A Fast Modular Semi-Lagrangian
Method for Moving Interfaces

John Strain *
Department of Mathematics

University of California
970 Evans Hall #3840
Berkeley, California 94720-3840

Journal of Computational Physics

Submitted 20 June 1999
Revised 10 January 2000

Abstract

A fast modular numerical method for solving general moving inter-
face problems is presented. It simplifies code development by providing
a black—box solver which moves a given interface one step with given
normal velocity. The method combines an efficiently redistanced level
set approach, a problem—independent velocity extension, and a second—
order semi-Lagrangian time stepping scheme which reduces numerical
error by exact evaluation of the signed distance function.

Adaptive quadtree meshes are used to concentrate computational
effort on the interface, so the method moves an N—element interface in
O(Nlog N) work per time step. Efficiency is increased by taking large
time steps even for parabolic curvature flows. Numerical results show
that the method computes accurate viscosity solutions to a wide vari-
ety of difficult geometric moving interface problems involving merging,
anisotropy, faceting, nonlocality and curvature.

*Research supported by Air Force Office of Scientific Research Grant FDF49620-96-1-
0201.

Contents

1

Introduction

1.1 Overview e
1.2 Semi-Lagrangian time stepping
1.3 Quadtree meshes and fast algorithms

Velocity extension

2.1 Nearest—point extension
2.2 Whitney extension Lo
2.3 Numerical Whitney extension

Local geometric velocities

3.1 Local equidistant meshing
3.2 The local distance function
3.3 Differentiation oL
3.4 Interpolation Lo Lo

Computational validation

4.1 Algorithm
4.2 Parameters and tests
4.3 Passive transport
4.4 Local geometric velocities

4.4.1
4.4.2
4.4.3
444
4.4.5

Viscosity solutions with corners
Anisotropic normal velocity and the Wulff limit

Merging under anisotropy
Circles shrinking under curvature
Nonconvex interfaces under curvature

4.5 A nonlocal geometric velocity

S Ot w W

10

11
11

14
14
15
15
16

1 Introduction

We present an efficient accurate method for general moving interface problems.
Our method functions as a black-box solver, interrogating the interfacial ve-
locity only through a user—supplied module. It also

o merges and breaks complex topology automatically via a level set ap-
proach with general velocity extension,

o takes large time steps via stable second—order semi-Lagrangian time
stepping schemes, and

o resolves an N—element interface with optimal O (N log N) work per time
step by adaptive quadtree meshing and efficient geometric algorithms.

The work extends the first—order semi—Lagrangian uniform mesh method
for geometric moving interfaces of [19], the adaptive quadtree version of [20],
and the quadtree—based fast redistancing algorithm of [18]. The present work
uses second—order accurate time stepping which greatly reduces numerical dis-
sipation (Section 1.2), fast adaptive quadtree meshing, and a faster redistanc-
ing scheme which enhances the semi-Lagrangian approach by exact interpola-
tion (Section 1.3). The fast new quadtree—based velocity extension algorithm
of Section 2 allows our method to couple with any user—supplied interfacial
velocity, such as the geometric velocity built in Section 3 and used in the
computational experiments of Section 4.

1.1 Overview

A moving interface is the boundary I'(t) = 9(t) of a set Q(#) C R” depending
on time t. If Q is sufficiently smooth, then I'(¢) has an outward unit normal
N, a curvature C' and a velocity V' at each point. A moving interface problem
is a closed system of equations which specifies V' as a functional of T", possibly
in a highly indirect and nonlocal way. Figure 1 shows some typical solutions of
geometric moving interface problems, where V' = V' (x,¢, N, C') depends only
on the local position and geometry of T'(¢).

The main difficulty in moving interfaces is the correct handling of merging,
breaking and other topological changes. This difficulty can be overcome by re-
formulating the problem on a fixed domain, using the signed distance function
to I'(t) defined by

t) =+ mi — . 1

plr,1) = % min [lz — 7] (1)

If ¢ is taken positive in Q(¢) then N, C' and V' can be computed from ¢ by
[22]

N=Vy/|[Vell, C=-V-N, V=¢Vp/[[Ve|* (2)

If the specified velocity functional V' on I' is extended smoothly to a vector

field W (x,t) on RY, then solving the advection equation
pr =W -Vp=0 (3)

s
o
o

o
-

Figure 1: Sample moving interfaces computed with our method: (a) initially
circular bubbles after passive transport in a shearing flow V' = V(x), (b)
faceted shapes merging and growing under a sixfold anisotropic velocity V =
V(N), and (c) a complex polygonal shape shrinking under curvature flow
V=C.

moves the zero set I'(¢) of the solution ¢ with velocity V' and hence solves the
moving interface problem. Topological changes are handled automatically.

“Level set” methods [11] move I'(¢) via the advection equation (3). An
initial signed distance function ¢(z,0) and an extended velocity field W are
built, ¢ is advected and contoured when I'(¢) is required. While these methods
handle topology automatically, there are some potential difficulties. They can
be expensive since the dimension increases, particularly if uniform meshes are
used. One must be careful to obtain the correct “viscosity solution” of the
advection equation. Extending the velocity off I'(¢) can be difficult. Level set
methods are not naturally modular: a new code must be written for each new
problem to be solved, since the velocity evaluation is intertwined with the mov-
ing interface code by velocity extension. Our method removes these barriers:
we solve the advection equation on an adaptive quadtree mesh to eliminate
the cost of going up a dimension. Correct viscosity solutions are obtained by
semi-Lagrangian time stepping with exact evaluation of the signed distance
function and frequent efficient redistancing. A general problem-independent
velocity extension makes our method modular and easy to apply.

Our numerical method moves interfaces by the second—order semi-Lagrangian
time stepping scheme presented in Section 1.2 and three independent compu-
tational modules:

o redistancing to produce the signed distance ¢ from a given interface I"
(Section 1.3),

o contouring to extract the zero set I" from the solution ¢ of Eq. (3) (Sec-
tion 1.3), and

o extension of interfacial velocities V' defined on I' to global smooth veloc-
ities W defined everywhere on R? (Section 2).

