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AbstratA new numerial method for solving geometri moving interfae prob-lems is presented. The method ombines a level set approah and a semi-Lagrangian time stepping sheme whih is expliit yet unonditionally stable.The ombination deouples eah mesh point from the others and the timestep from the CFL stability ondition, permitting the onstrution of meth-ods whih are eÆient, adaptive and modular.Analysis of a linear one-dimensional model problem suggests a surprisingonvergene riterion whih is supported by heuristi arguments and on-�rmed by an extensive olletion of two-dimensional numerial results. Thenew method omputes orret visosity solutions to problems involving ge-ometry, anisotropy, urvature and omplex topologial events.
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4.2.1 Unit normal veloity . . . . . . . . . . . . . . . . . . . 234.2.2 Visosity solutions with orners . . . . . . . . . . . . . 234.2.3 Anisotropi normal veloity and the Wul� limit . . . . 244.2.4 Merging under anisotropy . . . . . . . . . . . . . . . . 244.2.5 Cirles under urvature . . . . . . . . . . . . . . . . . . 254.2.6 Nononvex interfaes under urvature . . . . . . . . . . 254.2.7 Nononvex interfaes merging under anisotropy plusurvature . . . . . . . . . . . . . . . . . . . . . . . . . 264.3 Convergene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Conlusion 266 Aknowledgments 271 IntrodutionWe present a new numerial method for moving interfae problems. Themethod merges and breaks interfaes naturally and generally via the levelset approah, while deoupling time step restritions from the Courant-Friedrihs-Lewy (CFL) stability ondition by using an expliit yet unondi-tionally stable semi-Lagrangian time stepping sheme with veloity smooth-ing and frequent redistaning. The time stepping sheme also deouples eahmesh point from the others, potentially simplifying both adaptive mesh re-�nement and parallel implementation.Setion 2 of this paper ontains standard bakground material: movinginterfae problems and examples, level set and semi-Lagrangian methods.Setion 3 presents our method and explains why it works. Setion 4 vali-dates it by solving an extensive olletion of numerial examples inludinggeometri motions with orners, anisotropy, urvature and omplex topology.Setion 5 draws onlusions and disusses future extensions and appliations.2 BakgroundThis setion summarizes standard bakground material on moving interfaeproblems and numerial methods. Setion 2.1 lassi�es moving interfaeproblems ommonly found in appliations, by the degree of loality of theveloity as a funtional of the interfae. Setion 2.2 desribes how to onvertthese problems into level set equations on a �xed domain, eliminating themoving interfae. Setion 2.3 introdues the level set method for movinginterfaes, Setion 2.4 relates moving interfaes and CFL onditions for someimportant model problems, and Setion 2.5 reviews and analyzes the simplest2



semi-Lagrangian sheme for hyperboli partial di�erential equations (PDEs).Setion 2.6 disusses the derivation of higher-order aurate semi-Lagrangianshemes.2.1 Moving interfae problemsA moving interfae �(t) is a olletion of noninterseting oriented losedurves in R2 or surfaes in R3 for eah time t, a set-valued funtion of time.Sine eah omponent of �(t) is losed, �(t) has an interior and an exterior.Assume �(t) is suÆiently smooth in spae and time. Then for eah time tand eah x 2 �(t) there isÆ An outward unit normal vetor N(x; t),Æ A signed urvature C(x; t), hosen positive for a irle or sphere, andÆ A normal veloity V (x; t), hosen positive where the interior of �(t) isgrowing.Given a parametrization of �(t), these quantities an be alulated by stan-dard geometri formulas found in [41℄.A moving interfae problem is a losed system of equations whih spe-i�es the normal veloity V as a funtional of � and the other unknowns inthe problem. Suh problems an be divided into three broad lasses involv-ing passive transport, geometry and/or PDEs or integral relations o� theinterfae. All our frequently in appliations.2.1.1 Passive TransportPassive transport moves an interfae in some external ow, whih may begiven a priori or omputed on the y but does not depend on the interfaeitself. Thus F (x; t) is a given veloity �eld on Rd and the normal veloity of�(t) is V (x; t) = N(x; t) � F (x; t) whih is independent of �(t). This type ofproblem ours when modeling ommon and important physial situationssuh as rotation, shearing and strething in an ambient ow, and is onep-tually the simplest to solve beause the motion of eah point on the interfaeobeys an ordinary di�erential equation with known right-hand side.2.1.2 GeometryMore omplex problems allow the loal interfaial geometry to interat withthe motion, so the interfae satis�es a partial rather than ordinary di�erentialequation. The normal veloity is a given funtionV = V (x; t; N; C; : : :) (1)3



of the interfaial position, normal, urvature, and other loal geometri quan-tities.Example 1: The simplest geometri motion propagates �(t) along itsnormal vetor with onstant uniform veloity. Corners form and mergingours if �(0) is not onvex, so �(t) does not remain smooth, yielding thesimplest example of a \visosity solution" to a Hamilton-Jaobi equation[7, 13℄.Speialized methods for motion with unit normal veloity an be builtfrom Huygens' priniple: �(t) is an envelope of the set of radius-jtj irlesentered on eah point of �(0). Consider for example the inverted \V" y =�jxj shown in Figure 1. If �(t) is given by y =  (x; t), Huygens' priniplegives  (x; t) = 8><>: x +p2t x < �t=p2pt2 � x2 jxj < t=p2�x +p2t x > t=p2 (2)for t � 0. As t � 0 dereases, the inner envelope remains sharp:  (x; t) =�jx � p2tj for t < 0. Time-reversal symmetry is broken, as for shoks inhyperboli onservation laws [17℄.Example 2: A ommon two-dimensional geometri problem has a urve�(t) evolving under a K-fold symmetri anisotropi normal veloityV (x; t) = R + � os(K� + �0) + (R0 + �0 os(K 0� + �00))C; (3)where os � = N � e1 is the osine of the angle between the normal vetor andthe positive x-axis.Anisotropi veloity �elds grow or shrink interfaes along their normalswith speed depending on loal orientation, easily produing omplex mergingshapes and making these models popular in materials siene [40℄. With suf-�ient anisotropy, suh veloity �elds produe faeted interfaes via the Wul�onstrution [8, 21, 23, 43, 42℄. At the orners of faets, the visosity solu-tion behaves di�erently from Example 1, beause the veloity is anisotropi.Rather than rounding o�, the orner remains sharp even when the veloityis a smooth funtion of the normal diretion. See Setions 4.2.3 and 4.2.7 fornumerial examples.2.1.3 PDEIn moving interfae problems for PDEs, the interfaial veloity depends onadditional �elds satisfying algebrai, ordinary di�erential, partial di�erentialor integral equations on or o� the interfae. These �elds an mediate long-distane nonloal interations, so the evolution equation for the interfae isno longer a loal PDE. 4



