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1 IntrodutionWe present an eÆient aurate method for general moving interfae problems.Our method funtions as a blak{box solver, interrogating the interfaial ve-loity only through a user{supplied module. It alsoÆ merges and breaks omplex topology automatially via a level set ap-proah with general veloity extension,Æ takes large time steps via stable seond{order semi{Lagrangian timestepping shemes, andÆ resolves an N{element interfae with optimal O(N logN) work per timestep by adaptive quadtree meshing and eÆient geometri algorithms.The work extends the �rst{order semi{Lagrangian uniform mesh methodfor geometri moving interfaes of [19℄, the adaptive quadtree version of [20℄,and the quadtree{based fast redistaning algorithm of [18℄. The present workuses seond{order aurate time stepping whih greatly redues numerial dis-sipation (Setion 1.2), fast adaptive quadtree meshing, and a faster redistan-ing sheme whih enhanes the semi-Lagrangian approah by exat interpola-tion (Setion 1.3). The fast new quadtree{based veloity extension algorithmof Setion 2 allows our method to ouple with any user{supplied interfaialveloity, suh as the geometri veloity built in Setion 3 and used in theomputational experiments of Setion 4.1.1 OverviewA moving interfae is the boundary �(t) = �
(t) of a set 
(t) � Rd dependingon time t. If 
 is suÆiently smooth, then �(t) has an outward unit normalN , a urvature C and a veloity V at eah point. A moving interfae problemis a losed system of equations whih spei�es V as a funtional of �, possiblyin a highly indiret and nonloal way. Figure 1 shows some typial solutions ofgeometri moving interfae problems, where V = V (x; t; N; C) depends onlyon the loal position and geometry of �(t).The main diÆulty in moving interfaes is the orret handling of merging,breaking and other topologial hanges. This diÆulty an be overome by re-formulating the problem on a �xed domain, using the signed distane funtionto �(t) de�ned by '(x; t) = � min2�(t) kx� k: (1)If ' is taken positive in 
(t) then N , C and V an be omputed from ' by[22℄ N = r'=kr'k; C = �r �N; V = 'tr'=kr'k2: (2)If the spei�ed veloity funtional V on � is extended smoothly to a vetor�eld W (x; t) on Rd, then solving the advetion equation't �W � r' = 0 (3)3
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Figure 1: Sample moving interfaes omputed with our method: (a) initiallyirular bubbles after passive transport in a shearing ow V = V (x), (b)faeted shapes merging and growing under a sixfold anisotropi veloity V =V (N), and () a omplex polygonal shape shrinking under urvature owV = C.moves the zero set �(t) of the solution ' with veloity V and hene solves themoving interfae problem. Topologial hanges are handled automatially.\Level set" methods [11℄ move �(t) via the advetion equation (3). Aninitial signed distane funtion '(x; 0) and an extended veloity �eld W arebuilt, ' is adveted and ontoured when �(t) is required. While these methodshandle topology automatially, there are some potential diÆulties. They anbe expensive sine the dimension inreases, partiularly if uniform meshes areused. One must be areful to obtain the orret \visosity solution" of theadvetion equation. Extending the veloity o� �(t) an be diÆult. Level setmethods are not naturally modular: a new ode must be written for eah newproblem to be solved, sine the veloity evaluation is intertwined with the mov-ing interfae ode by veloity extension. Our method removes these barriers:we solve the advetion equation on an adaptive quadtree mesh to eliminatethe ost of going up a dimension. Corret visosity solutions are obtained bysemi-Lagrangian time stepping with exat evaluation of the signed distanefuntion and frequent eÆient redistaning. A general problem-independentveloity extension makes our method modular and easy to apply.Our numerial method moves interfaes by the seond{order semi-Lagrangiantime stepping sheme presented in Setion 1.2 and three independent ompu-tational modules:Æ redistaning to produe the signed distane ' from a given interfae �(Setion 1.3),Æ ontouring to extrat the zero set � from the solution ' of Eq. (3) (Se-tion 1.3), andÆ extension of interfaial veloities V de�ned on � to global smooth velo-ities W de�ned everywhere on Rd (Setion 2).4



1.2 Semi-Lagrangian time steppingThe advetion equation (3) an be solved by many time stepping shemes. Weuse semi-Lagrangian shemes whih o�er some unique advantages: expliitunonditional stability, natural adaptivity and modularity. These shemesare widely used for modeling linear advetion in atmospheri siene [15, 13℄,where unonditional stability eliminates the stringent time step restritionenountered on small ells by Eulerian shemes [14℄, and have been applied tomoving interfaes in [19, 20℄. They rely on the observation that the advetionequation propagates solution values along harateristis x = s(t) satisfying_s(t) = �W (s(t); t): (4)Thus the solution  (x) = '(x; t + k) at time t + k an be evaluated by solv-ing the harateristi ODE (4) bakwards in time from x = s(t + k) to s(t)and setting  (x) = '(s(t); t). Standard ODE theory [5℄ guarantees a uniquesolution s(t) for any x if W is globally Lipshitz, so bakward harateristisdo not ross and the proedure is well de�ned [13℄. Semi-Lagrangian meth-ods adopt this two{step approah, solving the harateristi ODE numeriallyfrom x = s(t+ k) to s(t) and then approximating the o�{grid value '(s(t); t)by interpolation [9℄ or monotone advetion [12℄ to preserve stability. Our mov-ing interfae method evaluates the signed distane '(s(t); t) exatly and omitsthe approximation.Semi-Lagrangian moving interfae methods whih use the �rst{order Courant{Isaason{Rees (CIR) sheme [1℄~ (x) = '(~x; t) = '(x + kW (x; t); t) (5)to solve the advetion equation were developed in [19, 20℄. Their e�etivenesshas been heuristially justi�ed and experimentally veri�ed for many movinginterfae problems involving passive transport, geometry, dynami topology,faeting and urvature. The onvergene theory of these methods is straight-forward if V = V (x; t; N), beause the advetion equation is hyperboli. Forurvature ow V = C, the advetion equation is paraboli and the main bar-rier to onvergene is the Courant{Friedrihs{Lewy (CFL) ondition, whihrestrits the timestep of most expliit methods by k � O(h2) to ensure in-formation propagates orretly and the omputation remains stable. Semi-Lagrangian moving interfae methods are expliit yet unonditionally stableand an satisfy the CFL ondition by nonloal veloity evaluation, permit-ting onvergene with large time steps k = O(h) even for paraboli problems[19, 20℄.The spei� semi{Lagrangian time stepping sheme used in our methodombines a CIR preditor (5) with a seond{order trapezoidal orretor (x) = '(x+ k2W (~x; t) + k2 ~W (x; t+ k); t) : (6)5