1.2 Semi-Lagrangian time stepping

The advection equation (3) can be solved by many time stepping schemes. We
use semi-Lagrangian schemes which offer some unique advantages: explicit
unconditional stability, natural adaptivity and modularity. These schemes
are widely used for modeling linear advection in atmospheric science [15, 13],
where unconditional stability eliminates the stringent time step restriction
encountered on small cells by Eulerian schemes [14], and have been applied to
moving interfaces in [19, 20]. They rely on the observation that the advection
equation propagates solution values along characteristics x = s(t) satisfying

§(t) = —W(s(t),1). (4)

Thus the solution () = ¢(x,t + k) at time ¢ + k can be evaluated by solv-
ing the characteristic ODE (4) backwards in time from = = s(t + k) to s(¢)
and setting ¢(x) = p(s(t),t). Standard ODE theory [5] guarantees a unique
solution s(t) for any x if W is globally Lipschitz, so backward characteristics
do not cross and the procedure is well defined [13]. Semi-Lagrangian meth-
ods adopt this two—step approach, solving the characteristic ODE numerically
from = = s(t + k) to s(t) and then approximating the off—grid value ¢(s(t),t)
by interpolation [9] or monotone advection [12] to preserve stability. Our mov-
ing interface method evaluates the signed distance p(s(t),t) exactly and omits
the approximation.

Semi-Lagrangian moving interface methods which use the first—order Courant—
[saacson—Rees (CIR) scheme [1]

b(x) = @(&,1) = p(z + kW (x,1),1) (5)

to solve the advection equation were developed in [19, 20]. Their effectiveness
has been heuristically justified and experimentally verified for many moving
interface problems involving passive transport, geometry, dynamic topology,
faceting and curvature. The convergence theory of these methods is straight-
forward if V' = V(z,t, N), because the advection equation is hyperbolic. For
curvature flow V' = C', the advection equation is parabolic and the main bar-
rier to convergence is the Courant—Friedrichs—Lewy (CFL) condition, which
restricts the timestep of most explicit methods by & < O(h?) to ensure in-
formation propagates correctly and the computation remains stable. Semi-
Lagrangian moving interface methods are explicit yet unconditionally stable
and can satisfy the CFL condition by nonlocal velocity evaluation, permit-
ting convergence with large time steps k& = O(h) even for parabolic problems
[19, 20].

The specific semi-Lagrangian time stepping scheme used in our method
combines a CIR predictor (5) with a second-order trapezoidal corrector

W(x,t+Fk),t): (6)

Ua) = plx + AW 1)+

the extended velocity W is evaluated from 1 at time ¢ + k. This predictor—
corrector pair is second—order accurate in time, explicit, and unconditionally
stable. Each new 1 value is an exact y value so the maximum of ¢ can
never increase. The CIR predictor (5) used as a time stepping scheme is also
unconditionally stable, but only first—order accurate and extremely dissipative
[7].

Both predictor and corrector may also incorporate local iteration, where
the first approximation 2* = x + kW (z,t) (vespectively o* = x + YW (z,t) +
EW (x,t+k)) to the foot of the characteristic through z is repeatedly replaced
by @ + kW (2*,t) (respectively = + W (2%, 1) + £W (2, ¢ + k)). Local iteration
does not alter the order of accuracy of the time stepping scheme, but reduces
numerical dissipation noticeably in some experiments.

Since our advection velocity W (x,t) extends the user—specified velocity
functional V' defined on the zero set I'(t) of ¢(x,t), each semi-Lagrangian time
step requires several complex global operations. Starting with an interface
['(t), our method carries out the following steps to produce the new interface

L(t+k):
o Evaluate the signed distance ¢ from the interface I'(¢).
o Evaluate the interfacial velocity V' of I'(¢) by a user—-supplied module.
o Extend V to a global advection velocity W.
o Advance o via W to the predicted CIR solution ¢ defined by Eq. (5).
o Contour 7]} to get the predicted interface I
o Evaluate the predicted interfacial velocity V of T.
o Extend V to a global advection velocity W.
o Advance ¢ via W and W to the corrected solution 1 defined by Eq. (6).
o Contour ¢ to get I'(t + k).

Each of these steps can be efficiently implemented via the quadtree mesh which

we now define.

1.3 Quadtree meshes and fast algorithms

Definition A quadtree mesh covering a cube R in R? is composed of square
cells organized into L levels, with each cell on level [4+ 1 contained in some
level-/ cell, and stores the following information:

o A cell list of cells C}, grouped by level [, with the root cell Cy = R on
level [= 0.

o A verter list locating cell vertices and centers in R

Each cell C in the cell list contains:

o Its level [and location (i, ..., ;) in a uniform d-dimensional mesh with
2! cells per side.

o The indices in the vertex list of the 2¢ + 1 cell vertices and centers.

o The indices in the cell list of its parent (if there is one), children (if any),
and neighbors (if any).

Given an L-level quadtree, many operations related to searching and sorting
can be done efficiently [2]. Finding the tree cell which contains a point x,
for example, requires O(L) checks of bits in the binary representation of .
An L-level quadtree can be built by recursively splitting cells into 2¢ subcells,
according to a splitting criterion which characterizes the particular quadtree
being built. Applications of quadtrees in Steps 1-9 include velocity extension
(Section 2) and:

The distance tree An interface I' composed of NV piecewise linear elements
can be efficiently resolved on a tree mesh built by splitting any cell C' whose
edge length exceeds its minimum distance

d(C,T) = minmin ||z — 7/ (7)
to I'. Such a tree resolves I' at optimal O(N) cost, allows fast O(N log N)
evaluation of the signed distance function for I', and is used in Step 1 of our
method. The following fast redistancing algorithm based on [18] evaluates p(z)

at a new vertex x of a level-{ cell C'in [2+ 21;g2 log d] steps in d dimensions:

o Start: Set the current minimum distance m to I' equal to oc.

o Loop: While [> 0 and the cube C(z,m) with center x and half-side
length m is not completely contained in the concentric triple of C'; replace
C by its parent C*, find and record a nearest element I'; to x in the
element list of C*, replace m by the minimum distance m* from x to I'},
and replace [by [— 1.

o Sign: Given a nearest element I'; to z, determine the sign of p = £m”
by checking normal vectors of I'; and its neighbors. Nearest elements
forming an acute angle may disagree on the sign of ¢, so neighbors must
be checked: see Figure 2(a).

