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tionMany problems in 
omputational s
ien
e involve 
omplex interfa
es evolvingthrough topologi
al 
hanges, fa
eting and singularities. Su
h problems arediÆ
ult to solve numeri
ally. Level set methods, whi
h view the interfa
e asthe zero set of a fun
tion, form an e�e
tive general approa
h be
ause theyhandle topologi
al 
hanges automati
ally.2



An essential pro
edure in level set methods is redistan
ing: Given aninterfa
e � built of N elements, 
ompute a signed distan
e fun
tionD(x) = �miny2� kx� yk (1)on some 
olle
tion of points x. A more general form of redistan
ing 
omputesa simpler fun
tion '(x) with zero set �. Many evaluations of ' are required,so eÆ
ien
y is important.We present eÆ
ient algorithms for solving this general redistan
ing prob-lem. Our algorithms resolve � with a quadtree mesh and evaluate D on thequadtree verti
es in O(N) spa
e and O(N logN) time. Interpolation pro-du
es ea
h value '(x) in O(logN) time and runs extremely fast in pra
ti
e.Se
tion 2 of this paper reviews level set methods for moving interfa
es andspe
i�es the redistan
ing problem. Se
tion 3 des
ribes standard properties ofquadtrees, Voronoi diagrams and Delaunay triangulations. Se
tion 4 presentsour fast redistan
ing algorithms and Se
tion 5 demonstrates their eÆ
ien
yand utility with numeri
al experiments. Se
tion 6 draws 
on
lusions anddis
usses extensions and appli
ations.2 Moving interfa
es, level sets and redistan
-ingThis se
tion reviews moving interfa
e problems, level set methods and re-distan
ing. Se
tion 2.1 des
ribes four moving interfa
e problems, passivetransport, unit normal velo
ity, anisotropi
 
urvature-dependent 
ow, and
rystal growth. Se
tion 2.2 
onverts moving interfa
e problems into levelset equations on a �xed domain and reviews their solution by the level setmethod. Se
tion 2.3 dis
usses initialization and redistan
ing in the level setmethod.2.1 Moving interfa
e problemsA general moving interfa
e is the boundary �(t) = �
(t) of a set 
(t) � Rddepending on time t. If 
 is suÆ
iently smooth, then �(t) has an outwardunit normal N and a normal velo
ity V at ea
h point. A moving interfa
eproblem is a 
losed system of equations whi
h spe
i�es V as a fun
tional of�, possibly in a highly indire
t and nonlo
al way. Figure 1 displays repre-sentative solutions of several of the following moving interfa
e problems.Passive transport An interfa
e is transported in an ambient 
ow whi
his independent of �. Thus a velo
ity �eld F (x; t) is given on Rd and �(t)moves with normal velo
ity V = N � F .3



Unit normal velo
ity The simplest geometri
 
ow moves �(t) along itsnormal with velo
ity V = 1. Non
onvex initial interfa
es moving underthis 
ow produ
e 
omplex merging and 
ornering patterns whi
h 
hallengestandard numeri
al methods.Curvature-dependent velo
ity An interfa
e moves with anisotropi
 
urvature-dependent normal velo
ityV (x; t) = R + � 
os(K� + �0) + (R0 + �0 
os(K 0� + �00))C; (2)where C is 
urvature and 
os � = N �e1 is the 
osine of the angle between thenormal ve
tor and the positive x-axis. These velo
ity �elds produ
e fa
etedinterfa
es merging in 
omplex anisotropi
 patterns and are often used assimpli�ed models in materials s
ien
e [16℄.Crystal growth Many industrial problems involve moving interfa
es sep-arating di�erent phases of a material. The interfa
e between a solidifying
rystalline material and its liquid melt, for example, 
an be modeled by aStefan-type problem ut = �u o� �(t) (3)u = ��C on �(t): (4)Here the temperature �eld u is unknown and the interfa
e � moves withnormal velo
ity V equal to the jump in the normal derivative of u. Manynumeri
al methods have been developed for this problem [2, 8, 10℄.2.2 Level set methodsMoving interfa
e problems 
an be reformulated as \level set equations" on a�xed domain, using the zero set�(t) = fx 2 Rd : '(x; t) = 0g (5)of an arbitrary fun
tion ' : Rd�R!R, su
h as the signed Eu
lidean distan
eD2(x; t) = � miny2�(t) kx� yk2 = �miny2� vuut dXi=1(xi � yi)2 (6)or the signed max-norm distan
eD1(x; t) = � miny2�(t) kx� yk1 = �miny2� max1�i�d jxi � yij: (7)4