Example 3: In volume di�usion [9, 20℄,V (x; t) = �u(x; t)�N (4)where u(x; t) solves the Laplae equation�u = 0 outside �(t) (5)and the boundary onditionu = C on �(t); (6)with boundary onditions at 1. Using the Dirihlet-Neumann operator ��whih maps boundary values for the Laplae equation outside � to the normalderivative of the solution on �, Eqs. (4{6) beome a single nonlinear nonloalpseudodi�erential equation V (t) = ��(t)C(t): (7)Eq. (7) gives the veloity V , and a urve movement equation whih movesthe interfae with given veloity V ompletes the moving interfae problem.Several urve movement equations exist [34℄.Example 4: A model for rystal growth is treated in [2, 4, 5, 26, 28, 34℄.Here V is the jump aross the interfae of the normal derivative �u(x;t)�N , whereu satis�es the Stefan problemut = �u o� �(t) (8)u = ��(N)C � �v(N)V on �(t) (9)with boundary onditions on outer boundaries. Here � and �v are givenfuntions of the outward normal N , as in Example 2.Problems lose to engineering pratie often involve omplex systems ofPDEs and integral equations modeling physial e�ets suh as heat ow,onvetion, elastiity, radiation, hemial and biologial reations, and �eldssatisfying integrodi�erential onditions on the interfae itself. Suh prob-lems an be extremely diÆult to solve numerially, even without movinginterfaes.2.2 Level set equationsMoving interfae problems an be reformulated as \level set equations" on a�xed domain, using the zero set� = fx 2 Rd : '(x) = 0g (10)5



of a funtion ' : Rd!R. Given an interfae �, there are many funtions 'for whih � is the zero set: For example, the distane and the signed distaneto �: '(x) = miny2� kx� yk; '(x) = �miny2� kx� yk; (11)where the plus sign is hosen for x in the interior of �. However, not everyzero set is admissible as an interfae. Zero sets may be at where ' is equalto zero on a region, and may ross at isolated points. These pathologies areexluded if r' never vanishes on �. Then ' rosses zero leanly and we anreover � from ' by ontouring. Thus the signed distane represents � morestably than the distane. Figure 2 shows a hexagon in the plane and theorresponding signed distane funtion '.Many geometri properties of � have simple expressions in terms of ',beause ' ontains loal information whih allows impliit di�erentiation of�. For example, the normal veloity, outward unit normal, and urvature aregiven by V = 't=kr'k; (12)N = r'=kr'k; (13)C = �r �N; (14)if ' is hosen to be positive inside the zero set [41℄. These formulas an beevaluated everywhere ' is known, as well as on �. At a point x away from�, they give the geometry of the level set passing through x.Thus if we have the interfae then we an ompute its veloity from '.Conversely, given an extension of the normal veloity V to a funtion of tand x 2 Rd, Eq. (12) an be viewed as a PDE |the \level set equation"|whih moves � by evolving ':'t � V kr'k = 0: (15)Alternatively, we an onstrut a vetor veloity �eld F on Rd with F = V Non �, and solve the \linear level set equation"'t � F � r' = 0: (16)Eqs. (15) and (16) move every level set of ' with the extended veloity Vor F , and in partiular move the zero set with the orret veloity. Thisapproah to moving interfaes embeds the topology in ' rather than �(t),allowing merging, breaking and other topologial hanges to be handled au-tomatially. We pay the prie of going up one dimension. Either V or V Nmust be extended to a funtion on the whole spae, but the extension anbe almost ompletely arbitrary away from �(t).The moving interfae problems from Setion 2.1 an be put in level setform as follows. 6



2.2.1 Passive TransportFor passive transport, F is already de�ned on Rd and is a natural extensionof V N . Sine N an be extended by Eq. (13), a natural extension of V isN � F . The resulting level set equation is a hyperboli PDE, nonlinear if Vis extended: 't � V (x; t)kr'k = 0 (17)and linear if F is extended:'t � F (x; t) � r' = 0: (18)N is singular where r' vanishes or is singular. For example, in Figure 2,r' does not exist at the enter and the orners of eah hexagonal level set,where ' is not di�erentiable. Even if r' exists everywhere, it must vanish atmaximum points interior to �, so N is never globally smooth. This suggeststhat we should extend F rather than V , solve Eq. (16) instead of Eq. (15),and avoid using N o� �.2.2.2 GeometryWith geometri quantities extended naturally by Eqs. (12{14), the level setequation for Example 2 reads't� (R+ � os(K�+ �0))kr'k = (R0+ �0 os(K 0�+ �00))r� (r'=kr'k)kr'k(19)where os � = 'x=kr'k. This is a mixed hyperboli-paraboli PDE ontain-ing both �rst-order and seond-order spatial derivatives of ', and beomingsingular where r' vanishes.2.2.3 PDEFor uid problems with moving interfaes, the uid veloity provides a natu-ral extension of V N o� the interfae. But in many other PDE-type models,the normal veloity is built from quantities suh as boundary values andjump onditions, whose natural habitat is the interfae. Then an extensionof V is not obvious. One ould set V = N � ru in Example 3 (volume di�u-sion), but ru is disontinuous aross �(t). In Example 4 (rystal growth), Vis de�ned as a jump aross �(t) and an extension of V is even less obvious.Thus various extensions have been developed: In [28℄, for example, our Eq.(9) was solved for V under the assumption �v(N) 6= 0 to getV = �1�v(N) (u+ �(N)C) (20)7



where N and C are extended naturally and the jump ondition is built intothe solution of the heat equation via lassial potential theory. Generalshemes whih extend any veloity �eld o� any interfae were presented in[1, 5, 38, 39℄ and applied to this rystal growth model in [5℄.2.3 The level set methodThe level set method moves �(t) from t = 0 by onstruting an initial levelset funtion '(x; 0) for �(0) and an extended veloity �eld V or F for t � 0,solving one of the level set equations Eq. (15) or Eq. (16) numerially, then�nding �(t) from '(x; t) when required. The method was introdued in [22℄,and an extensive reent survey is [27℄. It has undergone muh developmentand been applied to many moving interfae problems.The main advantage of the level set method over other numerial methodsfor moving interfaes is its natural treatment of topologial hanges suh asmerging and breaking. These hanges an be diÆult to handle with methodsbased on parametrization, but solving the level set equation merges interfaesnaturally and automatially as shown in Figure 3.There are some potential diÆulties with the level set method. It an bemore expensive sine it goes up a dimension, partiularly if uniform meshesare used. Extending the veloity o� �(t) an be diÆult. One must beareful to obtain the orret \visosity solution" of Eq. (15) or Eq. (16), byusing an appropriate solver for the level set equation [27℄. The method is notsuÆiently modular; a new ode must be written for eah new problem to besolved, sine the veloity evaluation is intertwined with the moving interfaeode by veloity extension and CFL onditions.We present a level set solver on a uniform mesh in Setion 3, whihis shown experimentally to obtain the orret visosity solution for passivetransport and geometri problems where veloity extension is straightfor-ward. This solver is designed for easy adaptive mesh re�nement with largetime steps, yielding optimal eÆieny. An adaptive version is developed in[37℄. On this foundation, an eÆient, general and robust veloity extensionis built in [38℄ and yields a ompletely modular level set method.2.4 CFL onditionsAlmost all expliit shemes for PDEs suh as the level set equation enountertime step restritions due to the famous Courant-Friedrihs-Lewy (CFL) on-dition [17℄. This neessary ondition for onvergene requires that in thelimit as the time and spae mesh sizes go to zero, the domain of depen-dene of the numerial solution at eah spaetime point must inlude thatof the exat solution. For expliit shemes with bounded stenils for �rst-8



