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tA fast modular numeri
al method for solving general moving inter-fa
e problems is presented. It simpli�es 
ode development by providinga bla
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ity. The method 
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ed levelset approa
h, a problem{independent velo
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ond{order semi{Lagrangian time stepping s
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h redu
es numeri
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tion.Adaptive quadtree meshes are used to 
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e inO(N logN) work per time step. EÆ
ien
y is in
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urvature 
ows. Numeri
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e problems involving merging,anisotropy, fa
eting, nonlo
ality and 
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1 Introdu
tionWe present an eÆ
ient a

urate method for general moving interfa
e problems.Our method fun
tions as a bla
k{box solver, interrogating the interfa
ial ve-lo
ity only through a user{supplied module. It alsoÆ merges and breaks 
omplex topology automati
ally via a level set ap-proa
h with general velo
ity extension,Æ takes large time steps via stable se
ond{order semi{Lagrangian timestepping s
hemes, andÆ resolves an N{element interfa
e with optimal O(N logN) work per timestep by adaptive quadtree meshing and eÆ
ient geometri
 algorithms.The work extends the �rst{order semi{Lagrangian uniform mesh methodfor geometri
 moving interfa
es of [19℄, the adaptive quadtree version of [20℄,and the quadtree{based fast redistan
ing algorithm of [18℄. The present workuses se
ond{order a

urate time stepping whi
h greatly redu
es numeri
al dis-sipation (Se
tion 1.2), fast adaptive quadtree meshing, and a faster redistan
-ing s
heme whi
h enhan
es the semi-Lagrangian approa
h by exa
t interpola-tion (Se
tion 1.3). The fast new quadtree{based velo
ity extension algorithmof Se
tion 2 allows our method to 
ouple with any user{supplied interfa
ialvelo
ity, su
h as the geometri
 velo
ity built in Se
tion 3 and used in the
omputational experiments of Se
tion 4.1.1 OverviewA moving interfa
e is the boundary �(t) = �
(t) of a set 
(t) � Rd dependingon time t. If 
 is suÆ
iently smooth, then �(t) has an outward unit normalN , a 
urvature C and a velo
ity V at ea
h point. A moving interfa
e problemis a 
losed system of equations whi
h spe
i�es V as a fun
tional of �, possiblyin a highly indire
t and nonlo
al way. Figure 1 shows some typi
al solutions ofgeometri
 moving interfa
e problems, where V = V (x; t; N; C) depends onlyon the lo
al position and geometry of �(t).The main diÆ
ulty in moving interfa
es is the 
orre
t handling of merging,breaking and other topologi
al 
hanges. This diÆ
ulty 
an be over
ome by re-formulating the problem on a �xed domain, using the signed distan
e fun
tionto �(t) de�ned by '(x; t) = � min
2�(t) kx� 
k: (1)If ' is taken positive in 
(t) then N , C and V 
an be 
omputed from ' by[22℄ N = r'=kr'k; C = �r �N; V = 'tr'=kr'k2: (2)If the spe
i�ed velo
ity fun
tional V on � is extended smoothly to a ve
tor�eld W (x; t) on Rd, then solving the adve
tion equation't �W � r' = 0 (3)3
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Figure 1: Sample moving interfa
es 
omputed with our method: (a) initially
ir
ular bubbles after passive transport in a shearing 
ow V = V (x), (b)fa
eted shapes merging and growing under a sixfold anisotropi
 velo
ity V =V (N), and (
) a 
omplex polygonal shape shrinking under 
urvature 
owV = C.moves the zero set �(t) of the solution ' with velo
ity V and hen
e solves themoving interfa
e problem. Topologi
al 
hanges are handled automati
ally.\Level set" methods [11℄ move �(t) via the adve
tion equation (3). Aninitial signed distan
e fun
tion '(x; 0) and an extended velo
ity �eld W arebuilt, ' is adve
ted and 
ontoured when �(t) is required. While these methodshandle topology automati
ally, there are some potential diÆ
ulties. They 
anbe expensive sin
e the dimension in
reases, parti
ularly if uniform meshes areused. One must be 
areful to obtain the 
orre
t \vis
osity solution" of theadve
tion equation. Extending the velo
ity o� �(t) 
an be diÆ
ult. Level setmethods are not naturally modular: a new 
ode must be written for ea
h newproblem to be solved, sin
e the velo
ity evaluation is intertwined with the mov-ing interfa
e 
ode by velo
ity extension. Our method removes these barriers:we solve the adve
tion equation on an adaptive quadtree mesh to eliminatethe 
ost of going up a dimension. Corre
t vis
osity solutions are obtained bysemi-Lagrangian time stepping with exa
t evaluation of the signed distan
efun
tion and frequent eÆ
ient redistan
ing. A general problem-independentvelo
ity extension makes our method modular and easy to apply.Our numeri
al method moves interfa
es by the se
ond{order semi-Lagrangiantime stepping s
heme presented in Se
tion 1.2 and three independent 
ompu-tational modules:Æ redistan
ing to produ
e the signed distan
e ' from a given interfa
e �(Se
tion 1.3),Æ 
ontouring to extra
t the zero set � from the solution ' of Eq. (3) (Se
-tion 1.3), andÆ extension of interfa
ial velo
ities V de�ned on � to global smooth velo
-ities W de�ned everywhere on Rd (Se
tion 2).4