This search strategy builds the distance tree in O(N log N) time and space
complexity, because the union of all triples of cells on any level | < L =
O(log N) intersects O(N) elements. The search always terminates in a bounded
number of steps (see Figure 2(b)). The nearest element of I' which intersects
the triple T of the parent C* of a tree cell C' may not be the nearest element

of ' overall; nor need it be the nearest element of I' intersecting the triple
T** of the grandparent C**. But in d < 4 dimensions, any element intersect-
ing T* beats every element outside the triple T*** of the great-grandparent
C***. In general dimension d, the number a of levels ascended is determined
by the diagonal length of a d-dimensional cube via the requirement 2% > 4v/d

ora>2+ 21;g2 logd.

T* C* /

T** CH**

B ki

Figure 2: (a) A pitfall in signing ¢(x): two nearest elements forming an acute
angle may disagree about the sign of ¢(x). (b) The search strategy always
terminates in at most three steps in d < 4 dimensions: any element intersecting
T rules out all elements outside T7**.

The contour tree The unknown zero set of a given function ¢ can be
efficiently resolved on a quadtree built by splitting each cell whose edge length
exceeds the minimum value of |¢| on the cell. Such quadtrees are built for
1 and @/7 in Steps 4 and 8. This simple approach to adaptive meshing takes
advantage of the unique functional viewpoint inherent in semi-Lagrangian
methods, which define the solution ¢ (x) at the new time step by the formula
(6), which can be evaluated at any desired point. Most adaptive methods use

local derivative estimates and must recompute the solution when a trial mesh
is refined [8].

Triangulation For quadtrees in which adjacent cells differ in size by no more
than a factor of 2 —such as the distance tree— cell vertices and centers can
easily be triangulated into conforming meshes [2]. Each cell in such a tree has
0 to 4 smaller neighbors in d = 2 dimensions, so a triangulation can be built

from the six possible configurations shown in Figure 4. The distance tree for
a simple interface I' is triangulated in Figure 3.

Contouring Given function values ¢ () at the vertices and centers of a tri-
angulated quadtree mesh, extracting the zero set of the continuous piecewise-
linear interpolant on the triangulation is straightforward. In d = 2 dimensions,
for example, each triangle where) changes sign contains a unique line seg-
ment where the linear interpolant to ¢ vanishes. These line segments form
a polygonal curve since the triangulation is conforming and the interpolant
is continuous. Following the polygonal zero curve as far as possible in both
directions produces an oriented component of I'(t 4+ k) with ¢» > 0 on its inte-
rior. In d > 2 dimensions the contouring process is similar but slightly more
complicated: d-dimensional simplices replace triangles and (d — 1)-dimensional
simplices replace line segments. Such a contouring algorithm approximately
inverts the redistancing scheme built on a distance tree, and is used in Steps
5 and 9 above.

a b

Figure 3: (a) Six-level distance tree mesh for a simple interface and (b) trian-
gulation of its cell vertices and centers.

Figure 4: Possible triangulations of a two-dimensional tree cell.

2 Velocity extension
Moving interfaces via the advection equation
or—W - V=0 (8)

requires a globally defined velocity W which extends the given velocity func-
tional V' smoothly off the interface I'(t). Early level set methods such as [10]
built in problem—dependent velocity extensions, such as the natural extensions
available for passive transport, geometric problems and interfacial transport in
fluid flows. This reduces the usefulness of the level set approach because each
new moving interface problem requires a new velocity extension programmed
into the level set algorithm. Some recent velocity extensions tailored to specific
advection methods and interfacial representations are presented in [11].

We use a fast problem—independent velocity extension to move I'(¢) without
any information on the V —TI relationship. This permits the solution of a wide
variety of moving interface problems with minimal programming effort: given
an implementation of our method, a new moving interface problem requires
only a new code for evaluating V on I'(¢), rather than a completely new moving
interface code. Our velocity extension combines the nearest—point extension
of Section 2.1 and the distance tree [18] summarized in Section 1.3 into the
continuous and efficient “numerical Whitney extension” of Section 2.3.

2.1 Nearest—point extension

Given any continuous function g on I'; we can define its nearest—point extension
G by

G(x) =g(7) (9)
where v is a nearest point on I' to x, chosen arbitrarily if there are several
points equidistant from x. The nearest—point extension G is continuous near
smooth interfaces I', but may be discontinuous at points x with several nearest
neighbors. Figure 5 shows an example: G is discontinuous along the “medial
axis” [2] consisting of points equidistant from two or more points of I'. A
weighted discrete version of this extension is used in [11].

The nearest—point extension can be efficiently evaluated at the vertices and
centers of a distance tree resolving I'. When the tree is built, a pointer from
each vertex and center to a nearest element of I' is stored. G(x) can then be
evaluated by finding a nearest point v on a known nearest element and setting
G(x) = g(v). At arbitrary points x € R¢, however, a distance tree does not
guarantee efficient evaluation of the nearest—point extension. Points x located
in large cells far from I' may require searching long lists with O(N) elements.
The distance tree speeds up G(z) evaluation only for = near I', because such
points are contained in small cells with few nearby elements where the search
strategy of Section 1.3 is efficient.

10

2.2 Whitney extension

The velocity extension technique used in our moving interface method resem-
bles the classical Whitney extension procedure of [23]:

o Build an infinite distance tree covering all of R with L = oco.

o Evaluate the nearest—point extension G/(z) at a random point x in each
childless cell.

o Piece these values together into a continuous function with a partition
of unity subordinate to the distance tree.

The Whitney procedure produces a continuous extension of ¢ off I', can be
modified to produce a C* extension, and is widely used in harmonic analysis
[16]. The Whitney extension, unlike the nearest—point extension, is continuous
at every x € RY, because the cell containing x is never subdivided once its
distance from T' exceeds its size. Thus the Whitney extension is eventually
equal to a fixed continuous function on each cell as L — oo.

2.3 Numerical Whitney extension

Our velocity extension technique differs from the Whitney procedure, by us-
ing a finite distance tree with L < oo, efficiently evaluating the nearest—point
extension G(x) at distance tree vertices and centers, and replacing Whitney’s
partition of unity by continuous piecewise—linear interpolation from the tri-
angulated tree vertices and centers. The procedure evaluates W (z) via the
following steps, shown in Figure 5(b):

o Find the distance tree cell C' containing x by binary search.
o Find the triangle A C C' containing z.

o Interpolate the nearest-point extension of ¢ linearly from vertices of A
to get the numerical Whitney extension W (z).