the extended veloity ~W is evaluated from ~ at time t + k. This preditor{orretor pair is seond{order aurate in time, expliit, and unonditionallystable. Eah new  value is an exat ' value so the maximum of ' annever inrease. The CIR preditor (5) used as a time stepping sheme is alsounonditionally stable, but only �rst{order aurate and extremely dissipative[7℄. Both preditor and orretor may also inorporate loal iteration, wherethe �rst approximation x� = x + kW (x; t) (respetively x� = x + k2W (~x; t) +k2 ~W (x; t+k)) to the foot of the harateristi through x is repeatedly replaedby x+ kW (x�; t) (respetively x+ k2W (x�; t) + k2 ~W (x; t+ k)). Loal iterationdoes not alter the order of auray of the time stepping sheme, but reduesnumerial dissipation notieably in some experiments.Sine our advetion veloity W (x; t) extends the user{spei�ed veloityfuntional V de�ned on the zero set �(t) of '(x; t), eah semi-Lagrangian timestep requires several omplex global operations. Starting with an interfae�(t), our method arries out the following steps to produe the new interfae�(t+ k):Æ Evaluate the signed distane ' from the interfae �(t).Æ Evaluate the interfaial veloity V of �(t) by a user{supplied module.Æ Extend V to a global advetion veloity W .Æ Advane ' via W to the predited CIR solution ~ de�ned by Eq. (5).Æ Contour ~ to get the predited interfae ~�.Æ Evaluate the predited interfaial veloity ~V of ~�.Æ Extend ~V to a global advetion veloity ~W .Æ Advane ' via W and ~W to the orreted solution  de�ned by Eq. (6).Æ Contour  to get �(t+ k).Eah of these steps an be eÆiently implemented via the quadtree mesh whihwe now de�ne.1.3 Quadtree meshes and fast algorithmsDe�nition A quadtree mesh overing a ube R in Rd is omposed of squareells organized into L levels, with eah ell on level l + 1 ontained in somelevel-l ell, and stores the following information:Æ A ell list of ells Cj, grouped by level l, with the root ell C0 = R onlevel l = 0.Æ A vertex list loating ell verties and enters in Rd.6



Eah ell C in the ell list ontains:Æ Its level l and loation (i1; : : : ; id) in a uniform d-dimensional mesh with2l ells per side.Æ The indies in the vertex list of the 2d + 1 ell verties and enters.Æ The indies in the ell list of its parent (if there is one), hildren (if any),and neighbors (if any).Given an L-level quadtree, many operations related to searhing and sortingan be done eÆiently [2℄. Finding the tree ell whih ontains a point x,for example, requires O(L) heks of bits in the binary representation of x.An L-level quadtree an be built by reursively splitting ells into 2d subells,aording to a splitting riterion whih haraterizes the partiular quadtreebeing built. Appliations of quadtrees in Steps 1{9 inlude veloity extension(Setion 2) and:The distane tree An interfae � omposed of N pieewise linear elementsan be eÆiently resolved on a tree mesh built by splitting any ell C whoseedge length exeeds its minimum distaned(C;�) = minx2C min2� kx� k (7)to �. Suh a tree resolves � at optimal O(N) ost, allows fast O(N logN)evaluation of the signed distane funtion for �, and is used in Step 1 of ourmethod. The following fast redistaning algorithm based on [18℄ evaluates '(x)at a new vertex x of a level{l ell C in d2 + 12 log 2 log de steps in d dimensions:Æ Start: Set the urrent minimum distane m to � equal to 1.Æ Loop: While l � 0 and the ube C(x;m) with enter x and half{sidelengthm is not ompletely ontained in the onentri triple of C; replaeC by its parent C�, �nd and reord a nearest element ��j to x in theelement list of C�, replae m by the minimum distane m� from x to ��j ,and replae l by l � 1.Æ Sign: Given a nearest element ��j to x, determine the sign of ' = �m�by heking normal vetors of ��j and its neighbors. Nearest elementsforming an aute angle may disagree on the sign of ', so neighbors mustbe heked: see Figure 2(a).This searh strategy builds the distane tree in O(N logN) time and spaeomplexity, beause the union of all triples of ells on any level l � L =O(logN) intersets O(N) elements. The searh always terminates in a boundednumber of steps (see Figure 2(b)). The nearest element of � whih intersetsthe triple T � of the parent C� of a tree ell C may not be the nearest element7