order hyperboli PDEs, the CFL ondition imposes a time step restritionof the dimensionally natural form jUkj � O(h), where k is the time step, his the spatial mesh size, and U is proportional to a harateristi veloity ofthe PDE. For higher-order PDEs these time step restritions often beomek � O(h2) or O(h3) and make expliit shemes prohibitively expensive. Theusual remedy|impliit time-stepping shemes|is often unavailable for levelset equations beause the omplex and problem-dependent relation betweenV and �(t) frustrates most nonlinear equation solvers.In passive transport and unit normal veloity, the level set equation is�rst-order hyperboli, so most expliit shemes enounter a time step re-strition k � O(h). This restrition is inonvenient if a �ne or adaptivemesh is used. In the urvature-dependent geometri motion of Example 2,expliit treatment of the seond-order paraboli term requires an asymptoti-ally smaller time step k � O(h2). Volume di�usion (Example 3) involves thetheory of the \Dirihlet-Neumann operator" � whih maps boundary valuesto normal derivatives. � is a �rst-order pseudodi�erential operator, and Cis a seond derivative of ', so V = �C resembles a third-order derivative of'. Therefore k � O(h3), and similarly in Example 4 (rystal growth). Thisondition requires extremely small time steps. If higher-order PDEs suhas elastiity are involved, these small time steps an make most shemesprohibitively expensive.These time step restritions an be eliminated by allowing unboundedstenils. For example, we an build a trivial expliit method for the heatequation whih is stable and onvergent with large time steps k = O(h),if we allow stenil size to grow as the mesh is re�ned. Take the standardexpliit �nite di�erene method on a sequene of meshes with mesh sizesh = 1=n and time step �t = h2=2, so the usual CFL ondition is satis�ed.De�ne a new �nite di�erene method with step size k = h = 2n�t = 1=nby taking 2n tiny steps of the standard method to pass from t to t+ k. Thenew method is stable and onvergent with k = h, hene satis�es the CFLondition.Our moving interfae method deouples time steps from CFL onditionsby using the expliit unonditionally stable time stepping sheme reviewedin Setion 2.5. More general shemes of this \semi-Lagrangian" type arepresented in Setion 2.6. For �rst-order hyperboli problems, these shemessatisfy the CFL ondition with large time steps by shifting the stenil. Forhigher-order level set equations, heuristi reasons for our methods to satisfyCFL onditions are disussed in Setion 3.3.
9



2.5 The CIR shemeConsider the simplest linear hyperboli PDE't � F (x; t) � r' = 0: (21)Eq. (21) propagates ' values along the harateristi urves s(t) de�ned by_x(t) = �F (s(t); t); s(0) = x0; (22)beause ddt'(s(t); t) = 't + _x � 'x = 't � F � r' = 0 (23)if ' solves Eq. (21). Thus we an �nd ' values at any time t by �nding theharateristi urve passing through (x; t) and following it bakwards to someprevious point (x0; t0) where the value of ' is known: then '(x; t) = '(x0; t0).This observation forms the basis of the \bakward harateristi" or \CIR"sheme due to Courant, Isaason and Rees [6℄, whih is the simplest semi-Lagrangian sheme. Given ' at time tn, CIR approximates '(x; tn+1) at anypoint x at time tn+1 = tn + k by evaluating the previous veloity F (x; tn),approximating the bakward harateristi through x by a straight linex + (tn+1 � t)F (x; tn) � s(t) (24)and interpolating ' at time tn to the pointx+ k F (x; tn) � s(tn): (25)Then '(x; tn+1) is set equal to the interpolated value.For linear PDEs, the Lax-Rihtmyer equivalene theorem [17℄ guaranteesthat CIR will onverge to the exat solution as k; h!0 if it is stable andonsistent. For nonlinear PDEs, stability and onsisteny are neessary butnot suÆient.2.5.1 StabilityThe stability properties of the CIR sheme are exellent. Eah new value'(x; tn+1) is a single interpolated value of ' at time tn, so unonditionalstability is guaranteed in any norm where the interpolation does not inreasenorms. For example, CIR with linear interpolation is unonditionally stablein the maximum norm. In general, semi-Lagrangian shemes satisfy the CFLondition by shifting the stenil, rather than restriting the time step. Thusinformation propagates over long distanes in one step.10



2.5.2 ConsistenyExpliit unonditionally stable shemes like CIR or the Dufort-Frankel sheme[17℄ usually require some onsisteny ondition, in plae of the time step re-strition k � O(h) required by other expliit shemes. The onsistenyondition for CIR an be illustrated with the simplest one-dimensional linearhyperboli PDE 't � V 'x = 0; '(x; 0) = f(x); (26)whose solution is '(x; t) = f(x + V t). The CIR sheme on a uniform meshx = jh, t = nk produes numerial approximations unj to '(jh; nk) by theformula un+1j = qunm+1 + (1� q)unm (27)where m = j � bV k=h; q = (j �m)h� V kh ; (28)as in Figure 4. The sheme is unonditionally stable beause the projetedpoint s need not lie in the same omputational ell as x; the stenil shifts tosatisfy the CFL ondition disussed in Setion 2.4.To hek onsisteny, we plug the exat solution ' into the numerialformula and bound the trunation error �(x; t) de�ned by'(jh; (n+1)k) = q'((m+1)h; nk)+(1�q)'(mh; nk)+k�(jh; (n+1)k): (29)The sheme is onsistent to �rst order if � = O(h) + O(k) on a �xed timeinterval as h; k!0. Taylor expansion gives� = O h2k !+O(k) (30)if the initial data f has two ontinuous derivatives. The �rst term omes fromthe O(h2) error in linear interpolation, repeated at O(1=k) time steps, whilethe seond term is due to approximating the harateristis by straight lineswith �rst-order aurate slopes F (x; tn). Thus CIR is �rst-order aurate ifthe following ondition is satis�ed:k � Ch (31)for some arbitrary onstant C. This onsisteny ondition di�ers from theusual time step restrition jV kj � h in two important ways: the inequalityis reversed so h is bounded rather than k, and the onstant C is ompletelyindependent of V , and need only be �xed as k; h!0.A similar alulation shows that with higher-order aurate interpolationthis lower bound beomes even less restritive. For an interpolation method11