Figure 2 shows a pentagonal interfa
e in R2 and the 
orresponding signedEu
lidean distan
e fun
tion D2.If we 
hoose the sign of ' positive in 
(t), then the outward unit normalN and normal velo
ity V of �(t) are given by standard geometri
 formulas[17℄: N = r'=kr'k2; (8)V = 't=kr'k2: (9)Given any extension of the normal velo
ity ve
tor V N to a fun
tion F (x; t)on Rd, Eq. (9) implies the \level set equation" whi
h moves � by evolving ':'t � F � r' = 't � (F �N)kr'k2 = 0: (10)Eq. (10) moves every level set of ' with the extended velo
ity F , and inparti
ular moves the zero set �(t) with the 
orre
t velo
ity V N . Merging,breaking and other topologi
al 
hanges happen automati
ally be
ause thetopology is embedded impli
itly in ' rather than expli
itly in �(t), as illus-trated by Figure 3. The moving interfa
e problems of Se
tion 2.1 
an bereformulated into level set equations as follows.Passive transport For passive transport, F is already de�ned onRd and isa natural extension of V N . The level set equation b
omes a linear hyperboli
partial di�erential equation (PDE)'t � F (x; t) � r' = 0: (11)Unit normal velo
ity With N extended by Eq. (8), motion with unitnormal velo
ity be
omes a nonlinear hyperboli
 PDE't � kr'k2 = 0: (12)Curvature-dependent velo
ity The velo
ity de�ned by Eq. (2) yields't�(R+� 
os(K�+�0))kr'k2 = (R0+�0 
os(K 0�+�00))r�(r'=kr'k2)kr'k2:(13)Here 
os � = 'x=kr'k2 and we have used the 
urvature formula C = �r�Nfrom [17℄. Eq. (13) is a mixed hyperboli
-paraboli
 PDE whi
h is singularwhere r' vanishes.Crystal growth The exa
t velo
ity of the moving interfa
e in 
rystalgrowth is a 
ompli
ated nonlo
al fun
tional of the interfa
e, whi
h 
an beextended o� the interfa
e in many ways. See [2, 10℄ for representative exten-sions and numeri
al results. 5



Level set methods move �(t) via the level set equation. An initial levelset fun
tion '(x; 0) and an extended velo
ity �eld F are built, the level setequation (10) is solved numeri
ally, and the solution '(x; t) is 
ontouredwhen �(t) is required. The method was introdu
ed in [6℄, and an extensivere
ent survey is [9℄. It has undergone mu
h development and been appliedto many moving interfa
e problems.2.3 Redistan
ingMoving interfa
e 
omputations begin with the initial interfa
e �, while thelevel set equation (10) requires globally de�ned and 
ontinuous initial values'(x) satisfying � = fx : '(x) = 0g: (14)The redistan
ing problem 
onsists of the stable spe
i�
ation and eÆ
ientevaluation of '.EÆ
ien
y is important be
ause dire
tly evaluating the signed distan
efun
tion D2 from Eq. (6) is prohibitively expensive. Consider a uniform meshin Rd with Nd points. A typi
al interfa
e � 
ontains O(Nd�1) elements,so evaluating D2 dire
tly on the mesh 
osts O(N2d�1) work. This greatlyex
eeds the O(Nd) 
ost of moving � one step on the mesh if d � 2. Thus weneed to 
hange ' or 
ompute it eÆ
iently|or both.EÆ
ien
y is even more important for methods and problems where thelevel set fun
tion is redistan
ed frequently, where we need an algorithm 
ost-ing less than the 
omputation of one time step. See [2, 9, 13℄ and Se
tion 5.2for examples.Several fast s
hemes for evaluating D2 approximately on a uniform meshhave been developed: The eikonal equation (12) is solved to steady state in[15℄, while [1℄ applies heapsort te
hniques. For many appli
ations, however,a uniform mesh wastes 
omputational e�ort solving the level set equationa

urately far from the interfa
e. The ultimate goal of level set methods isto move �, and redistan
ing dis
ards values of ' far from �, so eÆ
ient levelset methods should use an adaptive mesh to 
on
entrate 
omputational e�ortnear the interfa
e. Adaptive level set methods are presented in [7, 9, 13℄.The algorithms of this paper evaluate exa
t signed distan
e values inany norm at the verti
es of a quadtree mesh whi
h resolves � a

urately atoptimal 
ost. Given these vertex values, many interpolants to the signeddistan
e fun
tion 
an be built. We dis
uss dis
ontinuous pie
ewise d-linearinterpolation on quadtree 
ells and 
ontinuous pie
ewise-linear interpolationon various triangulations of the quadtree verti
es. All these interpolantsare 
lose to signed distan
e fun
tions near � and give ex
ellent results in thelevel set method. Our algorithms build ' in O(N logN) work if � 
ontains Nelements, 
ost O(logN) per ' evaluation and run extremely fast in pra
ti
e.6