Unit normal velocity V' = N on a circular interface I', and its extension W
on R? are shown in Figure 6. Timings for building the distance tree and
evaluating the nearest—point extension at all cell vertices and centers are given
in Table 1, and exhibit the expected O(N log N) cost.

The numerical Whitney extension produces a continuous function but not
an exact extension of g off I', unless level-L childless cells meet I' at vertices
and centers and ¢ is piecewise linear on I'. This inexactness can be remedied
by subdividing I" elements and tree cells at every intersection point and adding
such points to the triangulation.

When g is the velocity V' of ', the numerical stability of moving interface
methods is improved by the mazimum principle which holds for the numerical
Whitney extension: the maximum over R? of W cannot exceed the maximum
over [' of V. The maximum principle guarantees that regions of space far from
[' cannot move faster than the interesting nearby regions.

11

Figure 5: (a) Discontinuities of the nearest-point extension occur along the me-
dial axis of I, where nearest-point values jump from 0 to 1. (b) The numerical
Whitney extension maintains continuity by interpolating linearly between the
nearest-point values 0 and 1 in the triangle A C C' in a 5-level distance tree.

4-level D Veyonl W, on D W, onT
-+ ..
{ \) ~ay
5-level D V,onT W, on D W,onT
3 ﬂﬂﬂ“ﬂ\ﬂﬂ[ﬂmw
= ; i)

Figure 6: Distance tree D, interfacial unit normal velocity z—component V,
and Whitney extension W, over distance tree and triangulation 7" with L = 4

and 5 levels.

12

Table 1: Number L of tree levels and number N, of tree cells, versus CPU
seconds Ty for building the distance tree D, T; for triangulating the tree vertices
and centers, T, for evaluating the nearest—point extension on D, and T for
one step of semi-Lagrangian time stepping.

L 4 5 6 7 8 9 10 11 12
N. 269 653 1421 2957 6029 12173 24461 49037 98189
T, 0.01 0.02 0.04 0.11 0.24 057 124 281 6.35
7, 0.01 0.01 0.02 0.05 0.11 024 0.51 1.11 2.32
T, 0 0 0 0.01 0.01 0.02 0.03 0.07 0.14
T, 0.02 0.04 0.09 02 043 095 2.04 4.3 9.5

13

3 Local geometric velocities

Computations with our method require a user-supplied module which eval-
uates the interfacial velocity for a given moving interface problem. In this
section, we describe such a module for evaluating velocity functionals V =
V(xz,t,N,C) depending on the local position and geometry of the interface.
These velocities provide important computational tests for the accuracy, effi-
ciency and modularity of our method and pose numerical difficulties of their
own. The computation of a smooth and accurate normal and curvature for a
complex polygonal interface I' with facets and corners is difficult because the
standard formulas for curvature are complicated and their numerical approx-
imation is sensitive. Thus we use an indirect technique based on the signed
distance function ¢ and the geometric formulas

N= Y c=_v.N (10)

Vel

A uniform mesh gives convenient robust approximations of these formulas, but
requires excessive CPU time and memory. Thus we evaluate N and C' on T’
efficiently and accurately by a module which

o builds a local equidistant mesh efficiently near I,
o evaluates ¢ on the local mesh,
o differentiates ¢ and N accurately on the local mesh, and

o interpolates N and C' back to the vertices of T'.

3.1 Local equidistant meshing

First, we build a local equidistant mesh near I'. The simplest technique,
marking nearby points of a global mesh, is prohibitively expensive for fine
meshes. A more efficient technique employs sorting as follows.

A two-dimensional local mesh with mesh size h can be viewed as a col-
lection of disjoint a-intervals (iy, : ig,7) = {(ih,jh) | i, < i < ir}, or as a
similar collection of y-intervals. Figure 7 shows a local mesh and these two
viewpoints.

We build the local mesh by listing every mesh point within horizontal dis-
tance Rh of any interface point v € I, then listing each mesh point within
vertical distance Rh of some point listed in the horizontal pass. The resulting
mesh includes every point necessary to form a two—dimensional difference sten-
cil of half-width R for differentiating or interpolating to any interface point
v el

An efficient construction algorithm is ensured by sorting and pruning local
mesh points listed more than once. Red-black trees or hashing could also be
used to prevent duplication [6].

We store the local equidistant mesh in a data structure which contains

14

- w
-

Figure 7: Local grid for a simple interface (a), viewed as a-intervals in (b) and
y-intervals in (c).

My

e}

The mesh points (ih, jh),

(e]

a list of x-intervals (if, : ig, j), sorted into groups with the same y-index
Js

(e]

a list of y-intervals (i, jr : jr), sorted into groups with the same x-index
2

(e]

pointers to x-intervals with given y-index, and

e}

pointers to y-intervals with given x-index.

The three—dimensional case is similar with a z-index added.

3.2 The local distance function

We evaluate the local distance function ¢ on the local mesh by injection and
interpolation. The local mesh near I' has mesh size half the size of the level-L
cells of the distance tree D, so most local mesh points lie at vertices or centers
of the distance tree. At other local mesh points x, we interpolate ¢ from the
triangle containing x.

It is possible to evaluate ¢ exactly and efficiently as the local mesh is
built, by marking each local mesh point with the distance and location of the
interface point v € I' responsible for its creation. However, we expect minimal
improvement in accuracy from such an algorithm because injection is already
exact near I'.

3.3 Differentiation

Given ¢ on a local equidistant mesh, we use standard formulas such as

F @)% o (e + h) = ol =) (1)

15

to approximate N and C from Eq. (10). Such formulas are based on polynomial
interpolation and produce inaccurate oscillatory results if their stencils include
points where ¢ is not smooth. The signed distance function is not smooth when
' has corners, since Vi and C' are undefined there.

Thus we compute N and C' by essentially non-oscillatory (ENO) differ-
entiation [4]: use standard equidistant formulas, but slide the stencil in the
direction that reduces oscillations. For example, we can approximate ¢'(x) to
second order by Eq. (11), or by uncentered formulas

3p(x) —dp(x — h) + p(x — 2h) o —p(z +2h) + 4p(z + h) — 3p(x)

2h 2h
(12)

Normally the centered formula in Eq. (11) would give better accuracy, but
if = is adjacent to a discontinuity located near x + h/2 we would prefer the
left—shifted stencil in Eq. (12).

