 on �
 : (8.2)This is a standard problem and there are many ways to solve it numerially. Anattrative method in this setting is to represent  as the volume potentialV !(x) = Z
G(x� y)!(y)dyof !, with G(x) = (2�)�1 log jxj the free-spae Green funtion of ��, plus thesolution  � of 8><>: �� � = 0 in 
 � = �V ! on �
 : (8.3)The veloity due to the volume potential is preisely what we evaluated in Se-tion 5, using pieewise linear vortiity, while r � an be found by solving aseond-kind Fredholm integral equation on �
 [20℄. The integral equation anbe solved very eÆiently by iteration and the fast algorithms of [38, 12, 45℄.These approahes are partiularly attrative if 
 is moving as time passes.Alternatively, one ould use a standard �nite element Galerkin method withpieewise linear elements to solve (8.2), then alulate u by numerial di�erenti-ation.If 
 is onvex and simply onneted, then the algorithm desribed in Setion4 an be used to onstrut the triangulation. For more general non-onvex ornon-simply-onneted domains, that algorithm an easily be modi�ed to removetriangles outside 
.8.2 The Navier-Stokes equationsWe onsider the 2-D Navier-Stokes equations in R2. The equation for the vor-tiity is �!�t + (u � r)! = ��!;where � is the kinemati visosity. The veloity an be reonstruted from thevortiity using the Biot-Savart law (2.6). We an solve the Navier-Stokes equa-tions numerially by a frational step method. In the onvetion step we move50



the verties as above, and in the di�usion step we solve the di�usion equationfor !. Let !n(z) denote the pieewise linear vortiity distribution at time tn.After the onvetion step for a time step �t, we have a new vortiity distribution~!n(z), pieewise linear on a new triangulation. During the di�usion step we haveto solve the equation 8>><>>: �!�t = ��!!(z; tn) = ~!n(z) (8.4)One way to ompute !n+1(z) is to solve (8.4) exatly using the gaussian kernel�(z; t) = (1=4�t) exp(�jzj2=4t). This would give�!n(z) = ZR2 �(z � ~z; ��t)~!n(~z) d~z: (8.5)Then the pieewise linear funtion !n+1(z) is obtained by projeting �!n into thespae of pieewise linear funtions with the same values at the nodes:!n+1(zi) = �!n(zi); i = 1; : : : ; N:This proedure, however, is not very aurate, beause the projetion onto piee-wise linear funtions introdues high frequeny omponents in the vortiity dis-tribution, produing a spurious di�usion. A simple 1-D alulation shows thatthe loal trunation error is O(h2p��t). This makes the method inaurate forsmall time steps. The Green's funtion approah requires the omputation ofthe integral (8.5). A naive implementation of this integral would give a om-putational omplexity O(N2). Fast algorithms have been onstruted for thisase; the omplexity is redued to O(N) [46℄. One advantage of this approahis that it does not su�er from any stability restrition, and therefore it an beused with arbitrarily large values of ��t. In view of these onsiderations, thisapproah seems interesting in the presene of large visosities. For small valuesof the visosity, alternative approahes an be onsidered. We propose here twopossibilities, one based on the disretization of the Laplaian on a Voronoi mesh,the other obtained by olloation.The disrete Laplaian is de�ned in the following way. For any simply on-neted bounded domain P � R2 with regular boundary �P, it isZP ��dz = Z�P ���� dsDisretizing this relation on a Voronoi polygon Pi (see Figure 4), one de�nes thedisrete Laplaian B byB�(zi) = 1Ai Xj 6=i �(zj)� �(zi)jzj � zij lijwhere Ai is the area of the Voronoi polygon orresponding to zi, and lij is thelength of the edge orresponding to points zi and zj .51