3 Quadtrees and triangulationOur fast redistan
ing algorithms rely on basi
 stru
tures of 
omputationalgeometry su
h as quadtrees, Voronoi diagrams, and triangulations. In thisse
tion, we review the de�nitions and properties of these stru
tures whi
hsuit them to redistan
ing. We de�ne, build and triangulate quadtree meshesin Se
tion 3.1, dis
uss the Voronoi approa
h to redistan
ing in Se
tion 3.2,and provide ba
kground on the Delaunay triangulation in Se
tion 3.3.3.1 Quadtree meshes3.1.1 De�nitionA quadtree mesh 
overing the 
ube [0; 1℄d in Rd is 
omposed of square 
ellsorganized into levels, with ea
h 
ell on level l + 1 
ontained in some level-l
ell, and stores the following information:� The root 
ell C0 = [0; 1℄d.� A maximum level L � 0.� A 
ell list of 
ells, grouped by level.� A vertex list of 
ell verti
es, without repetitions.� Other appli
ation-dependent data.Ea
h 
ell C in the 
ell list stores:� Its level l and 
orner vertex (i1; : : : ; id): the 
ell 
overs the box 2�l[i1; i1+1℄� � � � � [id; id + 1℄.� The indi
es in the vertex list of the 2d 
ell verti
es.� The index in the 
ell list of its parent (if there is one).� The indi
es in the 
ell list of its 
hildren (if there are any).� Other appli
ation-dependent data.Figure 4 shows an example with L = 2. Given a general L-level quadtree,many operations related to sear
hing and sorting 
an be done eÆ
iently:�nding the quadtree 
ell where a point x lies, for example, requires O(L)examinations of bits in the binary representation of x.
7



3.1.2 Building a quadtreeTo build a quadtree, start with a root 
ell at level l = 0. Test whether itrequires splitting into 2d 
hildren on level l + 1. The splitting 
riterion dis-tinguishes between quadtrees, and must be spe
i�ed to suit the appli
ation.If a 
ell needs splitting, some bookkeeping must be done: 
reate new ver-ti
es, adjust familial pointers and so forth. Then test the 
hildren, split ifne
essary and repeat the pro
ess re
ursively. Terminate the build when no
ell requires splitting.Many useful quadtrees 
an be built with some variant of the followingsplitting 
riterion:Split any 
ell whose edge length ex
eeds its minimum distan
e to �: (15)If the distan
es from all the verti
es to � are 
omputed as the quadtree isbuilt, then this 
riterion is easy to implement. It results in quadtrees withsmoothly varying 
ell sizes whi
h are useful in adaptive level set methods[13℄ and harmoni
 analysis [12℄. These quadtrees represent � eÆ
iently: ifN 
hildless 
ells tou
h �, then the entire quadtree meshes [0; 1℄d with onlyO(N) 
hildless 
ells. Figure 5 plots a quadtree mesh built with Criterion (15)in the max-norm distan
e jD1j, and a related 
riterion is used in Se
tion 4.3.1.3 Triangulating quadtree verti
esGiven fun
tion values '(x) at the verti
es x of the quadtree mesh, there aremany ways to de�ne a global interpolant. Multilinear interpolation on ea
hquadtree 
ell is 
onvenient and eÆ
ient, but produ
es a dis
ontinuity when
ells 
hange size.A 
ontinuous interpolant 
an be built by triangulating the quadtree ver-ti
es into a simpli
ial mesh and linearly interpolating on ea
h simplex (tri-angle if d = 2, tetrahedron if d = 3). Any set of verti
es 
an be triangulatedwith the Delaunay triangulation of Se
tion 3.3, but quadtrees built with Cri-terion (15) provide a more eÆ
ient alternative. Adja
ent 
ells di�er in size byno more than a fa
tor of 2, so su
h quadtrees 
an be triangulated by addingat most one Steiner point per 
ell and triangulating the result. Figure 6shows a two-dimensional example: the te
hnique generalizes easily to higherdimensions [3℄.Given a triangulation of the tree verti
es, level set fun
tions with anydesired degree of smoothness 
an be built by varying the interpolation te
h-nique appropriately. A Ck level set fun
tion ' 
an be 
onstru
ted by Hermiteinterpolation to the fun
tion values and estimated derivatives of order � kat triangulation verti
es. These te
hniques are useful in geometri
 movinginterfa
e problems involving ' derivatives su
h as the normal ve
tor N and
urvature C. 8



