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6.2.6 Nononvex interfaes under urvature . . . . . . . . . . 206.2.7 Merging under anisotropy plus urvature . . . . . . . . 207 Conlusion 211 IntrodutionMoving interfae problems our frequently in appliations, involve omplextopology, merging, faeting and urvature, and hallenge standard numer-ial methods. We present eÆient adaptive numerial methods for solvingthese problems. Our methods merge and break interfaes automatially viaa level set approah with frequent redistaning. Quadtree meshes resolve theinterfae with almost optimal eÆieny: we move an N -element interfae inO(N logN) work per step. Semi-Lagrangian time stepping shemes allowlarge time steps with unonditional stability. Fast redistaning algorithmsmaintain a robust numerial approximation with minimal omputational ef-fort.Setion 2 of this paper de�nes moving interfae problems and reviewsthe level set approah. Setion 3 disusses semi-Lagrangian time steppingshemes and summarizes their appliation to level set equations on a uniformmesh. Setion 4 presents the properties of quadtree meshes that we use, andSetion 5 develops our tree methods for moving interfaes. Setion 6 validatesthese methods with numerial examples inluding geometri motions whihmerge faeted interfaes under anisotropi urvature-dependent veloities.Setion 7 draws onlusions and disusses future extensions and appliations.2 Moving interfaes and level setsThis setion presents standard bakground material on moving interfaeproblems and the level set approah. Setion 2.1 de�nes these problemsand desribes examples suh as passive transport, unit normal veloity andanisotropi urvature-dependent ow. Setion 2.2 onverts general movinginterfae problems into level set equations on a �xed domain and reviewstheir solution by the level set approah.2.1 Moving interfaesA general moving interfae is the boundary �(t) = �
(t) of a set 
(t) � Rddepending on time t. If 
 is suÆiently smooth, then �(t) has an outwardunit normalN and a normal veloity V at eah point, whih an be alulatedfrom standard geometri formulas found in [23℄. A moving interfae problem3



is a losed system of equations whih spei�es V as a funtional of �, possiblyin a highly indiret and nonloal way. Some representative solutions of thefollowing spei� moving interfae problems are shown in Figure 1.Passive transport An interfae is transported in an ambient ow whihis independent of �. Thus a veloity �eld F (x; t) is given on Rd and �(t)moves with normal veloity V = N � F .Unit normal veloity The simplest geometri ow moves �(t) along itsnormal with veloity V = 1. Nononvex interfaes produe omplex mergingand ornering patterns under this ow.Anisotropi urvature-dependent veloity A more general geometrimotion has normal veloityV (x; t) = R + � os(K� + �0) + (R0 + �0 os(K 0� + �00))C; (1)where os � = N � e1 is the osine of the angle between the normal vetor andthe positive x-axis. These veloity �elds produe faeted interfaes mergingin omplex anisotropi patterns and are often used as simpli�ed models inmaterials siene [22℄.Crystal growth Many industrial problems involve moving interfaes be-tween di�erent phases of a material. The interfae between a growing solidrystalline material and its liquid or gaseous phase, for example, has beenmodeled by a Stefan-type problemut = �u o� �(t) (2)u = ��C on �(t) (3)where the temperature �eld u is unknown and the interfae � moves withnormal veloity V equal to the jump in the normal derivative of u. See [5℄for physial bakground and [13, 17, 11℄ for samples of the many numerialmethods developed for this problem.2.2 The level set approahThe main diÆulty in moving interfaes is the orret handling of merging,breaking and other topologial hanges. We an overome this diÆulty byreformulating moving interfae problems as \level set equations" on a �xeddomain, using the zero set�(t) = fx 2 Rd : '(x; t) = 0g (4)4



of an arbitrary funtion ' : Rd�R!R, suh as the signed distane to �(t):'(x; t) = � miny2�(t) kx� yk: (5)(For example, Figure 2 shows a hexagon in the plane and the orrespondingsigned distane funtion '.) We hoose ' > 0 in 
(t), so the outward unitnormal vetor and normal veloity are given by [23℄N = r'=kr'k; (6)V = 't=kr'k: (7)Given an extension of the vetor normal veloity V N to a funtion F (x; t) onRd, Eq. (7) implies a partial di�erential equation |the \level set equation"|whih moves � by evolving ':'t � F � r' = 't � (F �N)kr'k = 0: (8)Eq. (8) moves every level set of ' with the extended veloity F , and in par-tiular moves the zero set �(t) with the orret veloity V N . This approahto moving interfaes embeds the topology in ' rather than �(t) and automat-ially handles merging, breaking and other topologial hanges. The movinginterfae problems of Setion 2.1 an be reformulated as the following levelset equations.Passive transport For passive transport, F is already de�ned on Rd andis a natural extension of V N . The level set equation beomes a linear hyper-boli partial di�erential equation (PDE)'t � F (x; t) � r' = 0: (9)Unit normal veloity With N extended by Eq. (7), motion with unitnormal veloity beomes a nonlinear hyperboli PDE't � kr'k = 0: (10)Curvature-dependent veloity The veloity de�ned by Eq. (1) yields't� (R+ � os(K�+�0))kr'k = (R0+ �0 os(K 0�+�00))r� (r'=kr'k)kr'k:(11)Here os � = 'x=kr'k and we have used the urvature formula C = �r �Nfrom [23℄. Eq. (11) is a mixed hyperboli-paraboli PDE whih is singularwhere r' vanishes. 5