with error O(hq) per interpolation, a onsisteny ondition k � O(hp) pro-dues a semi-Lagrangian sheme with formal error O(hq�p) + O(k). How-ever, stability beomes an issue sine higher-order interpolation may allowthe maximum norm of the solution to inrease.2.5.3 Nonlinear hyperboli problemsTo apply the CIR sheme to nonlinear hyperboli PDEs of the form't � F (x; t; ') � r' = 0; (32)Courant, Isaason and Rees use a standard approah: Freeze ' at time tn inthe argument list of F , then apply the linear CIR sheme to move forwardone step from tn to tn+1. The sheme remains unonditionally stable, andif the solution remains smooth, Taylor expansion shows that onsisteny isuna�eted. However, solutions to a general nonlinear hyperboli PDE do notremain smooth. Instead, they develop shok disontinuities and degenerateto weak solutions. Uniqueness then fails and an entropy ondition is requiredto selet the orret weak solution.When shoks our, both theory and numeris beome more diÆult. Ifthe PDE is a onservation law and the numerial sheme is in onservationform, then the Lax-Wendro� theorem [17℄ guarantees that any limit of thesheme is a weak solution. Eq. (32) is not in general a onservation law, andCIR is not in onservation form, so the Lax-Wendro� theorem does not apply.In fat, CIR moves shoks at the wrong speed even in simple onservationlaws [17℄ and thus annot be onvergent.Thus the CIR sheme |while expliit and unonditionally stable| hasnever been popular for solving nonlinear onservation laws. It has beenused mainly for linear problems, where stability plus onsisteny guaranteeonvergene. In Setion 3.3, we explain the speial features of nonlinear levelset equations whih permit the onvergene of methods based on the CIRsheme.2.6 Semi-Lagrangian shemesSemi-Lagrangian shemes whih preserve the unonditional stability of CIRbut enjoy higher-order auray have been widely used for modeling linearadvetion in atmospheri siene [3, 24, 31, 33℄. Their unonditional stabilityis partiularly useful on the sphere [18, 32℄, where it eliminates the stringenttime step restrition enountered by Eulerian shemes on small mesh ellsnear the poles. In moving interfae problems, semi-Lagrangian shemes per-mit loal mesh re�nement with large time steps and overome the ineÆienyof level set methods on a uniform mesh. Semi-Lagrangian shemes for speiallevel set equations have been onstruted in [11℄.12



An e�etive viewpoint for the derivation of higher-order aurate semi-Lagrangian shemes is presented by Smolarkiewiz and Pudykiewiz in [31℄,and involves three steps: spaetime integration, interpolation or advetionand disretization.2.6.1 Spaetime integrationConsider the linear hyperboli PDE't � F � r' = 0: (33)Suppose we know ' on a regular grid at time s and we seek the values '(x; t)at some time t > s. The fundamental theorem of alulus and Eq. (33) give'(x; t) = '(y; s) + ZC r' � (dx+ Fdt) (34)where C is any path in spaetime onneting (y; s) to (x; t).Several well-known lasses of shemes for Eq. (33) are distinguished bytheir hoies of C. Eulerian shemes take x = y and C a straight line segmentparallel to the t-axis as in Figure 5(a). Pure Lagrangian shemes take C tobe the Lagrangian trajetory T de�ned by_x(�) = �F (x(�); �) (35)starting at a grid point y, as in Figure 5(b). Sine dx + Fdt = 0 on T ,Lagrangian shemes propagate ' values unhanged along T , assuring unon-ditional stability: '(x; t) = '(x(t); t) = '(y; s): (36)The main drawbak of Lagrangian shemes is that a regular mesh rapidlydistorts, losing disretization auray. This mesh distortion has been along-standing problem in 2-D vortex methods, solved in [35℄.Semi-Lagrangian shemes ombine the regular mesh of an Eulerian shemewith the unonditional stability of a Lagrangian sheme. They build valuesof ' at regular mesh points x at time t by running a Lagrangian trajetoryT bakwards from (x; t) to some point (y; s), then a simple path L from thenearest grid point z at time s to y, as in Figure 5(). Sine dt = 0 on L anddx+ Fdt = 0 on T , we have'(x; t) = '(z; s) + ZLr' � dx = '(y; s): (37)Thus semi-Lagrangian shemes need only transport the ' evaluation from xto y, either by interpolation or advetion.13



2.6.2 Interpolation or advetionMany semi-Lagrangian shemes an be derived by interpolating '(y; s) fromknown grid values, as in the CIR sheme of Setion 2.5. Linear interpola-tion gives unonditional stability with �rst-order auray, while higher-orderaurate polynomial interpolation an be unstable. Shape-preserving inter-polation methods have been ompared in [25℄, and some of these methodsyield stable shemes for advetion.Stability issues are eliminated in [31℄ by re-examining the integral expres-sion '(y; s) = '(z; s) + ZLr' � dx: (38)This integral transports the evaluation point of ' from z to y, and antherefore be viewed as linear advetion with onstant veloity parallel toy� z. The advantage of this viewpoint is that monotone Eulerian advetionshemes generate stable semi-Lagrangian shemes: there is no CFL time steprestrition sine y and z are less than half a mesh size apart. Alternatively,L an be built from line segments parallel to oordinate axes, giving natu-rally split semi-Lagrangian shemes from one-dimensional Eulerian advetionshemes. Viewing interpolation as advetion an also be reversed, yieldingshape-preserving interpolation from Eulerian advetion shemes [30℄.2.6.3 DisretizationSpei� semi-Lagrangian shemes usually approximate trajetories by a seond-order aurate ordinary di�erential equation solver suh as the impliit mid-point rule y = x+ (t� s)F �12(x + y); 12(t+ s)� ; (39)with F values interpolated |or adveted| from the grid points. Eq. (39)is nonlinear, but �xed point iteration is proved onvergent in [12, 24℄ if theweak non-intersetion ondition(t� s)kDFk < 1 (40)is satis�ed. Semi-Lagrangian shemes are intended for omputing smoothsolutions without shoks, but it is shown in [12℄ that |even for Lipshitzsolutions| the auray of these shemes is limited only by trajetory smooth-ness, not by solution smoothness.Given seond-order aurate trajetories, a seond-order semi-Lagrangiansheme an be built on third-order interpolation methods or Eulerian adve-tion shemes [29℄. Spurious osillations are ommon with high-order poly-nomial interpolation, making shape-preserving interpolation and monotone14



advetion preferable. In this paper, we implement �rst-order CIR time step-ping with arbitrary-order ENO interpolation [15℄ to provide spatial auraywithout spurious osillations. We plan to implement seond-order trajetoryalulation in future work, to redue the dissipation evident in a few of ournumerial experiments.3 A semi-Lagrangian method for moving in-terfaes3.1 Overview of the methodWe use semi-Lagrangian time stepping shemes to solve the level set equation't � F � r' = 0: (41)Here F is a veloity �eld on Rd whih extends V N o� �(t), and may dependon anything: ', N , C, other derivatives of ', nonloal terms, jump ondi-tions, history terms, and so forth. The ombination of level sets and semi-Lagrangian time stepping shemes yields a family of methods parametrizedby several options. After an overview of these methods, we disuss eahoption in detail and explain how it ontributes to onvergene.3.1.1 AlgorithmGiven the level set funtion '(x; tn) for every point x in a uniform grid attime tn, our methods ompute '(x; tn+1 = t+ k) at eah grid point x by theCIR sheme:Æ Evaluate the extended veloity F (x; tn) at x.Æ Optionally postproess F with trunation and smoothing.Æ Move x bakwards with veloity �F (x; tn) to get the points = x+ k F (x; tn): (42)Æ Interpolate or advet '(x; tn) to the point s to get '(x; tn+1) = '(s; tn).Æ Redistane ' if desired, by replaing ' by the signed distane to itszero set.
15