of � overall; nor need it be the nearest element of � interseting the tripleT �� of the grandparent C��. But in d � 4 dimensions, any element interset-ing T � beats every element outside the triple T ��� of the great-grandparentC���. In general dimension d, the number a of levels asended is determinedby the diagonal length of a d-dimensional ube via the requirement 2a � 4pdor a � 2 + 12 log 2 log d.a b
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Figure 2: (a) A pitfall in signing '(x): two nearest elements forming an auteangle may disagree about the sign of '(x). (b) The searh strategy alwaysterminates in at most three steps in d � 4 dimensions: any element intersetingT � rules out all elements outside T ���.The ontour tree The unknown zero set of a given funtion  an beeÆiently resolved on a quadtree built by splitting eah ell whose edge lengthexeeds the minimum value of j j on the ell. Suh quadtrees are built for and ~ in Steps 4 and 8. This simple approah to adaptive meshing takesadvantage of the unique funtional viewpoint inherent in semi{Lagrangianmethods, whih de�ne the solution  (x) at the new time step by the formula(6), whih an be evaluated at any desired point. Most adaptive methods useloal derivative estimates and must reompute the solution when a trial meshis re�ned [8℄.Triangulation For quadtrees in whih adjaent ells di�er in size by no morethan a fator of 2 |suh as the distane tree| ell verties and enters aneasily be triangulated into onforming meshes [2℄. Eah ell in suh a tree has0 to 4 smaller neighbors in d = 2 dimensions, so a triangulation an be built8



from the six possible on�gurations shown in Figure 4. The distane tree fora simple interfae � is triangulated in Figure 3.Contouring Given funtion values  (x) at the verties and enters of a tri-angulated quadtree mesh, extrating the zero set of the ontinuous pieewise-linear interpolant on the triangulation is straightforward. In d = 2 dimensions,for example, eah triangle where  hanges sign ontains a unique line seg-ment where the linear interpolant to  vanishes. These line segments forma polygonal urve sine the triangulation is onforming and the interpolantis ontinuous. Following the polygonal zero urve as far as possible in bothdiretions produes an oriented omponent of �(t+ k) with  > 0 on its inte-rior. In d > 2 dimensions the ontouring proess is similar but slightly moreompliated: d-dimensional simplies replae triangles and (d�1)-dimensionalsimplies replae line segments. Suh a ontouring algorithm approximatelyinverts the redistaning sheme built on a distane tree, and is used in Steps5 and 9 above.a b

Figure 3: (a) Six-level distane tree mesh for a simple interfae and (b) trian-gulation of its ell verties and enters.a b  d e f
Figure 4: Possible triangulations of a two-dimensional tree ell.
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2 Veloity extensionMoving interfaes via the advetion equation't �W � r' = 0 (8)requires a globally de�ned veloity W whih extends the given veloity fun-tional V smoothly o� the interfae �(t). Early level set methods suh as [10℄built in problem{dependent veloity extensions, suh as the natural extensionsavailable for passive transport, geometri problems and interfaial transport inuid ows. This redues the usefulness of the level set approah beause eahnew moving interfae problem requires a new veloity extension programmedinto the level set algorithm. Some reent veloity extensions tailored to spei�advetion methods and interfaial representations are presented in [11℄.We use a fast problem{independent veloity extension to move �(t) withoutany information on the V �� relationship. This permits the solution of a widevariety of moving interfae problems with minimal programming e�ort: givenan implementation of our method, a new moving interfae problem requiresonly a new ode for evaluating V on �(t), rather than a ompletely new movinginterfae ode. Our veloity extension ombines the nearest{point extensionof Setion 2.1 and the distane tree [18℄ summarized in Setion 1.3 into theontinuous and eÆient \numerial Whitney extension" of Setion 2.3.2.1 Nearest{point extensionGiven any ontinuous funtion g on �, we an de�ne its nearest{point extensionG by G(x) = g() (9)where  is a nearest point on � to x, hosen arbitrarily if there are severalpoints equidistant from x. The nearest{point extension G is ontinuous nearsmooth interfaes �, but may be disontinuous at points x with several nearestneighbors. Figure 5 shows an example: G is disontinuous along the \medialaxis" [2℄ onsisting of points equidistant from two or more points of �. Aweighted disrete version of this extension is used in [11℄.The nearest{point extension an be eÆiently evaluated at the verties andenters of a distane tree resolving �. When the tree is built, a pointer fromeah vertex and enter to a nearest element of � is stored. G(x) an then beevaluated by �nding a nearest point  on a known nearest element and settingG(x) = g(). At arbitrary points x 2 Rd, however, a distane tree does notguarantee eÆient evaluation of the nearest{point extension. Points x loatedin large ells far from � may require searhing long lists with O(N) elements.The distane tree speeds up G(x) evaluation only for x near �, beause suhpoints are ontained in small ells with few nearby elements where the searhstrategy of Setion 1.3 is eÆient. 10