3.2 Voronoi diagramsThe Voronoi diagram is a 
lassi
 tool of 
omputational geometry whi
h solvesthe equivalent of the redistan
ing problem when � is a dis
rete set ofN pointsxj 2 Rd. The Eu
lidean Voronoi diagram V2(�) is a 
olle
tion of N regionsVj = fx 2 Rd : kx� xjk2 � kx� xik2 for all i 6= jg : (16)The max-norm Voronoi diagram V1(�) is de�ned by Eq. (16) with kk2 re-pla
ed by kk1. Vj 
onsists of all points 
loser to xj than to any other pointof �. Figure 7 plots the Eu
lidean Voronoi diagram of a small point set.Given V2(�), the minimum distan
e from any x to � is simply kx� xjk2where x 2 Vj, so redistan
ing immediately redu
es to point lo
ation in thepartition V2(�) of Rd. Many O(N logN) algorithms for building Voronoidiagrams and for point lo
ation have been designed [3, 4℄, so redistan
ingfrom a dis
rete point set is straightforward.When � is a 
olle
tion of N 
omputational elements Ej su
h as segmentsin the plane or triangles in R3, the Voronoi regions 
an be de�ned byVj = fx 2 Rd : miny2Ej kx� yk2 � miny2Ei kx� yk2 for all i 6= jg:Thus the Voronoi diagram of � redu
es the redistan
ing problem to pointlo
ation in a subdivision of Rd. Sin
e V (�) 
an be built eÆ
iently [19℄, itprovides |in theory| an asymptoti
ally optimal solution to the redistan
ingproblem. However, even when � is a set of segments in the plane, there isno pra
ti
al implementation of any fast algorithm for 
omputing the Voronoidiagram. The Voronoi diagram is expensive to 
onstru
t be
ause it mustidentify a single nearest element to every point of spa
e.A 
ompromise between 
onstru
tion speed and redistan
ing speed is the
ompa
t Voronoi diagram of [5℄. This geometri
 obje
t produ
es several
andidates for the nearest element to any point x, but has a mu
h simplerstru
ture. The boundaries of a 
ompa
t Voronoi region, for example, are sim-ple polygons, rather than the pie
ewise algebrai
 
urves of the exa
t Voronoidiagram for �. The 
ompa
t Voronoi diagram may in future be
ome theredistan
ing method of 
hoi
e, but no pra
ti
al implementation is presentlyavailable.3.3 Delaunay triangulationThe Delaunay triangulation is a geometri
 obje
t related to the Voronoidiagram, whi
h we use to interpolate ' in Se
tion 4.3 and to �x the sign of' in Se
tion 4.4. Given any set of M data points xj in Rd, there are manyways to 
onne
t the points into a simpli
ial mesh (a triangulation in the9



plane, a tetrahedralization in spa
e), some better than others. One of thebest is the Delaunay triangulation, whi
h is the dual of the Voronoi diagramdes
ribed in Se
tion 3.2. (Figure 8 shows a Delaunay triangulation of thetree verti
es from Figure 5.) It gives optimal error bounds for interpolation[18℄ and 
an be built eÆ
iently in time O(M logM) by many algorithms.We use the standard C 
ode Triangle [11℄. In three dimensions, the worst-
ase 
omplexity of triangulating N verti
es in
reases to O(N2) but Delaunaytriangulation remains eÆ
ient.4 EÆ
ient redistan
ing algorithmsEÆ
ient tree-based algorithms for redistan
ing the level set fun
tion ' arepresented. We de�ne a new data stru
ture, the distan
e tree, in Se
tion 4.1,and build it in Se
tion 4.2. In Se
tion 4.3, we interpolate on the distan
etree to 
ompute various unsigned distan
e fun
tions j'j. Se
tion 4.4 uses atriangulation of the distan
e tree verti
es to spe
ify a sign for the distan
efun
tion at ea
h point. Se
tion 4.5 a
hieves the same goal by 
he
king thenormal ve
tors at nearest elements of �.4.1 De�nition of the distan
e treeThe distan
e tree is a spe
ial quadtree designed to assist in fast redistan
ingof an interfa
e �. In addition to the root 
ell, 
ell list and vertex list de�nedin Se
tion 3.1, it stores vertex distan
es and 
ell pointers to nearby elementsof �.Suppose � is 
omposed of N 
omputational elements Ej, whi
h are seg-ments in the plane, triangles in R3, or higher-order pie
ewise polynomialpat
hes. We assume two properties of this de
omposition of �: �rst, we 
an
ompute the exa
t minimum distan
e from any point x to any element Ej inany norm desired; and se
ond, the element sizes all vanish at the same rateas N!1. Then the distan
e tree 
ontains:� a vertex distan
e list of the minimum max-norm distan
es jD1(x)j to� from ea
h vertex x of the tree.Ea
h distan
e tree 
ell C 
ontains:� an element list of all elements Ej interse
ting the 
on
entri
 triple ofC: if C = fx 2 Rd : kx� 
k1 � rghas 
enter 
 and edge length 2r then its 
on
entri
 triple T is given byT = fx 2 Rd : kx� 
k1 � 3rg:10