The level set approah moves �(t) via the level set equation (8). An initiallevel set funtion '(x; 0) and an extended veloity �eld F are built, the levelset equation (8) is solved numerially, and the solution '(x; t) is ontouredwhen �(t) is required. The approah was introdued in [9℄, and an extensivereent survey is [12℄. Its main advantage is the natural treatment of dynamitopology shown in Figure 3.There are some potential diÆulties with the level set approah. It an bemore expensive sine it goes up a dimension, partiularly if uniform meshesare used. Extending the veloity o� �(t) an be diÆult. One must be arefulto obtain the orret \visosity solution" of Eq. (8), by using an appropriatesolver for the level set equation [12℄. The approah is not naturally modular:a new ode must be written for eah new problem to be solved, sine theveloity evaluation is intertwined with the moving interfae ode by veloityextension.Our methods ombine a level set approah with an adaptive quadtreemesh, and are shown experimentally to obtain the orret visosity solutionfor passive transport and geometri problems where veloity extension isstraightforward. The adaptivity of our methods eliminates the added ost ofgoing up a dimension. A general veloity extension is developed and used tobuild general modular methods in [20℄.3 Semi-Lagrangian level set methodsThe semi-Lagrangian level set methods introdued in [19℄ solve level set equa-tions on a uniform mesh with semi-Lagrangian time stepping shemes. Thelevel set equations handle the dynami topology of the moving interfae, whilesemi-Lagrangian shemes allow large time steps k = O(h) even for paraboliproblems like urvature ows. These methods are robust and aurate, butthe uniform mesh spends too muh e�ort far from the interfae. We imple-ment semi-Lagrangian level set methods on a quadtree mesh to onentrateomputational e�ort near the interfae, attaining auray omparable to auniform mesh method at far less ost. In this setion, we review the simplestsemi-Lagrangian time stepping sheme, disuss its onvergene theory, andsummarize the methods of [19℄.3.1 The CIR shemeThe linear hyperboli PDE't � F (x; t) � r' = 0 (12)propagates ' values along the harateristi urves s(t) de�ned by_s(t) = �F (s(t); t): (13)6



Thus we an �nd ' values at any time t by �nding the harateristi urvepassing through (x; t) and following it bakwards to some previous point(x0; t0) where the value of ' is known: then '(x; t) = '(x0; t0). This ob-servation forms the basis of the \bakward harateristi" or \CIR" shemedue to Courant, Isaason and Rees [2℄, whih is the simplest semi-Lagrangiansheme. Given ' at time tn, CIR approximates '(x; tn+1) at any point x attime tn+1 = tn + k by evaluating the veloity F (x; tn), approximating thebakward harateristi through x by a straight linex + (tn+1 � t)F (x; tn) � s(t) (14)and interpolating ' linearly at time tn to the pointx+ k F (x; tn) � s(tn): (15)Then '(x; tn+1) is set equal to the interpolated value.General semi-Lagrangian time stepping shemes are built along similarlines with higher-order aurate time stepping and interpolation, and arewidely used in atmospheri siene [15, 14℄.3.2 ConvergeneFor linear PDEs, the Lax-Rihtmyer equivalene theorem [6℄ guarantees thatCIR will onverge to the exat solution as k; h!0 if it is stable and onsistent.Stability is unonditionally guaranteed sine eah new value '(x; tn+1) is asingle linearly-interpolated value of ' at time tn.Consisteny, however, is onditional. The trunation error of CIR is� = O h2k !+O(k); (16)due to the O(h2) error in linear interpolation over O(1=k) steps plus theO(k) due to freezing F and approximating the harateristis by straightlines. Thus CIR is onsistent to O(k) if a ondition like k � O(h) is satis-�ed, ontrary to the usual hyperboli ondition k � Ch. This ondition isextremely onvenient, beause k = O(h) balanes time and spae resolutionin this �rst-order aurate sheme.CIR onverges for Lipshitz solutions of nonlinear PDEs but moves shoksolutions of onservation laws at the wrong speed beause CIR is not inonservation form. Thus semi-Lagrangian shemes suh as CIR have beenapplied mainly to problems in atmospheri siene where shoks are absent.Sine level set equations have no shoks, CIR is a natural sheme for movinginterfaes. 7



3.3 Semi-Lagrangian level set methodsThe semi-Lagrangian CIR sheme was applied to level set equations in [19℄,yielding semi-Lagrangian level set methods on a uniform mesh. Convergenewas heuristially disussed and experimentally veri�ed for many moving in-terfae problems involving passive transport, geometry, dynami topology,faeting and urvature. Convergene of these methods is straightforward forpassive transport and �rst-order geometry where the level set equation ishyperboli. For paraboli problems suh as urvature ows, the main issue isthe Courant{Friedrihs{Lewy (CFL) ondition whih restrits the timestepof most expliit methods by k � O(h2) to ensure information propagatesorretly. Semi-Lagrangian level set methods are unonditionally stable andan satisfy the CFL ondition by nonloal veloity evaluation, permittingonvergene with large time steps k = O(h) even for paraboli problems.While their onvergene theory is still in progress, the ombination of exper-imental evidene with the following heuristis indiates that these methodsan onverge orretly.The domain of dependene of the CIR solution '(x; tn+1) obviously in-ludes the single interpolation point s = x + kF (x; tn) and its stenil, butthe point s in turn depends on the ' values used to ompute the extendedveloity F (x; tn). Thus the CFL ondition an be satis�ed in priniple byomputing F nonloally with arbitrarily large time steps. A spei� nonlo-al tehnique whih satis�es the CFL ondition is to postproess the veloity�eld by smoothing or averaging it over a suÆiently large stenil. Aurayan be maintained by inreasing stenil size only logarithmially as h!0.In pratie, a few passes of smoothing produes onvergent solutions eventhough urvature ow veloities give paraboli level set equations, for whihexpliit shemes usually require k = O(h2).Redistaning and veloity extension tehniques also implement long-distaneinformation transfer and help satisfy the CFL ondition. While these teh-niques propagate information primarily normal to the interfae, their inu-ene is enhaned in regions of high urvature beause normal vetors rossnear the interfae.4 Quadtree meshesMoving interfaes by solving the level set equation di�ers from solving gen-eral PDEs beause we need to resolve the solution ' only near its zero set.Quadtree meshes oarsen rapidly away from �(t) to resolve the interfae withoptimal eÆieny and eliminate the ost of going up a dimension. In thissetion, we review standard properties of quadtree meshes. We de�ne, buildand triangulate quadtree meshes in Setion 4.1, then speialize in Setion 4.28