As an automatic algorithm, we choose the stencil to minimize the sum of
absolute values of the second difference p(x + h) — 2p(x) + ¢(x — h) over the
stencil points, because we expect ¢ to be Lipschitz continuous with jumps in
¢'. Large values of ¢ or the second difference will therefore signal corners in
¢, which the stencil should not cross.

One-dimensional ENO differentiation on the local mesh suffices to evaluate
the multidimensional derivatives in N and C'. We differentiate in x by using
the z-interval representation of the local mesh, and vice versa in y.

Accuracy of numerical derivatives is further improved by cosine smoothing:
in the a-direction, for example, replace p(z) by

Sup(r) = 7 (ol + h) + 2p(x) + ol =) (13)

and similarly in the y-direction. Such operations commute, so we apply S, on
each z-interval (with simple averaging at the endpoints), then apply S, on each
y-interval. This constitutes one pass of cosine smoothing, and improves the
accuracy of ENO differentiation noticeably. Previous work on semi-Lagrangian
moving interface methods [19, 20] shows that smoothing is essential when
the normal velocity V' depends strongly on curvature. While the convergence
theory of these methods is not yet complete, it appears that smoothing satisfies
a CFL accuracy condition and produces convergence.

3.4 Interpolation

We complete the evaluation of V' on a polygonal interface [by interpolating
N and C' back to the vertices of I'. Since N and C' are known on a local
equidistant mesh near I', many accurate interpolation schemes are available.
We use ENO interpolation on a stencil chosen to minimize the sum of absolute
values of first differences over the stencil, because these quantities may have
jumps.

16

4 Computational validation

In this section, we demonstrate the accuracy and efficiency of our method
by computing solutions to a wide variety of moving interface problems. We
describe the implementation of our method in Section 4.1 and the common
parameters of our computational experiments in Section 4.2. Our method
is tested on complicated smooth and nonsmooth interfaces under rigid and
shearing passive rotation velocities in Section 4.3, and on smooth and faceted
interfaces moving under geometric velocities including anisotropy, topological
complexity, curvature and nonconvexity in Section 4.4. Motion under a simple
nonlocal geometric velocity functional is computed in Section 4.5.

4.1 Algorithm

Our method was implemented in Standard C, following the outline below,
compiled with the Sun C compiler and the -fast optimization flag, and run
on one 450MHz CPU of a Sun Ultra 60 under Solaris 2.7. The code was
not extensively tuned for speed so timings reported are far from optimal.
The numbered steps correspond to Steps 1-9 in Section 1.2. We begin with
['=T(t).

1. [D,] = DistanceTree(L,T") [Build an L-level distance tree around I’
and evaluate the signed distance ¢ from T" at tree cell vertices.]

2. V = Velocity(t,I'; D,) [Call a user—supplied module to evaluate the
velocity on the interface.]

T = Triangulation(D)
3. W = WhitneyExtension(V, D, T) [Build the Whitney extension of V|

4. [D,v] = ContourTree(k,t, p(z + kW (z,1),1)) [Build a contour tree D
resolving the zero set of the predicted CIR solution ¢ defined in Eq. (5).]

T = Triangulation(D)
5. T = zeroSet (1, T) [Find the zero set of ¢ on the triangulation T".]
6. V = Velocity(t+ k,I'; D, 1)
7. W = WhitneyExtension(V, D, T)
8. [D,] = ContourTree(k.t, p(x + W (Z,t) + W (x,1),1))
T = Triangulation(D)

9. T'(t + k) = ZeroSet (¢, T')

17

Each cell splitting in Step 4 requires new values of ¢(z) = ¢(i,t) con-
structed by the following sequence of operations:

4.1.
4.2.

4.3.

4.4.
4.5.
4.6.

4.7.

Find the distance tree cell C' and subtriangle A of C' containing x.

Interpolate the nearest-point extension of V' from vertices of A to get
the numerical Whitney extension W (z,1).

Project x backwards to the predicted characteristic point ¥ = z +
EW (x,t).

Find the childless distance tree cell C containing 7.
Optionally iterate locally to find the velocity and the projected point x.

Search interface elements intersecting the concentric triples of C, its
parent and grandparent as necessary to find closest point v € T'(¢) to s.

Set 1)(x) = (&, 1), the exact signed distance from & to I'(t).

Step 8 is similar with & replaced by @ + W (2, ¢) + W (x,1).

4.2

Parameters and tests

Our experiments vary the initial interface I'(0), the velocity functional V', the
spacetime domain [0, a] x [—b, b]? and the following computational parameters:

L:

The number of tree levels in the distance tree and the ¢ quadtree. L
ranges between 4 and 10, giving spatial resolution equivalent to a uniform
mesh with 162 to 10242 points at much lower cost.

: The number of time steps from the initial time 0 to the final time a. The

time step k is given by k = a/N. N ranges from 10 up to 2560, while
k= O(h) = O(271b) balances spatial and temporal resolution.

The number of cosine smoothing passes between ¢ and V, and between
N and C. We took S = 0 except for strongly curvature-dependent
velocities, where S = O(L).

: The order of ENO differentiation in local geometric velocities. There is

rarely any observable difference between £ = 2 and F = 3, so E is not
reported.

18

0° vs 10°

Figure 8: Testing for grid effects: mesh and solution at 0° and 10°.

Convergence We refer to a computation with given values for L, N, and
S as a L/N/S run for brevity, or as an L/N run if S = 0. We carry out
several convergence studies comparing each L/N run to the next (L +1)/2N
run, typically superimposing time—exposure plots of the moving interface to
demonstrate convergence to graphical accuracy. Interfacial errors

0 = max |p(,)], (14)
€l (t)

where ¢ is the exact signed distance function and f‘(t) is the computed in-
terface, are reported for arbitrary interfaces under passive transport and for
circles shrinking under curvature.

Grid effects Many moving interface methods suffer from grid effects which
cause anisotropic computational results to depend sensitively on the orienta-
tion of the underlying computational grid. Our method is designed to minimize
grid effects and maximize isotropy subject to the existence of an underlying
square mesh. We often verify the absence of grid effects by computing so-
lutions twice: once with the mesh aligned with an axis of symmetry of the
problem and again at 10° to the symmetry axis. The second run is then plot-
ted at —10° and the two runs superimposed to demonstrate the absence of grid
effects. Figure 8 shows this process for a threefold anisotropic computation.
The small angle 10° typically reveals grid effects well, by distorting propa-
gation directions and speeds for sharp corners propagating under anisotropic
velocities.

