
A fast semi{Lagrangian ontouring methodfor moving interfaesJohn Strain �Department of MathematisUniversity of California970 Evans Hall #3840Berkeley, California 94720-3840Journal of Computational PhysisSubmitted 15 August 2000AbstratGeneral moving interfae problems are solved by a new approah:evaluate an expliit semi{Lagrangian advetion formula with eÆientgeometri algorithms, and extrat the moving interfae with a fast newontouring tehnique. The new approah deouples spatial and tem-poral resolutions, and grid{free adaptive re�nement of the interfaeinreases auray dramatially. A modular implementation, with afast new intrinsi geometry module, omputes highly aurate solutionsto geometri moving interfae problems involving merging, anisotropyand faeting; with a high{order embedded geometry module, it solvesseond{order problems involving urvature, dynami topology and non-loal interations.

�Researh supported by Air Fore OÆe of Sienti� Researh Grant FDF49620-96-1-0201. 1



Contents1 Introdution 31.1 Advetion of moving interfaes . . . . . . . . . . . . . . . . . . 31.2 Semi-Lagrangian advetion formulas . . . . . . . . . . . . . . . 41.3 Quadtree meshes, distaning and extension . . . . . . . . . . . 62 Fast adaptive ontouring 92.1 Topology resolution . . . . . . . . . . . . . . . . . . . . . . . . 102.2 Contour approximation . . . . . . . . . . . . . . . . . . . . . . 123 Loal geometri veloities 153.1 Intrinsi geometry . . . . . . . . . . . . . . . . . . . . . . . . . 153.2 Embedded geometry . . . . . . . . . . . . . . . . . . . . . . . 154 Implementation and numerial results 184.1 Control parameters . . . . . . . . . . . . . . . . . . . . . . . . 184.2 Convergene studies . . . . . . . . . . . . . . . . . . . . . . . 184.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 194.4 Passive transport . . . . . . . . . . . . . . . . . . . . . . . . . 224.5 First{order geometri veloities . . . . . . . . . . . . . . . . . 234.5.1 Visosity solutions with orners . . . . . . . . . . . . . 234.5.2 Cusps in merging irles . . . . . . . . . . . . . . . . . 244.5.3 Anisotropi normal veloity and the Wul� limit . . . . 254.6 Seond{order geometri veloities . . . . . . . . . . . . . . . . 264.6.1 Cirles shrinking under urvature . . . . . . . . . . . . 264.6.2 Nononvex interfaes under urvature . . . . . . . . . . 284.7 A nonloal geometri veloity . . . . . . . . . . . . . . . . . . 28

2



1 IntrodutionA new approah to numerial methods for general moving interfae problems ispresented. We ontour a semi{Lagrangian advetion formula, evaluated witheÆient geometri algorithms, to extrat the moving interfae. A fast newontouring tehnique ontrols the interfae resolution independently of thetime step and grid{free adaptive re�nement inreases auray by orders ofmagnitude. Semi{Lagrangian advetion merges and breaks omplex topology,with stable time stepping independent of the interfae resolution, while fastgeometri algorithms resolve an N{element interfae with optimal O(N logN)eÆieny. Our implementation provides fast new intrinsi �rst{order and em-bedded seond{order geometry evaluation modules for solving spei� movinginterfae problems.The work extends the modular semi{Lagrangian moving interfae methodsof [22, 23, 24, 25℄. The onvenient and exible modular blak{box approah de-ouples into several modules with independently ontrollable resolution. Exatgeometri algorithms are tuned for speed, veloity evaluation and time step-ping are deoupled from interfae resolution, and the new ontouring tehniquedramatially inreases overall auray.We onvert the moving interfae problem to a �xed{domain advetionequation in Setion 1.1, and present our semi{Lagrangian advetion formulain Setion 1.2. The formula is eÆiently evaluated at any desired point bythe fast tree{based geometri algorithms of Setion 1.3, and the interfae isextrated by the fast adaptive ontouring tehnique of Setion 2. Evaluationmodules for geometri veloities are supplied in Setion 3. A detailed algo-rithm is presented in Setion 4, where numerial results show that the methodomputes aurate visosity solutions to a wide variety of geometri movinginterfae problems involving anisotropi faeting, merging, orners, nonloalityand urvature.1.1 Advetion of moving interfaesAn e�etive method for general moving interfaes should resolve omplex non-smooth interfaes, merging and evolving on disparate time sales. In Fig. 1,for example, (a) initially irular interfaes �(t) shear into omplex shapesunder a passive transport veloity V = V (x), (b) nonsmooth faets developunder a veloity V = V (N) depending on the outward unit normal vetor N ,() irles merge and usps emerge under unit normal veloity V = N , and(d) a omplex polygon shrinks on widely varying time sales under urvatureow V = C.Topologial hanges suh as merging an be naturally resolved with animpliit representation of the interfae �(t) via its signed distane funtionF (x; t) = � miny2�(t) kx� yk: (1)3
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Figure 1: Challenges in moving interfaes: (a) omplexity, (b) faeting, ()merging, and (d) varying time sales.If the spei�ed veloity funtional V on � is extended smoothly to a vetor�eld W (x; t) on Rd, then solving the advetion equationFt �W � rF = 0 (2)moves the zero set �(t) of the initial data F with veloity V . Topologialhanges in �(t) are disovered when the zero set is extrated from F by on-touring.We solve the advetion equation by the seond{order semi{Lagrangian for-mula presented in Setion 1.2. Three independent omputational modulestransform the moving interfae to an advetion problem:Æ a fast distaning algorithm similar to [22℄, whih produes the exatsigned distane F from a given interfae � (Setion 1.3),Æ a fast extension algorithm from [25℄, whih extends interfaial veloitiesV de�ned on � to global smooth veloities W de�ned everywhere on Rd(Setion 1.3), andÆ the fast adaptive ontouring tehnique of Setion 2, whih extrats thezero set � from the solution F of the advetion equation with user{spei�ed auray.1.2 Semi-Lagrangian advetion formulasWe solve the advetion equation (2) with an expliit semi{Lagrangian formulawhih allows us to extrat only the zero set of the solution. Suh formulas relyon the observation that Eq. (2) propagates solution values along harateristisx = s(t) satisfying _s(t) = �W (s(t); t): (3)Thus the solution F (x; t + k) at time t + k an be evaluated by solving theharateristi ODE (3) bakwards in time from x = s(t+k) to s(t) and settingF (x; t + k) = F (s(t); t). Semi-Lagrangian shemes solve the harateristiODE numerially from x = s(t+k) to s(t) and approximate the o�{grid value4



