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An essential proedure in level set methods is redistaning: Given aninterfae � built of N elements, ompute a signed distane funtionD(x) = �miny2� kx� yk (1)on some olletion of points x. A more general form of redistaning omputesa simpler funtion '(x) with zero set �. Many evaluations of ' are required,so eÆieny is important.We present eÆient algorithms for solving this general redistaning prob-lem. Our algorithms resolve � with a quadtree mesh and evaluate D on thequadtree verties in O(N) spae and O(N logN) time. Interpolation pro-dues eah value '(x) in O(logN) time and runs extremely fast in pratie.Setion 2 of this paper reviews level set methods for moving interfaes andspei�es the redistaning problem. Setion 3 desribes standard properties ofquadtrees, Voronoi diagrams and Delaunay triangulations. Setion 4 presentsour fast redistaning algorithms and Setion 5 demonstrates their eÆienyand utility with numerial experiments. Setion 6 draws onlusions anddisusses extensions and appliations.2 Moving interfaes, level sets and redistan-ingThis setion reviews moving interfae problems, level set methods and re-distaning. Setion 2.1 desribes four moving interfae problems, passivetransport, unit normal veloity, anisotropi urvature-dependent ow, andrystal growth. Setion 2.2 onverts moving interfae problems into levelset equations on a �xed domain and reviews their solution by the level setmethod. Setion 2.3 disusses initialization and redistaning in the level setmethod.2.1 Moving interfae problemsA general moving interfae is the boundary �(t) = �
(t) of a set 
(t) � Rddepending on time t. If 
 is suÆiently smooth, then �(t) has an outwardunit normal N and a normal veloity V at eah point. A moving interfaeproblem is a losed system of equations whih spei�es V as a funtional of�, possibly in a highly indiret and nonloal way. Figure 1 displays repre-sentative solutions of several of the following moving interfae problems.Passive transport An interfae is transported in an ambient ow whihis independent of �. Thus a veloity �eld F (x; t) is given on Rd and �(t)moves with normal veloity V = N � F .3



Unit normal veloity The simplest geometri ow moves �(t) along itsnormal with veloity V = 1. Nononvex initial interfaes moving underthis ow produe omplex merging and ornering patterns whih hallengestandard numerial methods.Curvature-dependent veloity An interfae moves with anisotropi urvature-dependent normal veloityV (x; t) = R + � os(K� + �0) + (R0 + �0 os(K 0� + �00))C; (2)where C is urvature and os � = N �e1 is the osine of the angle between thenormal vetor and the positive x-axis. These veloity �elds produe faetedinterfaes merging in omplex anisotropi patterns and are often used assimpli�ed models in materials siene [16℄.Crystal growth Many industrial problems involve moving interfaes sep-arating di�erent phases of a material. The interfae between a solidifyingrystalline material and its liquid melt, for example, an be modeled by aStefan-type problem ut = �u o� �(t) (3)u = ��C on �(t): (4)Here the temperature �eld u is unknown and the interfae � moves withnormal veloity V equal to the jump in the normal derivative of u. Manynumerial methods have been developed for this problem [2, 8, 10℄.2.2 Level set methodsMoving interfae problems an be reformulated as \level set equations" on a�xed domain, using the zero set�(t) = fx 2 Rd : '(x; t) = 0g (5)of an arbitrary funtion ' : Rd�R!R, suh as the signed Eulidean distaneD2(x; t) = � miny2�(t) kx� yk2 = �miny2� vuut dXi=1(xi � yi)2 (6)or the signed max-norm distaneD1(x; t) = � miny2�(t) kx� yk1 = �miny2� max1�i�d jxi � yij: (7)4