2.2 Whitney extensionThe veloity extension tehnique used in our moving interfae method resem-bles the lassial Whitney extension proedure of [23℄:Æ Build an in�nite distane tree overing all of Rd with L =1.Æ Evaluate the nearest{point extension G(x) at a random point x in eahhildless ell.Æ Piee these values together into a ontinuous funtion with a partitionof unity subordinate to the distane tree.The Whitney proedure produes a ontinuous extension of g o� �, an bemodi�ed to produe a Ck extension, and is widely used in harmoni analysis[16℄. The Whitney extension, unlike the nearest{point extension, is ontinuousat every x 2 Rd, beause the ell ontaining x is never subdivided one itsdistane from � exeeds its size. Thus the Whitney extension is eventuallyequal to a �xed ontinuous funtion on eah ell as L!1.2.3 Numerial Whitney extensionOur veloity extension tehnique di�ers from the Whitney proedure, by us-ing a �nite distane tree with L <1, eÆiently evaluating the nearest{pointextension G(x) at distane tree verties and enters, and replaing Whitney'spartition of unity by ontinuous pieewise{linear interpolation from the tri-angulated tree verties and enters. The proedure evaluates W (x) via thefollowing steps, shown in Figure 5(b):Æ Find the distane tree ell C ontaining x by binary searh.Æ Find the triangle � � C ontaining x.Æ Interpolate the nearest-point extension of g linearly from verties of �to get the numerial Whitney extension W (x).Unit normal veloity V = N on a irular interfae �, and its extension Won R2 are shown in Figure 6. Timings for building the distane tree andevaluating the nearest{point extension at all ell verties and enters are givenin Table 1, and exhibit the expeted O(N logN) ost.The numerial Whitney extension produes a ontinuous funtion but notan exat extension of g o� �, unless level-L hildless ells meet � at vertiesand enters and g is pieewise linear on �. This inexatness an be remediedby subdividing � elements and tree ells at every intersetion point and addingsuh points to the triangulation.When g is the veloity V of �, the numerial stability of moving interfaemethods is improved by the maximum priniple whih holds for the numerialWhitney extension: the maximum over Rd of W annot exeed the maximumover � of V . The maximum priniple guarantees that regions of spae far from� annot move faster than the interesting nearby regions.11
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Table 1: Number L of tree levels and number N of tree ells, versus CPUseonds Td for building the distane treeD, Tt for triangulating the tree vertiesand enters, Te for evaluating the nearest{point extension on D, and Ts forone step of semi-Lagrangian time stepping.L 4 5 6 7 8 9 10 11 12N 269 653 1421 2957 6029 12173 24461 49037 98189Td 0.01 0.02 0.04 0.11 0.24 0.57 1.24 2.81 6.35Tt 0.01 0.01 0.02 0.05 0.11 0.24 0.51 1.11 2.32Te 0 0 0 0.01 0.01 0.02 0.03 0.07 0.14Ts 0.02 0.04 0.09 0.2 0.43 0.95 2.04 4.3 9.5
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3 Loal geometri veloitiesComputations with our method require a user{supplied module whih eval-uates the interfaial veloity for a given moving interfae problem. In thissetion, we desribe suh a module for evaluating veloity funtionals V =V (x; t; N; C) depending on the loal position and geometry of the interfae.These veloities provide important omputational tests for the auray, eÆ-ieny and modularity of our method and pose numerial diÆulties of theirown. The omputation of a smooth and aurate normal and urvature for aomplex polygonal interfae � with faets and orners is diÆult beause thestandard formulas for urvature are ompliated and their numerial approx-imation is sensitive. Thus we use an indiret tehnique based on the signeddistane funtion ' and the geometri formulasN = r'kr'k ; C = �r �N: (10)A uniform mesh gives onvenient robust approximations of these formulas, butrequires exessive CPU time and memory. Thus we evaluate N and C on �eÆiently and aurately by a module whihÆ builds a loal equidistant mesh eÆiently near �,Æ evaluates ' on the loal mesh,Æ di�erentiates ' and N aurately on the loal mesh, andÆ interpolates N and C bak to the verties of �.3.1 Loal equidistant meshingFirst, we build a loal equidistant mesh near �. The simplest tehnique,marking nearby points of a global mesh, is prohibitively expensive for �nemeshes. A more eÆient tehnique employs sorting as follows.A two{dimensional loal mesh with mesh size h an be viewed as a ol-letion of disjoint x-intervals (iL : iR; j) = f(ih; jh) j iL � i � iRg, or as asimilar olletion of y-intervals. Figure 7 shows a loal mesh and these twoviewpoints.We build the loal mesh by listing every mesh point within horizontal dis-tane Rh of any interfae point  2 �, then listing eah mesh point withinvertial distane Rh of some point listed in the horizontal pass. The resultingmesh inludes every point neessary to form a two{dimensional di�erene sten-il of half{width R for di�erentiating or interpolating to any interfae point 2 �.An eÆient onstrution algorithm is ensured by sorting and pruning loalmesh points listed more than one. Red{blak trees or hashing ould also beused to prevent dupliation [6℄.We store the loal equidistant mesh in a data struture whih ontains14
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Figure 7: Loal grid for a simple interfae (a), viewed as x-intervals in (b) andy-intervals in ().Æ The mesh points (ih; jh),Æ a list of x-intervals (iL : iR; j), sorted into groups with the same y-indexj,Æ a list of y-intervals (i; jL : jR), sorted into groups with the same x-indexi,Æ pointers to x-intervals with given y-index, andÆ pointers to y-intervals with given x-index.The three{dimensional ase is similar with a z-index added.3.2 The loal distane funtionWe evaluate the loal distane funtion ' on the loal mesh by injetion andinterpolation. The loal mesh near � has mesh size half the size of the level-Lells of the distane tree D, so most loal mesh points lie at verties or entersof the distane tree. At other loal mesh points x, we interpolate ' from thetriangle ontaining x.It is possible to evaluate ' exatly and eÆiently as the loal mesh isbuilt, by marking eah loal mesh point with the distane and loation of theinterfae point  2 � responsible for its reation. However, we expet minimalimprovement in auray from suh an algorithm beause injetion is alreadyexat near �.3.3 Di�erentiationGiven ' on a loal equidistant mesh, we use standard formulas suh as'0(x) � 12h ('(x+ h)� '(x� h)) (11)15