F (s(t); t) by shape{preserving interpolation [14℄ or monotone advetion [18℄.Their unonditional stability allows large time steps in linear advetion [19, 20℄and moving interfaes [23, 24, 25℄. Our approah omits the approximation ofF and evaluates the signed distane F (s(t); t) exatly.Semi-Lagrangian moving interfae methods whih solve the advetion equa-tion by the �rst{order Courant{Isaason{Rees (CIR) formula [2℄~G(x) = F (~x; t) = F (x+ kW (x; t); t) (4)were developed and justi�ed in [23, 24℄. In [25℄, we ombined the CIR preditor(4) with a seond{order trapezoidal orretor formulaG(x) = F (x + k �W (x; t); t); �W (x; t) = 12W (~x; t) + 12 ~W (x; t + k): (5)The predited veloity ~W extends the veloity ~V determined by the zero set~� of ~G at time t + k. This preditor{orretor pair is seond{order auratein time, expliit, and unonditionally stable in the maximum norm: eah newG value is an exat F value so the maximum of F an never inrease.In the moving interfae ontext, semi{Lagrangian advetion de�nes thenumerial solution G by a simple expliit funtional formula (5) at any desiredevaluation point. Eulerian methods, by ontrast, advane solution values ona grid and interpolate between grid points. Thus semi{Lagrangian methods�nd the new interfae at t+ k by ontouring a well{de�ned funtion, withoutevaluating the adveted solution away from its own zero set. Computationale�ort is naturally onentrated on the moving interfae.Sine our advetion veloity W (x; t) extends the user{spei�ed veloityfuntional V de�ned on the zero set �(t) of F (x; t), eah semi{Lagrangiantime step �(t)! �(t + k) involves the following substeps:Æ Evaluate the signed distane F from the interfae �(t).Æ Evaluate the interfaial veloity V of �(t) by a user{supplied module.Æ Extend V to a global advetion veloity W .Æ Contour the predited CIR solution ~G de�ned by Eq. (4) to get thepredited interfae ~�.Æ Evaluate the predited interfaial veloity ~V of ~�.Æ Extend ~V to a global advetion veloity ~W .Æ Contour the orreted trapezoidal solution G de�ned by Eq. (5) to getthe orreted interfae �(t+ k).The distaning and extension substeps are eÆiently implemented via thequadtree{based algorithms of Setion 1.3, while e�etive algorithms for theontouring substeps are presented in Setion 2. Geometri veloity evaluationmodules are desribed in Setion 3. 5