Figure 2 shows a pentagonal interfae in R2 and the orresponding signedEulidean distane funtion D2.If we hoose the sign of ' positive in 
(t), then the outward unit normalN and normal veloity V of �(t) are given by standard geometri formulas[17℄: N = r'=kr'k2; (8)V = 't=kr'k2: (9)Given any extension of the normal veloity vetor V N to a funtion F (x; t)on Rd, Eq. (9) implies the \level set equation" whih moves � by evolving ':'t � F � r' = 't � (F �N)kr'k2 = 0: (10)Eq. (10) moves every level set of ' with the extended veloity F , and inpartiular moves the zero set �(t) with the orret veloity V N . Merging,breaking and other topologial hanges happen automatially beause thetopology is embedded impliitly in ' rather than expliitly in �(t), as illus-trated by Figure 3. The moving interfae problems of Setion 2.1 an bereformulated into level set equations as follows.Passive transport For passive transport, F is already de�ned onRd and isa natural extension of V N . The level set equation bomes a linear hyperbolipartial di�erential equation (PDE)'t � F (x; t) � r' = 0: (11)Unit normal veloity With N extended by Eq. (8), motion with unitnormal veloity beomes a nonlinear hyperboli PDE't � kr'k2 = 0: (12)Curvature-dependent veloity The veloity de�ned by Eq. (2) yields't�(R+� os(K�+�0))kr'k2 = (R0+�0 os(K 0�+�00))r�(r'=kr'k2)kr'k2:(13)Here os � = 'x=kr'k2 and we have used the urvature formula C = �r�Nfrom [17℄. Eq. (13) is a mixed hyperboli-paraboli PDE whih is singularwhere r' vanishes.Crystal growth The exat veloity of the moving interfae in rystalgrowth is a ompliated nonloal funtional of the interfae, whih an beextended o� the interfae in many ways. See [2, 10℄ for representative exten-sions and numerial results. 5



Level set methods move �(t) via the level set equation. An initial levelset funtion '(x; 0) and an extended veloity �eld F are built, the level setequation (10) is solved numerially, and the solution '(x; t) is ontouredwhen �(t) is required. The method was introdued in [6℄, and an extensivereent survey is [9℄. It has undergone muh development and been appliedto many moving interfae problems.2.3 RedistaningMoving interfae omputations begin with the initial interfae �, while thelevel set equation (10) requires globally de�ned and ontinuous initial values'(x) satisfying � = fx : '(x) = 0g: (14)The redistaning problem onsists of the stable spei�ation and eÆientevaluation of '.EÆieny is important beause diretly evaluating the signed distanefuntion D2 from Eq. (6) is prohibitively expensive. Consider a uniform meshin Rd with Nd points. A typial interfae � ontains O(Nd�1) elements,so evaluating D2 diretly on the mesh osts O(N2d�1) work. This greatlyexeeds the O(Nd) ost of moving � one step on the mesh if d � 2. Thus weneed to hange ' or ompute it eÆiently|or both.EÆieny is even more important for methods and problems where thelevel set funtion is redistaned frequently, where we need an algorithm ost-ing less than the omputation of one time step. See [2, 9, 13℄ and Setion 5.2for examples.Several fast shemes for evaluating D2 approximately on a uniform meshhave been developed: The eikonal equation (12) is solved to steady state in[15℄, while [1℄ applies heapsort tehniques. For many appliations, however,a uniform mesh wastes omputational e�ort solving the level set equationaurately far from the interfae. The ultimate goal of level set methods isto move �, and redistaning disards values of ' far from �, so eÆient levelset methods should use an adaptive mesh to onentrate omputational e�ortnear the interfae. Adaptive level set methods are presented in [7, 9, 13℄.The algorithms of this paper evaluate exat signed distane values inany norm at the verties of a quadtree mesh whih resolves � aurately atoptimal ost. Given these vertex values, many interpolants to the signeddistane funtion an be built. We disuss disontinuous pieewise d-linearinterpolation on quadtree ells and ontinuous pieewise-linear interpolationon various triangulations of the quadtree verties. All these interpolantsare lose to signed distane funtions near � and give exellent results in thelevel set method. Our algorithms build ' in O(N logN) work if � ontains Nelements, ost O(logN) per ' evaluation and run extremely fast in pratie.6