For 
onvenien
e, we will refer to a 
ell with empty element list as empty.Figure 5 shows the 
ells in the distan
e tree for a simple 
urve.4.2 Building the distan
e treeWe build a distan
e tree around � by� 
hoosing the root 
ell,� spe
ifying a splitting 
riterion,� maintaining the element lists, and� 
omputing the vertex distan
es from ea
h 
ell.The root 
ell is the smallest square 
ell en
losing �. Its level is 0, and itselement list 
ontains every element of �. The distan
es from its 2d verti
esto � are 
omputed dire
tly.The splitting 
riterion is Criterion (15) from Se
tion 3.1.2, spe
ialized tothe max-norm distan
e:Split any 
ell whose 
on
entri
 triple interse
ts �: (17)This 
riterion leads to an eÆ
ient sear
h strategy for 
omputing the ver-tex distan
es as we build the tree. It 
an be varied slightly by 
ounting thenumber of elements interse
ting the 
ell, to avoid over-resolving fa
eted inter-fa
es � with large fa
ets. This variant eÆ
iently resolves adaptively re�nedinterfa
es built with elements of varying sizes.Splitting a 
ell a

ording to this 
riterion requires element list and vertexdistan
e list maintenan
e. Element lists are easy to handle: 
he
k everyelement in the parent's element list for interse
tion with the 
hild's tripleand add it to 
hild lists when interse
tion o

urs. Note that triples of 
hild
ells do not tile their parent's 
on
entri
 triple, so a nonempty parent mayhave empty 
hildren.Vertex distan
e list The most important information in the distan
etree |the minimum max-norm distan
e jD1(x)j from a new vertex x of a
hild 
ell C to �| is 
omputed eÆ
iently by the following three-step sear
hstrategy:1. Sear
h the element list of C, �nding the minimum distan
e m1 from xto the elements of � in the element list of C.
11



2. If C is empty or m1 violates the in
lusion 
onditionfy 2 Rd : kx� yk1 � m1g � T; (18)where T is the triple of C, 
ompute the minimum distan
e m2 from xto elements of � in the element list of C's parent C 0. The parent mustbe nonempty sin
e it is being split.3. If m2 violates the in
lusion 
onditionfy 2 Rd : kx� yk1 � m2g � T 0; (19)where T 0 is the triple of C 0, expand the sear
h to in
lude elementsof � in the element list of the grandparent C 00. The result m3 is theminimum distan
e to �.With this sear
h strategy, the total 
ost of building an L-level distan
e treearound an N -element interfa
e is O(NL) as N!1, be
ause the union of alltriples of 
ells on level l � L interse
ts O(N) elements.The 
orre
tness of this pro
edure relies on using the max-norm distan
efun
tion jD1j, be
ause our square tree 
ells are spheres in the max-norm.Figure 9 illustrates why great-grandparents never need to be sear
hed. Thenearest element of � whi
h interse
ts the triple T 0 of the parent C 0 of a tree
ell C may not be the nearest element of � overall. But if the max-normis used, the nearest element interse
ting T 0 beats every element outside thetriple T 00 of the grandparent C 00.In the Eu
lidean norm, the distan
e between opposite 
orners of a hy-per
ube is pd > 1 so we may need to sear
h great-grandparents. However,a slight variant of this sear
h strategy 
omputes all vertex values of D2 inO(NL) time.4.3 InterpolationThe distan
e tree gives us exa
t distan
e values at O(N) verti
es 
lusterednear the interfa
e. A globally de�ned level set fun
tion ' 
an be built fromthese distan
e values in many ways, of whi
h we dis
uss d-linear 
ell inter-polation and linear simplex interpolation.4.3.1 Cell interpolationLet j'j be the d-linear interpolant to the vertex values on ea
h empty 
hildlessdistan
e tree 
ell. In d = 2 dimensions, for example, a 
ell C with edge lengthh has four verti
es (x0 + ih; y0 + jh) with distan
es j'ijj for 0 � i; j � 1.Then j'j is de�ned at a point (x = x0 + �h; y = y0 + �h) in C byj'j(x; y) = (1��)(1��)j'00j+�(1��)j'10j+(1��)�j'01j+��j'11j: (20)12



On nonempty 
hildless 
ells, whose 
on
entri
 triples interse
t �, j'j isde�ned to be exa
tly equal to the distan
e jD1j to �. (See Figure 10.) Thefollowing sear
h strategy evaluates j'j eÆ
iently in nonempty 
hildless 
ellsnear �: A nonempty 
hildless 
ell C stores a list of all elements of � interse
t-ing its triple T . This allows us to sear
h the element list of C for the 
losestelement to x, yielding a minimum distan
e m1. As in the 
onstru
tion of thedistan
e tree, m1 may not be the global minimum distan
e, but sear
hingthe element list of the parent C 0 is guaranteed to �nd the minimum. Thereare a bounded number of � elements near any nonempty 
hildless 
ell C asN!1, so the 
ost of ea
h evaluation is dominated by the O(logN) 
ost of�nding the 
ell C 
ontaining x.Thus j'j is evaluated by interpolating exa
t vertex distan
es on empty
hildless 
ells and by sear
hing one or two short lists on nonempty 
hildless
ells near the interfa
e. It has the following properties.� j'j has zero set �,� j'j = jD1j at verti
es of the tree and in 
ells suÆ
iently near �,� j'j 
an be evaluated in O(logN) work at any x, and� j'j is 
ontinuous almost everywhere, with jumps where 
ells 
hange sizede
reasing in magnitude as 
ells approa
h �.4.3.2 Simplex interpolationWe 
an 
onstru
t a 
ontinuous level set fun
tion ' by triangulating the ver-ti
es and pie
ewise-linearly interpolating to the vertex values. See Figure 11for an example. This level set fun
tion 
an be evaluated at any point x by�nding the simplex 
ontaining x and interpolating from its verti
es. Findingthe simplex 
osts O(logN), so ea
h j'j evaluation 
osts O(logN). Build-ing the Delaunay triangulation of the O(N) tree verti
es 
osts O(N logN),while triangulating the quadtree verti
es dire
tly as in Se
tion 3.1.3 
ostsO(N)|both asymptoti
ally 
omparable to building the distan
e tree.The simplex interpolant is 
ontinuous, but not exa
tly equal to D near �,and thus has zero set slightly di�erent from �. If ne
essary, we 
an form the
onstrained Delaunay triangulation in
luding the edges and verti
es of thepolygonal interfa
e �, to get a 
ontinuous interpolant with zero set exa
tlyequal to �.4.4 Signing ' by triangulationBoth 
ell and simplex interpolation produ
e an approximate unsigned dis-tan
e fun
tion j'(x)j asso
iated with an interfa
e �, while the level set13