1.3 Quadtree meshes, distaning and extensionA quadtree mesh is omposed of square ells organized into an L{level treestruture, as in Fig. 2. Our fast algorithms for distaning and veloity exten-sion are based on a spei� quadtree developed in [22℄:The distane tree An interfae � omposed of N pieewise linear elementsof similar size an be eÆiently resolved on a tree mesh built by splitting anyell C whose edge length exeeds its minimum distaned(C;�) = minx2C miny2� kx� yk (6)to �. When the elements vary widely in size, omputational eÆieny ben-e�ts from a modi�ed riterion: split ells whose onentri triples intersetmore than two adjaent elements. This adaptive resolution opes better withinterfaes resolved over widely varying spatial sales. Suh a tree allows fastO(N logN) evaluation of the signed distane funtion F (x) on eah ell C bythe fast distaning algorithm from [25℄:Æ Start: Set the urrent minimum distane m to � equal to 1.Æ Loop: While l � 0 and the ube C(x;m) with enter x and half{sidelength m is not ompletely ontained in the onentri triple T � of C;replae C by its parent C�, �nd and reord a nearest element ��j to x inthe element list of C�, replae m by the minimum distane m� from xto ��j , and replae l by l � 1.Æ Sign: Given a nearest element ��j to x, determine the sign of F = �m�by heking normal vetors of ��j and its neighbors.This searh strategy builds the distane tree in O(N logN) time and spaeomplexity, and always terminates in a bounded number of steps: in d � 4dimensions, any element interseting T � is nearer to x than any element outsidethe triple T ��� of the great{grandparent C���.Triangulation For \balaned" quadtrees in whih adjaent ells di�er in sizeby no more than a fator of 2 |suh as the distane tree shown in Fig. 2(a)|ell verties and enters an easily be triangulated into onforming meshes [3℄.Eah ell in suh a tree has 0 to 4 smaller neighbors in d = 2 dimensions, soa triangulation an be built from the six possible ell on�gurations shown inFig. 2().Veloity extension Moving interfaes via the advetion equation (2) re-quires a globally de�ned veloity W whih extends V smoothly o� the in-terfae �(t). Some moving interfae problems suggest a natural veloity ex-tension, but a modular widely{appliable blak{box solver requires a generalproblem{independent veloity extension as in [25℄.6
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Figure 2: (a) Four-level distane tree for a simple interfae and (b) triangu-lation of its ell verties and enters, built from the ell on�gurations in ().Any ontinuous funtion g on � an be ontinuously extended by G(x) =g(y) where y is a nearest point on � to x, hosen arbitrarily if there are sev-eral points equidistant from x. The nearest{point extension G is ontinuousnear smooth interfaes �, but may be disontinuous at points x with sev-eral nearest neighbors. The numerial Whitney extension developed in [25℄maintains ontinuity by building the ontinuous pieewise{linear interpolantof the nearest{point extension from the triangulated distane tree mesh. Bothextensions satisfy a maximum priniple: the maximum over Rd of G annotexeed the maximum over � of g. When g is the veloity V of �, the maximumpriniple guarantees that regions of spae far from � annot move faster thanthe interesting nearby regions.The nearest{point extension an be eÆiently evaluated on a triangulateddistane tree for �. When the tree is built, a pointer from eah vertex andenter to a nearest element of � is stored. G(x) an then be evaluated inO(1) time by �nding a nearest point y on a known nearest element and settingG(x) = g(y). Table 1 veri�es the O(N logN) ost of building the distane treeand evaluating the nearest{point extension shown in Fig. 3.At ompletely arbitrary points x 2 Rd, a distane tree does not guaranteeeÆient evaluation of the nearest{point extension. Points x loated in largeells far from � may require searhing long lists with O(N) elements. However,the distane tree speeds up G(x) evaluation for x near �, beause suh pointsare ontained in small ells with few nearby elements where the searh strategyis eÆient. Thus we use the nearest{point extension for semi{Lagrangianontouring where e�ort is foused near the interfae. The numerial Whitneyextension an be eÆiently evaluated everywhere by point loation [5, 15℄ andloal interpolation.
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Figure 3: Interfae and K{level distane tree, interfaial veloity x{omponentVx and nearest{point extension Wx with K = 5 and 6.

Table 1: CPU seonds for tree building, triangulation and extension.K 6 7 8 9 10 11 12Cells 1421 2957 6029 12173 24461 49037 98189Distane Tree 0.04 0.11 0.24 0.57 1.24 2.81 6.35Triangulation 0.02 0.05 0.11 0.24 0.51 1.11 2.32Extension 0 0.01 0.01 0.02 0.03 0.07 0.14
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2 Fast adaptive ontouringThe ontouring problem |extrat the zero set of a given ontinuous fun-tion G| naturally separates into two stages: topology resolution and ontourapproximation [1, 8, 11℄. Topology resolution determines a onsistent andhopefully orret topology for the set of urves, surfaes and degenerate ob-jets whih make up the zero set. Eah omponent of the zero set is enlosed ina olletion of bounding boxes whih separates it from the other omponents.Contour approximation iteratively re�nes an expliit representation of the ap-proximate zero set for inreased auray. We desribe our topology resolutiontehnique in Setion 2.1 and adaptively re�ne the interfae in Setion 2.2.Contouring the semi{Lagrangian formula for moving interfaes imposes dif-ferent requirements from many standard graphial appliations of ontouring.Our main issues are:Auray We require a ontouring tehnique with high and ontrollableauray. The zero set found at eah time step beomes the initial value forevaluating the veloity and moving the interfae through the next time step.Therefore ontouring errors of size � aumulate into global error O(�=k) perunit time.Consisteny As interfaes merge, usps form and pinh o�. The exattopology at any given time is sensitive and often irrelevant to the later evolu-tion of the interfae (Fig. 4). Thus it more important to produe a onsistentinterfae topology, free of loops, dead ends, and so forth, than to extrat thedetailed topology of the numerial solution.EÆieny Sine we ontour the solution twie per time step, the ontouringtehnique must be eÆient: omputational e�ort should onentrate on thezero set. Standard ontouring tehniques obtain a set of smooth ontours tohigh auray with a global uniform Cartesian mesh [13℄. This is more thanwe want, at a prie we annot a�ord.Derivatives Many robust ontouring tehniques require derivatives of G,assume that G is a pieewise polynomial or spline, or assume that all zeroesof ertain nonlinear systems involving G and rG an be found exatly [1, 8℄.Evaluation of rG from a semi{Lagrangian formula requires di�erentiationof nonsmooth distane funtions and extended veloities, so derivative{freeontouring tehniques are desirable. However, G is within O(k) of the signeddistane funtion F , whih has krFk = 1 almost everywhere; thus a gradientbound krG(x)k �  an usually be assumed and plays a key role in resolvinga onsistent topology.
9