3 Quadtrees and triangulationOur fast redistaning algorithms rely on basi strutures of omputationalgeometry suh as quadtrees, Voronoi diagrams, and triangulations. In thissetion, we review the de�nitions and properties of these strutures whihsuit them to redistaning. We de�ne, build and triangulate quadtree meshesin Setion 3.1, disuss the Voronoi approah to redistaning in Setion 3.2,and provide bakground on the Delaunay triangulation in Setion 3.3.3.1 Quadtree meshes3.1.1 De�nitionA quadtree mesh overing the ube [0; 1℄d in Rd is omposed of square ellsorganized into levels, with eah ell on level l + 1 ontained in some level-lell, and stores the following information:� The root ell C0 = [0; 1℄d.� A maximum level L � 0.� A ell list of ells, grouped by level.� A vertex list of ell verties, without repetitions.� Other appliation-dependent data.Eah ell C in the ell list stores:� Its level l and orner vertex (i1; : : : ; id): the ell overs the box 2�l[i1; i1+1℄� � � � � [id; id + 1℄.� The indies in the vertex list of the 2d ell verties.� The index in the ell list of its parent (if there is one).� The indies in the ell list of its hildren (if there are any).� Other appliation-dependent data.Figure 4 shows an example with L = 2. Given a general L-level quadtree,many operations related to searhing and sorting an be done eÆiently:�nding the quadtree ell where a point x lies, for example, requires O(L)examinations of bits in the binary representation of x.
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3.1.2 Building a quadtreeTo build a quadtree, start with a root ell at level l = 0. Test whether itrequires splitting into 2d hildren on level l + 1. The splitting riterion dis-tinguishes between quadtrees, and must be spei�ed to suit the appliation.If a ell needs splitting, some bookkeeping must be done: reate new ver-ties, adjust familial pointers and so forth. Then test the hildren, split ifneessary and repeat the proess reursively. Terminate the build when noell requires splitting.Many useful quadtrees an be built with some variant of the followingsplitting riterion:Split any ell whose edge length exeeds its minimum distane to �: (15)If the distanes from all the verties to � are omputed as the quadtree isbuilt, then this riterion is easy to implement. It results in quadtrees withsmoothly varying ell sizes whih are useful in adaptive level set methods[13℄ and harmoni analysis [12℄. These quadtrees represent � eÆiently: ifN hildless ells touh �, then the entire quadtree meshes [0; 1℄d with onlyO(N) hildless ells. Figure 5 plots a quadtree mesh built with Criterion (15)in the max-norm distane jD1j, and a related riterion is used in Setion 4.3.1.3 Triangulating quadtree vertiesGiven funtion values '(x) at the verties x of the quadtree mesh, there aremany ways to de�ne a global interpolant. Multilinear interpolation on eahquadtree ell is onvenient and eÆient, but produes a disontinuity whenells hange size.A ontinuous interpolant an be built by triangulating the quadtree ver-ties into a simpliial mesh and linearly interpolating on eah simplex (tri-angle if d = 2, tetrahedron if d = 3). Any set of verties an be triangulatedwith the Delaunay triangulation of Setion 3.3, but quadtrees built with Cri-terion (15) provide a more eÆient alternative. Adjaent ells di�er in size byno more than a fator of 2, so suh quadtrees an be triangulated by addingat most one Steiner point per ell and triangulating the result. Figure 6shows a two-dimensional example: the tehnique generalizes easily to higherdimensions [3℄.Given a triangulation of the tree verties, level set funtions with anydesired degree of smoothness an be built by varying the interpolation teh-nique appropriately. A Ck level set funtion ' an be onstruted by Hermiteinterpolation to the funtion values and estimated derivatives of order � kat triangulation verties. These tehniques are useful in geometri movinginterfae problems involving ' derivatives suh as the normal vetor N andurvature C. 8