to approximateN and C from Eq. (10). Suh formulas are based on polynomialinterpolation and produe inaurate osillatory results if their stenils inludepoints where ' is not smooth. The signed distane funtion is not smooth when� has orners, sine r' and C are unde�ned there.Thus we ompute N and C by essentially non{osillatory (ENO) di�er-entiation [4℄: use standard equidistant formulas, but slide the stenil in thediretion that redues osillations. For example, we an approximate '0(x) toseond order by Eq. (11), or by unentered formulas3'(x)� 4'(x� h) + '(x� 2h)2h or �'(x + 2h) + 4'(x+ h)� 3'(x)2h :(12)Normally the entered formula in Eq. (11) would give better auray, butif x is adjaent to a disontinuity loated near x + h=2 we would prefer theleft{shifted stenil in Eq. (12).As an automati algorithm, we hoose the stenil to minimize the sum ofabsolute values of the seond di�erene '(x+ h)� 2'(x) + '(x� h) over thestenil points, beause we expet ' to be Lipshitz ontinuous with jumps in'0. Large values of '00 or the seond di�erene will therefore signal orners in', whih the stenil should not ross.One{dimensional ENO di�erentiation on the loal mesh suÆes to evaluatethe multidimensional derivatives in N and C. We di�erentiate in x by usingthe x-interval representation of the loal mesh, and vie versa in y.Auray of numerial derivatives is further improved by osine smoothing:in the x-diretion, for example, replae '(x) bySx'(x) = 14 ('(x + h) + 2'(x) + '(x� h)) ; (13)and similarly in the y-diretion. Suh operations ommute, so we apply Sx oneah x-interval (with simple averaging at the endpoints), then apply Sy on eahy-interval. This onstitutes one pass of osine smoothing, and improves theauray of ENO di�erentiation notieably. Previous work on semi-Lagrangianmoving interfae methods [19, 20℄ shows that smoothing is essential whenthe normal veloity V depends strongly on urvature. While the onvergenetheory of these methods is not yet omplete, it appears that smoothing satis�esa CFL auray ondition and produes onvergene.3.4 InterpolationWe omplete the evaluation of V on a polygonal interfae � by interpolatingN and C bak to the verties of �. Sine N and C are known on a loalequidistant mesh near �, many aurate interpolation shemes are available.We use ENO interpolation on a stenil hosen to minimize the sum of absolutevalues of �rst di�erenes over the stenil, beause these quantities may havejumps. 16



4 Computational validationIn this setion, we demonstrate the auray and eÆieny of our methodby omputing solutions to a wide variety of moving interfae problems. Wedesribe the implementation of our method in Setion 4.1 and the ommonparameters of our omputational experiments in Setion 4.2. Our methodis tested on ompliated smooth and nonsmooth interfaes under rigid andshearing passive rotation veloities in Setion 4.3, and on smooth and faetedinterfaes moving under geometri veloities inluding anisotropy, topologialomplexity, urvature and nononvexity in Setion 4.4. Motion under a simplenonloal geometri veloity funtional is omputed in Setion 4.5.4.1 AlgorithmOur method was implemented in Standard C, following the outline below,ompiled with the Sun C ompiler and the -fast optimization ag, and runon one 450MHz CPU of a Sun Ultra 60 under Solaris 2.7. The ode wasnot extensively tuned for speed so timings reported are far from optimal.The numbered steps orrespond to Steps 1{9 in Setion 1.2. We begin with� = �(t).1. [D;'℄ = DistaneTree(L;�) [Build an L{level distane tree around �and evaluate the signed distane ' from � at tree ell verties.℄2. V = Veloity(t;�;D;') [Call a user{supplied module to evaluate theveloity on the interfae.℄T = Triangulation(D)3. W = WhitneyExtension(V;D; T ) [Build the Whitney extension of V .℄4. [ ~D; ~ ℄ = ContourTree(k; t; '(x + kW (x; t); t)) [Build a ontour tree ~Dresolving the zero set of the predited CIR solution ~ de�ned in Eq. (5).℄~T = Triangulation( ~D)5. ~� = ZeroSet( ~ ; ~T ) [ Find the zero set of ~ on the triangulation ~T .℄6. ~V = Veloity(t+ k; ~�; ~D; ~ )7. ~W = WhitneyExtension( ~V ; ~D; ~T )8. [D; ℄ = ContourTree(k; t; '(x+ k2W (~x; t) + k2 ~W (x; t); t))T = Triangulation(D)9. �(t+ k) = ZeroSet( ; T ) 17



Eah ell splitting in Step 4 requires new values of ~ (x) = '(~x; t) on-struted by the following sequene of operations:4.1. Find the distane tree ell C and subtriangle � of C ontaining x.4.2. Interpolate the nearest-point extension of V from verties of � to getthe numerial Whitney extension W (x; t).4.3. Projet x bakwards to the predited harateristi point ~x = x +kW (x; t).4.4. Find the hildless distane tree ell ~C ontaining ~x.4.5. Optionally iterate loally to �nd the veloity and the projeted point ~x.4.6. Searh interfae elements interseting the onentri triples of ~C, itsparent and grandparent as neessary to �nd losest point  2 �(t) to s.4.7. Set ~ (x) = '(~x; t), the exat signed distane from ~x to �(t).Step 8 is similar with ~x replaed by x + k2W (~x; t) + k2 ~W (x; t).4.2 Parameters and testsOur experiments vary the initial interfae �(0), the veloity funtional V , thespaetime domain [0; a℄� [�b; b℄2 and the following omputational parameters:L: The number of tree levels in the distane tree and the  quadtree. Lranges between 4 and 10, giving spatial resolution equivalent to a uniformmesh with 162 to 10242 points at muh lower ost.N : The number of time steps from the initial time 0 to the �nal time a. Thetime step k is given by k = a=N . N ranges from 10 up to 2560, whilek = O(h) = O(2�Lb) balanes spatial and temporal resolution.S: The number of osine smoothing passes between ' and r', and betweenN and C. We took S = 0 exept for strongly urvature{dependentveloities, where S = O(L).E: The order of ENO di�erentiation in loal geometri veloities. There israrely any observable di�erene between E = 2 and E = 3, so E is notreported.
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0Æ 10Æ 0Æ vs 10Æ

