
Fast Adaptive 2D Vortex MethodsJohn Strain �Department of MathematisUniversity of CaliforniaBerkeley, California 9472020 Marh 1996AbstratWe present a new approah to vortex methods for the 2D Eulerequations. We obtain long-time high-order auray at almost opti-mal ost by using three tools: fast adaptive quadrature rules, a free-Lagrangian formulation, and a nonstandard error analysis. Our erroranalysis halves the di�erentiability required of the ow, suggests an ef-�ient new balane of smoothing parameters, and ombines naturallywith fast summation shemes. Numerial experiments with our meth-ods on�rm our theoretial preditions and display exellent long-timeauray.1 IntrodutionVortex methods solve the 2D inompressible Euler equations in the vortiityformulation by disretizing the Biot-Savart law with the aid of the owmap. They have been extensively studied, widely generalized and appliedto omplex high-Reynolds-number ows: See [11℄ for a survey.Vortex methods involve several omponents: veloity evaluation, vortexmotion, di�usion, boundary onditions and regridding. In this paper, weimprove the speed, auray and robustness of the veloity evaluation. Weeliminate the ow map, improve the quadrature used for the Biot-Savart law,and analyze the error in a nonstandard way, requiring less di�erentiabilityof the ow and obtaining eÆient new parameter balanes. We employstandard tehniques for the vortex motion and onsider invisid free-spaeow to eliminate di�usion and boundary onditions. Our approah ombinesnaturally with regridding and fast summation methods.In Setion 2, we review Lagrangian vortex methods. These move thenodes of a �xed quadrature rule with the omputed uid veloity, preserving�Researh supported by a NSF Young Investigator Award, Air Fore OÆe of Sien-ti� Researh Grant FDF49620-93-1-0053, and the Applied Mathematial Sienes Sub-program of the OÆe of Energy Researh, U.S. Department of Energy under ContratDE-AC03-76SF00098. 1



the weights of the rule by inompressibility. This proedure loses auraywhen the ow beomes disorganized [5, 17℄, motivating many regriddingtehniques [16℄. Even before the ow beomes disorganized, however, ob-taining high-order auray with a �xed quadrature rule requires smoothingof the singular Biot-Savart kernel. Smoothing gives high-order auray forshort times but slows down fast veloity evaluation tehniques and halvesthe order of auray relative to the di�erentiability of the ow.In Setion 3, we review two free-Lagrangian vortex methods, the tri-angulated vortex method of [19℄ and the quadrature-based method of [22℄.Triangulated vortex methods are robust, pratial and eÆient but limitedto seond-order auray. Quadrature-based methods ompute adaptivequadratures tailored to the Biot-Savart kernel at eah time step, yieldinglong-time high-order auray at asymptotially optimal ost.The present paper develops a free-Lagrangian method whih ouples ker-nel smoothing with adaptive quadrature rules not tailored to the Biot-Savartkernel, produing long-time high-order auray. The asymptoti slowdownprodued by kernel smoothing is almost eliminated by a areful hoie ofsmoothing funtions and parameters, based on a new error analysis of theveloity evaluation. This analysis requires about half as many derivatives ofthe solution as the standard approah.The struture of our method is standard: At eah time step, the smoothedveloity is evaluated one and the vorties are moved with an expliit multi-step method. The veloity evaluation is nonstandard: First, a data struturegroups the N vorties into ells onvenient for integration. Then a globalorder-q quadrature rule is built. Finally, the fast multipole method is usedwith this rule to evaluate the smoothed veloity �eld. The details are pre-sented in Setion 4.Setion 5 presents numerial experiments. The error is measured forstandard test problems and our theoretial preditions are fully veri�ed.Then more omplex ows are omputed.2 Lagrangian vortex methodsThis setion is an overview of 2D vortex methods. First, we desribe howthe 2D Euler equations redue to an in�nite system of ordinary di�erentialequations for the ow map. This formulation leads naturally to vortexmethods. We ontrast the Lagrangian and free-Lagrangian viewpoints, thenreview the onvergene theory of Lagrangian methods.Seond, we explore avenues for improvement. We explain the onitbetween smoothing for auray and fast summation for speed, and demon-strate the Perlman e�et in whih the derivatives of the ow map interferewith the quadrature error bound.