3.2 Voronoi diagramsThe Voronoi diagram is a lassi tool of omputational geometry whih solvesthe equivalent of the redistaning problem when � is a disrete set ofN pointsxj 2 Rd. The Eulidean Voronoi diagram V2(�) is a olletion of N regionsVj = fx 2 Rd : kx� xjk2 � kx� xik2 for all i 6= jg : (16)The max-norm Voronoi diagram V1(�) is de�ned by Eq. (16) with kk2 re-plaed by kk1. Vj onsists of all points loser to xj than to any other pointof �. Figure 7 plots the Eulidean Voronoi diagram of a small point set.Given V2(�), the minimum distane from any x to � is simply kx� xjk2where x 2 Vj, so redistaning immediately redues to point loation in thepartition V2(�) of Rd. Many O(N logN) algorithms for building Voronoidiagrams and for point loation have been designed [3, 4℄, so redistaningfrom a disrete point set is straightforward.When � is a olletion of N omputational elements Ej suh as segmentsin the plane or triangles in R3, the Voronoi regions an be de�ned byVj = fx 2 Rd : miny2Ej kx� yk2 � miny2Ei kx� yk2 for all i 6= jg:Thus the Voronoi diagram of � redues the redistaning problem to pointloation in a subdivision of Rd. Sine V (�) an be built eÆiently [19℄, itprovides |in theory| an asymptotially optimal solution to the redistaningproblem. However, even when � is a set of segments in the plane, there isno pratial implementation of any fast algorithm for omputing the Voronoidiagram. The Voronoi diagram is expensive to onstrut beause it mustidentify a single nearest element to every point of spae.A ompromise between onstrution speed and redistaning speed is theompat Voronoi diagram of [5℄. This geometri objet produes severalandidates for the nearest element to any point x, but has a muh simplerstruture. The boundaries of a ompat Voronoi region, for example, are sim-ple polygons, rather than the pieewise algebrai urves of the exat Voronoidiagram for �. The ompat Voronoi diagram may in future beome theredistaning method of hoie, but no pratial implementation is presentlyavailable.3.3 Delaunay triangulationThe Delaunay triangulation is a geometri objet related to the Voronoidiagram, whih we use to interpolate ' in Setion 4.3 and to �x the sign of' in Setion 4.4. Given any set of M data points xj in Rd, there are manyways to onnet the points into a simpliial mesh (a triangulation in the9



plane, a tetrahedralization in spae), some better than others. One of thebest is the Delaunay triangulation, whih is the dual of the Voronoi diagramdesribed in Setion 3.2. (Figure 8 shows a Delaunay triangulation of thetree verties from Figure 5.) It gives optimal error bounds for interpolation[18℄ and an be built eÆiently in time O(M logM) by many algorithms.We use the standard C ode Triangle [11℄. In three dimensions, the worst-ase omplexity of triangulating N verties inreases to O(N2) but Delaunaytriangulation remains eÆient.4 EÆient redistaning algorithmsEÆient tree-based algorithms for redistaning the level set funtion ' arepresented. We de�ne a new data struture, the distane tree, in Setion 4.1,and build it in Setion 4.2. In Setion 4.3, we interpolate on the distanetree to ompute various unsigned distane funtions j'j. Setion 4.4 uses atriangulation of the distane tree verties to speify a sign for the distanefuntion at eah point. Setion 4.5 ahieves the same goal by heking thenormal vetors at nearest elements of �.4.1 De�nition of the distane treeThe distane tree is a speial quadtree designed to assist in fast redistaningof an interfae �. In addition to the root ell, ell list and vertex list de�nedin Setion 3.1, it stores vertex distanes and ell pointers to nearby elementsof �.Suppose � is omposed of N omputational elements Ej, whih are seg-ments in the plane, triangles in R3, or higher-order pieewise polynomialpathes. We assume two properties of this deomposition of �: �rst, we anompute the exat minimum distane from any point x to any element Ej inany norm desired; and seond, the element sizes all vanish at the same rateas N!1. Then the distane tree ontains:� a vertex distane list of the minimum max-norm distanes jD1(x)j to� from eah vertex x of the tree.Eah distane tree ell C ontains:� an element list of all elements Ej interseting the onentri triple ofC: if C = fx 2 Rd : kx� k1 � rghas enter  and edge length 2r then its onentri triple T is given byT = fx 2 Rd : kx� k1 � 3rg:10



For onveniene, we will refer to a ell with empty element list as empty.Figure 5 shows the ells in the distane tree for a simple urve.4.2 Building the distane treeWe build a distane tree around � by� hoosing the root ell,� speifying a splitting riterion,� maintaining the element lists, and� omputing the vertex distanes from eah ell.The root ell is the smallest square ell enlosing �. Its level is 0, and itselement list ontains every element of �. The distanes from its 2d vertiesto � are omputed diretly.The splitting riterion is Criterion (15) from Setion 3.1.2, speialized tothe max-norm distane:Split any ell whose onentri triple intersets �: (17)This riterion leads to an eÆient searh strategy for omputing the ver-tex distanes as we build the tree. It an be varied slightly by ounting thenumber of elements interseting the ell, to avoid over-resolving faeted inter-faes � with large faets. This variant eÆiently resolves adaptively re�nedinterfaes built with elements of varying sizes.Splitting a ell aording to this riterion requires element list and vertexdistane list maintenane. Element lists are easy to handle: hek everyelement in the parent's element list for intersetion with the hild's tripleand add it to hild lists when intersetion ours. Note that triples of hildells do not tile their parent's onentri triple, so a nonempty parent mayhave empty hildren.Vertex distane list The most important information in the distanetree |the minimum max-norm distane jD1(x)j from a new vertex x of ahild ell C to �| is omputed eÆiently by the following three-step searhstrategy:1. Searh the element list of C, �nding the minimum distane m1 from xto the elements of � in the element list of C.
11