1.2 Semi-Lagrangian time steppingThe adve
tion equation (3) 
an be solved by many time stepping s
hemes. Weuse semi-Lagrangian s
hemes whi
h o�er some unique advantages: expli
itun
onditional stability, natural adaptivity and modularity. These s
hemesare widely used for modeling linear adve
tion in atmospheri
 s
ien
e [15, 13℄,where un
onditional stability eliminates the stringent time step restri
tionen
ountered on small 
ells by Eulerian s
hemes [14℄, and have been applied tomoving interfa
es in [19, 20℄. They rely on the observation that the adve
tionequation propagates solution values along 
hara
teristi
s x = s(t) satisfying_s(t) = �W (s(t); t): (4)Thus the solution  (x) = '(x; t + k) at time t + k 
an be evaluated by solv-ing the 
hara
teristi
 ODE (4) ba
kwards in time from x = s(t + k) to s(t)and setting  (x) = '(s(t); t). Standard ODE theory [5℄ guarantees a uniquesolution s(t) for any x if W is globally Lips
hitz, so ba
kward 
hara
teristi
sdo not 
ross and the pro
edure is well de�ned [13℄. Semi-Lagrangian meth-ods adopt this two{step approa
h, solving the 
hara
teristi
 ODE numeri
allyfrom x = s(t+ k) to s(t) and then approximating the o�{grid value '(s(t); t)by interpolation [9℄ or monotone adve
tion [12℄ to preserve stability. Our mov-ing interfa
e method evaluates the signed distan
e '(s(t); t) exa
tly and omitsthe approximation.Semi-Lagrangian moving interfa
e methods whi
h use the �rst{order Courant{Isaa
son{Rees (CIR) s
heme [1℄~ (x) = '(~x; t) = '(x + kW (x; t); t) (5)to solve the adve
tion equation were developed in [19, 20℄. Their e�e
tivenesshas been heuristi
ally justi�ed and experimentally veri�ed for many movinginterfa
e problems involving passive transport, geometry, dynami
 topology,fa
eting and 
urvature. The 
onvergen
e theory of these methods is straight-forward if V = V (x; t; N), be
ause the adve
tion equation is hyperboli
. For
urvature 
ow V = C, the adve
tion equation is paraboli
 and the main bar-rier to 
onvergen
e is the Courant{Friedri
hs{Lewy (CFL) 
ondition, whi
hrestri
ts the timestep of most expli
it methods by k � O(h2) to ensure in-formation propagates 
orre
tly and the 
omputation remains stable. Semi-Lagrangian moving interfa
e methods are expli
it yet un
onditionally stableand 
an satisfy the CFL 
ondition by nonlo
al velo
ity evaluation, permit-ting 
onvergen
e with large time steps k = O(h) even for paraboli
 problems[19, 20℄.The spe
i�
 semi{Lagrangian time stepping s
heme used in our method
ombines a CIR predi
tor (5) with a se
ond{order trapezoidal 
orre
tor (x) = '(x+ k2W (~x; t) + k2 ~W (x; t+ k); t) : (6)5



the extended velo
ity ~W is evaluated from ~ at time t + k. This predi
tor{
orre
tor pair is se
ond{order a

urate in time, expli
it, and un
onditionallystable. Ea
h new  value is an exa
t ' value so the maximum of ' 
annever in
rease. The CIR predi
tor (5) used as a time stepping s
heme is alsoun
onditionally stable, but only �rst{order a

urate and extremely dissipative[7℄. Both predi
tor and 
orre
tor may also in
orporate lo
al iteration, wherethe �rst approximation x� = x + kW (x; t) (respe
tively x� = x + k2W (~x; t) +k2 ~W (x; t+k)) to the foot of the 
hara
teristi
 through x is repeatedly repla
edby x+ kW (x�; t) (respe
tively x+ k2W (x�; t) + k2 ~W (x; t+ k)). Lo
al iterationdoes not alter the order of a

ura
y of the time stepping s
heme, but redu
esnumeri
al dissipation noti
eably in some experiments.Sin
e our adve
tion velo
ity W (x; t) extends the user{spe
i�ed velo
ityfun
tional V de�ned on the zero set �(t) of '(x; t), ea
h semi-Lagrangian timestep requires several 
omplex global operations. Starting with an interfa
e�(t), our method 
arries out the following steps to produ
e the new interfa
e�(t+ k):Æ Evaluate the signed distan
e ' from the interfa
e �(t).Æ Evaluate the interfa
ial velo
ity V of �(t) by a user{supplied module.Æ Extend V to a global adve
tion velo
ity W .Æ Advan
e ' via W to the predi
ted CIR solution ~ de�ned by Eq. (5).Æ Contour ~ to get the predi
ted interfa
e ~�.Æ Evaluate the predi
ted interfa
ial velo
ity ~V of ~�.Æ Extend ~V to a global adve
tion velo
ity ~W .Æ Advan
e ' via W and ~W to the 
orre
ted solution  de�ned by Eq. (6).Æ Contour  to get �(t+ k).Ea
h of these steps 
an be eÆ
iently implemented via the quadtree mesh whi
hwe now de�ne.1.3 Quadtree meshes and fast algorithmsDe�nition A quadtree mesh 
overing a 
ube R in Rd is 
omposed of square
ells organized into L levels, with ea
h 
ell on level l + 1 
ontained in somelevel-l 
ell, and stores the following information:Æ A 
ell list of 
ells Cj, grouped by level l, with the root 
ell C0 = R onlevel l = 0.Æ A vertex list lo
ating 
ell verti
es and 
enters in Rd.6



Ea
h 
ell C in the 
ell list 
ontains:Æ Its level l and lo
ation (i1; : : : ; id) in a uniform d-dimensional mesh with2l 
ells per side.Æ The indi
es in the vertex list of the 2d + 1 
ell verti
es and 
enters.Æ The indi
es in the 
ell list of its parent (if there is one), 
hildren (if any),and neighbors (if any).Given an L-level quadtree, many operations related to sear
hing and sorting
an be done eÆ
iently [2℄. Finding the tree 
ell whi
h 
ontains a point x,for example, requires O(L) 
he
ks of bits in the binary representation of x.An L-level quadtree 
an be built by re
ursively splitting 
ells into 2d sub
ells,a

ording to a splitting 
riterion whi
h 
hara
terizes the parti
ular quadtreebeing built. Appli
ations of quadtrees in Steps 1{9 in
lude velo
ity extension(Se
tion 2) and:The distan
e tree An interfa
e � 
omposed of N pie
ewise linear elements
an be eÆ
iently resolved on a tree mesh built by splitting any 
ell C whoseedge length ex
eeds its minimum distan
ed(C;�) = minx2C min
2� kx� 
k (7)to �. Su
h a tree resolves � at optimal O(N) 
ost, allows fast O(N logN)evaluation of the signed distan
e fun
tion for �, and is used in Step 1 of ourmethod. The following fast redistan
ing algorithm based on [18℄ evaluates '(x)at a new vertex x of a level{l 
ell C in d2 + 12 log 2 log de steps in d dimensions:Æ Start: Set the 
urrent minimum distan
e m to � equal to 1.Æ Loop: While l � 0 and the 
ube C(x;m) with 
enter x and half{sidelengthm is not 
ompletely 
ontained in the 
on
entri
 triple of C; repla
eC by its parent C�, �nd and re
ord a nearest element ��j to x in theelement list of C�, repla
e m by the minimum distan
e m� from x to ��j ,and repla
e l by l � 1.Æ Sign: Given a nearest element ��j to x, determine the sign of ' = �m�by 
he
king normal ve
tors of ��j and its neighbors. Nearest elementsforming an a
ute angle may disagree on the sign of ', so neighbors mustbe 
he
ked: see Figure 2(a).This sear
h strategy builds the distan
e tree in O(N logN) time and spa
e
omplexity, be
ause the union of all triples of 
ells on any level l � L =O(logN) interse
ts O(N) elements. The sear
h always terminates in a boundednumber of steps (see Figure 2(b)). The nearest element of � whi
h interse
tsthe triple T � of the parent C� of a tree 
ell C may not be the nearest element7



of � overall; nor need it be the nearest element of � interse
ting the tripleT �� of the grandparent C��. But in d � 4 dimensions, any element interse
t-ing T � beats every element outside the triple T ��� of the great-grandparentC���. In general dimension d, the number a of levels as
ended is determinedby the diagonal length of a d-dimensional 
ube via the requirement 2a � 4pdor a � 2 + 12 log 2 log d.a b