3.1.2 FeaturesMethods of this family have several unique features:Æ Eah new mesh value is a ompletely independent omputation. Thisallows easy parallel implementation and |more importantly| simpli-�es onstrution of adaptive meshes whih onentrate omputationale�ort near the interfae. Thus the ost of going up a dimension iseliminated.Æ Adaptive mesh re�nement does not globally restrit the time step be-ause the time step is deoupled from the CFL stability ondition bythe unonditional stability of CIR.Æ Adaptive mesh re�nement riteria are easy to formulate beause we areomputing an approximate distane to the interfae, whih naturallydetermines re�nement. No derivative estimates are neessary.These methods are implemented on a tree mesh in [37℄, and ombined withfast tree-based redistaning and extension tehniques in [38℄ to yield a gen-eral, eÆient and modular method for moving interfaes.3.2 OptionsThis family of methods an be parametrized by hoosing the following op-tions:Æ The ' interpolation or advetion tehnique whih obtains '(s; tn) ato�-grid points s.Æ The veloity evaluation tehnique whih builds F (x; tn). This may re-quire di�erentiation and interpolation in the geometri ase, or solutionof a PDE or integral equation in the general ase. A general extensiontehnique may be used, or a problem-dependent extension may be built.Æ Postproessing of F and ' for stability and auray: for some prob-lems suh as urvature ows, the optional postproessing onsistingof veloity trunation and smoothing and redistaning at every stepappears to be mandatory for onvergene.Æ Boundary onditions required when the projeted point s falls outsidethe domain where ' is known.
16



3.2.1 Interpolation of 'Eah evaluation of '(x; tn+1) requires interpolation or advetion to obtain 'values o� the grid. There are in�nitely many interpolation tehniques, butour hoie is restrited by two requirements. First, the level set funtion' is only Lipshitz ontinuous in general sine faeting may our. Thushigh-order polynomial interpolation requiring smooth ' should be avoided.Seond, stability of the semi-Lagrangian approah in any given norm is guar-anteed only for interpolation tehniques whih do not inrease the norm toomuh. For example, linear interpolation, shape-preserving interpolation [25℄and monotone advetion [31℄ guarantee unonditional max-norm stability.Given these two requirements, essentially non-osillatory (ENO) interpo-lation [15℄ provides suÆient stability and arbitrary-order auray. ENOdoes not guarantee unonditional stability as linear interpolation would, butgives exellent results in pratie. Thus we use ENO interpolation and dif-ferentiation throughout this paper.In one dimension, ENO is designed to redue the variation of the in-terpolant by sliding the usual polynomial interpolation stenil to minimizedi�erenes. In two dimensions, one oordinate diretion is hosen �rst andthe stenil slides in that diretion. Eah stenil value is omputed by one-dimensional ENO in the other diretion. See Figure 6 for an example. Thishoie breaks x{y symmetry, giving a useful error indiator: inaurate om-putations beome unsymmetri.3.2.2 Veloity evaluationVeloity evaluation may require various problem-dependent omputationsinvolving ', derivatives of ', and possibly other data. For extending theveloity in PDE problems, we plan to use the general veloity extension of[38℄. It redistanes eÆiently at every step and requires the veloity only onthe interfae, deoupling the level set method from the veloity omputationon �(t) and permitting the modular solution of moving interfae problems forPDEs. For the passive transport and geometri ows omputed in Setion 4,we use the natural veloity extensions of Setion 2.2, trunated and smoothedaway from the interfae for numerial onveniene. The following additionalproedures are required for geometri ows.Di�erentiation of ' We ompute derivatives of ' by optionally smoothing' one, then di�erentiating the ENO interpolant to '. Smoothing is helpfulwhen the interfae is faeted or highly omplex, beause ' is Lipshitz on-tinuous with orners at the faets (as in Figure 2 above) and unsmoothedENO di�erentiation an be inaurate at orners.17



Trunation The urvature and normal have singularities when r' = 0, sowe trunate geometri veloity �elds away from �(t). We sale the veloityvetor F away from �(t) so that its maximum norm over the set fj'j > 2hgis equal to its maximum norm over the set fj'j � 2hg. Thus large F valuesnear singularities annot orrupt the solution.Veloity smoothing Di�erentiating the smoothed ENO interpolant to 'produes aurate normal vetors but noisy urvature, beause ' is onlyLipshitz ontinuous; hene we smooth urvature-dependent veloities. Eahsmoothing pass replaes eah veloity value by the arithmeti mean of the3d nearest values. This ommits O(h2) error in eah step, so the total errordue to smoothing at any �xed time is O(h2=k) = O(h) if the onsistenyondition k � O(h) is satis�ed. Thus this smoothing tehnique matheswell with the �rst-order CIR sheme. Higher-order smoothing an be usedwith a higher-order time stepping sheme. Figure 7 shows smoothing of ananisotropi veloity �eld for moving a faeted interfae, with and without 'and veloity smoothing.3.2.3 RedistaningThe level set equation for moving interfaes |unlike a general PDE| isrelevant only near the zero set of the solution. As a onsequene, we anre-initialize or \redistane" the solution at any time, by replaing it withthe exat signed distane funtion to its zero set. Redistaning is expensiveif done naively, but several fast shemes are available [1, 5, 36, 39℄. Af-ter pieewise-linear ontouring of ', for example, the Voronoi diagram ofthe resulting polygonal interfae an be built in theoretially optimal time[44℄, and yields almost instantaneous redistaning by standard optimal searhtehniques [16℄. A simpli�ed Voronoi diagram [19℄ an yield the same resultwith onsiderably lower oneptual omplexity; however, implementationsare not yet available.Redistaning an be viewed as a form of �ltering whih eliminates manynumerial issues while preserving the interfae. For example, boundary on-ditions far from the interfae beome muh less important beause their e�etis disarded after redistaning. Redistaning also simpli�es geometri velo-ities: when ' is a signed distane funtion, kr'k = 1 near �(t), so N andC simplify to r' and �'.3.2.4 Boundary onditionsSemi-Lagrangian shemes require numerial boundary onditions to speifyvalues for '(s; tn) when s lies outside the domain D overed by the grid.There are two simple boundary onditions: extension and projetion. In18



extension, we extend ' as a onstant or linear funtion along lines normal tothe boundary �D and apply our standard interpolation sheme to interpolatethe extended values to s. In projetion, we arrest s as it leaves the domainand use one-sided interpolation to the point where s rosses �D. Figure 8shows projetion in ation: if the point s from Eq. (42) falls outside thedomain, then the value of ' is interpolated to s0 and '(x; tn + k) = '(s0; tn).Our method uses projetion beause it is simple, e�etive and it ombineswell with ENO shemes whih adapt automatially to one-sided interpola-tion. The ombination of projetion with trunation, smoothing and redis-taning proved highly e�etive in our numerial examples. Further researhinto boundary onditions might be useful in solving paraboli problems likeurvature ow where information enters the domain at high speed.3.3 ConvergeneSemi-Lagrangian time-stepping shemes are ideal for solving level set equa-tions, beause they promise optimal eÆieny via easy adaptive mesh re�ne-ment and unrestrited time steps. To ful�ll this promise, they must onvergeto the orret solution near the interfae. The following heuristis |and theexperiments of Setion 4| suggest that these shemes should onverge.3.3.1 Absene of shoksSemi-Lagrangian shemes onverge for Lipshitz ontinuous solutions of ad-vetion equations [12℄, but diverge when shok disontinuities are present[17℄. This poses no problem for level set equations, whih |like advetionequations in atmospheri siene| have no shoks. Indeed, the solution 'must remain Lipshitz ontinuous at all times, or we annot extrat the zeroset �(t). Lipshitz ontinuity an be rigorously proven for passive transportand some geometri problems [10℄, and guaranteed in general by redistaning' at every step.Given that ' remains Lipshitz ontinuous, it is easy to see why semi-Lagrangian shemes should work: At a shok, ' would be disontinuous, soa tiny error in veloity would make the trajetory look the wrong way andommit an O(1) error in ', followed by F ; hene shoks would move at thewrong speed. A Lipshitz ontinuous ' has \kinks" or orners at worst ratherthan disontinuities, so a small veloity error auses a small solution error.3.3.2 The CFL onditionThe CFL ondition requires that a onvergent numerial sheme must prop-agate information about solution values at approximately the right speed,and usually restrits the time step. Our goal in applying semi-Lagrangian19