to develop some useful properties of quadtree meshes built to resolve a giveninterfae �.4.1 Quadtree meshes4.1.1 De�nitionA quadtree mesh overing the ube [0; 1℄d in Rd is omposed of square ellsorganized into levels, with eah ell on level l + 1 ontained in some level-lell. A quadtree mesh built to resolve a given funtion ' on [0; 1℄d stores thefollowing information:� The root ell C0 = [0; 1℄d, whih oupies level l = 0.� A maximum depth L � 0.� A ell list of ells, grouped by level.� A vertex list of ell verties (orners), without repetitions.� A vertex value list of ' values at ell verties.� Other appliation-dependent data.Eah ell C in the ell list ontains:� Its level l and orner vertex (i1; : : : ; id): the ell overs the box 2�l[i1; i1+1℄� � � � � [id; id + 1℄.� The indies in the vertex list of the 2d ell verties.� The index in the ell list of its parent (if there is one).� The indies in the ell list of its hildren (if there are any).� Other appliation-dependent data.An example is shown in Figure 4 and Table 1. Given an L-level quadtree,many operations related to searhing and sorting an be done eÆiently.Finding the tree ell where a point x lies, for example, requires O(L) heksof bits in the binary representation of x.
9



4.1.2 Building the quadtreeTo build a quadtree, start with a root ell at level l = 0. Test whether it needssplitting into 2d hildren on level l + 1. The splitting riterion distinguishesone quadtree from another, and must be spei�ed to suit the appliation.If a ell needs splitting, some bookkeeping must be done |reating newverties, adjusting familial pointers and so forth| and the values of ' atnew verties must be found. Then the hildren are tested, split if neessaryand the proess repeats reursively. The build terminates when no ell abovelevel L requires splitting.4.2 PropertiesThis paper uses three di�erent quadtrees, eah built to resolve some interfae� with some version of the following splitting riterion:Split any ell whose edge length exeeds its minimum distane to �: (17)Variants of this riterion determine the quadtree mesh at eah time step,initialize the level set funtion ' and redistane ' at eah step. This splittingriterion is one ingredient in the fast redistaning algorithm of [18℄, whih weuse in Setion 5. The other ingredient is an eÆient guaranteed-orret searhstrategy whih uses a quadtree mesh to �nd nearest points on �. In�nitequadtrees built with Criterion (17) are known as Whitney deompositionsand used to solve extension problems in harmoni analysis [16℄.If ' is the signed distane to �, then the values of ' stored at ell vertiesmake this riterion extremely simple to implement. Figure 5 shows the ells ina quadtree for a simple interfae. In general, Criterion (17) builds quadtreeswith several useful properties:� Adjaent ells di�er in size by no more than a fator of 2, produing asmooth mesh and simplifying proedures suh as neighbor �nding andtriangulation of the verties.� A ell's size is proportional to its distane to �.� If ' is the signed distane to � at verties and we extend ' into eahell by d-linear interpolation, then |beause ells vary in size| ' willbe disontinuous; see Figure 6. However, the jumps in ' derease insize in ells lose to the interfae beause of the triangle inequality.Thus the interpolated ' is lose to ontinuous near �.� Cells oarsen very rapidly away from the interfae: if there are Nhildless ells touhing �, then the entire tree ontains only O(N) ells.Hene � is resolved aurately at minimal ost.10



5 Tree methods for moving interfaesWe develop tree methods whih move interfaes by ombining the followingideas:Æ Topologial hanges require the solution of the level set equation onlyloally near the interfae, not globally in spae.Æ The interfae an be aurately resolved at optimal ost by a quadtreemesh.Æ Semi-Lagrangian time stepping shemes suh as CIR deouple timesteps from CFL onditions, permitting time steps determined by reso-lution requirements rather than numerial stability.Æ Semi-Lagrangian shemes deouple mesh points into independent om-putations, permitting adaptive re�nement without iteration.Æ With frequent redistaning, the solution ' of the level set equation islose to a signed distane funtion at all times, giving a natural splittingriterion for building a quadtree mesh and making error estimationunneessary.The ombination of these ideas yields a family of adaptive methods. Wesummarize this family, identify the options whih parametrize it, and disussthem in detail below.In Setion 5.1, we initialize the solution ' of the level set equation: givenan initial interfae � = �(0), we build a quadtree Q0 and an approximatesigned distane funtion '0 on Q0 whih resolves � to spei�ed auray � inalmost optimal time and spae.After initializing, we evolve the interfae one step at a time. Optionally 'may be redistaned before the time step, as disussed in Setion 5.2. Given aquadtree Qn resolving the zero set �n of 'n � '(tn) and an extended veloityFn equal to the vetor normal veloity V N on �n, we build a quadtree Qn+1to resolve the zero set �n+1 of the CIR approximation'n+1(x) = 'n( x+ kFn(x) ): (18)Computing 'n+1 involves four proedures: extension, resolution, interpola-tion and appliation of boundary onditions.Extension Extend the vetor normal veloity V N o� the interfae to aglobal funtion Fn(x) on the mesh Qn. This extension problem an be solvedin general or tailored to a spei� moving interfae problem. We disusssome spei� tehniques for passive transport and geometry in Setion 5.3:11