N

N

x

ΓΓ2 1

T* C**

C***T**

T***

Γ

C*
C

Figure 2: (a) A pitfall in signing '(x): two nearest elements forming an a
uteangle may disagree about the sign of '(x). (b) The sear
h strategy alwaysterminates in at most three steps in d � 4 dimensions: any element interse
tingT � rules out all elements outside T ���.The 
ontour tree The unknown zero set of a given fun
tion  
an beeÆ
iently resolved on a quadtree built by splitting ea
h 
ell whose edge lengthex
eeds the minimum value of j j on the 
ell. Su
h quadtrees are built for and ~ in Steps 4 and 8. This simple approa
h to adaptive meshing takesadvantage of the unique fun
tional viewpoint inherent in semi{Lagrangianmethods, whi
h de�ne the solution  (x) at the new time step by the formula(6), whi
h 
an be evaluated at any desired point. Most adaptive methods uselo
al derivative estimates and must re
ompute the solution when a trial meshis re�ned [8℄.Triangulation For quadtrees in whi
h adja
ent 
ells di�er in size by no morethan a fa
tor of 2 |su
h as the distan
e tree| 
ell verti
es and 
enters 
aneasily be triangulated into 
onforming meshes [2℄. Ea
h 
ell in su
h a tree has0 to 4 smaller neighbors in d = 2 dimensions, so a triangulation 
an be built8



from the six possible 
on�gurations shown in Figure 4. The distan
e tree fora simple interfa
e � is triangulated in Figure 3.Contouring Given fun
tion values  (x) at the verti
es and 
enters of a tri-angulated quadtree mesh, extra
ting the zero set of the 
ontinuous pie
ewise-linear interpolant on the triangulation is straightforward. In d = 2 dimensions,for example, ea
h triangle where  
hanges sign 
ontains a unique line seg-ment where the linear interpolant to  vanishes. These line segments forma polygonal 
urve sin
e the triangulation is 
onforming and the interpolantis 
ontinuous. Following the polygonal zero 
urve as far as possible in bothdire
tions produ
es an oriented 
omponent of �(t+ k) with  > 0 on its inte-rior. In d > 2 dimensions the 
ontouring pro
ess is similar but slightly more
ompli
ated: d-dimensional simpli
es repla
e triangles and (d�1)-dimensionalsimpli
es repla
e line segments. Su
h a 
ontouring algorithm approximatelyinverts the redistan
ing s
heme built on a distan
e tree, and is used in Steps5 and 9 above.a b

Figure 3: (a) Six-level distan
e tree mesh for a simple interfa
e and (b) trian-gulation of its 
ell verti
es and 
enters.a b 
 d e f
Figure 4: Possible triangulations of a two-dimensional tree 
ell.
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2 Velo
ity extensionMoving interfa
es via the adve
tion equation't �W � r' = 0 (8)requires a globally de�ned velo
ity W whi
h extends the given velo
ity fun
-tional V smoothly o� the interfa
e �(t). Early level set methods su
h as [10℄built in problem{dependent velo
ity extensions, su
h as the natural extensionsavailable for passive transport, geometri
 problems and interfa
ial transport in
uid 
ows. This redu
es the usefulness of the level set approa
h be
ause ea
hnew moving interfa
e problem requires a new velo
ity extension programmedinto the level set algorithm. Some re
ent velo
ity extensions tailored to spe
i�
adve
tion methods and interfa
ial representations are presented in [11℄.We use a fast problem{independent velo
ity extension to move �(t) withoutany information on the V �� relationship. This permits the solution of a widevariety of moving interfa
e problems with minimal programming e�ort: givenan implementation of our method, a new moving interfa
e problem requiresonly a new 
ode for evaluating V on �(t), rather than a 
ompletely new movinginterfa
e 
ode. Our velo
ity extension 
ombines the nearest{point extensionof Se
tion 2.1 and the distan
e tree [18℄ summarized in Se
tion 1.3 into the
ontinuous and eÆ
ient \numeri
al Whitney extension" of Se
tion 2.3.2.1 Nearest{point extensionGiven any 
ontinuous fun
tion g on �, we 
an de�ne its nearest{point extensionG by G(x) = g(
) (9)where 
 is a nearest point on � to x, 
hosen arbitrarily if there are severalpoints equidistant from x. The nearest{point extension G is 
ontinuous nearsmooth interfa
es �, but may be dis
ontinuous at points x with several nearestneighbors. Figure 5 shows an example: G is dis
ontinuous along the \medialaxis" [2℄ 
onsisting of points equidistant from two or more points of �. Aweighted dis
rete version of this extension is used in [11℄.The nearest{point extension 
an be eÆ
iently evaluated at the verti
es and
enters of a distan
e tree resolving �. When the tree is built, a pointer fromea
h vertex and 
enter to a nearest element of � is stored. G(x) 
an then beevaluated by �nding a nearest point 
 on a known nearest element and settingG(x) = g(
). At arbitrary points x 2 Rd, however, a distan
e tree does notguarantee eÆ
ient evaluation of the nearest{point extension. Points x lo
atedin large 
ells far from � may require sear
hing long lists with O(N) elements.The distan
e tree speeds up G(x) evaluation only for x near �, be
ause su
hpoints are 
ontained in small 
ells with few nearby elements where the sear
hstrategy of Se
tion 1.3 is eÆ
ient. 10