shemes to moving interfae problems is to satisfy the CFL ondition with-out restriting the time step. For interfaes undergoing passive transport,we have linear advetion where semi-Lagrangian shemes onverge [12℄, sothe CFL ondition is satis�ed. For geometri problems involving urvature,the level set equation beomes paraboli and information propagates alongthe interfae with in�nite speed. Even so, our methods an satisfy the CFLondition as k = O(h)!0 for the following heuristi reasons.Nonloal veloity omputation The domain of dependene of the CIRsolution '(x; tn+1) obviously inludes the single interpolation point s = x +kF (x; tn) and its stenil, but the point s in turn depends on the ' valuesused to ompute the extended veloity F (x; tn). Thus the CFL onditionan be satis�ed in priniple by omputing F nonloally with arbitrarily largetime steps. For PDE-type moving interfae problems F is almost always aglobal funtional of ', so the CFL ondition is satis�ed.From a theoretial point of view, if the solution is ontinuous and theproblem has a maximum priniple, eah new solution value is exatly equalto some old solution value: de�ne a veloity �eld F to point to that old value.This highly nonloal veloity satis�es the CFL ondition with any time step.Veloity smoothing A spei� nonloal tehnique whih satis�es the CFLondition is to postproess the veloity �eld by smoothing or averaging itover a suÆiently large stenil. Auray an be maintained by inreas-ing stenil size only logarithmially as h!0. In pratie, a few passes ofsmoothing produes onvergent solutions even though urvature ow velo-ities give paraboli level set equations, for whih expliit shemes usuallyrequire k = O(h2).Redistaning Replaing ' by the signed distane to its zero set �(t) alsoimplements long-distane information transfer and helps satisfy the CFL on-dition. While redistaning propagates information primarily normal to theinterfae, its inuene is enhaned in regions of high urvature suh as or-ners where normal vetors ross near the interfae: these are also the regionswhere propagation speeds are highest. Frequent redistaning also removesmany of the other inonvenient numerial artifats of the level set method,suh as boundary onditions and treatment of singularities.Veloity extension For general moving interfae problems, the veloity Fis known only on �(t) and must be extended to Rd. Typially F is extendedas a onstant normal to �(t) [1, 5, 38, 39℄, propagating information alongthe same paths as redistaning and satisfying the CFL ondition in the sameway. 20



Modularity Sine a major design goal of our method is modularity |themoving interfae ode should have minimal information about the veloity-interfae relationship| these postproessing tehniques should maintain mod-ularity while satisfying the CFL ondition. Nonloal veloity omputationand smoothing inhibit modularity, while the ombination of redistaning andveloity extension respets it.4 Numerial resultsWe study the auray of our semi-Lagrangian level set method on severalinterfaes moving under passive transport and geometri motion with orners,anisotropy, nontrivial topology and urvature. Some PDE-type exampleswith a general veloity extension [38℄ will be treated in future work.Unless otherwise noted, all the examples were omputed with the follow-ing numerial parameters.Æ Third-order ENO was used for both the ' interpolation and the veloityomputation (in geometri moving interfae problems where V requiresderivatives of ').Æ Three runs were made with 40, 80 and 160 time steps on a 402, 802and 1602 mesh. Most plots superimpose the three runs to demonstrateonvergene to graphial auray.Æ For urvature-dependent problems, the veloity was trunated and smoothedone per step, and ' was redistaned at every step to ensure the CFLondition was satis�ed.The method was implemented for two-dimensional level set equations inStandard C, ompiled with the SunSoft C ompiler using the -fast ag, andrun on one CPU of a 2-CPU 200MHz Sun Ultra{2 under Solaris 2.6.4.1 Passive transportPassive transport problems form onvenient test ases for level set methods,beause omplex exat solutions an easily be evaluated. Thus we an mea-sure the error and rate of onvergene. We arry out onvergene studiesfor three passive transport problems and verify the auray, robustness andonservation properties of the CIR sheme with ENO interpolation of degrees1, 2 and 3.
21



4.1.1 Bubbles in a shear owWe begin our study of passive transport by measuring the auray of themethod on the olletion of irular bubbles shown in Figure 9, moving witha divergene-free linear shearing veloityF (x; y) = 12 �x� 3y + 1;�y � 12� : (43)We used 20; 40; 80 and 160 time steps on 0 � t � 1 and 402; 802; 1602 and3202 grids on [�6; 6℄� [�6; 6℄. ENO interpolation of degrees 1, 2 and 3 wasused to interpolate '. Table 6 reports the maximum of the exat distanefuntion on the omputed ontour at time t = 1. First-order auray islearly evident along diagonals, where h � O(k). This agrees with the one-dimensional model theory of Setion 2. The error dereases dramatiallywhen we hange from ENO degree 1 to degree 2, but degree 3 makes nofurther improvement.4.1.2 Grid e�ets on trianglesA ommon problem in moving interfaes is sensitive dependene on numerialartifats suh as grid orientation. We hek for grid e�ets in a sharplyfaeted interfae by revolving, shrinking and expanding a triangle with alinear veloity �eld. In all ases, the interfae moves with the appropriatespeed independently of its orientation relative to the grid. Figure 10 plots theresults with both seond and third-order degree ENO on the domain [�2; 2℄2,and shows that grid e�ets are minimal. The dissipation exhibited in Figure10(a) ould be onsiderably redued by seond-order trajetory omputation.4.1.3 Mass onservation in a shear owWe onlude our study of passive transport by measuring mass onservationin a olletion of bubbles moving in the divergene-free shearing ow givenby F (x; y) = max(1� (1� x2 � y2)4+; 0)8(x2 + y2) (�y; x): (44)Figure 11 shows the extreme distortion produed by this ow, omputedwith 160 time steps on 0 � t � 100 and a 1602 mesh on the domain [�6; 6℄2.Despite this distortion, mass is well onserved; the �nal area inside the om-puted interfae is 12.4669, lose to the exat value of 4� = 12:5664.In the exat solution interfaes annot touh, beause of standard unique-ness theorems for ordinary di�erential equations. Thus merging of omputa-tional interfaes an happen even when it is impossible in theory, and mustbe allowed for in any robust moving interfae method. Automati handling22