loal and global extensions, smoothing, trunation, interpolation and di�er-entiation on uniform and adaptive meshes. A general extension tehnique isdeveloped in [20℄.Resolution Apply the splitting riterion of Setion 5.4: form a quadtreeQn+1 resolving the zero set �n+1 of the CIR approximation 'n+1 from Eq.(18) to spei�ed auray �.Interpolation At o�-mesh points s = x+ kFn(x), our interpolation strat-egy determines stability as well as auray, and is detailed in Setion 5.5.Boundary onditions Numerial boundary onditions are straightforwardand disussed in Setion 5.6.5.1 InitializationA moving interfae omputation begins with the initial interfae �0 = �(0),while the level set equation requires an initial level set funtion '0 = '(0)with zero set �0. The signed distane funtionD(x) = �miny2� kx� yk (19)is prohibitively expensive to ompute diretly: If� = [Ni=1[i; i+1℄is a polygonal urve in R2, then evaluatingD(x) = � Nmini=1 miny2[i;i+1℄ kx� ykosts O(N) work per evaluation. We initialize '0 eÆiently by building aquadtree Q0 with Criterion (17), setting '0 = D at the verties of Q0 andon ells touhing �0, and interpolating '0 linearly on ells not touhing �.As noted in Setion 4.2, this splitting riterion produes a mesh whihoarsens so rapidly away from � that if there are N ells touhing �, then theentire mesh ontains only O(N) ells. Thus if � has N elements, then diretevaluation of all the quadtree vertex values osts only O(N2) work, muhless than the O(Nd+1) for evaluating ' on a uniform mesh in d dimensions.Faster O(N logN) redistaning algorithms are disussed in Setion 5.2.
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5.2 RedistaningMoving interfaes by solving the level set equation di�ers from solving ageneral PDE, beause we an ignore all values of ' far from the zero set. Inpartiular, we an replae the solution at any time by an approximate signeddistane with the same zero set.Frequent redistaning improves numerial auray. Figure 7 plots ' fora irle growing with unit normal veloity V = 1, omputed by the methodof [19℄. The solution ' satis�es a maximum priniple, so maxima an neverinrease. However, this also leads to attening of the level set funtion: r'may beome small near the interfae, ausing level sets to broaden into re-gions or beome diÆult to ontour. Redistaning ures attening ompletelyand reestablishes lean intersetion between the ' surfae and any horizon-tal plane. Also, redistaning eliminates numerial e�ets due to arti�ialboundaries.Redistaning is equivalent to initialization one � is found, and manyontouring tehniques whih �nd � are available. The simplest tehniquesplits eah ell into two triangles, �nds the exat zero segment of the linearinterpolant to ' on eah triangle, then joins the segments to form the inter-fae. The hoie of ell splitting diretion makes this ontouring tehniqueanisotropi and helps indiate errors: underresolved omputations an signalerror by displaying a diretional bias.A fast algorithm whih omputes an approximate signed distane '0 atthe quadtree verties in O(N logN) work was developed in [18℄. It usesan eÆient searh strategy to ompute the minimum distane from all ver-ties of the quadtree to �, and runs fast enough to redistane at every timestep. Other fast redistaning algorithms apply the eikonal equation [21℄ andheapsort tehniques [1℄, primarily on a uniform mesh. A polygonal interfaemade of N line segments has a \Voronoi diagram" whih an be omputedin O(N logN) time [26℄ and solves the redistaning problem exatly. How-ever, the onstant in O(N logN) is large and the algorithm is omplex toprogram. A simpler struture alled the ompat Voronoi diagram may leadto faster redistaning algorithms [7℄, though at present no implementation isavailable.5.3 ExtensionLevel set methods require a globally de�ned veloity F whih extends V Nsmoothly o� the interfae �(t). Many ad ho veloity extensions for spe-i� problems are desribed in [12℄, while general extension tehniques aredeveloped in [1, 20, 21℄.Our tree methods also require veloity extension. The test problemssolved in Setion 6 have natural veloity extensions: for passive transport F13



is given, while geometri veloities suh asF = (R + � os(K� + �0))N + (R0 + �0 os(K 0� + �00))CN; (20)an be evaluated by the natural geometri formulas N = r'=kr'k andC = �r �N . For more general problems, we plan to inorporate the generalextension of [20℄.Naturally extended geometri veloities produe two numerial diÆul-ties. First, the exat solution ' is not di�erentiable when faets or ornersdevelop, r' vanishes at extrema so N and C are not de�ned there, and re-distaning on a quadtree introdues disontinuities as well. Our approximatesigned distane funtion is disontinuous when ells hange size, though thejumps derease steadily in size as we approah �.The seond diÆulty is the CFL ondition, whih requires small timesteps k = O(h2) in almost all expliit shemes for paraboli level set equationssuh as urvature ow. The CIR sheme on a uniform mesh onverges with amuh more eÆient time step k = O(h) provided that the CFL ondition issatis�ed by smoothing the veloity and redistaning ' frequently [19℄. Heneonvergene for urvature-dependent veloities will require smoothing andfrequent redistaning.We have developed both ell-based and grid-based shemes for evalu-ating geometri veloities. Cell-based shemes are fast and work well forproblems with �rst-order ' derivatives, while grid-based shemes are slower,more general, and work well for urvature-dependent veloities. We desribethese approahes below.5.3.1 Cell-based veloity evaluationThe ell-based approah omputes geometri veloities Fn(x) loally at eahnew tree vertex x in Qn+1. Suppose x lies in a ell C of the old quadtreeQn. Then we an form the bilinear interpolant B to the vertex values of 'and approximate r' by rB on C. Seond derivatives an be omputed byiterating the interpolation, or by using the biquadrati interpolant Q to thenine ' values at verties of C and its siblings. Q raises the order of aurayby one but doubles the ell size and introdues a stability issue: for linearonstant-oeÆient problems in one spae dimension, CIR is unstable withquadrati interpolation.We an vary this tehnique by omputing the veloity at all verties ofthe old quadtree Qn and interpolating it to the new tree verties. Smoothingtehniques an then be applied beause the veloity is omputed on thewhole quadtree rather than pieemeal and permit more e�etive solution ofparaboli problems. 14