2.2 Whitney extensionThe velo
ity extension te
hnique used in our moving interfa
e method resem-bles the 
lassi
al Whitney extension pro
edure of [23℄:Æ Build an in�nite distan
e tree 
overing all of Rd with L =1.Æ Evaluate the nearest{point extension G(x) at a random point x in ea
h
hildless 
ell.Æ Pie
e these values together into a 
ontinuous fun
tion with a partitionof unity subordinate to the distan
e tree.The Whitney pro
edure produ
es a 
ontinuous extension of g o� �, 
an bemodi�ed to produ
e a Ck extension, and is widely used in harmoni
 analysis[16℄. The Whitney extension, unlike the nearest{point extension, is 
ontinuousat every x 2 Rd, be
ause the 
ell 
ontaining x is never subdivided on
e itsdistan
e from � ex
eeds its size. Thus the Whitney extension is eventuallyequal to a �xed 
ontinuous fun
tion on ea
h 
ell as L!1.2.3 Numeri
al Whitney extensionOur velo
ity extension te
hnique di�ers from the Whitney pro
edure, by us-ing a �nite distan
e tree with L <1, eÆ
iently evaluating the nearest{pointextension G(x) at distan
e tree verti
es and 
enters, and repla
ing Whitney'spartition of unity by 
ontinuous pie
ewise{linear interpolation from the tri-angulated tree verti
es and 
enters. The pro
edure evaluates W (x) via thefollowing steps, shown in Figure 5(b):Æ Find the distan
e tree 
ell C 
ontaining x by binary sear
h.Æ Find the triangle � � C 
ontaining x.Æ Interpolate the nearest-point extension of g linearly from verti
es of �to get the numeri
al Whitney extension W (x).Unit normal velo
ity V = N on a 
ir
ular interfa
e �, and its extension Won R2 are shown in Figure 6. Timings for building the distan
e tree andevaluating the nearest{point extension at all 
ell verti
es and 
enters are givenin Table 1, and exhibit the expe
ted O(N logN) 
ost.The numeri
al Whitney extension produ
es a 
ontinuous fun
tion but notan exa
t extension of g o� �, unless level-L 
hildless 
ells meet � at verti
esand 
enters and g is pie
ewise linear on �. This inexa
tness 
an be remediedby subdividing � elements and tree 
ells at every interse
tion point and addingsu
h points to the triangulation.When g is the velo
ity V of �, the numeri
al stability of moving interfa
emethods is improved by the maximum prin
iple whi
h holds for the numeri
alWhitney extension: the maximum over Rd of W 
annot ex
eed the maximumover � of V . The maximum prin
iple guarantees that regions of spa
e far from� 
annot move faster than the interesting nearby regions.11
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0Figure 5: (a) Dis
ontinuities of the nearest-point extension o

ur along the me-dial axis of �, where nearest-point values jump from 0 to 1. (b) The numeri
alWhitney extension maintains 
ontinuity by interpolating linearly between thenearest-point values 0 and 1 in the triangle � � C in a 5-level distan
e tree.
4{level D Vx on � Wx on D Wx on T
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Figure 6: Distan
e tree D, interfa
ial unit normal velo
ity x{
omponent Vxand Whitney extension Wx over distan
e tree and triangulation T with L = 4and 5 levels. 12



Table 1: Number L of tree levels and number N
 of tree 
ells, versus CPUse
onds Td for building the distan
e treeD, Tt for triangulating the tree verti
esand 
enters, Te for evaluating the nearest{point extension on D, and Ts forone step of semi-Lagrangian time stepping.L 4 5 6 7 8 9 10 11 12N
 269 653 1421 2957 6029 12173 24461 49037 98189Td 0.01 0.02 0.04 0.11 0.24 0.57 1.24 2.81 6.35Tt 0.01 0.01 0.02 0.05 0.11 0.24 0.51 1.11 2.32Te 0 0 0 0.01 0.01 0.02 0.03 0.07 0.14Ts 0.02 0.04 0.09 0.2 0.43 0.95 2.04 4.3 9.5
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3 Lo
al geometri
 velo
itiesComputations with our method require a user{supplied module whi
h eval-uates the interfa
ial velo
ity for a given moving interfa
e problem. In thisse
tion, we des
ribe su
h a module for evaluating velo
ity fun
tionals V =V (x; t; N; C) depending on the lo
al position and geometry of the interfa
e.These velo
ities provide important 
omputational tests for the a

ura
y, eÆ-
ien
y and modularity of our method and pose numeri
al diÆ
ulties of theirown. The 
omputation of a smooth and a

urate normal and 
urvature for a
omplex polygonal interfa
e � with fa
ets and 
orners is diÆ
ult be
ause thestandard formulas for 
urvature are 
ompli
ated and their numeri
al approx-imation is sensitive. Thus we use an indire
t te
hnique based on the signeddistan
e fun
tion ' and the geometri
 formulasN = r'kr'k ; C = �r �N: (10)A uniform mesh gives 
onvenient robust approximations of these formulas, butrequires ex
essive CPU time and memory. Thus we evaluate N and C on �eÆ
iently and a

urately by a module whi
hÆ builds a lo
al equidistant mesh eÆ
iently near �,Æ evaluates ' on the lo
al mesh,Æ di�erentiates ' and N a

urately on the lo
al mesh, andÆ interpolates N and C ba
k to the verti
es of �.3.1 Lo
al equidistant meshingFirst, we build a lo
al equidistant mesh near �. The simplest te
hnique,marking nearby points of a global mesh, is prohibitively expensive for �nemeshes. A more eÆ
ient te
hnique employs sorting as follows.A two{dimensional lo
al mesh with mesh size h 
an be viewed as a 
ol-le
tion of disjoint x-intervals (iL : iR; j) = f(ih; jh) j iL � i � iRg, or as asimilar 
olle
tion of y-intervals. Figure 7 shows a lo
al mesh and these twoviewpoints.We build the lo
al mesh by listing every mesh point within horizontal dis-tan
e Rh of any interfa
e point 
 2 �, then listing ea
h mesh point withinverti
al distan
e Rh of some point listed in the horizontal pass. The resultingmesh in
ludes every point ne
essary to form a two{dimensional di�eren
e sten-
il of half{width R for di�erentiating or interpolating to any interfa
e point
 2 �.An eÆ
ient 
onstru
tion algorithm is ensured by sorting and pruning lo
almesh points listed more than on
e. Red{bla
k trees or hashing 
ould also beused to prevent dupli
ation [6℄.We store the lo
al equidistant mesh in a data stru
ture whi
h 
ontains14