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2.1 Equations of motionThe 2D inompressible Euler equations_u+ uux + vuy + px=� = 0_v + uvx + vvy + py=� = 0ux + vy = 0;involve the uid veloity u(z; t) = (u; v), where z = (x; y), the pressurep(z; t) and the onstant density �. Taking the 2D url eliminates the pres-sure, giving the vortiity equation_! + u!x + v!y = 0for the vortiity ! = vx � uy. Let z 7! �(z; t) be the ow map, de�ned by_�(z; t) = u(�(z; t); t) �(z; 0) = z: (1)Then vortiity is onserved along partile paths:!(�(z; t); t) = !(z; 0); (2)We lose Eqns. (1) and (2) for � and ! by solving the ellipti systemvx � uy = !;ux + vy = 0for the veloity (u; v). When ! has ompat support, the solution is givenby the Biot-Savart lawu(z; t) = Z K(z � z0)!(z0)dx0dy0 (3)where K is the Biot-Savart kernelK(z) = z?2�r2 z? = (�y; x); r2 = x2 + y2: (4)Thus we have a losed system for � and !, the \free-Lagrangian" equationsof motion onsisting of the vortiity transport law (2) oupled with_�(z; t) = Z K(�(z; t)� z0)!(z0; t)dx0dy0: (5)The \Lagrangian" equation of motion is derived by hanging variablesz0  �(z0; t). The Jaobian is unity beause the ow is inompressible, sothis gives a losed system for � alone:_�(z; t) = Z K(�(z; t)� �(z0; t))!(z0; 0)dx0dy0: (6)This requires values of ! only at time t = 0, and is the usual starting pointfor vortex methods. 3



2.2 Lagrangian vortex methodsLagrangian vortex methods now disretize Eqn. (6), traking N points zj(t) ��(zj ; t) moving with the uid veloity, starting at t = 0 from the nodes zjof a quadrature formula with weights wj. Suppose we use a quadratureformula Z g(z)dxdy = NXj=1wjg(zj) +EN (g)with a qth-order error boundjEN (g)j � Chqkgkq (7)for g 2 Cq. Here h is the mesh size of the rule and the Cq norm is de�nedby kgk0 = maxz jg(z)j; kgkq = kgk0 + X�+�=q k��x ��y gk0:Applying this quadrature to the Lagrangian equation of motion (6) gives asystem of N ordinary di�erential equations:_zi(t) =Xj 6=iwjK(zi(t)� zj(t))!(zj ; 0):The quadrature error bound (7) is in�nite sine K is unbounded, so wereplae K by the smoothed kernelKÆ(z) = 'Æ �K(z)where � denotes onvolution,'Æ(z) = Æ�2'(r=Æ)and ' is an appropriate radial \ore funtion." Almost all modern vortexmethods use smoothing [8℄, often with ' and the \ore radius" Æ hosen togive high-order onvergene as the mesh size h vanishes [13℄. This an beguaranteed by the following onditions on ' and !:Z ' = 1;Z x�y�' = 0; 1 � �+ � � m� 1; (8)Z jzjmj'j < 1' 2 CL and '(z) = 0 for jzj � 1; (9)! 2 CM has ompat support. (10)High-order auray requires smooth solutions, so ondition (10) on ! isnatural. Compat support in ondition (9) an be weakened, but it is im-portant for eÆieny. Given these onditions, a typial onvergene theoremfollows. 4



Theorem 1 ([1℄) Assume onditions (8) through (10) are satis�ed withL � 3, M � max(L + 1;m + 2) and m � 4. Let Æ = ha where 0 < a < 1.Suppose L is large enough to satisfyL > (m� 1)a1� a :Then the omputed ow map �h;Æ satis�esk�� �h;Ækh � O (hma)as h and Æ go to zero.Here the disrete 2-norm is given bykgkh =  h2Xi jg(zi)j2!1=2where zi are the initial vortex positions, and similar bounds hold for theomputed veloity and vortiity.This theorem allows a lose to 1 and Æ lose to O(h) only for very smoothows, where L and M are large. For general ows, Hald [12℄ and Nordmark[16℄ show that Æ = O(ph) is a good hoie. Then 2m derivatives of !guarantee only O(hm) auray. Later, we redue this to m+ 1 derivativesat the ost of rede�ning onvergene.2.3 Cost and aurayConvergene theory must be augmented by pratial onsiderations of ostand auray. Sine there are N vorties and eah veloity value is a sumuh;Æ(zi) = NXj=1KÆ(zi � zj)wj!