2. If C is empty or m1 violates the inlusion onditionfy 2 Rd : kx� yk1 � m1g � T; (18)where T is the triple of C, ompute the minimum distane m2 from xto elements of � in the element list of C's parent C 0. The parent mustbe nonempty sine it is being split.3. If m2 violates the inlusion onditionfy 2 Rd : kx� yk1 � m2g � T 0; (19)where T 0 is the triple of C 0, expand the searh to inlude elementsof � in the element list of the grandparent C 00. The result m3 is theminimum distane to �.With this searh strategy, the total ost of building an L-level distane treearound an N -element interfae is O(NL) as N!1, beause the union of alltriples of ells on level l � L intersets O(N) elements.The orretness of this proedure relies on using the max-norm distanefuntion jD1j, beause our square tree ells are spheres in the max-norm.Figure 9 illustrates why great-grandparents never need to be searhed. Thenearest element of � whih intersets the triple T 0 of the parent C 0 of a treeell C may not be the nearest element of � overall. But if the max-normis used, the nearest element interseting T 0 beats every element outside thetriple T 00 of the grandparent C 00.In the Eulidean norm, the distane between opposite orners of a hy-perube is pd > 1 so we may need to searh great-grandparents. However,a slight variant of this searh strategy omputes all vertex values of D2 inO(NL) time.4.3 InterpolationThe distane tree gives us exat distane values at O(N) verties lusterednear the interfae. A globally de�ned level set funtion ' an be built fromthese distane values in many ways, of whih we disuss d-linear ell inter-polation and linear simplex interpolation.4.3.1 Cell interpolationLet j'j be the d-linear interpolant to the vertex values on eah empty hildlessdistane tree ell. In d = 2 dimensions, for example, a ell C with edge lengthh has four verties (x0 + ih; y0 + jh) with distanes j'ijj for 0 � i; j � 1.Then j'j is de�ned at a point (x = x0 + �h; y = y0 + �h) in C byj'j(x; y) = (1��)(1��)j'00j+�(1��)j'10j+(1��)�j'01j+��j'11j: (20)12



On nonempty hildless ells, whose onentri triples interset �, j'j isde�ned to be exatly equal to the distane jD1j to �. (See Figure 10.) Thefollowing searh strategy evaluates j'j eÆiently in nonempty hildless ellsnear �: A nonempty hildless ell C stores a list of all elements of � interset-ing its triple T . This allows us to searh the element list of C for the losestelement to x, yielding a minimum distane m1. As in the onstrution of thedistane tree, m1 may not be the global minimum distane, but searhingthe element list of the parent C 0 is guaranteed to �nd the minimum. Thereare a bounded number of � elements near any nonempty hildless ell C asN!1, so the ost of eah evaluation is dominated by the O(logN) ost of�nding the ell C ontaining x.Thus j'j is evaluated by interpolating exat vertex distanes on emptyhildless ells and by searhing one or two short lists on nonempty hildlessells near the interfae. It has the following properties.� j'j has zero set �,� j'j = jD1j at verties of the tree and in ells suÆiently near �,� j'j an be evaluated in O(logN) work at any x, and� j'j is ontinuous almost everywhere, with jumps where ells hange sizedereasing in magnitude as ells approah �.4.3.2 Simplex interpolationWe an onstrut a ontinuous level set funtion ' by triangulating the ver-ties and pieewise-linearly interpolating to the vertex values. See Figure 11for an example. This level set funtion an be evaluated at any point x by�nding the simplex ontaining x and interpolating from its verties. Findingthe simplex osts O(logN), so eah j'j evaluation osts O(logN). Build-ing the Delaunay triangulation of the O(N) tree verties osts O(N logN),while triangulating the quadtree verties diretly as in Setion 3.1.3 ostsO(N)|both asymptotially omparable to building the distane tree.The simplex interpolant is ontinuous, but not exatly equal to D near �,and thus has zero set slightly di�erent from �. If neessary, we an form theonstrained Delaunay triangulation inluding the edges and verties of thepolygonal interfae �, to get a ontinuous interpolant with zero set exatlyequal to �.4.4 Signing ' by triangulationBoth ell and simplex interpolation produe an approximate unsigned dis-tane funtion j'(x)j assoiated with an interfae �, while the level set13