Figure 8: Testing for grid e�ets: mesh and solution at 0Æ and 10Æ.Convergene We refer to a omputation with given values for L, N , andS as a L=N=S run for brevity, or as an L=N run if S = 0. We arry outseveral onvergene studies omparing eah L=N run to the next (L + 1)=2Nrun, typially superimposing time{exposure plots of the moving interfae todemonstrate onvergene to graphial auray. Interfaial errorsÆ = maxx2~�(t) j'(x; t)j; (14)where ' is the exat signed distane funtion and ~�(t) is the omputed in-terfae, are reported for arbitrary interfaes under passive transport and forirles shrinking under urvature.Grid e�ets Many moving interfae methods su�er from grid e�ets whihause anisotropi omputational results to depend sensitively on the orienta-tion of the underlying omputational grid. Our method is designed to minimizegrid e�ets and maximize isotropy subjet to the existene of an underlyingsquare mesh. We often verify the absene of grid e�ets by omputing so-lutions twie: one with the mesh aligned with an axis of symmetry of theproblem and again at 10Æ to the symmetry axis. The seond run is then plot-ted at �10Æ and the two runs superimposed to demonstrate the absene of gride�ets. Figure 8 shows this proess for a threefold anisotropi omputation.The small angle 10Æ typially reveals grid e�ets well, by distorting propa-gation diretions and speeds for sharp orners propagating under anisotropiveloities.
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4.3 Passive transportWe begin validating our method by omputing irles and triangles undergoingpassive transport by shear veloitiesF (x; y) = 1�max(0; 1� x2 � y2)48(x2 + y2) (�y; x) (15)and rigid body rotation F (x; y) = (�y; x). The shearing veloity (15) rotatespartiles around the origin at widely varying speeds, and is often used to testvortex methods for the 2-D Euler equations [17℄, while rigid body rotation isoften used to measure dissipative errors in advetion methods [7℄.We arried out four omputations with smooth and nonsmooth interfaesunder these ows:� (a) eight irles of radii between 0.4 and 1.2 distributed randomly in thedomain [�5; 5℄2 under shear rotation,� (b) a single triangle of radius 1=2 at the origin (0; 0) in the domain[�2; 2℄2 under shear rotation,� () a irle of radius 1=2 loated at (2; 2) in the domain [�4; 4℄2 underrigid rotation, and� (d) a triangle of radius 1=2 loated at (2; 2) in the domain [�4; 4℄2 underrigid rotation.The shearing interfaes (a) and (b) in 9/320 runs resolved to graphial a-uray, plus graphial onvergene studies of () and (d) after two periods(t = 4�), are shown in Figure 9.Next we measure the order of auray. Passive transport veloities arenaturally de�ned everywhere, but we evaluate them only at the verties of�(t): seond{order time stepping plus the O(h2) error in linear interpolationbetween verties at eah of O(1=k) steps yields a global error of the formO(k2) + O(h2=k). The maximum errors in the omputed interfae at t = 20for shearing and t = 4� for rotation are tabulated and plotted in Table 2.The observed order of auray varies smoothly between 1 for large time stepsor the smooth well-resolved interfae () and 1=2 for small time steps or theunderresolved interfaes (a), (b) and (d). The expeted O(N logN) ost perstep is veri�ed by the saled CPU seonds T=NL reported in Table 2.
20