5.3.2 Grid-based veloity evaluationWe an evaluate geometri veloities with an auxiliary grid by the followingproedure: build a uniform 2L � 2L grid mathing the smallest ell in thequadtree. Interpolate ' to the uniform grid by the ell-based bilinear inter-polation of Setion 5.5.1, whih is exat at verties shared by the quadtreeand the uniform grid. Apply the standard grid-based tehniques of smooth-ing and di�erentiating ', trunating and smoothing F on the grid, as inthe geometri veloity evaluation of [19℄. Finally, restrit F to the quadtreeverties, whih form a subset of the uniform grid. This approah is powerfuland general, but ostly beause of the uniform grid. However, the ost anbe redued by masking o� unneeded areas.5.4 ResolutionAt eah step, our methods build a quadtree mesh to resolve the CIR approx-imation 'n+1(x) = 'n( x + kFn(x) ) (21)to the level set funtion '(x; tn+1). The quadtree is built reursively fromthe root ell C0 by the following splitting riterion:Split every ell where j'n+1j is larger than the edge length: (22)Thus we apply the splitting riterion (17) as if 'n+1 were a distane funtion.Redistaning at every step keeps'n+1(x) = 'n + kF � r'n + o(k) = 'n +O(k) (23)within O(k) of the signed distane funtion 'n. Thus in the limit k =O(h)!0 Criterion (22) redues to (17), yielding the properties noted in Se-tion 4.2.5.5 InterpolationThe CIR sheme requires interpolated ' values at the projeted points s =x + kFn(x). Many general interpolation tehniques are available, but ourhoie is restrited by the irregularity of the quadtree Qn and by two re-quirements. First, the level set funtion ' is only Lipshitz ontinuous ingeneral sine faeting may our. Thus high-order methods whih requiresmooth data should be avoided. Seond, stability of the semi-Lagrangianapproah in any given norm is guaranteed only for interpolation shemeswhih do not inrease the norm too muh. For example, linear interpolationwas used in [19℄ to guarantee unonditional max-norm stability. Similarly,15



shape-preserving interpolation [10℄ was used in [24℄ and monotone advetionin [14℄.Given these two requirements and a quadtree mesh, two obvious lassesof interpolation tehniques are available: ell-based and triangulation-based.Both beome loally exat by setting ' equal to D near �(t).5.5.1 Cell interpolationHere we use the square ells of the quadtree to interpolate from vertex valuesof '. Bilinear interpolation to a point (x; y) = (x0 + �h; y0 + �h) in a ell Cevaluates (1� �)(1� �)'00 + �(1� �)'10 + (1� �)�'01 + ��'11; (24)where the vertex values for C are given by 'ij = '(x0+ ih; y0+ jh). Bilinearinterpolation preserves the maximum priniple of the CIR sheme and yieldsloal seond-order auray, with global �rst-order errorO(k+h) afterO(1=k)time steps.Biquadrati ell interpolation requires nine ' values while a ell C hasonly four verties. Hene given x in a hildless ell, we an asend one levelto interpolate from the nine verties of C and its siblings. This gains an orderof auray but doubles the mesh size and sari�es the maximum priniple.5.5.2 Triangle interpolationWe an also interpolate by triangulating the verties of the quadtree andbuilding the ontinuous pieewise-linear interpolant to ' at the verties. Asin [3℄, we an add one Steiner vertex at the enter of eah ell and onnetthe verties to form a high-quality triangulation in only O(N) work. Theenter values of ' may be evaluated exatly or interpolated from verties.5.5.3 Exat interpolationA third alternative uses the quadtree to evaluate the signed distane to �nexatly and eliminates interpolation entirely, and is disussed in [20℄.5.6 Boundary onditionsThe CIR sheme requires numerial boundary onditions to speify valuesfor '(s; tn) when s lies outside the domain D overed by the grid.There are two simple boundary onditions: extension and projetion. Inextension, we extend ' as a onstant or linear funtion along lines normal tothe boundary �D then apply our standard interpolation sheme to interpolatethe extended values to s. In projetion, we arrest s as it leaves the domain16



and use one-sided interpolation to the point where s rosses �D. Our treemethods use projetion beause it is simple and e�etive.6 Numerial resultsWe validate our tree methods by omputing a variety of interfaes movingunder passive transport and geometri motions, with orners, anisotropy,nontrivial topology and urvature. (Some PDE-type examples with a generalveloity extension will be treated in future work [20℄.) Our methods wereimplemented in Standard C, ompiled with the SunSoft C ompiler and the-fast optimization ag, and run on one CPU of a 2{CPU 200MHz SunUltra{2 under Solaris 2.6.6.1 Passive transportPassive transport problems where �(t) moves with a globally de�ned velo-ity F (x; t) onstitute onvenient test ases for moving interfae methods,beause omplex exat solutions an easily be evaluated. Thus we an mea-sure the error and rate of onvergene. We arry out onvergene studiesfor three passive transport problems and verify the auray, robustness andonservation properties of tree methods.6.1.1 Bubbles in a shear owWe measure the auray of our methods on a olletion of irular bubbles(Figure 8) moving with a divergene-free linear shearing veloityF (x; y) = 12(x� 3y + 1;�y � 12): (25)We use 10; 20; : : : ; 320 time steps on 0 � t � 1 on a quadtree with 5 through9 levels on [�5; 5℄ � [�5; 5℄. Table 2 reports the maximum of the exat dis-tane funtion on the omputed ontour at time t = 1. First-order aurayis learly evident along diagonals, where h = O(k). This agrees with theonsisteny ondition of Setion 3.2. The error dereases onsiderably whenwe hange from bilinear to biquadrati ell interpolation, indiating that theerror is largely due to spatial disretization.6.1.2 Grid e�ets on trianglesA ommon diÆulty in moving interfaes is sensitive dependene on numer-ial artifats suh as grid orientation. We hek for grid e�ets in passivetransport of a sharply faeted interfae by revolving, shrinking and expand-ing a triangle with a linear veloity �eld. In all ases, eah faet moves with17