of unexpeted topologial hanges is one of the strengths of the level setapproah.4.2 GeometryWe validate our semi-Lagrangian moving interfae method by omputingonverged solutions to a variety of geometri moving interfae problems in-luding visosity solutions to orners moving with unit normal veloity, thefaeted Wul� limit for anisotropi normal veloity �elds, omplex topolog-ial hanges under anisotropi urvature-dependent ows, and nononvexshapes shrinking to round points under ow by urvature. Moving inter-fae problems for PDEs require a general veloity extension but display littleadditional omplexity, and will be solved in future.4.2.1 Unit normal veloityWe verify �rst-order auray on a unit irle entered at (1=2�; 1=2�), ex-panding with unit normal veloity F = N , extended naturally via Eq. (13)with singularities trunated;F = N = r'max(10�8; kr'k) : (45)Table 6 reports the maximum of the exat distane funtion on the omputedontour at time t = 1, with 20; 40; 80 and 160 time steps on 0 � t � 1and 202, 402, 802 and 1602 grids on [�3; 3℄2. ENO interpolation of degrees1, 2 and 3 was used both in the ' interpolation and in the evaluation ofN . Considerably better than �rst-order auray is evident along diagonals,where h � O(k), beause the exat interfae is a linear funtion of t.4.2.2 Visosity solutions with ornersOne of the most important issues in level set equations is the orret om-putation of \visosity solutions" for faeted interfaes in geometri and PDEproblems [27℄. A key ingredient in this omputation is a orner moving in orout with unit normal veloity. Inward motion should keep orners sharp (the\shok" ase), while outward motion should produe rounded orners dueto Huygens' priniple (the \rarefation" ase), as disussed in Setion 2.1.2.Figure 12 shows a triangle moving with positive and negative unit normalveloity, both aligned with the mesh and at an angle to hek for grid e�ets,and demonstrates that our semi-Lagrangian method omputes the orretvisosity solution in eah ase.This agrees with theory: any reasonable omputed normal has unit length,so our method propagates information at unit speed. An inorret solution23



typially preserves a sharp orner moving outward, rather than rounding ito� as presribed by Huygens' Priniple: Figure 13 illustrates the di�erene.CIR produes the orret solution beause zero ' values delineating �(1)near the orner must be loated on a unit irle entered somewhere on �(0),rather than p2 from �(0), as they are in the inorret solution.4.2.3 Anisotropi normal veloity and the Wul� limitAnother key issue for level set methods is anisotropi motion along the nor-mal. Most numerial methods for level set equations are onneted to thetheory of Hamilton-Jaobi equations't +H(r') = 0; (46)whih enounters diÆulties when the Hamiltonian H is nononvex. Foranisotropi normal veloitiesV = R + � os(k�); os � = 'x=kr'k; (47)the Hamiltonian is nononvex ifR + �(1� k2) < 0 < R� j�j; (48)ausing some Hamilton-Jaobi methods to break down.In Figure 14, we evolve an initially irular interfae under several anisotropinormal veloities, produing nononvex Hamiltonians. The interfae on-verges rapidly to the \Wul� shape" [23, 42, 43℄ orresponding to eah givenanisotropy, as predited by rigorous theory [21℄. The faeted Wul� shape is anatural limit, sine portions of the interfae with normal vetors not alignedalong minima of the veloity will grow faster, ausing faets to develop. InFigure 15, we begin from a highly nononvex initial interfae, produing asevere test of the method. The asymptoti Wul� shape is still omputed a-urately. The small grid-dependene whih remains ould likely be removedwith a seond-order aurate trajetory omputation.These omputations were smoothed and their onvergene improved byapplying one pass of smoothing to ' before ENO di�erentiation, one pass toF after di�erentiation, and redistaning ' at every step. This emphasizes anessential reason why the CIR sheme works for level set equations: We arefree to modify ' and F away from �(t) to suit numerial onveniene|or tosatisfy the CFL ondition.4.2.4 Merging under anisotropyStarting from a olletion of randomly plaed, sized and oriented trefoilshapes, we move the interfae along its normal with a threefold anisotropi24



speed V = 2+ os(3�+0:3), where � is the angle between the normal vetorand the positive x-axis. This motion involves onsiderable topologial om-plexity, whih is orretly omputed by the level set approah. Figure 16shows that even this highly nononvex initial interfae is also approahingthe asymptoti triangular Wul� shape as t!1.4.2.5 Cirles under urvatureA irle shrinking with normal veloity equal to its urvature has exat radiusR(t) = qR(0)2 � 2t, so with R(0) = 2 a irle should ollapse to a point intime 0 � t � 2. A smaller irle with R(0) = 1 vanishes in time t = 0:5.Figure 17 shows onvergene to graphial auray, omputed with 20, 40,80, 160 time steps on 202, 402, 802, 1602 grids and plotted every 0.2 timeunits.A onvenient measure of onvergene is the extintion time|the �rst timewhen the interfae ompletely vanishes. For the four runs shown, the extin-tion time is 1.1, 1.5, 1.73 and 1.85, displaying slow but smoothly monotone�rst-order onvergene to the orret value 2. The extintion time is diÆultto resolve beause it depends sensitively on the movement of the interfae asit vanishes. Even with smoothing, our omputed veloity always moves theinterfae faster than the exat veloity.For this paraboli problem, veloity smoothing and trunation, ' smooth-ing and frequent redistaning all ontribute to onvergene of the CIR shemeas k!0 with k = O(h). As disussed in Setion 3.3.2, they all play a role insatisfying the paraboli CFL ondition with these unusually large time steps.We trunated the veloity away from the interfae at eah step, smoothed thetrunated veloity one per step on the 202 mesh, twie per step on the 402mesh, and so forth. The resulting logarithmi inrease in stenil width as themesh size goes to zero satis�es the CFL ondition. We smoothed ' one be-fore ENO di�erentiation, to ompute derivatives of nonsmooth ' values. Wealso redistaned ' from the interfae at the end of every step, a highly non-loal information transfer whih also helps satisfy the CFL ondition. Thesesmoothing and redistaning options were hosen after some experimentationand onstitute the minimum postproessing required to ahieve onvergene.4.2.6 Nononvex interfaes under urvatureWe veri�ed that randomly plaed, sized and oriented nononvex trefoil shapesollapse under urvature ow to round points, as predited by a geometritheorem [14℄. Figure 18 shows results for 0 � t � 1=2 on [�4; 4℄2, with oneveloity smoothing pass, one ' smoothing pass and one redistaning per step.Experiments showed that this rather small amount of smoothing suÆed foronvergene to graphial auray. 25



4.2.7 Nononvex interfaes merging under anisotropy plus urva-tureFinally, we demonstrate topologial omplexity in the visosity limit, with aurvature-smoothed veloityV = 2 + os(3� + 0:3) + �C: (49)We illustrate the limit �!0 omputationally with � = 0:1 and 0.01, arryingout a onvergene study for eah value of � separately. Figure 19 shows theresults, whih onverge rapidly to the results shown in Figure 16. We usedone veloity smoothing pass, one ' smoothing pass and one redistaning perstep.4.3 ConvergeneThese numerial experiments have onsistently demonstrated that our semi-Lagrangian methods onverge with appropriate problem-dependent truna-tion, smoothing and redistaning options. Our methods onverge without op-tions for passive transport and onstant normal veloity. When anisotropy orurvature is present, redistaning plus one to four passes of veloity smooth-ing must be applied at eah step to ensure onvergene. These onlusionsagree with the heuristis of Setion 3.3, and show that CFL timestep restri-tions an be eliminated|even for urvature-dependent paraboli problems!5 ConlusionWe have desribed and validated new numerial methods for moving inter-faes, based on semi-Lagrangian time stepping shemes for level set equations.We presented heuristi arguments and experimental evidene showing thesemethods work well for diÆult moving interfae problems involving merging,faeting, transport, and anisotropi urvature-dependent geometry.These methods has unique apabilities� to move interfaes with appropriate time steps unonstrained by nu-merial stability issues,� to deouple eah mesh point from the others, allowing easy adaptivemesh re�nement, and� potentially to deouple the veloity omputation from the moving in-terfae, allowing onvenient modular solution of a vast spetrum ofmoving interfae problems. 26
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Figure 1: Corners moving outward with unit veloity round o� into irularars, while orners moving inward remain sharp by Huygens' priniple.
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a