9/320 t = 20 t = 100
9/320 t = 10 t = 20
7/80 8/160 9/320
7/80 8/160 9/320

Figure 9: Shearing and rotating irles and triangles under passive transport.
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Table 2: Maximum interfaial errors Æ and CPU seonds T versus levels L andtime steps N for passive shearing and rigid rotation.(a) Shearing irles at t = 20 on [�5; 5℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 0.220 .177 .246 .338 .362 | | | | 0.1357 | .081 .108 .147 .225 .285 | | | 0.3098 | | .032 .052 .082 .119 .165 | | 0.6459 | | | .017 .029 .050 .072 .094 | 1.31110 | | | | .009 .017 .030 .044 .058 2.625(b) Shearing triangle at t = 20 on [�2; 2℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 0.247 .147 .151 .147 .185 | | | | 0.0507 | .077 .084 .088 .098 .133 | | | 0.1178 | | .043 .045 .051 .065 .086 | | 0.2839 | | | .020 .024 .033 .048 .065 | 0.65110 | | | | .012 .016 .023 .033 .048 1.361() Rotating unit irle at t = 4� on [�4; 4℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 1.060 .806 .254 .168 .347 | | | | 0.0167 | .803 .210 .071 .069 .135 | | | 0.0318 | | .198 .048 .024 .031 .064 | | 0.0649 | | | .043 .013 .009 .015 .032 | 0.12810 | | | | .011 .004 .004 .008 .016 0.254(d) Rotating unit triangle at t = 4� on [�4; 4℄2.LnN 10 20 40 80 160 320 640 1280 2560 T=NL6 1.130 .970 .249 .222 .291 | | | | 0.0217 | .996 .223 .118 .137 .200 | | | 0.0438 | | .242 .078 .072 .096 .141 | | 0.0939 | | | .062 .038 .050 .068 .100 | 0.19010 | | | | .024 .025 .034 .047 .069 0.388(a) (b) () (d)
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4.4 Loal geometri veloitiesWe validate our method by omputing aurate onverged interfaes movingunder a variety of loal geometri veloities, inludingÆ orret visosity solutions for orners and omplex shapes growing andmerging with unit normal veloity,Æ regularly faeted shapes growing and shrinking under anisotropi normalveloities,Æ irregularly faeted \Wul� shapes" [21℄ with random angles,Æ omplex multiply{onneted faeted growth patterns, andÆ simple and omplex shapes shrinking under mean urvature and nonloalvolume-preserving mean urvature ows.4.4.1 Visosity solutions with ornersCorret omputation of \visosity solutions" for faeted interfaes in geomet-ri problems depends on moving a orner in or out with unit normal veloity.Inward motion should keep orners sharp, while outward motion should pro-due rounded orners due to Huygens' priniple. Even starting from a smoothlosed urve �, inward motion along the normal with unit speed will develop aorner in time at most 1=max�C. Straightforward moving interfae methodsan easily produe the inorret visosity solutions shown in Figure 10.
WRONG RIGHT RIGHT WRONGFigure 10: Right and wrong orner motion with unit normal veloity.Our method omputes the orret visosity solution for a triangle growingand shrinking with unit normal veloity. We superimpose 5/20 over 6/40 runsin Figure 11, to show onvergene to graphial auray, and 0Æ over 10Æ runsat resolution 7/80, to show absene of grid e�ets.Complex interfaes grow and merge orretly in Figure 12. The manifoldorners and hanges of topology are omputed automatially and easily. Inpartiular, outward{moving inward{pointing orners remain orretly sharp,as the visosity solution theory requires. The �nal area enlosed by the om-puted interfae is 35.67937, 35.72377, 35.74304, and 35.75297 respetively, andshows smooth monotone �rst{order onvergene.23



0Æ: 5/20 vs 6/40 7/80: 0Æ vs 10Æ 10Æ: 5/20 vs 6/40

Figure 11: Triangles growing and shrinking with unit normal veloity: onver-gene of visosity solutions and absene of grid e�ets.
6/40 vs 7/80 8/160 vs 9/320

Figure 12: Clovers merging with unit normal veloity for 0 � t � 2:5 on[�3; 3℄2. 24



4.4.2 Anisotropi normal veloity and the Wul� limitAnisotropi motion along the normal vetor onnets moving interfaes toHamilton-Jaobi equations 't +H(r') = 0; (16)whih enounter diÆulties when the HamiltonianH is nononvex. For anisotropinormal veloities V = R + � os(k�); (17)the Hamiltonian H is nononvex |and some Hamilton-Jaobi methods breakdown| if R + �(1� k2) < 0 < R � j�j: (18)We evolve an initially unit{irular interfae under anisotropi normal veloi-ties (17) produing nononvex Hamiltonians, with R = 1 and R+ �(1� k2) =�4. Figure 13 ompares 7/128 and 8/256 runs for 0 � t � 8 on [�9; 9℄2 andtree meshes tilted at 0Æ, 10Æ and 180Æ=k for k = 3, 4, 5 and 6. Grid e�etsare almost invisible and the interfae grows rapidly into the regularly faetedWul� shape with the orret anisotropy. Figure 14 shows similar results forshrinking.We also test our method on random polygonal Wul� shapes with nonuni-form orner angles. These shapes arise from veloities of the formV = R(1 + � sin �(�)) (19)where � is the pieewise{smooth funtion�(�) = � � � �j�j+1 � �j for �j � � � �j+1 (20)and �� = �0 < �1 < � � � < �n = � are given angles. Motion by Eq. (19) withR� > 0 produes faets perpendiular to the angles �j, with aute ornersrounded. Figure 15 shows polar plots of these veloities with R = 3=4 and� = 1=2, the orresponding Wul� shapes, and interfaes moving under Eq. (19)for 0 � t � 10 on [�12; 12℄2, and demonstrates exellent agreement betweenomputation and theory [21℄.
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7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 60Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 45Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 36Æ
7/128 vs 8/256 0Æ vs 10Æ 0Æ vs 30Æ

Figure 13: Cirles growing into asymptoti Wul� shapes.
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V = �1� 48 os(3�) V = �1� 424 os(5�) V = �1� 435 os(6�)

Figure 14: Radius 3.5 irles shrinking into the asymptoti Wul� shapes: 6/40vs 7/80 runs for 0 � t � 2 on [�4; 4℄2.
�� < ��=6 < �=3 < �

�� < ��=3 < ��=6 < �=6 < 3�=5 < �

Figure 15: Cirles growing into irregular Wul� shapes: polar plots of V (�),7/128 runs for growing interfaes, and omparisons.
27