0 � t � 0:73125 t = 0:7375 t = 0:74375 0:75 � t � 2
Figure 4: Island formation at usps in merging.Transversality Contouring problems are well{posed under the transversal-ity ondition that G and rG do not vanish simultaneously [1℄. For the CIRformula G(x) = F (x + kW (x)) and ertain speial veloities W , this ondi-tion an be veri�ed by exat omputation. In moving interfaes, we usuallyassume transversality sine we start from a fresh signed distane funtion withkrFk = 1 at eah time step.2.1 Topology resolutionWe extrat a onsistent topology for the interfae by building a K{level trian-gulated quadtree mesh, evaluating G at the mesh verties, �nding the exatzero set of the ontinuous pieewise{linear interpolant, and re�ning its vertiesby bisetion.Meshing The zero set � of G an be eÆiently resolved on a triangulatedquadtree mesh built by pretending G is a signed distane funtion and splittingeah ell C whose edge length exeeds the minimum value of jGj on C. SineG is not a signed distane funtion, the resulting quadtree may be unbalanedand diÆult to triangulate: neighboring ells vary in size by more than a fatorof 2 (Fig. 2).We an balane the quadtree by brute fore [3℄, or by modifying the ellsplitting riterion: �x an estimated gradient bound  for krGk and splitevery ell C whose size exeeds the minimum of jGj= over C. If the boundkrGk �  holds, then the resulting tree is balaned and easy to triangulate.Otherwise, we double  and rebuild until satis�ed.Interpolation Given nonzero funtion values G(x) at the verties of a trian-gulation, extrating the zero set of the ontinuous pieewise{linear interpolantQ on the triangulation is straightforward. In d = 2 dimensions, for example,eah triangle where G hanges sign ontains a unique line segment on whih Qvanishes. These line segments form a polygonal urve beause the triangula-tion is onforming and Q is ontinuous. Following eah polygonal zero urve asfar as possible in both diretions produes an oriented omponent of �(t+ k)with G > 0 on its right (Fig. 5). In d = 3 dimensions the ontouring proess10



is similar but more ompliated: tetrahedra replae triangles and triangularpathes replae line segments.Exat zero vertex values produe ambiguities in extrating the zero set ofQ, so we hoose a small tolerane � suh as 10�10 and perturb verties wherejGj � � until all vertex values of jGj exeed �. If repeated perturbations fail,transversality is doubtful and the ontouring problem may be ill{posed.Table 2 veri�es the predited O(N logN) = O(K2K) ost and O(2�2K) =O(h2) auray of linear interpolation on the triangulated quadtree, appliedto the interfae of Fig. 6. The error reported is the maximum of the exatdistane funtion jGj over segment endpoints and midpoints.
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+ Figure 5: Linear ontouring and bisetion of a zero set.Table 2: Error and CPU seonds for linear ontouring.K 3 4 5 6 7 8 9Cells 85 301 865 2041 4445 9309 19005Segments 47 114 217 436 889 1819 3610Length 0.48 0.214 0.104 0.0604 0.0305 0.0150 0.00817Error 0.191 0.121 0.0323 0.0099 0.00296 0.000828 0.000214CPU 0.01 0.01 0.03 0.07 0.15 0.35 0.71Bisetion Before delaring the interfae topology resolved, we move eahinterfae vertex to satisfy jGj � �. Eah interfae vertex found from the linearinterpolant is known to lie on the edge of some triangle �, braketed by twotriangle verties with G values of opposite sign. A standard one{dimensionalbisetion algorithm [12℄ applied along this edge is guaranteed to produe azero of G on this edge to auray � in O(log �) evaluations of G (Fig. 5). Theresulting interfae enjoys jGj values below � at every vertex and shares thetopology of the pieewise{linear interpolant on the triangulation. In Setion2.2, we improve the resolution of the interfae by the pathes whih onnetthese highly aurate verties.
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K = 3 4 5 6

Figure 6: Contouring a propeller shape on a triangulated K-level tree mesh.2.2 Contour approximationGiven a olletion of pieewise{linear pathes with a onsistent topology andall verties within O(�) of the exat interfae, we now improve the resolutionof the underlying zero set � by P passes of the following adaptive re�nementalgorithm (Fig. 7).Split Any path where jGj exeeds a spei�ed tolerane � at the midpoint issubdivided into pathes of half the size. New verties are interpolated linearlybetween existing verties. Sine jGj > � at the new verties, the followingsteps move them to redue jGj.Braket New interfae verties, unlike the linear interpolant verties of Se-tion 2.1, are not braketed between triangulation verties where G hangessign. Thus bisetion requires a preliminary braketing step whih �nds a pointwhere G has opposite sign from the new vertex. In order to keep verties frombunhing together and losing resolution, we seek brakets along the normalvetor to the interfae at the new vertex x at distane equal to the segmentlength. The braketing distane is redued if neessary to avoid ollisions withadjaent segments (Fig. 8).Biset For eah braket found, we run the bisetion algorithm to obtain anapproximate zero within tolerane �. If more than one approximate zero isfound, we aept the nearest one to the new vertex, subjet to the followingtopologial safeguards.Safeguards We avoid adjaent segment rossings by rejeting any new ver-ties whih would produe a tiny angle j�j � 2:56Æ with either neighbor. Suh12



rossings are possible when adaptive re�nement attempts to ompensate forinorret topology in the linear interpolant (Fig. 8). The topology of the lin-ear interpolant an be preserved by preventing new verties from leaving thetriangle where they start, but this sari�es too muh auray to topologypreservation. Thus we allow new verties to move to adjaent triangles, butonly if the destination is empty (Fig. 8).Prune In the �nal pruning step, we produe a more uniform resolution ofthe interfae by deleting pathes with areas less than � times smaller thantheir neighbors. Pruning produes neighboring segments of omparable sizes,yielding more aurate normal vetors when the intrinsi geometry module ofSetion 3.1 is used.The O(��1=2) ost and O(�) auray of the segment midpoints produedby this algorithm for the smooth interfae of Fig. 6 are veri�ed in Table 3.
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Figure 7: Adaptive re�nement of a zero set.
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Figure 8: Safeguards in adaptive re�nement: (a) topology preservation and(b) triangle limiting.
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Table 3: Error and CPU seonds for adaptive ontouring of a propeller.K=� 3=10�1 4=10�2 5=10�3 6=10�4 7=10�5 8=10�6 9=10�7Cells 85 301 865 2041 4445 9309 19005Segments 32 82 245 757 2344 7382 23683Length 0.55 0.227 0.101 0.049 0.027 0.011 0.0034Error 10�1 10�2 10�3 10�4 10�5 10�6 10�7CPU 0.02 0.04 0.09 0.26 0.78 2.38 7.41