bFigure 2: The orrespondene between (a) a hexagonal interfae and (b) thesigned distane ' to the interfae, plotted over a 202 grid.
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Figure 3: (a) Two hexagons moving with onstant normal veloity merge;the orresponding level set funtion is shown at (b) initial and () �nal times.
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s=(m+q)hmh xFigure 4: One-dimensional semi-Lagrangian CIR sheme: move x bakwardwith veloity V , then interpolate ' at time t to point s.
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Figure 6: A possible stenil for third-order ENO interpolation to the solidpoint s: Open dots indiate mesh points in the stenil, rosses �titiouspoints for interpolation in the x variable, and the urve is avoided by theENO stenil beause aross it di�erenes of the interpolated funtion arelarge.
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Figure 7: The x-omponent Fx of the triangular veloity �eld F = (1 +os(3�+0:3)=2)N where � = 'x=kr'k is the angle between the normal vetorand the x-axis and ' is the hexagonal signed distane funtion of Figure 2.Here Fx is omputed with degree-1 ENO interpolation and di�erentiation,and plotted (a) unsmoothed on a 202 mesh, (b) after one smoothing pass ona 202 mesh, and () after one smoothing pass on a 402 mesh.37
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Figure 8: Boundary onditions implemented by projetion.
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t = 0

t = 1=2

t = 1Figure 9: A olletion of bubbles moving with linear shearing veloity.
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 fFigure 10: Tests of grid e�ets in sharp orners with linear veloity �eld. (a)A rotating triangle at a half period and a full period, omputed with degree-2ENO. (b) A triangle shrinking with V (x; y) = �52 (x; y) from t = 0 to t = 1.() A triangle expanding with V (x; y) = 2(x; y) from t = 0 to t = 1. Plots(d) through (f) show the same alulation with degree-3 ENO.40



t = 0

t = 50

t = 100Figure 11: A olletion of irular bubbles under a divergene-free shearingveloity.
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Figure 12: Visosity solutions for triangles moving with positive or negativeunit normal veloity. (a) An expanding triangle at zero angle to the mesh,with round orners. (b) An expanding triangle at angle 0.2 radians to themesh, with round orners. () A shrinking triangle at angle 0.2 radians tothe mesh, with sharp orners. 42



WRONG RIGHTFigure 13: Right and wrong propagation of orners under unit normal velo-ity.
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V = 2 + os(3� + 0:3)

V = 2 + os(4� + 0:4)

V = 2 + os(6� + 0:6)Figure 14: Wul� shapes growing from irular initial interfaes (with radius1=2 and enter at (1=2�; 1=2�)) under the veloity funtions shown beloweah plot. Here 0 � t � 1 and the domain is [�3; 3℄2.44



V = 2 + os(3� + 0:3)

V = 2 + os(4� + 0:4)

V = 2 + os(6� + 0:6)Figure 15: Wul� shapes developing from nononvex initial interfaes (givenby q(2�x� 1)2 + (2�y � 1)2 = 2�(0:8 + 0:4 os(5�)) where tan � = (2�y �1)=(2�x � 1)) under the veloity funtions shown below eah plot. Here0 � t � 1 and the domain is [�3; 3℄2.45
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Figure 16: A olletion of randomly loated, sized and oriented trefoils grow-ing and merging under anisotropi normal veloity V = 2 + os(3� + 0:3).Here our method used third-order ENO with (a) 40 time steps on a 402 mesh,(b) 80 steps on an 802 mesh, and () 160 steps on an 1602 mesh to ahieveonvergene to graphial auray. 46



a b

 dFigure 17: Convergene of two irles ollapsing under urvature ow V = C,omputed from t = 0 to the extintion times t = 1=2 and t = 2 with third-order ENO on (a) 20 time steps on 202 grid overing [�4; 4℄2 with 1 veloitysmoothing pass per step, (b) 40 time steps on 402 grid overing [�4; 4℄2 with2 passes per step, () 80 steps on 802 grid with 3 passes, (d) 160 steps on1602 grid with 4 passes.
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Figure 18: Convergene of a olletion of trefoils to round points under ur-vature ow V = C, omputed from t = 0 to t = 1=2 with third-order ENOon (a) 40 time steps on 402 grid overing [�4; 4℄2, (b) 80 steps on 802 grid,() 160 steps on 1602 grid. 48



� = 0:1 � = 0:01Figure 19: Nononvex shapes merging under urvature-dependentanisotropi ow V = 2 + os(3� + 0:3) + �C. Convergene to the visos-ity solution as � ! 0 is demonstrated with � = 0:1 in the left olumn and� = 0:01 in the right olumn; f. Figure 16 for the limit ase � = 0.49



ENO degree 1Grid NT = 20 40 80 160402 0.342 0.551 0.756 0.55802 0.0428 0.15 0.235 0.3531602 0.00628 0.00868 0.0677 0.2313202 0.019 0.00351 0.00467 0.0294ENO degree 2Grid NT = 20 40 80 160402 0.0938 0.13 0.102 0.0911802 0.0126 0.0389 0.104 0.1451602 0.022 0.00967 0.00183 0.02723202 0.0238 0.0116 0.00536 0.00163ENO degree 3Grid NT = 20 40 80 160402 0.00708 0.122 0.188 0.193802 0.018 0.00562 0.0431 0.05191602 0.0226 0.0103 0.00408 0.001893202 0.0239 0.0117 0.00555 0.00249Table 1: Maximum error at t = 1 in the interfae shown in Figure 9, movingwith divergene-free linear shearing veloity F (x; y) = 12(x� 3y+1;�y� 12),omputed with NT time steps of the CIR sheme with ENO interpolation ofdegrees 1, 2 and 3. The domain is [�6; 6℄2.
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ENO degree 1Grid NT = 20 40 80 160202 0.0589 0.0634 0.0657 0.0668402 0.0159 0.0179 0.019 0.0197802 0.00557 0.00647 0.00696 0.007221602 0.00119 0.00128 0.00137 0.00142ENO degree 2Grid NT = 20 40 80 160202 0.0077 0.00801 0.00814 0.0082402 0.0014 0.00146 0.00148 0.00148802 0.000456 0.000481 0.000488 0.0004891602 0.0000768 0.000078 0.0000792 0.0000795ENO degree 3Grid NT = 20 40 80 160202 0.00185 0.00194 0.00198 0.00199402 0.000658 0.000669 0.000672 0.000674802 0.000346 0.000349 0.00035 0.0003511602 0.0000724 0.0000725 0.0000726 0.0000726Table 2: Maximum of exat distane funtion at t = 1 on a irle of ra-dius R(t) = 1 + t and enter (1=2�; 1=2�), moving with onstant normalveloity V = 1, omputed with NT time steps of the CIR sheme with ENOinterpolation of degrees 1, 2 and 3.
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