a b 


Figure 7: Lo
al grid for a simple interfa
e (a), viewed as x-intervals in (b) andy-intervals in (
).Æ The mesh points (ih; jh),Æ a list of x-intervals (iL : iR; j), sorted into groups with the same y-indexj,Æ a list of y-intervals (i; jL : jR), sorted into groups with the same x-indexi,Æ pointers to x-intervals with given y-index, andÆ pointers to y-intervals with given x-index.The three{dimensional 
ase is similar with a z-index added.3.2 The lo
al distan
e fun
tionWe evaluate the lo
al distan
e fun
tion ' on the lo
al mesh by inje
tion andinterpolation. The lo
al mesh near � has mesh size half the size of the level-L
ells of the distan
e tree D, so most lo
al mesh points lie at verti
es or 
entersof the distan
e tree. At other lo
al mesh points x, we interpolate ' from thetriangle 
ontaining x.It is possible to evaluate ' exa
tly and eÆ
iently as the lo
al mesh isbuilt, by marking ea
h lo
al mesh point with the distan
e and lo
ation of theinterfa
e point 
 2 � responsible for its 
reation. However, we expe
t minimalimprovement in a

ura
y from su
h an algorithm be
ause inje
tion is alreadyexa
t near �.3.3 Di�erentiationGiven ' on a lo
al equidistant mesh, we use standard formulas su
h as'0(x) � 12h ('(x+ h)� '(x� h)) (11)15



to approximateN and C from Eq. (10). Su
h formulas are based on polynomialinterpolation and produ
e ina

urate os
illatory results if their sten
ils in
ludepoints where ' is not smooth. The signed distan
e fun
tion is not smooth when� has 
orners, sin
e r' and C are unde�ned there.Thus we 
ompute N and C by essentially non{os
illatory (ENO) di�er-entiation [4℄: use standard equidistant formulas, but slide the sten
il in thedire
tion that redu
es os
illations. For example, we 
an approximate '0(x) tose
ond order by Eq. (11), or by un
entered formulas3'(x)� 4'(x� h) + '(x� 2h)2h or �'(x + 2h) + 4'(x+ h)� 3'(x)2h :(12)Normally the 
entered formula in Eq. (11) would give better a

ura
y, butif x is adja
ent to a dis
ontinuity lo
ated near x + h=2 we would prefer theleft{shifted sten
il in Eq. (12).As an automati
 algorithm, we 
hoose the sten
il to minimize the sum ofabsolute values of the se
ond di�eren
e '(x+ h)� 2'(x) + '(x� h) over thesten
il points, be
ause we expe
t ' to be Lips
hitz 
ontinuous with jumps in'0. Large values of '00 or the se
ond di�eren
e will therefore signal 
orners in', whi
h the sten
il should not 
ross.One{dimensional ENO di�erentiation on the lo
al mesh suÆ
es to evaluatethe multidimensional derivatives in N and C. We di�erentiate in x by usingthe x-interval representation of the lo
al mesh, and vi
e versa in y.A

ura
y of numeri
al derivatives is further improved by 
osine smoothing:in the x-dire
tion, for example, repla
e '(x) bySx'(x) = 14 ('(x + h) + 2'(x) + '(x� h)) ; (13)and similarly in the y-dire
tion. Su
h operations 
ommute, so we apply Sx onea
h x-interval (with simple averaging at the endpoints), then apply Sy on ea
hy-interval. This 
onstitutes one pass of 
osine smoothing, and improves thea

ura
y of ENO di�erentiation noti
eably. Previous work on semi-Lagrangianmoving interfa
e methods [19, 20℄ shows that smoothing is essential whenthe normal velo
ity V depends strongly on 
urvature. While the 
onvergen
etheory of these methods is not yet 
omplete, it appears that smoothing satis�esa CFL a

ura
y 
ondition and produ
es 
onvergen
e.3.4 InterpolationWe 
omplete the evaluation of V on a polygonal interfa
e � by interpolatingN and C ba
k to the verti
es of �. Sin
e N and C are known on a lo
alequidistant mesh near �, many a

urate interpolation s
hemes are available.We use ENO interpolation on a sten
il 
hosen to minimize the sum of absolutevalues of �rst di�eren
es over the sten
il, be
ause these quantities may havejumps. 16



4 Computational validationIn this se
tion, we demonstrate the a

ura
y and eÆ
ien
y of our methodby 
omputing solutions to a wide variety of moving interfa
e problems. Wedes
ribe the implementation of our method in Se
tion 4.1 and the 
ommonparameters of our 
omputational experiments in Se
tion 4.2. Our methodis tested on 
ompli
ated smooth and nonsmooth interfa
es under rigid andshearing passive rotation velo
ities in Se
tion 4.3, and on smooth and fa
etedinterfa
es moving under geometri
 velo
ities in
luding anisotropy, topologi
al
omplexity, 
urvature and non
onvexity in Se
tion 4.4. Motion under a simplenonlo
al geometri
 velo
ity fun
tional is 
omputed in Se
tion 4.5.4.1 AlgorithmOur method was implemented in Standard C, following the outline below,
ompiled with the Sun C 
ompiler and the -fast optimization 
ag, and runon one 450MHz CPU of a Sun Ultra 60 under Solaris 2.7. The 
ode wasnot extensively tuned for speed so timings reported are far from optimal.The numbered steps 
orrespond to Steps 1{9 in Se
tion 1.2. We begin with� = �(t).1. [D;'℄ = Distan
eTree(L;�) [Build an L{level distan
e tree around �and evaluate the signed distan
e ' from � at tree 
ell verti
es.℄2. V = Velo
ity(t;�;D;') [Call a user{supplied module to evaluate thevelo
ity on the interfa
e.℄T = Triangulation(D)3. W = WhitneyExtension(V;D; T ) [Build the Whitney extension of V .℄4. [ ~D; ~ ℄ = ContourTree(k; t; '(x + kW (x; t); t)) [Build a 
ontour tree ~Dresolving the zero set of the predi
ted CIR solution ~ de�ned in Eq. (5).℄~T = Triangulation( ~D)5. ~� = ZeroSet( ~ ; ~T ) [ Find the zero set of ~ on the triangulation ~T .℄6. ~V = Velo
ity(t+ k; ~�; ~D; ~ )7. ~W = WhitneyExtension( ~V ; ~D; ~T )8. [D; ℄ = ContourTree(k; t; '(x+ k2W (~x; t) + k2 ~W (x; t); t))T = Triangulation(D)9. �(t+ k) = ZeroSet( ; T ) 17