14



3 Loal geometri veloitiesSolving any moving interfae problem with our modular approah requires auser{supplied module whih evaluates the interfaial veloity funtional. Weprovide two modules for geometri veloities V = V (x; t; N; C) whih dependon the loal position and geometry of the interfae. These veloity funtionalspose numerial diÆulties beause standard formulas for N and C are ompli-ated and their numerial approximation is sensitive. Thus we evaluate normalvetors by intrinsi methods in two dimensions and urvature by embeddedmethods in general dimension.3.1 Intrinsi geometrySuppose � is a urve in R2, approximated by a polygon with edges xixi+1.The exat normal vetor and urvature are given by the intrinsi formulas [4℄N = x?skxsk = (os �; sin �); C = 1kxsk dds�(s); (x; y)? = (�y; x)where x(s) is a parametrization of �. For any funtion g(s) on �, a naturaldisretization of the vertex derivative dgds is the left{right average di�erene�gi = 12  gi+1 � gikxi+1 � xik + gi � gi�1kxi � xi�1k! :With g = N this gives an approximate normalNi = �x?ik�xik : (7)Sine the normal angle � satis�esN? � dNds = �s;we an approximate urvature byCi = 1k�xikN?i ��Ni: (8)Eq. (7) produes �rst{order aurate normal vetors if � is smooth, but Eq.(8) often produes inaurate osillatory urvature. Thus we present an alter-native module based on embedding � into a loal uniform mesh.3.2 Embedded geometryCurvature an be aurately omputed from the signed distane funtion Fvia the formulas [26℄ N = rFkrFk ; C = �r �N; (9)15
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Figure 9: Loal embedded mesh with range R = 3 for a simple interfae (a),viewed as x-intervals in (b) and y-intervals in ().whih embed the interfae � as a subset of Rd. We generalize the veloityevaluation method of [25℄ to build a uniform mesh near �, evaluate F exatlyat mesh points, apply high{order essentially non{osillatory (ENO) di�eren-tiation formulas [10℄ to extrat smooth aurate approximations to N and C,and interpolate bak to the verties of �.Embedded mesh First, we build a loal uniform mesh near � and evaluateF . The simplest tehnique, marking nearby points of a global uniform mesh,is prohibitively expensive for �ne meshes. Thus we employ the eÆient sortingand pruning tehnique of [25℄:A two{dimensional loal mesh with mesh size h (Fig. 9) an be viewedas a olletion of disjoint x-intervals (iL : iR; j) = f(ih; jh) j iL � i � iRg,or as a similar olletion of y-intervals. It an be built by listing every meshpoint within horizontal distane Rh of any interfae point y 2 �, then listingeah mesh point within vertial distane Rh of some point produed in thehorizontal pass. The three{dimensional ase is similar. EÆient onstrutionalgorithms are ensured by sorting and pruning loal mesh points listed morethan one. The loal mesh is stored in a data struture whih ontains the meshpoints (ih; jh), a list of x-intervals (iL : iR; j), and so forth, and inludes everypoint neessary to form a di�erene stenil of half{width R for di�erentiatingor interpolating to any interfae point y 2 �. The three{dimensional ase issimilar. The signed distane funtion F an be eÆiently evaluated at theloal mesh points |whih are lose to the interfae| by fast exat distaningwith the distane tree.Di�erentiation Equidistant entered di�erene formulas suh as suh asf 0(x) � 12h (f(x+ h)� f(x� h)) (10)osillate if their stenils ross points where F is not smooth. Thus we omputeN and C on the loal mesh by ENO methods whih hoose equidistant stenils16