19

4.3 Passive transport

We begin validating our method by computing circles and triangles undergoing

passive transport by shear velocities

1 —max(0,1 — 2% — y*)*
8(x2 + y?)

F(x,y) = (—y,z) (15)

and rigid body rotation F'(x,y) = (—y,x). The shearing velocity (15) rotates
particles around the origin at widely varying speeds, and is often used to test
vortex methods for the 2-D Euler equations [17], while rigid body rotation is
often used to measure dissipative errors in advection methods [7].

We carried out four computations with smooth and nonsmooth interfaces
under these flows:

e (a) eight circles of radii between 0.4 and 1.2 distributed randomly in the
domain [—5, 5] under shear rotation,

e (b) a single triangle of radius 1/2 at the origin (0,0) in the domain
[—2, 2]? under shear rotation,

e (c) a circle of radius 1/2 located at (2,2) in the domain [—4, 4]> under
rigid rotation, and

e (d) a triangle of radius 1/2 located at (2, 2) in the domain [—4, 4]*> under
rigid rotation.

The shearing interfaces (a) and (b) in 9/320 runs resolved to graphical ac-
curacy, plus graphical convergence studies of (c¢) and (d) after two periods
(t = 4m), are shown in Figure 9.

Next we measure the order of accuracy. Passive transport velocities are
naturally defined everywhere, but we evaluate them only at the vertices of
['(t): second-order time stepping plus the O(h?) error in linear interpolation
between vertices at each of O(1/k) steps yields a global error of the form
O(k?) + O(h?/k). The maximum errors in the computed interface at ¢ = 20
for shearing and t = 47 for rotation are tabulated and plotted in Table 2.
The observed order of accuracy varies smoothly between 1 for large time steps
or the smooth well-resolved interface (¢) and 1/2 for small time steps or the
underresolved interfaces (a), (b) and (d). The expected O(N log N) cost per
step is verified by the scaled CPU seconds T'/N L reported in Table 2.

20

O =~
0O || ¢ A L
O O @D
oo || = 0 ~
9/320 t=10 t =20
7/80 8/160 9/320
O 0 OO0 OO0
O O 0O
o © o® o
7/80 8/160 9/320

é%ﬂ

L

Figure 9: Shearing and rotating circles and triangles under passive transport.

21

Table 2: Maximum interfacial errors § and CPU seconds T versus levels L and
time steps N for passive shearing and rigid rotation.

(a) Shearing circles at t = 20 on [—5, 5]%.

L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 0.220 .177 246 .338 .362 — @ — — — 0135
7 — .081 .108 .147 .225 .285 — — — 0.309
8 — — .032 .052 .082 .119 .165 — — 0.645
9 — — — .017 .029 .050 .072 .094 — = 1.311
10 — — — — .009 .017 .030 .044 058 2.625
(b) Shearing triangle at t = 20 on [—2, 2]°.
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 0.247 147 151 147 .18 — — — — 0.050
7 — .077 .08 .08 .098 .133 — — — 0.117
8 — — .043 .045 .051 .065 .08 @ — — 0.283
9 — — — .020 .024 .033 .048 .065 — 0.651
10 — — — — .012 .016 .023 .033 .048 1.361
(c) Rotating unit circle at t = 47 on [—4, 4]%.
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 1.060 .806 .254 .168 .347 — @ — — — 0.016
7 — .803 .210 .071 .069 .135 — — — 0.031
8 — — 198 .048 .024 .031 .064 — — 0.064
9 — — — .043 .013 .009 .015 .032 — 0.128
10 — — — — .011 .004 .004 .008 .016 0.254
(d) Rotating unit triangle at t = 47 on [—4, 4]%.
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 1.130 970 .249 222 291 — — — — 0.021
7 — 996 223 118 137 200 — — — 0.043
8 — — 242 078 .072 .096 .141 — — 0.093
9 — — — 062 .038 .050 .068 .100 — 0.190
10 — — — — .024 025 .034 .047 .069 0.388
(a) (b) (©) ()
9 9 9
Vol
5 5|/ e 5 4 St
g /'//;/ ./ //2.';// 4 / / /:j'/;;//./
1 '/"// 1 1 ./// / -
o
1 5 9 1 5 9 1 5 9 1 5 9
—log, 0 vs —log, k
(a) (b) (©) (d)
9 9 9
’
sl /s, RIS L .
s Al e
1 o 1 1 ! f7
A A
2 10 18 2 10 18 2 10 18 2 10 18

—log, d vs log, T'

22

4.4 Local geometric velocities

We validate our method by computing accurate converged interfaces moving
under a variety of local geometric velocities, including

o correct viscosity solutions for corners and complex shapes growing and
merging with unit normal velocity,

o regularly faceted shapes growing and shrinking under anisotropic normal
velocities,

o irregularly faceted “Wulff shapes” [21] with random angles,
o complex multiply—connected faceted growth patterns, and

o simple and complex shapes shrinking under mean curvature and nonlocal
volume-preserving mean curvature flows.

4.4.1 Viscosity solutions with corners

Correct computation of “viscosity solutions” for faceted interfaces in geomet-
ric problems depends on moving a corner in or out with unit normal velocity.
Inward motion should keep corners sharp, while outward motion should pro-
duce rounded corners due to Huygens’ principle. Even starting from a smooth
closed curve I', inward motion along the normal with unit speed will develop a
corner in time at most 1/ maxp C. Straightforward moving interface methods
can easily produce the incorrect viscosity solutions shown in Figure 10.

SRS

WRONG RIGHT RIGHT WRONG

Figure 10: Right and wrong corner motion with unit normal velocity.

Our method computes the correct viscosity solution for a triangle growing
and shrinking with unit normal velocity. We superimpose 5/20 over 6/40 runs
in Figure 11, to show convergence to graphical accuracy, and 0° over 10° runs
at resolution 7/80, to show absence of grid effects.

Complex interfaces grow and merge correctly in Figure 12. The manifold
corners and changes of topology are computed automatically and easily. In
particular, outward—moving inward—pointing corners remain correctly sharp,
as the viscosity solution theory requires. The final area enclosed by the com-
puted interface is 35.67937, 35.72377, 35.74304, and 35.75297 respectively, and
shows smooth monotone first—order convergence.