method requires the signed distane funtion '(x) = �j'(x)j. When re-distaning ' from its own zero set on a �xed grid, as in Setion 2.3, we anpreserve the sign of eah value of '(x). We need to �x the sign, however,when initializing ' from an interfae �. The following algorithm loates theinterfae in a triangulation of the quadtree verties, then propagates the signinward from the boundary.Given a triangulation of the distane tree verties, mark every edge ofthe triangulation whih is rossed by an element of �. This requires timeproportional to the tree depth times the size of �, O(NL) = O(N logN),beause marking eah edge osts O(L). Set the sign of ' to �1 at one ornervertex of the root ell, and propagate the sign along every edge. Beforepropagating along a marked edge, hange the sign from �1 to +1 or from+1 to �1. If � rosses the edge n times, hange the sign n times. A robustalgorithm must take speial are when � touhes an edge without rossing.After propagation �nishes, we have a onsistent hoie of sign for ' at eahdistane tree vertex. See Figure 12 for an example.4.5 Signing ' by normal vetorsThe sign of ' an be �xed more eÆiently if we have an outward unit normalvetor on eah element of �. Then while we are �nding a losest point of �to any quadtree vertex x we an determine the sign of '(x) simultaneouslyby heking whih side of the nearest element x lies on. This proedure ostsmuh less than the triangulated algorithm of Setion 4.4, but requires someare in implementation. Figure 13 shows one possible pitfall: At aute or-ners of �, all elements of � touhing the orner must be heked to determinethe sign of '(x) orretly.5 Numerial resultsWe verify the speed of our algorithms with large-sale runs on simple andomplex interfaes in Setion 5.1 and show a simple appliation to level setomputations in Setion 5.2. Two-dimensional versions of our algorithmswere implemented in ANSI C, ompiled with the SunSoft C ompiler usingthe -fast ag, and run on one CPU of a Sun 200MHz Ultra-2 workstationunder Solaris 2.6. The odes have not been speially optimized and ouldprobably be speeded up by one to two orders of magnitude by investingadditional programming e�ort.
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5.1 EÆieny5.1.1 Diret evaluationWe took the signed Eulidean distane funtion D2 of the pentagonal inter-fae from Figure 2, ontoured it on a square M �M grid to represent � withN = O(M) segments, then evaluated D1(x) diretly at every vertex of theM�M grid. Table 1(a) reords the CPU times T required and the omputedarea A enlosed by the interfae, whih indiates the resolution of � providedby the M �M grid. We repeated the experiment with the omplex interfaeof Figure 14, and report the orresponding times and areas in Table 1(b).These experimental results agree with theoretial expetations: the diretmethod requires O(M2N) = O(M3) CPU time. Dividing T by M2N givesan almost onstant result, lose to 10�6 seonds per segment per evaluation.Therefore T � 10�6M2N seonds, so eah diret evaluation osts O(N)time. For large-sale omputation, these timings are prohibitive. Three-digitauray in the area of a omplex interfae requires almost three minutesper redistaning: adequate auray in geometri quantities suh as normalvetors and urvature would require greater omputational e�ort and makefast algorithms even more attrative.5.1.2 Fast algorithmsWe redistaned the interfaes shown in Figures 2 and 14 with our fast algo-rithms to verify their eÆieny. Here we built the L-level distane tree andevaluated all vertex distanes for the same interfae, ontoured by bilinearinterpolation on tree ells into N segments. This gives resolution on � equiv-alent to the diret method on a uniform M �M mesh with M = 2L, at farless ost. Table 2 reports the CPU times T for our fast algorithms, togetherwith the number C of adaptive tree ells, the CPU time D for Delaunaytriangulation of the O(N) tree verties by Triangle [11℄ and the CPU timeS required to move the interfae one step with the adaptive tree methods of[13℄.5.1.3 ComparisonsWe draw the following onlusions from Tables 1 and 2:1. The total number of quadtree ells required to resolve an interfae �with the auray of a uniformM�M mesh is asymptotially O(M)|an optimal result with bilinear ontouring.2. The fast algorithms produe a globally de�ned level set funtion ' foran N -element interfae in O(N logN) CPU time, muh faster than the15