the appropriate speed independently of its orientation relative to the grid.Figure 9 plots the results with both bilinear and biquadrati ell interpola-tion on the domain [�2; 2℄2, and shows that grid e�ets are minimal. Eahplot demonstrates onvergene by superimposing three runs with 40, 80 and160 time steps on a quadtree with 5, 6 and 7 levels.6.1.3 Mass onservation in a shear owWe onlude our study of passive transport by measuring mass onservationin a olletion of bubbles moving in the divergene-free shearing ow givenby F (x; y) = max(1� (1� x2 � y2)4+; 0)8(x2 + y2) (�y; x): (26)Figure 10 shows the extreme distortion produed by this ow, omputedwith 160 time steps on 0 � t � 100 and bilinear interpolation on a 9-levelquadtree on the domain [�6; 6℄2. This mesh resolves �(t) as aurately asa 512 � 512 uniform mesh, at far less ost. Despite this distortion, mass iswell onserved; the �nal area inside the omputed interfae is 12.7701, loseto the exat value of 4� = 12:5664.6.2 GeometryWe validate our methods by omputing onverged solutions to a variety ofgeometri moving interfae problems inluding visosity solutions to ornersmoving with unit normal veloity, the faeted Wul� limit for anisotropi nor-mal veloity �elds, omplex topologial hanges under anisotropi urvature-dependent ows, and nononvex shapes shrinking to round points under owby urvature. These are among the most important tests of general movinginterfae methods.6.2.1 Unit normal veloityWe verify �rst-order auray on a unit irle entered at (1=2�; 1=2�) withunit normal veloity, extended naturally via Eq. (6) with singularities trun-ated; F = N = r'max(10�8; kr'k) : (27)Table 3 reports the maximum of the exat distane funtion on the om-puted ontour at time t = 1, with 10; 20; : : : ; 160 time steps on 0 � t � 1and quadtrees with 5 through 9 levels on [�3; 3℄2. Bilinear and biquadratiinterpolation are used for ' interpolation and the ell-based evaluation of N .High auray is evident along diagonals, where h = O(k), beause the exatinterfae is a linear funtion of t. 18



6.2.2 Visosity solutions with ornersCorret omputation of \visosity solutions" for faeted interfaes in geomet-ri problems depends on moving a orner in or out with unit normal veloity[12℄. Inward motion should keep orners sharp (the \shok" ase), while out-ward motion should produe rounded orners due to Huygens' priniple (the\rarefation" ase). Figure 11 shows a triangle moving with positive andnegative unit normal veloity, both aligned with the mesh and at an angleto hek for grid e�ets, and demonstrates that tree methods ompute theorret visosity solution in eah ase.Figure 12 shows a omplex interfae growing and merging with unit nor-mal veloity, and exhibits the simpliity of the level set approah to topolog-ial omplexity. The manifold orners and hanges of topology are omputedautomatially and easily. In partiular, outward-moving inward-pointing or-ners remain orretly sharp, as the visosity solution theory requires. The�nal area enlosed by the omputed interfae is 72.77, 73.15, and 73.29 onthe three runs shown, indiating smooth monotone onvergene. The initialand �nal quadtrees are shown to demonstrate the extreme onentration ofomputational e�ort near the moving interfae. An 8-level mesh resolves theinterfae as aurately as a 256� 256 uniform mesh at far less ost.6.2.3 Anisotropi normal veloity and the Wul� limitAnisotropi motion along the normal onnets moving interfaes to the theoryof Hamilton-Jaobi equations't +H(r') = 0 (28)whih enounters diÆulties when the Hamiltonian H is nononvex. Foranisotropi normal veloitiesV = R + � os(k�); os � = 'x=kr'k; (29)the Hamiltonian is nononvex ifR + �(1� k2) < 0 < R� j�j; (30)ausing some Hamilton-Jaobi methods to break down.In Figure 13, we evolve an initially irular interfae under several anisotropinormal veloities produing nononvex Hamiltonians, with onstants hosento keep R+ �(1� k2) = �4. The interfae onverges rapidly to the orretlytilted \Wul� shape" [25℄ orresponding to eah given anisotropy, as preditedby rigorous theory [8℄. In Figure 14, we begin with a highly nononvex ini-tial interfae to test our methods even more severely. The asymptoti Wul�shape is still omputed aurately. 19