23

0°: 5/20 vs 6/40 7/80: 0° vs 10° 10°: 5/20 vs 6/40

<

Figure 11: Triangles growing and shrinking with unit normal velocity: conver-
gence of viscosity solutions and absence of grid effects.

6/40 vs 7/80 8/160 vs 9/320

Figure 12: Clovers merging with unit normal velocity for 0 < ¢ < 2.5 on
[—3, 3]%

24

4.4.2 Anisotropic normal velocity and the Wulff limit

Anisotropic motion along the normal vector connects moving interfaces to
Hamilton-Jacobi equations

o1+ H(Vy) =0, (16)

which encounter difficulties when the Hamiltonian H is nonconvex. For anisotropic
normal velocities

V = R + ecos(kB), (17)

the Hamiltonian H is nonconvex —and some Hamilton-Jacobi methods break
down— if

R+e(l—-k) <0< R— e (18)

We evolve an initially unit—circular interface under anisotropic normal veloci-
ties (17) producing nonconvex Hamiltonians, with R =1 and R+ ¢(1 — k) =
—4. Figure 13 compares 7/128 and 8/256 runs for 0 < ¢ < 8 on [—9,9]* and
tree meshes tilted at 0°, 10° and 180°/k for k = 3, 4, 5 and 6. Grid effects
are almost invisible and the interface grows rapidly into the regularly faceted
Wulff shape with the correct anisotropy. Figure 14 shows similar results for
shrinking.

We also test our method on random polygonal Wulff shapes with nonuni-
form corner angles. These shapes arise from velocities of the form

V =R(1+esino(0)) (19)
where ¢ is the piecewise—smooth function

0 — 0,

o) =mr——
@) Ojp1 —0;

for 9]‘ S 0 S 9]'-}—1 (20)

and —1m =0y < 0 < --- < 0, = 7 are given angles. Motion by Eq. (19) with
Re > 0 produces facets perpendicular to the angles 6;, with acute corners
rounded. Figure 15 shows polar plots of these velocities with R = 3/4 and
e = 1/2, the corresponding Wulff shapes, and interfaces moving under Eq. (19)
for 0 <t <10 on [—12,12]%, and demonstrates excellent agreement between
computation and theory [21].

25

7/128 vs 8/256

7/128 vs 8/256

©

7/128 vs 8/256

Figure 13: Circles growing into asymptotic Wulff shapes.

26

V = —1—1cos(30) V =—1— - cos(50) V = —1— o cos(60)

Figure 14: Radius 3.5 circles shrinking into the asymptotic Wulff shapes: 6/40
vs 7/80 runs for 0 < ¢ < 2 on [—4, 4%

—T<-w/6<T/3<T

?7 5
(s

—T< —m/3< —7m/6<7/6<31/b<T

©

Figure 15: Circles growing into irregular Wulff shapes: polar plots of V (6),
7/128 runs for growing interfaces, and comparisons.

4.4.3 Merging under anisotropy

We validate the topological robustness of the numerical method by starting
from a collection of randomly placed and sized circles, and moving the interface
along its normal with an anisotropic speed V' = 2 + cos(56 + 0.1). Figure 16
shows the mechanism which transforms this highly nonconvex initial interface
into the asymptotic pentagonal Wulff shape as t—o00. The 6-level tree meshes
at times 0, 40 and 80 are shown, to emphasize the resolution obtained by
building the quadtree root cell to enclose the current interface. When an
initially small interface grows larger by an order of magnitude, the resolution
improves by an order of magnitude as well. Thus the 8/320 run shown —which
required 21 min CPU time— would have required 1.5 days of CPU time with
a fixed domain sized to fit the final interface.

6,/80 7/160 8,/320

i

R T

Figure 16: Bubbles merging into the asymptotic Wulff shape.

28

4.4.4 Circles shrinking under curvature

A classic geometric problem shrinks a plane curve with velocity equal to its
curvature, and forms a useful test case for curvature-dependent velocity. A
circle shrinking with V' = C has exact radius R(t) = /R(0)? — 2¢, so with

R(0) = /5, a circle should shrink to radius 1 at time ¢+ = 2. A smaller
circle with R(0) = 1 vanishes completely in time ¢ = 1/2. Figure 17 shows
convergence to graphical accuracy, computed with 20 through 640 time steps
on quadtrees with 4 through 9 levels, and plotted every 0.2 time units from
t =0tot =2 on the domain [—4,4]?>. CPU seconds per step and maximum
errors in the large circle location at R = 1, t = 2 are reported and plotted in
Table 3, and display clear first—order convergence along diagonals k = O(h).
Along vertical columns the error is dominated by the O(h*/k) term due to
polygonal interface approximation at O(1/k) steps.

4/20/1 vs 5/40/1 5/40/1 vs 6/80/2 6/80/2 vs 7/160/2
7/160/2 vs 8/320/3 8/320/3 vs 9/340/3 9/640/3

Figure 17: Circles shrinking with V = C for 0 <t < 2 in [—4,4]%

29

Table 3: Maximum error § at R =1, ¢ = 2 and CPU seconds T per step versus
number N of time steps and number L of tree levels in two circles shrinking
under curvature for 0 < ¢ < 2 on [—4, 4]*.

(a) Minimal smoothing
L/S N=10 20 40 80 160 320 640 1280 2560 T/NL

4/1 143 A79 0 .290 493 991 — — — .020
5/1 — 037 .069 122 248 518 — — .041
6/2 — — .021 .034 .063 .121 .239 — 085
7/2 — — — .010 .017 .031 .0539 .114 .164
8/3 — — — — .005 .008 .015 .029 .056 324

(b) Natural smoothing
L/S N=10 20 40 8 160 320 640 1280 2560 T/NL

4/1 143 179 290 493 991 — — — .021
5/2 — 050 .080 .139 .250 .523 — — 044
6/3 — — .025 .037 .067 .124 244 — .089
7/4 — — — .012 .018 .032 .060 .115 180
8/5 — — — — .005 .008 .015 .029 .057 @ .363
(a) (b) (a) (b)
9 9 9 9
e A / . Lo
5 A s ///. sl A1) sl A7
Ve VYN, ey,
1 dVdv4 1 d / 1 L 1 L
< e J
1 5 9 1 5 9 2 10 18 2 10 18
—log, 0 vs —log, k —log, 0 vs logy, T'

30

4.4.5 Nonconvex interfaces under curvature

A geometric theorem [3] predicts that any smooth embedded plane curve
should collapse to a round point and vanish in finite time under curvature
flow V = C. We verify that our method behaves correctly for two complex
polygonal shapes, with the convergence studies shown in Figures 18 and 19.