The di�usion equation (8.4) for ! beomes8>><>>: d!idt = Xj 6=i �ij!j!i(tn) = ~!n(zi) i = 1; : : : ; N (8.6)with �ij = 8>>>><>>>>: 1Ai lijjzj � zij j 6= i� 1Ai Xk 6=i likjzk � zij j = iThe Voronoi diagram and the Delaunay triangulation are dual strutures. It iseasy to obtain one, one the other is known.The disrete Laplaian has been used for the solution of the Navier-Stokesequation in onjuntion with the vortex-blob method for the omputation of theveloity [40℄. In that ase the primary variables were the irulation assoiatedto eah vortex. It was possible to prove several onservation properties for thedi�usion equation disretized on a Voronoi mesh. In our ase, the vortiitydistribution is a pieewise linear funtion on the Delaunay triangulation andsuh onservation properties no longer hold. It would be worthwhile to explorethe properties of the disretization of the heat equation on a Voronoi mesh.An alternative approah, whih is more onsistent with our framework, on-sists in a olloation-Galerkin method. Multiplying both sides of (8.4) by a testfuntion �(z) with ompat support and integrating, we obtainddt Z �(z)!(z; t) dz = �� Z r�(z) � r!(z; t) dz: (8.7)We assoiate to a given triangulation a set of pieewise linear funtions f�k(z); k =1; : : : ; Ng suh that �k(zi) = Æik;and onsider the projetion of equation (8.7) on the spae of pieewise linearfuntions on the triangulation. We obtain:Xi Mki _!i = ��Xi Kki!i (8.8)where Mki = Z �k(z)�i(z) dz; Kki = Z r�k(z) � r�i(z) dz:The quantities Mij and Kij are easily omputable from the triangulation. Mij isthe mass matrix and Kij is the sti�ness matrix assoiated to the triangulation[17℄. These matries an be easily omputed from the triangulation. System52



(8.8) ould be disretized in time by a Crank-Niolson method in order to avoidthe stability restrition on the time step:Xj Mkj!n+1j � !nj��t +Xj Kkj!n+1j + !nj2 = 0 (8.9)It is not lear to the authors what is the best way to solve the large, sparse linearsystem (8.9) for !n+1. The LU fatorization does not seem to be onvenient,sine the triangulation hanges at every time step. Probably the best strategyonsists of an iterative method suh as a preonditioned onjugate gradient orGMRES.8.3 Boundary onditions for the Navier-Stokes equationsWe onsider now the treatment of the boundary onditions for the Navier-Stokesequations in a bounded region 
. The no-slip boundary ondition for a boundaryat rest reads u = 0 on �
:In order to enfore this ondition on �
 we make use of Chorin's method, whihonsists in plaing a vortex sheet on the boundary to ompensate for the tan-gential omponent of the veloity indued by the vortiity distribution inside thedomain [15℄.We disretize the time and onsider a frational-step method for the semidis-rete Navier-Stokes equations. Let !n(z) be the vortiity distribution at time tn.The system is updated in the following way:a) Solve Eq. (8.2) for  n(z) and ompute the veloity �eld un = r? n. Thisveloity �eld satis�es the no-ow ondition, but not the no-slip ondition.b) Consider the intermediate vortiity!n+ 12 = !n + 2(un � �)Æ�
where � is the unit vetor tangent to the boundary. Solve the di�usionequation for !: 8>><>>: �!�t = �!!(z; tn) = !n+ 12 (z) (8.10)and determine ~!n+1(z).) Compute the veloity �eld orresponding to the vortiity distribution ~!n+1(z)and solve the Euler equations in the time interval (tn; tn+1).53



The new vortiity distribution will be denoted !n+1(z). The onvergene ofthis algorithm for the semidisrete equations is proved in [8℄ in the ase of thehalf plane. We propose here the following disretization of the algorithm. Letus suppose we know the vortiity distribution !n� (z) whih is assoiated to agiven triangulation T n at time tn. The �rst step onsists in solving the Poissonequation for  n with Dirihlet boundary onditions. Then, one the veloity unis omputed on the boundary, the di�usion step is disretized in the followingway. First, the triangulation is extended beyond �
, by reeting the triangleswith one side on �
. If the size of the triangles is small ompared to the radius ofurvature of �
, the triangulation on the exterior of 
 reprodues a symmetriopy of the �rst line of triangles, with a small distortion (see Figure 28). After thetriangulation has been extended, the funtion  n(z) is extended symmetriallybeyond �
. This will provide a disretization of the zero Neumann ondition forthe di�usion equation.
zk�1 zk zk+1 
�


Figure 28: Symmetri extension of the triangulation beyond �!.Next we multiply (8.10) by �k and integrate:ddt Z �k(z)!n(z) dz = � Z �k�!n dz + 2 Z �k(un � �)Æ�
 dz; k = 1; : : : ; N(8.11)If zk is inside 
 then the seond term on the right hand side is zero, and oneobtains an equation of the form (8.8). If zk is on �
 then one obtainsXi Cki _!i = �Xi Mki!i + 2Wkwhere Wk is a line integral along the segments zk�1zk and zkzk+1.54



8.4 Higher order methodsOur method introdues several approximations; spae and time disretization,and trunation of the series in the fast veloity evaluation. In Setion 5 we sawhow to ontrol the error in the fast veloity evaluation, and time disretizationerror an be made small by using high order ODE solvers. Runge-Kutta ormultistep methods an be used for this purpose. The main ause of inauraylies in the spatial disretization. In this setion we improve the spatial aurayof the method.The spatial disretization error in our method is due to the approximation of! by a pieewise linear funtion. Suh an approximation is seond order in thesize of the triangles. A better auray ould be obtained by using basis funtionsthat are polynomials of degree greater than one. There are several possibilitiesfor obtaining higher order auray in the approximation of funtions of twovariables, whih are ommonly used in the �nite element method. Most of thesetehniques, however, require values of the funtion at points that are not vertiesof a triangle [17℄. Suh tehniques have an intrinsi diÆulty in this setting.Suppose we make use of the value of the funtion ! at the middle of the edge ofthe triangles. If we move these points with the ow, their vortiity is unhanged,but at the next time step their loation will not be in the middle of the edgeof a triangle. If we leave the point at the middle of the edge, then at the nexttime step the value of the vortiity at this point will hange. We may think oforreting this e�et by adding a term that takes into aount the fat that themiddle of the edge is not a Lagrangian point (up to O(h2)), but then topologialdiÆulties arise.For these reasons, it is more onvenient to use a higher-order approximationformula based on quantities de�ned at the verties of the triangulation. Wepropose to use the spae of pieewise ubi polynomials on the triangulation,with equal oeÆients for the x2y and xy2 terms.On eah triangle suh a funtion �(x; y) is de�ned by 9 parameters:�(x; y) = a1 + a2x+ a3y + a4x2 + a5xy + a6y2+a7x3 + a8(x2y + xy2) + a9y3: (8.12)The nine parameters are uniquely de�ned by giving the value of the funtion andits partial derivatives at the three nodes of the triangle.Let us denote by u and v the x and y omponents of the veloity u, and by� and � the omponents of r!:� � �!�x ; � � �!�y :Then, by taking the x and y derivative of the equation for ! (Equation (2.3) inSetion 2) one obtains the transport equations for !, � and �:d!dt = 0; 55



d�dt = ���u�x� + �v�x�� ;d�dt = ���u�y � + �v�y �� ;where ddt � �t + (u � r):If we are able to ompute u, v, ux, vx, uy and vy due to a pieewise ubi poly-nomial of the form (8.12) then we an solve the system of di�erential equationsdxidt = u(zi);dyidt = v(zi);d�idt = �(ux(zi)�i + vx(zi)�i);d�idt = �(uy(zi)�i + vy(zi)�i:It is possible to extend our veloity evaluation method to ompute suh quan-tities. Indeed, u is split into a loal term uL and a far �eld term uF . The �rstinvolves terms of the form Z� K(z � z0)!h(z0; t) dz0where !h is a polynomial of the form (8.12). Suh integrals an be omputed ana-lytially as shown in [13℄. The derivative of the �eld an be omputed analytiallyas well; Z� �K�x (z � z0)!h(z0) dz0an be integrated exatly as a line integral along the boundaries of the tri-angulation T , and the far �eld ontribution is automatially provided by theO(N4=3 log �) algorithm (see Setion 5.4) whih returns the �rst p terms of theTaylor expansion of the �eld.A last observation onerns the expeted order of auray of suh an al-gorithm. Pieewise linear elements give O(h2), quadrati elements O(h3), andubi elements O(h4). However we are not using the full subspae of pieewiseubi elements here, beause eah element has 9 free parameters instead of 10.This degrades the auray of the approximation to O(h3). For smooth owsthe higher auray should ompensate for the extra work needed to omputethe derivative of the veloity �eld. We expet the omputational time to be nomore than twie the time required for the pieewise linear method for the samenumber of the points, beause the far �eld terms are obtained for free. For verysmooth ows, it might even be more eonomial to use quarti polynomials toget O(h5) auray, and evolve seond derivatives as well.56