6.2.4 Merging under anisotropyStarting from a olletion of randomly plaed, sized and oriented trefoilshapes, we move the interfae along its normal with a threefold anisotropispeed V = 2+ os(3�+0:3), where � is the angle between the normal vetorand the positive x-axis. Figure 15 shows the mehanism whih transformsthis highly nononvex initial interfae into the asymptoti triangular Wul�shape as t!1.6.2.5 Cirles shrinking under urvatureA lassi geometri problem shrinks a plane urve with veloity equal to itsurvature, and forms a useful test ase for urvature-dependent veloity. Airle shrinking with V = C has exat radius R(t) = qR(0)2 � 2t, so withR(0) = p5 a irle should shrink to radius 1 at time t = 2. A smallerirle with R(0) = 1 vanishes ompletely in time t = 1=2. Figure 16 showsonvergene to graphial auray, omputed with 20, 40, 80, 160 time stepson quadtrees with 5 through 8 levels and plotted every 0.2 or 0.1 time units.The �nal omputed area of the large irle is 2.518, 2.849, 3.007 and 3.088,showing a smooth �rst-order onvergene to the exat area �.For this paraboli problem, we use grid-based veloity evaluation withredistaning every step to satisfy the CFL ondition and obtain onvergenewith large time steps k = O(h). We apply L� 4 passes of osine smoothingon the L-level mesh omputation.6.2.6 Nononvex interfaes under urvatureA geometri theorem [4℄ predits that any smooth embedded plane urveshould ollapse to a round point and vanish in �nite time under urvatureow V = C. We verify that tree methods behave orretly for a olletionof randomly plaed, sized and oriented nononvex trefoil shapes, with theonverged alulation shown in Figure 17.6.2.7 Merging under anisotropy plus urvatureFinally, we validate our methods by omputing the visosity limit for a om-plex interfae evolving through merging, �ll-in and faeting. Beginning as inFigure 15, we move �(t) with a urvature-smoothed veloityV = 2 + os(3� + 0:3) + �C: (31)We illustrate the visosity limit �!0 omputationally with � = 1, 0.1 and0.01. For eah value of �, we arry out a numerial onvergene study withgrid-based veloity evaluation, redistaning and smoothing at eah step. Fig-ure 18 shows rapid onvergene to the results omputed in Figure 15.20



7 ConlusionWe have desribed and validated new adaptive numerial methods for movinginterfaes, whih ombine the level set equation, the semi-Lagrangian CIRtime stepping sheme, and quadtree meshes. Our tree methods resolve andmove omplex interfaes at optimal ost with time steps unonstrained bynumerial stability. They form key omponents of \blak-box" methods formoving interfaes, whih aept the interfae and its veloity at time t andreturn the evolved interfae one time step later. Suh methods simplify thesolution of moving interfae problems, beause the moving interfae numerisare independent of the physial problem driving the interfaial motion.Numerial results show that tree methods onverge to orret visos-ity solutions even for diÆult moving interfae problems involving merging,faeting, transport, and anisotropi urvature-dependent geometry. Largetime steps an be taken even for paraboli problems, with the aid of frequentredistaning and veloity smoothing.Planned future developments inlude� further investigation of CFL onditions for paraboli problems,� higher-order aurate time stepping,� ompletely modular moving interfae methods [20℄, and� appliations to industrial rystal growth problems, where the movinginterfae is oupled to omplex materials siene.Referenes[1℄ D. A. Adalsteinsson and J. A. Sethian. The fast onstrution of extensionveloities in level set methods. Tehnial Report PAM-738, UC BerkeleyCenter for Pure and Applied Mathematis, 1997.[2℄ R. Courant, E. Isaason, and M. Rees. On the solution of nonlinearhyperboli di�erential equations by �nite di�erenes. Comm. Pure Appl.Math., 5:243{249, 1952.[3℄ M. de Berg, M. van Kreveld, M. Overmars, and O. Shwarzkopf. Compu-tational geometry: algorithms and appliations. Springer-Verlag, Berlin,1997.[4℄ M. A. Grayson. The heat equation shrinks embedded plane urves toround points. J. Di�. Geom., 26:285{314, 1987.21
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a b Figure 1: Sample moving interfae problems: (a) initially irular bubblesafter passive transport in a shearing ow, (b) merging of omplex interfaeswith unit normal veloity, and () rystalline faets developing under thethreefold anisotropi urvature-dependent veloity de�ned in Eq. (1).
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a bFigure 2: The orrespondene between (a) a hexagonal interfae and (b) thesigned distane ' to the interfae.
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a b Figure 3: (a) Two hexagons moving with onstant normal veloity growand merge. The orresponding signed distane funtion is plotted over atriangulated quadtree (see Setion 4) at (b) initial and () �nal times.
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Figure 4: Levels 0, 1 and 2 of a tree struture with ells Ci and verties Vi.
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Figure 5: The eight-level quadtree mesh built around the hexagonal zero setof Figure 2.
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Figure 6: The pieewise bilinear interpolant ' to the signed distane funtionon the eight-level quadtree mesh of Figure 5.
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a b Figure 7: Flattening of the level set funtion for a irle moving with onstantnormal veloity. Initial ' (a), �nal ' without redistaning (b), and �nal 'with oasional redistaning ().

30



t = 0 t = 1=2 t = 1Figure 8: A olletion of bubbles moving with linear shearing veloity.

31



a b 

d e fFigure 9: Tests of grid e�ets in sharp orners with linear veloity �eld. (a)A rotating triangle at a half period and a full period, omputed with bilinearell interpolation. (b) A triangle shrinking with V (x; y) = �52 (x; y) fromt = 0 to t = 1. () A triangle expanding with V (x; y) = 2(x; y) from t = 0to t = 1. Plots (d) through (f) show the same alulation with biquadratiell interpolation.
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t = 0 t = 100Figure 10: A olletion of irular bubbles passively transported by adivergene-free shearing veloity.
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a b 

d e fFigure 11: Visosity solutions for triangles moving with positive or nega-tive unit normal veloity, omputed with bilinear ell interpolation: (a) Anexpanding triangle at zero angle to the mesh, with round orners. (b) An ex-panding triangle at angle 0.2 radians to the mesh, with round orners. () Ashrinking triangle at angle 0.2 radians to the mesh, with sharp orners. Plots(d) through (f) show the same omputations with biquadrati ell interpola-tion. Eah plot demonstrates onvergene by superimposing three runs with40, 80 and 160 time steps on tree meshes with 6, 7 and 8 levels.
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a b 

d e f

g h iFigure 12: A olletion of randomly loated, sized and oriented trefoils grow-ing and merging under unit normal veloity V = 1. Here (a) is the initialinterfae on a 6-level tree mesh, (b) plots every 8th step of 80 time steps,and () shows the �nal 6-level mesh. Plots (d{f) show 7 levels and 160 steps,while (g{i) show an aurately onverged result with 8 levels and 320 steps.
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V = 2 + 68 os(3� + 0:3) V = 2 + 615 os(4� + 0:4)