4.4.3 Merging under anisotropyWe validate the topologial robustness of the numerial method by startingfrom a olletion of randomly plaed and sized irles, and moving the interfaealong its normal with an anisotropi speed V = 2 + os(5� + 0:1). Figure 16shows the mehanism whih transforms this highly nononvex initial interfaeinto the asymptoti pentagonal Wul� shape as t!1. The 6-level tree meshesat times 0, 40 and 80 are shown, to emphasize the resolution obtained bybuilding the quadtree root ell to enlose the urrent interfae. When aninitially small interfae grows larger by an order of magnitude, the resolutionimproves by an order of magnitude as well. Thus the 8/320 run shown |whihrequired 21 min CPU time| would have required 1.5 days of CPU time witha �xed domain sized to �t the �nal interfae.6/80 7/160 8/320
t = 0 t = 40 t = 80

Figure 16: Bubbles merging into the asymptoti Wul� shape.
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4.4.4 Cirles shrinking under urvatureA lassi geometri problem shrinks a plane urve with veloity equal to itsurvature, and forms a useful test ase for urvature{dependent veloity. Airle shrinking with V = C has exat radius R(t) = qR(0)2 � 2t, so withR(0) = p5, a irle should shrink to radius 1 at time t = 2. A smallerirle with R(0) = 1 vanishes ompletely in time t = 1=2. Figure 17 showsonvergene to graphial auray, omputed with 20 through 640 time stepson quadtrees with 4 through 9 levels, and plotted every 0.2 time units fromt = 0 to t = 2 on the domain [�4; 4℄2. CPU seonds per step and maximumerrors in the large irle loation at R = 1, t = 2 are reported and plotted inTable 3, and display lear �rst{order onvergene along diagonals k = O(h).Along vertial olumns the error is dominated by the O(h2=k) term due topolygonal interfae approximation at O(1=k) steps.4/20/1 vs 5/40/1 5/40/1 vs 6/80/2 6/80/2 vs 7/160/2
7/160/2 vs 8/320/3 8/320/3 vs 9/340/3 9/640/3

Figure 17: Cirles shrinking with V = C for 0 � t � 2 in [�4; 4℄2.
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Table 3: Maximum error Æ at R = 1, t = 2 and CPU seonds T per step versusnumber N of time steps and number L of tree levels in two irles shrinkingunder urvature for 0 � t � 2 on [�4; 4℄2.(a) Minimal smoothingL=S N = 10 20 40 80 160 320 640 1280 2560 T=NL4/1 .143 .179 .290 .493 .991 | | | | .0205/1 | .037 .069 .122 .248 .518 | | | .0416/2 | | .021 .034 .063 .121 .239 | | .0857/2 | | | .010 .017 .031 .059 .114 | .1648/3 | | | | .005 .008 .015 .029 .056 .324(b) Natural smoothingL=S N = 10 20 40 80 160 320 640 1280 2560 T=NL4/1 .143 .179 .290 .493 .991 | | | | .0215/2 | .050 .080 .139 .250 .523 | | | .0446/3 | | .025 .037 .067 .124 .244 | | .0897/4 | | | .012 .018 .032 .060 .115 | .1808/5 | | | | .005 .008 .015 .029 .057 .363(a) (b) (a) (b)
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4.4.5 Nononvex interfaes under urvatureA geometri theorem [3℄ predits that any smooth embedded plane urveshould ollapse to a round point and vanish in �nite time under urvatureow V = C. We verify that our method behaves orretly for two omplexpolygonal shapes, with the onvergene studies shown in Figures 18 and 19.6/160/1 7/320/1 8/640/2 vs 9/1280/2

Figure 18: Tilted polygon shrinking under urvature ow.7/320/1 vs 8/640/1 t = :05 t = :10
t = :5 t = 1:0 t = 1:5

Figure 19: Tilted square spiral unwinding under urvature ow.
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4.5 A nonloal geometri veloityMany important moving interfae problems are nonloal|the normal veloityat eah point  depends on all of �(t) and even on its history f�(s) j 0 � s � tg.In this setion, we test our method on the simplest nonloal geometri veloityF = (C � R�(t) CdsR�(t) 1ds )N: (21)This veloity smooths the moving interfae by urvature while preserving thearea inside the interfae, so arbitrary shapes beome round points but theinterfae does not vanish. Small isolated piees disappear and their area istransferred to large ones.We study a tilted square spiral unwinding under this veloity in Figure20, where 7/512/1 and 8/1024/2 runs onverge to graphial auray. The7/512/1 run took 18 min of CPU time and onserved area to within 0.9% ofits initial value. Eah suessive re�nement quadruples the CPU time andhalves the area error, on�rming the expeted O(N logN) ost per time stepand �rst{order auray. The interfae is shown at geometrially inreasingtimes t = 0; 0:005; 0:01; 0:02; : : : ; 2:56, beause its motion slows dramatiallyas urvature variation dereases toward its �nal steady state.Figure 21 superimposes 8/1024/2 and 9/2048/3 runs for a olletion oftrefoil{shaped bubbles moving under Eq. (21). Convergene to graphial a-uray is evident. The 8/1024/2 omputation took 31 min CPU time andonserved the initial area within 8% auray. The 9/2048/3 omputationtook 140 min CPU time and lost 4% of its area by t = 2:56.
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7/512/1 vs 8/1024/2 t = :005 t = :01
t = :02 t = :04 t = :08
t = :16 t = :32 t = :64
t = 1:28 t = 2:56 8/1024/2 vs 9/2048/3

Figure 20: Spiral unwinding under volume-preserving ow by urvature.
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8/1024/2 vs 9/2048/3 t = :005 t = :01
t = :02 t = :04 t = :08
t = :16 t = :32 t = :64
t = 1:28 t = 2:56 7/512/1 vs 8/1024/2

Figure 21: Trefoils merging under volume-preserving ow by urvature.
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