method requires the signed distan
e fun
tion '(x) = �j'(x)j. When re-distan
ing ' from its own zero set on a �xed grid, as in Se
tion 2.3, we 
anpreserve the sign of ea
h value of '(x). We need to �x the sign, however,when initializing ' from an interfa
e �. The following algorithm lo
ates theinterfa
e in a triangulation of the quadtree verti
es, then propagates the signinward from the boundary.Given a triangulation of the distan
e tree verti
es, mark every edge ofthe triangulation whi
h is 
rossed by an element of �. This requires timeproportional to the tree depth times the size of �, O(NL) = O(N logN),be
ause marking ea
h edge 
osts O(L). Set the sign of ' to �1 at one 
ornervertex of the root 
ell, and propagate the sign along every edge. Beforepropagating along a marked edge, 
hange the sign from �1 to +1 or from+1 to �1. If � 
rosses the edge n times, 
hange the sign n times. A robustalgorithm must take spe
ial 
are when � tou
hes an edge without 
rossing.After propagation �nishes, we have a 
onsistent 
hoi
e of sign for ' at ea
hdistan
e tree vertex. See Figure 12 for an example.4.5 Signing ' by normal ve
torsThe sign of ' 
an be �xed more eÆ
iently if we have an outward unit normalve
tor on ea
h element of �. Then while we are �nding a 
losest point of �to any quadtree vertex x we 
an determine the sign of '(x) simultaneouslyby 
he
king whi
h side of the nearest element x lies on. This pro
edure 
ostsmu
h less than the triangulated algorithm of Se
tion 4.4, but requires some
are in implementation. Figure 13 shows one possible pitfall: At a
ute 
or-ners of �, all elements of � tou
hing the 
orner must be 
he
ked to determinethe sign of '(x) 
orre
tly.5 Numeri
al resultsWe verify the speed of our algorithms with large-s
ale runs on simple and
omplex interfa
es in Se
tion 5.1 and show a simple appli
ation to level set
omputations in Se
tion 5.2. Two-dimensional versions of our algorithmswere implemented in ANSI C, 
ompiled with the SunSoft C 
ompiler usingthe -fast 
ag, and run on one CPU of a Sun 200MHz Ultra-2 workstationunder Solaris 2.6. The 
odes have not been spe
ially optimized and 
ouldprobably be speeded up by one to two orders of magnitude by investingadditional programming e�ort.
14



5.1 EÆ
ien
y5.1.1 Dire
t evaluationWe took the signed Eu
lidean distan
e fun
tion D2 of the pentagonal inter-fa
e from Figure 2, 
ontoured it on a square M �M grid to represent � withN = O(M) segments, then evaluated D1(x) dire
tly at every vertex of theM�M grid. Table 1(a) re
ords the CPU times T required and the 
omputedarea A en
losed by the interfa
e, whi
h indi
ates the resolution of � providedby the M �M grid. We repeated the experiment with the 
omplex interfa
eof Figure 14, and report the 
orresponding times and areas in Table 1(b).These experimental results agree with theoreti
al expe
tations: the dire
tmethod requires O(M2N) = O(M3) CPU time. Dividing T by M2N givesan almost 
onstant result, 
lose to 10�6 se
onds per segment per evaluation.Therefore T � 10�6M2N se
onds, so ea
h dire
t evaluation 
osts O(N)time. For large-s
ale 
omputation, these timings are prohibitive. Three-digita

ura
y in the area of a 
omplex interfa
e requires almost three minutesper redistan
ing: adequate a