V = 2 + 624 os(5� + 0:5) V = 2 + 635 os(6� + 0:6)Figure 13: Wul� shapes growing from irular initial interfaes (with radius1=2 and enter at (1=2�; 1=2�)) under the veloity funtions shown beloweah plot. Here we used 160 time steps on 0 � t � 1 and ell-based bilinearinterpolation on an 8-level tree mesh overing [�3; 3℄2.
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V = 2 + 68 os(3� + 0:3) V = 2 + 615 os(4� + 0:4)

V = 2 + 624 os(5� + 0:5) V = 2 + 635 os(6� + 0:6)Figure 14: Wul� shapes developing from nononvex initial interfaes givenby r = 0:4 + 0:2 os(5�) in polar oordinates (r; �) entered at (1=2�; 1=2�),under the veloity funtions shown below eah plot. Here we used 160 timesteps on 0 � t � 1 and ell-based bilinear interpolation on an 8-level treemesh overing [�3; 3℄2. 37



a b Figure 15: A olletion of randomly loated, sized and oriented trefoilsgrowing and merging under a nononvex anisotropi normal veloity V =2 + os(3� + 0:3). We used biquadrati ell interpolation with (a) 80 timesteps on a 6-level tree mesh, (b) 160 steps on a 7-level mesh, and () 320steps on a 8-level mesh, to ahieve onvergene to graphial auray.
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a bFigure 16: Convergene of two irles ollapsing under urvature ow V = C,omputed from t = 0 to t = 2 with (a) 20 time steps on 5-level tree meshovering [�4; 5℄2 with 1 smoothing pass per step, superimposed on 40 stepson 6-level mesh with 2 passes, (b) 80 steps on 7-level mesh with 3 passes,superimposed on 160 steps on 8-level mesh with 4 passes.
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a b Figure 17: Convergene of a olletion of trefoils to round points under ur-vature ow V = C, omputed from t = 0 to t = 1 with grid-based veloityevaluation using (a) 40 time steps on a 6-level tree mesh overing [�4; 4℄2with one smoothing pass per step, (b) 80 steps on a 7-level mesh with twopasses, () 160 steps on a 8-level mesh with three passes.
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� = 1:0

� = 0:1

� = 0:01
Figure 18: Nononvex shapes merging under urvature-dependentanisotropi ow V = 2 + os(3� + 0:3) + �C. Convergene to the visos-ity solution as � ! 0 is demonstrated with � = 1, 0.1 and 0.01 (top tobottom). Figure 15 shows the limit ase � = 0.41



Cell Children Parent VertiesC0 C1, C2, C3, C4 { V0, V1, V2, V3C1 C5, C6, C7, C8 C0 V0, V4, V5, V8C2 { C0 V4, V1, V8, V6C3 { C0 V5, V8, V2, V7C4 { C0 V8, V6, V7, V3C5 { C1 V0, V9, V10, V13C6 { C1 V9, V4, V13, V11C7 { C1 V10, V13, V5, V8C8 { C1 V13, V11, V12, V8Table 1: Stored information for the quadtree of Figure 4.
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Linear InterpolationGrid Levels NT = 10 20 40 80 160 3205 0.276 0.139 0.631 0.96 0.36 0.5676 0.0413 0.169 0.253 0.135 0.176 0.4577 0.031 0.027 0.0986 0.194 0.269 0.2098 0.0449 0.0148 0.0143 0.054 0.112 0.2229 0.0479 0.0221 0.00686 0.0102 0.0384 0.0831Quadrati Interpolation5 0.0423 0.12 0.283 0.345 0.338 0.3416 0.0398 0.0267 0.0351 0.0518 0.0378 0.03527 0.0468 0.0227 0.00982 0.0128 0.0208 0.02398 0.0486 0.0236 0.0116 0.00565 0.00145 0.003969 0.0489 0.0241 0.0118 0.00593 0.00298 0.00118Table 2: Maximum error at t = 1 in the interfae shown in Figure 8, movingwith divergene-free linear shearing veloity F (x; y) = 12(x� 3y+1;�y� 12),omputed with NT time steps of linear and quadrati interpolation. Thedomain is [�6; 6℄2.
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Linear InterpolationGrid Levels NT = 10 20 40 80 1605 0.0307 0.0436 0.0505 0.054 0.05576 0.00647 0.0153 0.0215 0.0249 0.0297 0.00135 0.00333 0.00981 0.0133 0.01558 0.000506 0.000707 0.00201 0.00675 0.009389 0.000123 0.00026 0.000447 0.00155 0.00505Quadrati InterpolationGrid Levels NT = 10 20 40 80 1605 0.00176 0.00199 0.00223 0.00234 0.002426 0.000377 0.000626 0.000754 0.000819 0.0008587 0.0000754 0.000128 0.000198 0.000239 0.0002638 0.0000128 0.0000701 0.0000206 0.0000386 0.0000519 0.00000401 0.00000402 0.00000256 0.00000562 0.00000978Table 3: Maximum of exat distane funtion at t = 1 on a irle of radiusR(t) = 1 + t and enter (1=2�; 1=2�), moving with onstant normal veloityV = 1, omputed with NT time steps of linear and quadrati interpolation.
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