to avoid orners in F and redue osillations [25℄. We apply S passes of osinesmoothing to redue osillations further and satisfy CFL onditions [25℄, theninterpolate N and C bak to the verties of � and apply the user{spei�edveloity V (x; t; N; C).
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4 Implementation and numerial resultsWe demonstrate the auray and eÆieny of the semi{Lagrangian ontour-ing approah by omputing solutions to a wide variety of moving interfaeproblems. We desribe ontrol parameters and their default values in Setion4.1, disuss onvergene testing in Setion 4.2, and outline our implementationin Setion 4.3. We measure dissipation for a propeller under passive rotationin Setion 4.4. First{order geometri veloities depending only on N , andinduing anisotropy and merging, are treated in Setion 4.5. In Setion 4.6,we demonstrate onvergene for seond{order urvature{dependent veloities,while motion under a seond{order nonloal geometri veloity is omputedin Setion 4.7.4.1 Control parametersOur experiments vary the initial interfae �(0), the veloity funtional V , thespaetime domain [0; a℄ � [�b; b℄2 and the ontrol parameters summarized inTable 4. Convergene studies proeed by re�ning N , K, P , and � with otherparameters set to default values. The distane tree depth L does not a�et theerror and is set to K +P , so eah distane tree ell enloses a �xed number ofsegments for eÆieny. We set S = 0 exept for strongly urvature{dependentveloities, where stability requires S to inrease logarithmially with embeddedmesh size. Table 4: Control parameters and default values.Name Default ExplanationN 40 . . . 640 Number of time steps on [0; a℄k a=N Time stepK 3 . . . 7 Depth of ontouring tree meshP 0 . . . 4 Depth of adaptive re�nement� 10�K Midpoint error tolerane for adaptive re�nement� 10�10 Bisetion tolerane� 10�1 Segment pruning toleraneM 2�1�K Embedded M �M mesh sizeE 3 Order of ENO di�erentiation on embedded meshS 0 . . . 3 Number of osine smoothing passes on embedded meshL K + P Depth of distane tree4.2 Convergene studiesWe arry out both exat and graphial onvergene studies. When the exatsigned distane funtion F is known, we tabulate maximum interfaial errorsE1 = maxx2�(t) jF (x; t)j (11)18



and CPU seonds per step T . We analyze onvergene with 5 � 5 tables ofE1 and T where N  2N , K  K + 1 and �  �=10 as the row inreases,while P  P + 1 as the olumn inreases. Thus eah row exhibits �rst{orderspatial onvergene until the O(k2) error takes over, while the P = 4 olumnexhibits seond-order temporal onvergene: the O(�=k) aumulated spatialerror is o(k2) sine � = o(k3). Fig. 10 demonstrates �rst{order onvergeneE1 = O(T�1) for three ases with exat solutions: rigid rotation (Setion 4.4),merging irles (Setion 4.5.2), and urvature ow (Setion 4.6.1).For omplex problems where exat solutions are not available, we demon-strate onvergene to graphial auray by superimposing oarse and �neomputations. We label a omputation with given values for N , S, K, P and� as a N=S=K=P=� run for brevity.The onvergene of the numerial solution (modulo the time stepping error)as P inreases with �xed k supports the onlusions of [7, 20, 23, 25℄: semi{Lagrangian methods |unlike Eulerian methods| do not su�er from Courant{Friedrihs{Lewy (CFL) stability onditions.Rotation (4.3) Merging (4.4.1) Curvature (4.5.1)
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TFigure 10: Errors vs. CPU times for exatly solvable examples.4.3 ImplementationThe semi{Lagrangian ontouring approah was implemented in Standard C,ompiled with the Sun C ompiler and the -fast optimization ag, and run onone 450MHz CPU of a Sun Ultra 60 under Solaris 2.7. Timings reported arepreliminary as the ode has not been tuned for maximum speed. Eah timestep t ! t + k of our algorithm begins with � = �(t) and produes �(t + k)by the following steps:Æ [D;F ℄ = DistaneTree(L;�)[Build an L{level triangulated distane tree D around �.℄Æ V = Veloity(t;�)[Call a user{supplied module to evaluate the veloity on the interfae.℄Æ ~� = Contour(K;P; �; �; �; ~G(x) = F (x+ kW (x; t); t))[Find the zero set ~� of the predited CIR solution ~G.℄19



Æ [ ~D; ~F ℄ = DistaneTree(L; ~�)Æ ~V = Veloity(t+ k; ~�)Æ �(t+ k) = Contour(K;P; �; �; �; G(x) = F (x+ k �W (x; t); t))One the distane tree has been built and nearest points have been stored, thenearest{point extension W of the veloity V requires no additional e�ort toevaluate. Therefore the extension steps from Setion 1.2 an be omitted.Semi{Lagrangian evaluation The ontouring algorithm requires values of~G(x) = F (~x; t) onstruted by the following sequene of operations (Fig. 11):Æ [y; �℄ = SignClosestPoint(�; D; x)[Find the hildless distane tree ell C in D ontaining x; searh interfaeelements in the onentri triples of C and its anestors C�, C�� and C���;�nd a nearest point y 2 �(t) to x and the sign � = �1 of F at x.℄Æ W (x; t) = V (y; t)[Evaluate the nearest-point extension of V at x.℄Æ ~x = x + kW (x; t)[Projet x bakwards to the predited harateristi point ~x.℄Æ [~y; ~�℄ = SignClosestPoint(�; D; ~x)Æ ~G(x) = F (~x; t) = ~�k~x� ~yk[Evaluate the exat signed distane from ~x to �(t).Values of G(x) = F (x+ k �W (x; t); t)) are found with the additional operationsinvolving the predited interfae ~� and its veloity ~V (Fig. 11).Contouring Given the ability to evaluate any funtionG at arbitrary points,the ontouring of G proeeds as follows (Figs. 5 and 7):Æ T = Tree(K;G; )[Build K-level triangulated tree mesh to resolve the zero set of G withgradient bound .℄Æ � = ZeroSet(�; T; G)[Build zero set of linear interpolant to G on triangulation, perturbingtriangulation verties by � as neessary.℄Æ � = Biset(�; T; �)[Re�ne zero set verties by bisetion along triangle edges to auray �.℄Æ � = Adapt(�; G; �; �; �)[Split segments with midpoint jGj values above �, re�ne new vertiesby braketing and bisetion along the normal vetor to auray �, anddelete segments smaller than � times their neighbors.℄20