6/160/1 7/320/1 8,/640/2 vs 9/1280/2

Figure 18: Tilted polygon shrinking under curvature flow.

7/320/1 vs 8/640/1 t=.05 t=.10
©)

Figure 19: Tilted square spiral unwinding under curvature flow.

31

4.5 A nonlocal geometric velocity

Many important moving interface problems are nonlocal—the normal velocity
at each point y depends on all of I'(¢) and even on its history {I'(s) | 0 < s < t}.
In this section, we test our method on the simplest nonlocal geometric velocity

fF(t) CdS
F=(C—-=—"—)N. 21
T (21)

This velocity smooths the moving interface by curvature while preserving the
area inside the interface, so arbitrary shapes become round points but the
interface does not vanish. Small isolated pieces disappear and their area is
transferred to large ones.

We study a tilted square spiral unwinding under this velocity in Figure
20, where 7/512/1 and 8/1024/2 runs converge to graphical accuracy. The
7/512/1 run took 18 min of CPU time and conserved area to within 0.9% of
its initial value. Each successive refinement quadruples the CPU time and
halves the area error, confirming the expected O(N log N) cost per time step
and first-order accuracy. The interface is shown at geometrically increasing
times ¢t = 0,0.005,0.01,0.02,...,2.56, because its motion slows dramatically
as curvature variation decreases toward its final steady state.

Figure 21 superimposes 8/1024/2 and 9/2048/3 runs for a collection of
trefoil-shaped bubbles moving under Eq. (21). Convergence to graphical ac-
curacy is evident. The 8/1024/2 computation took 31 min CPU time and
conserved the initial area within 8% accuracy. The 9/2048/3 computation
took 140 min CPU time and lost 4% of its area by ¢t = 2.56.

32

7/512/1 vs 8/1024/2 t = .005 t=.01
t= .02 t=.04 t=.08
t=.16 t=.32 t=.64
t=1.28 t=2.56 8/1024/2 vs 9/2048/3

O

O

@

Figure 20: Spiral unwinding under volume-preserving flow by curvature.

8/1024/2 vs 9/2048/3 t = .005 t=.01
&6 oD o ° X o © g
SN i > BRG 2 o VWS g
&&Jﬁ? 835, 000 &DQ op o DDQ
AR o " 0p a “0pe
4 & R a0 o a0 5
S RN o 343 p o 33 p
b O£ o 8 K 5 O g
t=.02 t=.04 t=.08
o © 00 o ° 0O
o OO0 Q I O Q @
L Sl %S
a o o ©
OQQOO;D o QQOQD @
o¥e 0o
° 6§ N 00
t=.16 t=.32 t = .64
D 0 Qo Ooc
©
O O
©0
t=1.28 t = 2.56 7/512/1 vs 8/1024/2

@

Figure 21: Trefoils merging under volume-preserving flow by curvature.

34

Acknowledgments The author thanks the referees for many helpful sug-
gestions.

References

[1] R. Courant, E. Isaacson, and M. Rees. On the solution of nonlinear
hyperbolic differential equations by finite differences. Comm. Pure Appl.
Math., 5:243-249, 1952.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational geometry: algorithms and applications. Springer-Verlag, Berlin,
1997.

(3] M. A. Grayson. The heat equation shrinks embedded plane curves to
round points. J. Diff. Geom., 26:285-314, 1987.

[4] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy. Uniformly
high order accurate essentially non-oscillatory schemes. J. Comput. Phys.,
71:231-257, 1987.

[5] M. Hirsch and S. Smale. Differential Equations, Dynamical Systems and
Linear Algebra. Academic Press, New York, 1974.

6] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition,
1998.

(7] J. D. McCalpin. A quantitative analysis of the dissipation inherent in
semi-Lagrangian advection. Mon. Wea. Rev., 116:2330-2336, 1988.

[8] W. F. Mitchell. A comparison of adaptive refinement techniques for el-
liptic problems. ACM Trans. Math. Softw., 15:326-347, 1989.

9] P. J. Rasch and D. L. Williamson. On shape-preserving interpolation
and semi-Lagrangian transport. SIAM J. Sci. Stat. Comput., 11:656—687,
1990.

[10] J. D. Sethian and J. Strain. Crystal growth and dendritic solidification.
J. Comput. Phys., 98:231-253, 1992.

[11] J.D. Sethian. Level set methods and fast mrching methods. Cambridge
University Press, 1999.

[12] P. K. Smolarkiewicz and W. W. Grabowski. The multidimensional pos-
itive definite advection transport algorithm: Nonoscillatory option. J.
Comput. Phys., 86:355-375, 1990.

35

[13] P. K. Smolarkiewicz and J. Pudykiewicz. A class of semi-Lagrangian
approximations for fluids. J. Atmos. Sci., 49:2082-2096, 1992.

[14] P. K. Smolarkiewicz and P. J. Rasch. Monotone advection on the sphere—
an Eulerian versus semi-Lagrangian approach. J. Atmos. Sci., 48:793-810,
1991.

[15] A. Staniforth and J. Coté. Semi-Lagrangian schemes for atmospheric
models—a review. Monthly Weather Rev., 119:2206-2222, 1991.

[16] E. Stein. Singular Integrals and Differentiability Properties of Functions.
Princeton University Press, 1970.

[17] J. Strain. Fast adaptive 2D vortex methods. J. Comput. Phys., 132:108~
122, 1997.

[18] J. Strain. Fast tree-based redistancing for level set computations. J.
Comput. Phys., 152:664—686, 1999.

[19] J. Strain. Semi-Lagrangian methods for level set equations. J. Comput.
Phys., 151:498-533, 1999.

[20] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151:616—
648, 1999.

[21] J. Taylor, J. W. Cahn, and C. A. Handwerker. Geometric models of
crystal growth. Acta Met. Mat., 40:1443-1474, 1992.

[22] C. Truesdell and R. A. Toupin. The classical field theories. In S. Fliigge,
editor, Handbuch der Physik III/1. Springer-Verlag, Berlin, 1960.

[23] H. Whitney. Analytic extensions of differentiable functions defined in
closed sets. Trans. Am. Math. Soc., 36:63-89, 1934.

36