ura
y in geometri
 quantities su
h as normalve
tors and 
urvature would require greater 
omputational e�ort and makefast algorithms even more attra
tive.5.1.2 Fast algorithmsWe redistan
ed the interfa
es shown in Figures 2 and 14 with our fast algo-rithms to verify their eÆ
ien
y. Here we built the L-level distan
e tree andevaluated all vertex distan
es for the same interfa
e, 
ontoured by bilinearinterpolation on tree 
ells into N segments. This gives resolution on � equiv-alent to the dire
t method on a uniform M �M mesh with M = 2L, at farless 
ost. Table 2 reports the CPU times T for our fast algorithms, togetherwith the number C of adaptive tree 
ells, the CPU time D for Delaunaytriangulation of the O(N) tree verti
es by Triangle [11℄ and the CPU timeS required to move the interfa
e one step with the adaptive tree methods of[13℄.5.1.3 ComparisonsWe draw the following 
on
lusions from Tables 1 and 2:1. The total number of quadtree 
ells required to resolve an interfa
e �with the a

ura
y of a uniformM�M mesh is asymptoti
ally O(M)|an optimal result with bilinear 
ontouring.2. The fast algorithms produ
e a globally de�ned level set fun
tion ' foran N -element interfa
e in O(N logN) CPU time, mu
h faster than the15



O(M3) required for dire
t evaluation on a uniform mesh and the O(N2)required for dire
t evaluation at the tree verti
es.3. With 8000 segments resolving the area of a 
omplex interfa
e to four-digit a

ura
y, the equivalent of a 512 � 512 uniform mesh, our fastalgorithms are 400 times faster than dire
t evaluation on a uniformmesh and 20 times faster than dire
t evaluation at the tree verti
es. Atour highest resolution, equivalent to a 4096� 4096 uniform mesh, thefast algorithms are 160 times faster than dire
t evaluation at the treeverti
es.4. Our fast redistan
ing algorithms are highly pra
ti
al; they 
ost lessthan Delaunay triangulation of the tree verti
es and less than movingthe interfa
e one step, permitting frequent redistan
ing at negligible
ost.5.2 Appli
ation to level setsThe following example from [1℄ demonstrates the usefulness of frequent re-distan
ing. A 
ir
le is passively transported with unit radial velo
ity in thevelo
ity �eld (see Figure 15)F (x; y; t) = ((r � (1 + t)) 
os(5� + �0) + 1)(x; y)=r: (21)While the 
ir
le expands at unit speed, other level sets are wildly distortedby the �vefold anisotropi
 �eld F (see Figure 16), produ
ing large solutiongradients whi
h redu
e the a

ura
y of any numeri
al method. These 
om-putations used the tree methods of [13℄, and the large gradients distort themesh be
ause ' is used as a mesh re�nement indi
ator.When the solution ' is redistan
ed every ten steps, the large gradientsdisappear and mesh distortion is eliminated (see Figure 17). Solution regu-larity is 
ontrolled by the regularity of the interfa
e rather than the far-�eldvalues of F when frequent redistan
ing is applied.6 Con
lusionWe have reviewed the role of redistan
ing in level set methods for movinginterfa
es and presented fast redistan
ing algorithms based on trees, trian-gulation, interpolation and a robust sear
h strategy. Our algorithms arefast, straightforward and extremely useful in adaptive level set methods formoving interfa
e problems. We are 
urrently applying these algorithms to
ompute general velo
ity extensions, permitting the 
onstru
tion of 
om-pletely modular level set methods [14℄ for solving general moving interfa
eproblems. 16
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(a)

(b)

(
)Figure 1: Representative solutions of moving interfa
e problems: (a) initially
ir
ular bubbles after transport in a shearing 
ow, (b) merging of 
omplexinterfa
es with unit normal velo
ity, and (
) 
rystalline fa
ets developingunder a threefold anisotropi
 
urvature-dependent velo
ity.19



(a)

(b)Figure 2: The 
orresponden
e between an interfa
e and a level set fun
tion:(a) A pentagonal interfa
e �, and (b) the signed Eu
lidean distan
e fun
tionD2 to �.
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(a)

(b)

(
)Figure 3: (a) Two pentagons growing with unit normal velo
ity merge. Thedis
ontinuous pie
ewise bilinear interpolant to the signed max-norm distan
efun
tion D1 is plotted over a quadtree mesh at (b) initial and (
) �nal times.21
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C3 C4
V7

V6

V12
C8

V11
C7

C6
V9

C5

V10

V3

V1

Cell Level Corner Children Parent Verti
esC0 0 (0; 0) C1, C2, C3, C4 { V0, V1, V2, V3C1 1 2�1(0; 0) C5, C6, C7, C8 C0 V0, V4, V5, V8C2 1 2�1(1; 0) { C0 V4, V1, V8, V6C3 1 2�1(0; 1) { C0 V5, V8, V2, V7C4 1 2�1(1; 1) { C0 V8, V6, V7, V3C5 2 2�2(0; 0) { C1 V0, V9, V10, V13C6 2 2�2(1; 0) { C1 V9, V4, V13, V11C7 2 2�2(0; 1) { C1 V10, V13, V5, V8C8 2 2�2(1; 1) { C1 V13, V11, V12, V8Figure 4: Levels 0, 1 and 2 of a quadtree with 
ells Ci and verti
es Vi.
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Figure 5: A six-level quadtree mesh built around the pentagonal zero set ofFigure 2.
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Figure 6: Triangulating a quadtree mesh. The �lled dots are quadtree ver-ti
es, open 
ir
les are Steiner points.
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Figure 7: The Eu
lidean Voronoi diagram of a small set of points.
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Figure 8: The Delaunay triangulation of the tree verti
es from Figure 5.
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C