8.5 Extension to three dimensionsThe method here presented ould be extended, in priniple, to the inompressibleEuler and Navier-Stokes equations in three dimensions. The extension, however,is not a trivial one.The hardest problem is the omputation of the Biot-Savart integral on apieewise linear vortiity distribution. It is not lear whether a pieewise linearfuntion times the Biot-Savart kernel an be integrated analytially on a tetrahe-dron in three dimensions. If it is not possible, then one should try to redue theomputation of suh integrals to ombinations of integrals that depend on fewerparameters. Then these new \speial funtions" ould be tabulated and theirvalues omputed by interpolation. The feasibility of suh a proedure, however,is questionable, sine the next problem is the development of a fast algorithm forthe omputation of the far �eld in three dimensions. The fast multipole methodin three dimensions is not as eÆient as it is in two dimensions. This would makethe veloity evaluation quite slow. Furthermore, the problem of the boundaryonditions in ! in three dimensions is more ompliated than in 2-D.In view of these onsiderations, we think that a di�erent approah ouldbe more e�etive. A �nite element method ould be used to solve the Poissonequation for the vetor veloity potential ~ (x; y; z; t):��~ = ~!;the veloity �eld is then u = r� ~ : (8.13)In order to disretize this equation, we need to onstrut a 3D grid whih is the3D analogue of the Delaunay triangulation. This an be done by dividing thespae into Delaunay tetrahedra, that are de�ned in a way similar to the twodimensional ase. Then we onsider a basis B of pieewise linear funtions onthe triangulation, f�i(x); i = 1; : : : ; Ng. By going to a weak formulation andprojeting on the subspae B, the Poisson equation is disretized in the usualform: Xj Kij ~ j =Xj Mij~!jwhere the matries M and K are the mass and sti�ness matrix orresponding tothe given triangulation in spae. In order to obtain the values of ui � u(xi), wemultiply equation (8.13) by �i and integrate. We obtain for u�i ; i = 1; : : : ; N; � =1; 2; 3, the following system:Xij Miju�j =Xj �S�ij j � Sij �j � (8.14)where (�; �; ) is a yli permutation of (1; 2; 3), (x1; x2; x3) � (x; y; z), andS�ij = Z �i(x)��j(x)�x� dx:57



The Euler equations in three dimensions are�~!�t + (u � r)~! = (~! � r)uThis equation an be written as d~!dt = (~! � r)u (8.15)along the uid lines dx=dt = u.Let ~
 be the right hand side of Equation (8.15):
� = 3X�=1!� �u��x� :Then we an ompute a pieewise linear approximation of 
� at the nodes in theusual way. We obtain the system for 
�i :Xj Mij
�j =Xj 3X�=1!�j S�iju�j :One u�i and 
�j are known, the position and vortiity at the nodes an beupdated by solving the equations _xi = ui_~!i = ~
iOf ourse there is no guarantee that the natural invariants of the three di-mensional Euler equations are onserved in this disrete method. In partiular,the total vortiity will not be onserved. One should hek how well onservationof these physial invariants is maintained.The extension to the Navier-Stokes equations ould be done in a way similarto the two dimensional ase, i.e. with a splitting method. The di�usion step forthe vortiity vetor ould be treated by a Galerkin-Crank-Niolson method.9 ConlusionsWe have presented an eÆient and aurate new adaptive method for the 2-D Euler equations. Our method resembles the vortex method, but di�ers inapproximating the vortiity by triangulation and interpolation rather than a sumof blobs. This alteration produes a method whih is more aurate for long-timeomputations.The eÆieny of our method is due to an eÆient Delaunay triangulationmethod, to a fast veloity evaluation tehnique related to the fast multipole58