O(M3) required for diret evaluation on a uniform mesh and the O(N2)required for diret evaluation at the tree verties.3. With 8000 segments resolving the area of a omplex interfae to four-digit auray, the equivalent of a 512 � 512 uniform mesh, our fastalgorithms are 400 times faster than diret evaluation on a uniformmesh and 20 times faster than diret evaluation at the tree verties. Atour highest resolution, equivalent to a 4096� 4096 uniform mesh, thefast algorithms are 160 times faster than diret evaluation at the treeverties.4. Our fast redistaning algorithms are highly pratial; they ost lessthan Delaunay triangulation of the tree verties and less than movingthe interfae one step, permitting frequent redistaning at negligibleost.5.2 Appliation to level setsThe following example from [1℄ demonstrates the usefulness of frequent re-distaning. A irle is passively transported with unit radial veloity in theveloity �eld (see Figure 15)F (x; y; t) = ((r � (1 + t)) os(5� + �0) + 1)(x; y)=r: (21)While the irle expands at unit speed, other level sets are wildly distortedby the �vefold anisotropi �eld F (see Figure 16), produing large solutiongradients whih redue the auray of any numerial method. These om-putations used the tree methods of [13℄, and the large gradients distort themesh beause ' is used as a mesh re�nement indiator.When the solution ' is redistaned every ten steps, the large gradientsdisappear and mesh distortion is eliminated (see Figure 17). Solution regu-larity is ontrolled by the regularity of the interfae rather than the far-�eldvalues of F when frequent redistaning is applied.6 ConlusionWe have reviewed the role of redistaning in level set methods for movinginterfaes and presented fast redistaning algorithms based on trees, trian-gulation, interpolation and a robust searh strategy. Our algorithms arefast, straightforward and extremely useful in adaptive level set methods formoving interfae problems. We are urrently applying these algorithms toompute general veloity extensions, permitting the onstrution of om-pletely modular level set methods [14℄ for solving general moving interfaeproblems. 16
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(a)

(b)

()Figure 1: Representative solutions of moving interfae problems: (a) initiallyirular bubbles after transport in a shearing ow, (b) merging of omplexinterfaes with unit normal veloity, and () rystalline faets developingunder a threefold anisotropi urvature-dependent veloity.19



(a)

(b)Figure 2: The orrespondene between an interfae and a level set funtion:(a) A pentagonal interfae �, and (b) the signed Eulidean distane funtionD2 to �.
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(a)

(b)

()Figure 3: (a) Two pentagons growing with unit normal veloity merge. Thedisontinuous pieewise bilinear interpolant to the signed max-norm distanefuntion D1 is plotted over a quadtree mesh at (b) initial and () �nal times.21
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Cell Level Corner Children Parent VertiesC0 0 (0; 0) C1, C2, C3, C4 { V0, V1, V2, V3C1 1 2�1(0; 0) C5, C6, C7, C8 C0 V0, V4, V5, V8C2 1 2�1(1; 0) { C0 V4, V1, V8, V6C3 1 2�1(0; 1) { C0 V5, V8, V2, V7C4 1 2�1(1; 1) { C0 V8, V6, V7, V3C5 2 2�2(0; 0) { C1 V0, V9, V10, V13C6 2 2�2(1; 0) { C1 V9, V4, V13, V11C7 2 2�2(0; 1) { C1 V10, V13, V5, V8C8 2 2�2(1; 1) { C1 V13, V11, V12, V8Figure 4: Levels 0, 1 and 2 of a quadtree with ells Ci and verties Vi.
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Figure 5: A six-level quadtree mesh built around the pentagonal zero set ofFigure 2.
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Figure 6: Triangulating a quadtree mesh. The �lled dots are quadtree ver-ties, open irles are Steiner points.
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Figure 7: The Eulidean Voronoi diagram of a small set of points.
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Figure 8: The Delaunay triangulation of the tree verties from Figure 5.
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T’’Figure 9: The nearest element of � whih intersets the triple T 0 of theparent C 0 of a distane tree ell C may not be the nearest element of �overall. But if the max-norm is used, the nearest element interseting T 0beats every element outside the triple T 00 of the grandparent C 00.
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Figure 10: The disontinuous pieewise bilinear interpolant to the signedmax-norm distane funtion D1 on a six-level quadtree mesh built aroundthe pentagonal zero set of Figure 2.