C’’

Γ

C’

T’

T’’Figure 9: The nearest element of � whi
h interse
ts the triple T 0 of theparent C 0 of a distan
e tree 
ell C may not be the nearest element of �overall. But if the max-norm is used, the nearest element interse
ting T 0beats every element outside the triple T 00 of the grandparent C 00.
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Figure 10: The dis
ontinuous pie
ewise bilinear interpolant to the signedmax-norm distan
e fun
tion D1 on a six-level quadtree mesh built aroundthe pentagonal zero set of Figure 2.

28



Figure 11: The 
ontinuous pie
ewise linear interpolant to the signed max-norm distan
e fun
tion D1 on the Delaunay triangulation of Figure 8.
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Γ

Figure 12: Fixing the sign of ' with a triangulation of the distan
e treeverti
es. The lower left 
orner is assigned sign �1, then the sign propagatesun
hanged along edges not 
rossing �, shown as thin lines, and 
ips on edges
rossing �, shown as thi
k lines. Thus the open 
ir
les re
eive negative 'values while the solid dots re
eive positive ' values.
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E

F

x

N
N

Figure 13: Pitfalls in �xing the sign of '. The point x lies outside � a

ordingto element E, but inside � a

ording to element F , and both are nearestelements of � to x.
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(a)

(b)

(
)
Figure 14: The 
omplex interfa
e used in Tables 2 and 4, plotted over adistan
e tree mesh with (a) 6, (b) 7 and (
) 8 levels.32



(a)

(b)

(
)Figure 15: The velo
ity of Eq. 21, with X and Y 
omponents shown in (a)and (b). The interfa
es at equal times are shown in (
).
33



(a)

(b)

(
)Figure 16: A 
ir
ular interfa
e expanding with the velo
ity of Eq. 21, 
om-puted by solving the level set equation with no redistan
ing: (a) and (b)
ontours of the level set fun
tion at t = 1 and 2, (
) shows the quadtreemesh from the method of [13℄ at t = 2.34



(a)

(b)

(
)Figure 17: A 
ir
ular interfa
e expanding with the velo
ity of Eq. 21, withredistan
ing applied every ten steps: (a) and (b) 
ontours of the level setfun
tion at t = 1 and 2, (
) the quadtree mesh from the method of [13℄ att = 2. 35



M N A T32 120 3.61486 0.0964 248 3.62906 0.73128 496 3.63180 5.84256 1000 3.63253 49.7512 2004 3.63266 400
M N A T32 302 1.50602 0.1964 856 1.71439 2.32128 1900 1.73998 20.5256 3920 1.73377 169512 7936 1.72980 1370(a) (b)Table 1: Uniform grid size M , number N of segments in the interfa
e, 
om-puted area A and CPU se
onds T for dire
t redistan
ing of the level setfun
tion '. Results for (a) the pentagonal interfa
e of Figure 2, and (b) the
omplex interfa
e of Figure 14.
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L M = 2L N C A T D S5 32 124 729 3.6111 0.03 0.14 0.166 64 252 1601 3.62792 0.09 0.24 0.287 128 502 3365 3.63145 0.20 0.44 0.508 256 1006 6913 3.63238 0.46 0.83 0.969 512 2010 14017 3.63264 1.07 1.76 2.0110 1024 4020 28253 3.63269 2.36 3.56 4.1511 2048 8040 56673 3.63271 5.25 7.23 8.4412 4096 16080 113541 3.63271 11.6 14.8 17.4(a)L M = 2L N C A T D S5 32 322 989 1.41287 0.05 0.17 0.196 64 878 2897 1.68656 0.20 0.37 0.427 128 1918 7641 1.72989 0.56 0.89 1.038 256 3906 19701 1.73062 1.43 2.28 2.629 512 7918 46677 1.72947 3.44 5.79 6.6610 1024 15912 101973 1.72873 8.03 13.2 15.211 2048 31849 213561 1.72849 18.5 28.3 33.212 4096 63705 437421 1.72844 41.5 60.7 69.8(b)Table 2: Number of tree mesh levels L and 
ells C, number N of segments inthe interfa
e �, 
omputed area A and CPU se
onds T for fast redistan
ingof the level set fun
tion '. CPU se
onds D for Delaunay triangulation of thetree verti
es and S for moving the interfa
e one step. (a) The pentagonalinterfa
e of Figure 2, and (b) the 
omplex interfa
e of Figure 14.
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