method, and to the onstrution of an adaptive initial grid. Our numerial re-sults demonstrate that eah of these tehniques plays an essential role in makingour omputations aurate and eÆient. We present a wide spetrum of nu-merial results, for simple lassial test problems as well as omplex problemswithout known solutions. In all ases, our method exhibits long-time auray.Even disontinuous initial data an be evolved aurately using our adaptive gridtehnique.The method generalizes in various ways, to three-dimensional problems, vis-ous ow and domains with boundaries, and appears highly promising as a toolfor engineering analysis of omplex uid ows.A The Kirhho� elliptial vortexA rotating elliptial path of onstant vortiity is an exat solution of the Eulerequations. A disussion of this topi an be found, for example, in [26℄. Wesummarize it here for ompleteness.Let x0Oy0 denote a �xed artesian frame of referene in IR2. Let us onsiderthe 2D Euler equations with the following initial ondition for the vortiity:!(x0; y0; 0) = 8>>>><>>>>: !1 if x02a2 + y02b2 < 10 if x02a2 + y02b2 � 1where !1 is onstant.Let us make the ansatz that the solution for the vortiity distribution is anelliptial path of onstant vortiity whih rotates without hanging shape withan angular veloity !0. We shall prove that this ansatz is onsistent with thePoisson equation for the stream funtion and we derive an expression for !0.Let us onsider a frame of referene whih is at rest with the rotating ellipseand let us denote by x and y its oordinates. In this frame of referene the streamfuntion does not depend on time. Let 
 denote the region with vortiity !1. Inthe region outside 
 the stream funtion satis�es the equation�2 �x2 + �2 �y2 = 0 (A.1)The uid lines an not ross the boundary �
. The boundary ondition on �
is therefore �u � � = !0r � �where � and � are unit vetors respetively normal and tangent to the boundary,and r = (x; y). The boundary ondition for  is therefore�� �� = !0r � � (A.2)59



It is onvenient to make use of elliptial oordinatesx =  osh � os �; y =  sinh � sin � (A.3)where 2 = a2 � b2. In these oordinates the Laplae equation for the streamfuntion beomes: 8>>>><>>>>: �2 ��2 + �2 ��2 = 0 in R2n
� �� = �!02 sin � os � on �
 (A.4)This equation an be solved by separation of variables.Let  = X(�)H(�) + ~A� + ~B� + ~C. By inserting this expression into (A.4)and imposing that the veloity u vanishes at in�nity, one �nds = !04 (a+ b)2e�2� os 2� + ~A� (A.5)The onstant ~A is obtained by imposing that the irulation is the integral of !:I�
 u � d� = �ab!;that is � Z 2�0 � �� d� = �ab!:This gives ~A = 12ab!:The stream funtion inside 
 is obtained by the Poisson equation�2 �x2 + �2 �y2 = �!1; (A.6)with boundary onditions uxa2 + vyb2 = !0y xa2 � !0x yb2equivalent to ondition (A.2). Equation (A.6) is satis�ed by a stream funtionof the form  = �12!(Ax2 +By2) (A.7)provided A+B = �1 and Aa2 �Bb2 = �!0(a2 � b2)=!. We have to hek nowthat there is no slip aross �
. For this purpose we ompute u �� from (A.5) and(A.7) and ompare the two expressions. From (A.5),u � � = �� ext�� = !02 (a+ b)2e�2� os 2� � 12ab!60



Suppose � = �0 de�nes �
. Then osh(�0) = a;  sinh(�0) = band therefore (a+ b) exp(�2�0) = . It follows that� ext�� �����
 = �12!02 os 2� + 12ab!In order to ompute u � � from (A.7), let us express  in terms of � and � using(A.3):  int = �12!12(A osh2 � os2 � +B sinh2 � sin2 �):It is � int�� �����
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