Veloity evaluation We evaluate geometri veloities V with the geometrymodules of Setion 3. The intrinsi module is a single straightforward step,while the embedded module involves the following substeps:Æ U = BuildLoalMesh(M;R;�)[Build M �M loal uniform mesh U within range R = E + S of �.℄Æ F = Distane(U;D)[Evaluate exat signed distane funtion at mesh points in U with dis-tane tree D.℄Æ [n; ℄ = EmbeddedGeometry(U; F; E)[Evaluate normal vetor and urvature on loal uniform mesh with order{E ENO evaluation of the embedded formulas in Eq. (9).℄Æ [N;C℄ = Interpolate(U; n; ; E;�)[Interpolate geometri quantities from loal uniform mesh U to interfae� with order{E ENO tehnique.℄Æ V = Veloity(N;C;�)[Evaluate loal veloity funtional on interfae � with user-supplied mod-ule and interpolated N and C.℄We use the intrinsi approah for passive transport (Setion 4.4) and �rst{ordergeometry involving only the normal diretion (Setion 4.5). The embeddedapproah produes smoother and more aurate urvature for the seond{order geometri examples of Setions 4.6 and 4.7.
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40/3/1/10�3 80/4/2/10�4 160/5/3/10�5 320/6/4/10�6
Figure 12: A propeller shape under rigid rotation: two periods.4.4 Passive transportWe measure the dissipation of our method with a three{bladed propeller un-der rigid body rotation V (x; y) = (�y; x) (Fig. 12). This veloity is naturallyde�ned everywhere, but we evaluate V only at the verties of �(t) and extendby the general tehnique of Setion 1.3; thus Table 5 provides a realisti pi-ture of the errors after two rotations at t = 4�, and supports the theoretialpreditions of Setion 4.2.Table 5: Error E1 and CPU seonds T per step for a rotating propeller.N S K � P = 0 1 2 3 440 0 3 10�3 E1 0.648 0.320 0.256 0.2462 0.247T 0.079 0.142 0.272 0.445 0.77080 0 4 10�4 E1 0.325 0.193 0.0944 0.0580 0.0778T 0.232 0.434 0.834 1.39 1.97160 0 5 10�5 E1 0.255 0.126 0.0527 0.0454 0.0158T 0.695 1.25 2.41 4.54 6.46320 0 6 10�6 E1 0.183 0.0788 0.0311 0.0455 0.00347T 1.83 3.32 6.67 12.9 22.4640 0 7 10�7 E1 0.124 0.0503 0.0180 0.00647 0.00337T 4.64 8.36 16.5 33.3 62.5
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0Æ: 40/0/4/2/10�4 vs 80/0/5/2/10�5 80/0/5/2/10�5: 0Æ vs 10Æ
Figure 13: Triangles growing and shrinking with unit normal veloity: theirles illustrate Huygens' priniple.4.5 First{order geometri veloitiesWe demonstrate the topologial robustness of the semi{Lagrangian ontouringapproah by omputing orners and smooth shapes, growing and merging withunit normal veloity, and regularly faeted shapes developing under anisotropinormal veloities orresponding to nononvex Hamiltonians.4.5.1 Visosity solutions with ornersComputation of orret \visosity solutions" for faeted interfaes depends onmoving a orner with unit normal veloity. Inward motion should keep ornerssharp, while outward motion should produe rounded orners.The semi{Lagrangian formula satis�es Huygens' priniple and naturallyomputes the orret visosity solution for a triangle growing and shrink-ing with unit normal veloity. Fig. 13 superimposes 40/0/4/2/10�4 over80/0/5/2/10�4 runs to show onvergene to graphial auray. Runs at res-olution 80/0/5/2/10�5 and tilted 0Æ vs 10Æ show that grid orientation e�etsare negligible. Huygens' priniple is graphially veri�ed.
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40/0/3/0/10�3 80/0/4/1/10�4 160/0/5/2/10�5 320/0/6/3/10�6
Figure 14: Cirles merging with unit normal veloity.4.5.2 Cusps in merging irlesSharp inward{pointing orners naturally our when smooth interfaes merge,so we verify orret behavior with the onvergene study of merging irlesshown in Fig. 14. Cusp singularities and topologial hanges are omputedautomatially and aurately. Tiny bubbles naturally form and disappear atthe usps where tangent irles merge, illustrating the importane of onsis-tent rather than orret topology resolution. The errors shown in Table 6and plotted in Fig. 10 surpass theoretial expetations, ahieving �rst{orderauray in the maximum norm even for this nonsmooth solution.Table 6: Error E1 and CPU seonds per step T for merging irles.N S K � P = 0 1 2 3 440 0 3 10�3 E1 0.194 0.0854 0.0576 0.0526 0.0365T 0.085 0.141 0.230 0.360 0.57280 0 4 10�4 E1 0.0788 0.0386 0.0156 0.00616 0.00470T 0.212 0.384 0.710 1.17 1.69160 0 5 10�5 E1 0.0423 0.0207 0.00826 0.00298 0.00414T 0.576 1.05 2.00 3.63 5.50320 0 6 10�6 E1 0.0175 0.0101 0.00401 0.00149 0.00160T 1.49 2.73 5.22 9.98 17.6640 0 7 10�7 E1 0.00924 0.00509 0.00210 0.000863 0.000378T 3.73 6.84 13.0 25.3 49.5
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4.5.3 Anisotropi normal veloity and the Wul� limitAnisotropi motion along the normal vetor onnets moving interfaes toHamilton-Jaobi equations Ft +H(rF ) = 0 [16℄, whih enounter diÆultieswhen the Hamiltonian H is nononvex [6℄; for example, ifV = R + � os(m�) where R + �(1�m2) < 0 < R � j�j: (12)Our semi{Lagrangian approah deals e�etively with nononvex Hamiltonians.We evolve an initially irular interfae under Eq. (12) with R = �1 andjRj+ �(1�m2) = �4. Fig. 15 shows the development of the faeted interfae,superimposing omputations tilted at 0Æ, 10Æ and 180Æ=m for anisotropies m =3, 4, 5 and 6. Grid e�ets are negligible, onvergene is fast, and the interfaeevolves rapidly into the regularly faeted Wul� shape [27℄ with the orretanisotropy.0Æ vs 10Æ vs 60Æ 0Æ vs 10Æ vs 45Æ 0Æ vs 10Æ vs 36Æ 0Æ vs 10Æ vs 30Æ