Ea
h 
ell splitting in Step 4 requires new values of ~ (x) = '(~x; t) 
on-stru
ted by the following sequen
e of operations:4.1. Find the distan
e tree 
ell C and subtriangle � of C 
ontaining x.4.2. Interpolate the nearest-point extension of V from verti
es of � to getthe numeri
al Whitney extension W (x; t).4.3. Proje
t x ba
kwards to the predi
ted 
hara
teristi
 point ~x = x +kW (x; t).4.4. Find the 
hildless distan
e tree 
ell ~C 
ontaining ~x.4.5. Optionally iterate lo
ally to �nd the velo
ity and the proje
ted point ~x.4.6. Sear
h interfa
e elements interse
ting the 
on
entri
 triples of ~C, itsparent and grandparent as ne
essary to �nd 
losest point 
 2 �(t) to s.4.7. Set ~ (x) = '(~x; t), the exa
t signed distan
e from ~x to �(t).Step 8 is similar with ~x repla
ed by x + k2W (~x; t) + k2 ~W (x; t).4.2 Parameters and testsOur experiments vary the initial interfa
e �(0), the velo
ity fun
tional V , thespa
etime domain [0; a℄� [�b; b℄2 and the following 
omputational parameters:L: The number of tree levels in the distan
e tree and the  quadtree. Lranges between 4 and 10, giving spatial resolution equivalent to a uniformmesh with 162 to 10242 points at mu
h lower 
ost.N : The number of time steps from the initial time 0 to the �nal time a. Thetime step k is given by k = a=N . N ranges from 10 up to 2560, whilek = O(h) = O(2�Lb) balan
es spatial and temporal resolution.S: The number of 
osine smoothing passes between ' and r', and betweenN and C. We took S = 0 ex
ept for strongly 
urvature{dependentvelo
ities, where S = O(L).E: The order of ENO di�erentiation in lo
al geometri
 velo
ities. There israrely any observable di�eren
e between E = 2 and E = 3, so E is notreported.
18



0Æ 10Æ 0Æ vs 10Æ

Figure 8: Testing for grid e�e
ts: mesh and solution at 0Æ and 10Æ.Convergen
e We refer to a 
omputation with given values for L, N , andS as a L=N=S run for brevity, or as an L=N run if S = 0. We 
arry outseveral 
onvergen
e studies 
omparing ea
h L=N run to the next (L + 1)=2Nrun, typi
ally superimposing time{exposure plots of the moving interfa
e todemonstrate 
onvergen
e to graphi
al a

ura
y. Interfa
ial errorsÆ = maxx2~�(t) j'(x; t)j; (14)where ' is the exa
t signed distan
e fun
tion and ~�(t) is the 
omputed in-terfa
e, are reported for arbitrary interfa
es under passive transport and for
ir
les shrinking under 
urvature.Grid e�e
ts Many moving interfa
e methods su�er from grid e�e
ts whi
h
ause anisotropi
 
omputational results to depend sensitively on the orienta-tion of the underlying 
omputational grid. Our method is designed to minimizegrid e�e
ts and maximize isotropy subje
t to the existen
e of an underlyingsquare mesh. We often verify the absen
e of grid e�e
ts by 
omputing so-lutions twi
e: on
e with the mesh aligned with an axis of symmetry of theproblem and again at 10Æ to the symmetry axis. The se
ond run is then plot-ted at �10Æ and the two runs superimposed to demonstrate the absen
e of gride�e
ts. Figure 8 shows this pro
ess for a threefold anisotropi
 
omputation.The small angle 10Æ typi
ally reveals grid e�e
ts well, by distorting propa-gation dire
tions and speeds for sharp 
orners propagating under anisotropi
velo
ities.
19



4.3 Passive transportWe begin validating our method by 
omputing 
ir
les and triangles undergoingpassive transport by shear velo
itiesF (x; y) = 1�max(0; 1� x2 � y2)48(x2 + y2) (�y; x) (15)and rigid body rotation F (x; y) = (�y; x). The shearing velo
ity (15) rotatesparti
les around the origin at widely varying speeds, and is often used to testvortex methods for the 2-D Euler equations [17℄, while rigid body rotation isoften used to measure dissipative errors in adve
tion methods [7℄.We 
arried out four 
omputations with smooth and nonsmooth interfa
esunder these 
ows:� (a) eight 
ir
les of radii between 0.4 and 1.2 distributed randomly in thedomain [�5; 5℄2 under shear rotation,� (b) a single triangle of radius 1=2 at the origin (0; 0) in the domain[�2; 2℄2 under shear rotation,� (
) a 
ir
le of radius 1=2 lo
ated at (2; 2) in the domain [�4; 4℄2 underrigid rotation, and� (d) a triangle of radius 1=2 lo
ated at (2; 2) in the domain [�4; 4℄2 underrigid rotation.The shearing interfa
es (a) and (b) in 9/320 runs resolved to graphi
al a
-
ura
y, plus graphi
al 
onvergen
e studies of (
) and (d) after two periods(t = 4�), are shown in Figure 9.Next we measure the order of a

ura
y. Passive transport velo
ities arenaturally de�ned everywhere, but we evaluate them only at the verti
es of�(t): se
ond{order time stepping plus the O(h2) error in linear interpolationbetween verti
es at ea
h of O(1=k) steps yields a global error of the formO(k2) + O(h2=k). The maximum errors in the 
omputed interfa
e at t = 20for shearing and t = 4� for rotation are tabulated and plotted in Table 2.The observed order of a

ura
y varies smoothly between 1 for large time stepsor the smooth well-resolved interfa
e (
) and 1=2 for small time steps or theunderresolved interfa
es (a), (b) and (d). The expe
ted O(N logN) 
ost perstep is veri�ed by the s
aled CPU se
onds T=NL reported in Table 2.
20