28



Figure 11: The ontinuous pieewise linear interpolant to the signed max-norm distane funtion D1 on the Delaunay triangulation of Figure 8.
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Γ

Figure 12: Fixing the sign of ' with a triangulation of the distane treeverties. The lower left orner is assigned sign �1, then the sign propagatesunhanged along edges not rossing �, shown as thin lines, and ips on edgesrossing �, shown as thik lines. Thus the open irles reeive negative 'values while the solid dots reeive positive ' values.

30



E

F

x

N
N

Figure 13: Pitfalls in �xing the sign of '. The point x lies outside � aordingto element E, but inside � aording to element F , and both are nearestelements of � to x.
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(a)

(b)

()
Figure 14: The omplex interfae used in Tables 2 and 4, plotted over adistane tree mesh with (a) 6, (b) 7 and () 8 levels.32



(a)

(b)

()Figure 15: The veloity of Eq. 21, with X and Y omponents shown in (a)and (b). The interfaes at equal times are shown in ().
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(a)

(b)

()Figure 16: A irular interfae expanding with the veloity of Eq. 21, om-puted by solving the level set equation with no redistaning: (a) and (b)ontours of the level set funtion at t = 1 and 2, () shows the quadtreemesh from the method of [13℄ at t = 2.34



(a)

(b)

()Figure 17: A irular interfae expanding with the veloity of Eq. 21, withredistaning applied every ten steps: (a) and (b) ontours of the level setfuntion at t = 1 and 2, () the quadtree mesh from the method of [13℄ att = 2. 35



M N A T32 120 3.61486 0.0964 248 3.62906 0.73128 496 3.63180 5.84256 1000 3.63253 49.7512 2004 3.63266 400
M N A T32 302 1.50602 0.1964 856 1.71439 2.32128 1900 1.73998 20.5256 3920 1.73377 169512 7936 1.72980 1370(a) (b)Table 1: Uniform grid size M , number N of segments in the interfae, om-puted area A and CPU seonds T for diret redistaning of the level setfuntion '. Results for (a) the pentagonal interfae of Figure 2, and (b) theomplex interfae of Figure 14.
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L M = 2L N C A T D S5 32 124 729 3.6111 0.03 0.14 0.166 64 252 1601 3.62792 0.09 0.24 0.287 128 502 3365 3.63145 0.20 0.44 0.508 256 1006 6913 3.63238 0.46 0.83 0.969 512 2010 14017 3.63264 1.07 1.76 2.0110 1024 4020 28253 3.63269 2.36 3.56 4.1511 2048 8040 56673 3.63271 5.25 7.23 8.4412 4096 16080 113541 3.63271 11.6 14.8 17.4(a)L M = 2L N C A T D S5 32 322 989 1.41287 0.05 0.17 0.196 64 878 2897 1.68656 0.20 0.37 0.427 128 1918 7641 1.72989 0.56 0.89 1.038 256 3906 19701 1.73062 1.43 2.28 2.629 512 7918 46677 1.72947 3.44 5.79 6.6610 1024 15912 101973 1.72873 8.03 13.2 15.211 2048 31849 213561 1.72849 18.5 28.3 33.212 4096 63705 437421 1.72844 41.5 60.7 69.8(b)Table 2: Number of tree mesh levels L and ells C, number N of segments inthe interfae �, omputed area A and CPU seonds T for fast redistaningof the level set funtion '. CPU seonds D for Delaunay triangulation of thetree verties and S for moving the interfae one step. (a) The pentagonalinterfae of Figure 2, and (b) the omplex interfae of Figure 14.
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