Figure 15: Cirles growing and shrinking into asymptoti Wul� shapes.
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4.6 Seond{order geometri veloitiesGeometri veloities involving seond{order derivatives suh as urvature gen-erate paraboli advetion equations. Semi{Lagrangian formulas are designedfor hyperboli advetion, and require small time steps or additional smoothingto maintain stability for urvature ows [23, 25℄. We ompute the urvaturewith an embedded mesh of size M = 2K+1 and S passes of osine smoothingafter eah di�erentiation. S is inreased logarithmially as the resolution isre�ned, to maintain stability without ompromising eÆieny and auray.The stability of the time stepping sheme depends on the urvature resolu-tion M and smoothing S, but not on the \subgrid" resolution produed by Ppasses of adaptive interfae re�nement.4.6.1 Cirles shrinking under urvatureA lassi geometri problem shrinks a plane urve with veloity equal to itsurvature, and forms a useful seond{order test ase. A irle shrinking withV = C has exat radius R(t) = qR(0)2 � 2t; thus with R(0) = p5, a irleshould shrink to radius 1 at time t = 2. A smaller irle with R(0) = 1vanishes ompletely in time t = 1=2. Fig. 16 shows onvergene to graphialauray on 0 � t � 2. CPU seonds per step and maximum errors in theinterfae loation at t = 2 are reported in Table 7 and Fig. 10, and verify thetheoretial preditions of Setion 4.2.20/1/3/0/10�3 40/1/4/1/10�4 80/1/5/2/10�5 160/2/6/3/10�6
Figure 16: Cirles shrinking under urvature ow.
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Table 7: Error E1 and CPU seonds per step T for urvature ow.N S K � P = 0 1 2 3 420 1 3 10�3 E1 .106 .130 .072 .057 .057T 0.131 0.200 0.346 0.483 0.64540 1 4 10�4 E1 .0664 .0454 .0241 .0160 .0142T 0.253 0.462 0.854 1.40 1.9080 1 5 10�5 E1 .0305 .0186 .00909 .00501 .00376T 0.557 1.04 1.99 3.65 5.85160 2 6 10�6 E1 .0188 .00894 .00443 .00246 .00186T 1.15 2.35 4.59 8.62 15.9320 3 7 10�7 E1 .00684 .00419 .00200 .00101 .000711T 2.87 5.20 9.97 19.6 38.4
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4.6.2 Nononvex interfaes under urvatureA geometri theorem [9℄ predits that any smooth embedded plane urveshould ollapse to a round point and vanish in �nite time under urvatureow V = C. We illustrate the theorem for a omplex polygonal shape withthe graphial onvergene study shown in Fig. 17. The urvature veloity dis-plays fast{moving in�nite transients at initial sharp orners, an intermediateregime of smooth motion, and in�nite veloity again as the interfae vanishes.Our adaptive approah easily onverges to graphial auray despite the widerange of spatiotemporal sales.t = 0 t = 1 t = 2 t = 4 t = 8
t = 16 t = 32 a vs b b vs   vs d

Figure 17: Tilted polygon shrinking under urvature ow: runs a through dhave parameters 320/1/5/4/10�3 through 2560/4/8/4/10�6.4.7 A nonloal geometri veloityMoving interfae problems suh as rystal growth [21, 17℄ are nonloal|thenormal veloity at eah point depends on all of �(t) and even on its historyf�(s) j 0 � s � tg. The simplest nonloal geometri veloityV =  C � R�(t) CdsR�(t) 1ds !N (13)smooths the moving interfae by urvature while preserving the area inside theinterfae, so arbitrary shapes beome round but the interfae does not vanish.Small omponents disappear as their area is transferred to large ones.We study a tilted square spiral unwinding under veloity (13) in Fig.18, where 512/2/7/3/10�3 and 1024/3/8/3/10�4 runs onverge to graphi-al auray. The interfae is shown at geometrially inreasing times t =0; 0:01; 0:02; : : : ; 2:56: its motion slows dramatially as urvature variation de-reases toward its �nal steady state. Fig. 19 shows omplex dynami mergingof initially irular bubbles under (13), with parameters 2048/3/7/4/10�4.28



Interfaes merge and disappear aurately and stably even under this seond{order nonloal veloity.t = 0 0.01 0.02 0.04 0.08
0.16 0.32 0.64 1.28 2.56

Figure 18: Spiral unwinding under nonloal volume{preserving urvature ow.
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t = 0 0.01 0.02 0.04
0.08 0.16 0.32 0.64
1.28 2.56 5.12 10.24

Figure 19: Bubbles merging under nonloal volume{preserving urvature ow.
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