9/320 t = 20 t = 100
9/320 t = 10 t = 20
7/80 8/160 9/320
7/80 8/160 9/320

Figure 9: Shearing and rotating 
ir
les and triangles under passive transport.
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Table 2: Maximum interfa
ial errors Æ and CPU se
onds T versus levels L andtime steps N for passive shearing and rigid rotation.(a) Shearing 
ir
les at t = 20 on [�5; 5℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 0.220 .177 .246 .338 .362 | | | | 0.1357 | .081 .108 .147 .225 .285 | | | 0.3098 | | .032 .052 .082 .119 .165 | | 0.6459 | | | .017 .029 .050 .072 .094 | 1.31110 | | | | .009 .017 .030 .044 .058 2.625(b) Shearing triangle at t = 20 on [�2; 2℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 0.247 .147 .151 .147 .185 | | | | 0.0507 | .077 .084 .088 .098 .133 | | | 0.1178 | | .043 .045 .051 .065 .086 | | 0.2839 | | | .020 .024 .033 .048 .065 | 0.65110 | | | | .012 .016 .023 .033 .048 1.361(
) Rotating unit 
ir
le at t = 4� on [�4; 4℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 1.060 .806 .254 .168 .347 | | | | 0.0167 | .803 .210 .071 .069 .135 | | | 0.0318 | | .198 .048 .024 .031 .064 | | 0.0649 | | | .043 .013 .009 .015 .032 | 0.12810 | | | | .011 .004 .004 .008 .016 0.254(d) Rotating unit triangle at t = 4� on [�4; 4℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 1.130 .970 .249 .222 .291 | | | | 0.0217 | .996 .223 .118 .137 .200 | | | 0.0438 | | .242 .078 .072 .096 .141 | | 0.0939 | | | .062 .038 .050 .068 .100 | 0.19010 | | | | .024 .025 .034 .047 .069 0.388(a) (b) (
) (d)
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4.4 Lo
al geometri
 velo
itiesWe validate our method by 
omputing a

urate 
onverged interfa
es movingunder a variety of lo
al geometri
 velo
ities, in
ludingÆ 
orre
t vis
osity solutions for 
orners and 
omplex shapes growing andmerging with unit normal velo
ity,Æ regularly fa
eted shapes growing and shrinking under anisotropi
 normalvelo
ities,Æ irregularly fa
eted \Wul� shapes" [21℄ with random angles,Æ 
omplex multiply{
onne
ted fa
eted growth patterns, andÆ simple and 
omplex shapes shrinking under mean 
urvature and nonlo
alvolume-preserving mean 
urvature 
ows.4.4.1 Vis
osity solutions with 
ornersCorre
t 
omputation of \vis
osity solutions" for fa
eted interfa
es in geomet-ri
 problems depends on moving a 
orner in or out with unit normal velo
ity.Inward motion should keep 
orners sharp, while outward motion should pro-du
e rounded 
orners due to Huygens' prin
iple. Even starting from a smooth
losed 
urve �, inward motion along the normal with unit speed will develop a
orner in time at most 1=max�C. Straightforward moving interfa
e methods
an easily produ
e the in
orre
t vis
osity solutions shown in Figure 10.
WRONG RIGHT RIGHT WRONGFigure 10: Right and wrong 
orner motion with unit normal velo
ity.Our method 
omputes the 
orre
t vis
osity solution for a triangle growingand shrinking with unit normal velo
ity. We superimpose 5/20 over 6/40 runsin Figure 11, to show 
onvergen
e to graphi
al a

ura
y, and 0Æ over 10Æ runsat resolution 7/80, to show absen
e of grid e�e
ts.Complex interfa
es grow and merge 
orre
tly in Figure 12. The manifold
orners and 
hanges of topology are 
omputed automati
ally and easily. Inparti
ular, outward{moving inward{pointing 
orners remain 
orre
tly sharp,as the vis
osity solution theory requires. The �nal area en
losed by the 
om-puted interfa
e is 35.67937, 35.72377, 35.74304, and 35.75297 respe
tively, andshows smooth monotone �rst{order 
onvergen
e.23



0Æ: 5/20 vs 6/40 7/80: 0Æ vs 10Æ 10Æ: 5/20 vs 6/40

Figure 11: Triangles growing and shrinking with unit normal velo
ity: 
onver-gen
e of vis
osity solutions and absen
e of grid e�e
ts.
6/40 vs 7/80 8/160 vs 9/320

Figure 12: Clovers merging with unit normal velo
ity for 0 � t � 2:5 on[�3; 3℄2. 24



4.4.2 Anisotropi
 normal velo
ity and the Wul� limitAnisotropi
 motion along the normal ve
tor 
onne
ts moving interfa
es toHamilton-Ja
obi equations 't +H(r') = 0; (16)whi
h en
ounter diÆ
ulties when the HamiltonianH is non
onvex. For anisotropi
normal velo
ities V = R + � 
os(k�); (17)the Hamiltonian H is non
onvex |and some Hamilton-Ja
obi methods breakdown| if R + �(1� k2) < 0 < R � j�j: (18)We evolve an initially unit{
ir
ular interfa
e under anisotropi
 normal velo
i-ties (17) produ
ing non
onvex Hamiltonians, with R = 1 and R+ �(1� k2) =�4. Figure 13 
ompares 7/128 and 8/256 runs for 0 � t � 8 on [�9; 9℄2 andtree meshes tilted at 0Æ, 10Æ and 180Æ=k for k = 3, 4, 5 and 6. Grid e�e
tsare almost invisible and the interfa
e grows rapidly into the regularly fa
etedWul� shape with the 
orre
t anisotropy. Figure 14 shows similar results forshrinking.We also test our method on random polygonal Wul� shapes with nonuni-form 
orner angles. These shapes arise from velo
ities of the formV = R(1 + � sin �(�)) (19)where � is the pie
ewise{smooth fun
tion�(�) = � � � �j�j+1 � �j for �j � � � �j+1 (20)and �� = �0 < �1 < � � � < �n = � are given angles. Motion by Eq. (19) withR� > 0 produ
es fa
ets perpendi
ular to the angles �j, with a
ute 
ornersrounded. Figure 15 shows polar plots of these velo
ities with R = 3=4 and� = 1=2, the 
orresponding Wul� shapes, and interfa
es moving under Eq. (19)for 0 � t � 10 on [�12; 12℄2, and demonstrates ex
ellent agreement between
omputation and theory [21℄.
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7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 60Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 45Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 36Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 30Æ

Figure 13: Cir
les growing into asymptoti
 Wul� shapes.
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V = �1� 48 
os(3�) V = �1� 424 
os(5�) V = �1� 435 
os(6�)

Figure 14: Radius 3.5 
ir
les shrinking into the asymptoti
 Wul� shapes: 6/40vs 7/80 runs for 0 � t � 2 on [�4; 4℄2.
�� < ��=6 < �=3 < �

�� < ��=3 < ��=6 < �=6 < 3�=5 < �

Figure 15: Cir
les growing into irregular Wul� shapes: polar plots of V (�),7/128 runs for growing interfa
es, and 
omparisons.
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4.4.3 Merging under anisotropyWe validate the topologi
al robustness of the numeri
al method by startingfrom a 
olle
tion of randomly pla
ed and sized 
ir
les, and moving the interfa
ealong its normal with an anisotropi
 speed V = 2 + 
os(5� + 0:1). Figure 16shows the me
hanism whi
h transforms this highly non
onvex initial interfa
einto the asymptoti
 pentagonal Wul� shape as t!1. The 6-level tree meshesat times 0, 40 and 80 are shown, to emphasize the resolution obtained bybuilding the quadtree root 
ell to en
lose the 
urrent interfa
e. When aninitially small interfa
e grows larger by an order of magnitude, the resolutionimproves by an order of magnitude as well. Thus the 8/320 run shown |whi
hrequired 21 min CPU time| would have required 1.5 days of CPU time witha �xed domain sized to �t the �nal interfa
e.6/80 7/160 8/320
t = 0 t = 40 t = 80

Figure 16: Bubbles merging into the asymptoti
 Wul� shape.
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4.4.4 Cir
les shrinking under 
urvatureA 
lassi
 geometri
 problem shrinks a plane 
urve with velo
ity equal to its
urvature, and forms a useful test 
ase for 
urvature{dependent velo
ity. A
ir
le shrinking with V = C has exa
t radius R(t) = qR(0)2 � 2t, so withR(0) = p5, a 
ir
le should shrink to radius 1 at time t = 2. A smaller
ir
le with R(0) = 1 vanishes 
ompletely in time t = 1=2. Figure 17 shows
onvergen
e to graphi
al a

ura
y, 
omputed with 20 through 640 time stepson quadtrees with 4 through 9 levels, and plotted every 0.2 time units fromt = 0 to t = 2 on the domain [�4; 4℄2. CPU se
onds per step and maximumerrors in the large 
ir
le lo
ation at R = 1, t = 2 are reported and plotted inTable 3, and display 
lear �rst{order 
onvergen
e along diagonals k = O(h).Along verti
al 
olumns the error is dominated by the O(h2=k) term due topolygonal interfa
e approximation at O(1=k) steps.4/20/1 vs 5/40/1 5/40/1 vs 6/80/2 6/80/2 vs 7/160/2
7/160/2 vs 8/320/3 8/320/3 vs 9/340/3 9/640/3

Figure 17: Cir
les shrinking with V = C for 0 � t � 2 in [�4; 4℄2.
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Table 3: Maximum error Æ at R = 1, t = 2 and CPU se
onds T per step versusnumber N of time steps and number L of tree levels in two 
ir
les shrinkingunder 
urvature for 0 � t � 2 on [�4; 4℄2.(a) Minimal smoothingL=S N = 10 20 40 80 160 320 640 1280 2560 T=NL4/1 .143 .179 .290 .493 .991 | | | | .0205/1 | .037 .069 .122 .248 .518 | | | .0416/2 | | .021 .034 .063 .121 .239 | | .0857/2 | | | .010 .017 .031 .059 .114 | .1648/3 | | | | .005 .008 .015 .029 .056 .324(b) Natural smoothingL=S N = 10 20 40 80 160 320 640 1280 2560 T=NL4/1 .143 .179 .290 .493 .991 | | | | .0215/2 | .050 .080 .139 .250 .523 | | | .0446/3 | | .025 .037 .067 .124 .244 | | .0897/4 | | | .012 .018 .032 .060 .115 | .1808/5 | | | | .005 .008 .015 .029 .057 .363(a) (b) (a) (b)
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4.4.5 Non
onvex interfa
es under 
urvatureA geometri
 theorem [3℄ predi
ts that any smooth embedded plane 
urveshould 
ollapse to a round point and vanish in �nite time under 
urvature
ow V = C. We verify that our method behaves 
orre
tly for two 
omplexpolygonal shapes, with the 
onvergen
e studies shown in Figures 18 and 19.6/160/1 7/320/1 8/640/2 vs 9/1280/2

Figure 18: Tilted polygon shrinking under 
urvature 
ow.7/320/1 vs 8/640/1 t = :05 t = :10
t = :5 t = 1:0 t = 1:5

Figure 19: Tilted square spiral unwinding under 
urvature 
ow.
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4.5 A nonlo
al geometri
 velo
ityMany important moving interfa
e problems are nonlo
al|the normal velo
ityat ea
h point 
 depends on all of �(t) and even on its history f�(s) j 0 � s � tg.In this se
tion, we test our method on the simplest nonlo
al geometri
 velo
ityF = (C � R�(t) CdsR�(t) 1ds )N: (21)This velo
ity smooths the moving interfa
e by 
urvature while preserving thearea inside the interfa
e, so arbitrary shapes be
ome round points but theinterfa
e does not vanish. Small isolated pie
es disappear and their area istransferred to large ones.We study a tilted square spiral unwinding under this velo
ity in Figure20, where 7/512/1 and 8/1024/2 runs 
onverge to graphi
al a

ura
y. The7/512/1 run took 18 min of CPU time and 
onserved area to within 0.9% ofits initial value. Ea
h su

essive re�nement quadruples the CPU time andhalves the area error, 
on�rming the expe
ted O(N logN) 
ost per time stepand �rst{order a

ura
y. The interfa
e is shown at geometri
ally in
reasingtimes t = 0; 0:005; 0:01; 0:02; : : : ; 2:56, be
ause its motion slows dramati
allyas 
urvature variation de
reases toward its �nal steady state.Figure 21 superimposes 8/1024/2 and 9/2048/3 runs for a 
olle
tion oftrefoil{shaped bubbles moving under Eq. (21). Convergen
e to graphi
al a
-
ura
y is evident. The 8/1024/2 
omputation took 31 min CPU time and
onserved the initial area within 8% a

ura
y. The 9/2048/3 
omputationtook 140 min CPU time and lost 4% of its area by t = 2:56.
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7/512/1 vs 8/1024/2 t = :005 t = :01
t = :02 t = :04 t = :08
t = :16 t = :32 t = :64
t = 1:28 t = 2:56 8/1024/2 vs 9/2048/3

Figure 20: Spiral unwinding under volume-preserving 
ow by 
urvature.
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8/1024/2 vs 9/2048/3 t = :005 t = :01
t = :02 t = :04 t = :08
t = :16 t = :32 t = :64
t = 1:28 t = 2:56 7/512/1 vs 8/1024/2

Figure 21: Trefoils merging under volume-preserving 
ow by 
urvature.
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