(zj ; 0);a diret veloity evaluation osts O(N2) work. This is prohibitively expen-sive if the ow is omplex, sine many vorties are required. The expensehas been redued by fast summation shemes suh as the method of loalorretions [2℄, the fast multipole method [6℄ and Ewald summation [20℄.These shemes evaluate unsmoothed sums likeu(zi) = NXj=1K(zi � zj)wjto auray � in O(N log �) work, by separating loal from global interationsand applying separation of variables globally. They run muh faster thandiret evaluation when N is large.However, this does not ompletely resolve the diÆulty. Fast methodsannot evaluate the smoothed interation KÆ(zi � zj) between vorties zi5



and zj loser than Æ, beause KÆ 6= K. Asymptotially, there are O(NÆ2)vorties in a irle of radius Æ, so if Æ = O(ph) there are a total ofO(N2Æ2) = O(N2h) = O(N3=2)loal interations to be evaluated diretly. Thus fast summation shemesslow down from O(N) to O(N3=2) when K is smoothed with Æ = O(ph).Hene there is a onit between smoothing and fast summation. If wetake Æ lose to O(h) to speed up fast summation, we need many derivativesof the ow for a modest order of onvergene. Larger Æ is more auratefor rougher ows, but hampers fast summation shemes. In Setion 4 weresolve this onit by allowing another O(�) in the error bound.2.4 The Perlman e�etA ompletely di�erent obstale to aurate alulations with vortex methodsis the \Perlman e�et." Sine the error bound for numerial quadrature inEqn. (7) depends on order-q derivatives of the integrand, hereg(z0) = KÆ(�(z; t) � �(z0; t))!(z0; 0);the higher derivatives of the ow map will a�et the error bound. The owmap moves uid partiles far apart and therefore develops large derivativeswhen the ow beomes disorganized. Thus vortex methods lose high-orderauray in long-time alulations [5, 17℄. For example, Figure 1 plots thenumber of orret bits in the omputed veloity and vortiity of a stan-dard test ase for a fourth-order vortex method. Fourth-order auray|evidened by the gain of one tik mark per line in the �gure|is attainedonly during a very short initial time period. Figure 1 also plots the errorswhen the C6 vortiity is replaed by a C2 vortiity. The order of aurayof the veloity is halved, indiating that the di�erentiability requirement isgenuine. The vortiity errors, however, ontinue to onverge with fourth-order auray during the usual short initial time period. The numerialparameters used are summarized in Table 3 in Setion 5.2.The Perlman e�et has motivated muh researh on regridding, the ideabeing to avoid large derivatives of the ow map by restarting before theow beomes disorganized [16℄. Similarly, Beale has developed an iterativereweighting sheme to overome the Perlman e�et [4℄. The Perlman e�etalso motivated the free-Lagrangian vortex methods we disuss next.3 Free-Lagrangian methodsFree-Lagrangian methods overome the Perlman e�et by removing the owmap from the Biot-Savart integral. Thus_� = Z K(�� z0)!(z0; t)dx0dy0;6
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Figure 1: Corret bits for the vortex method with parameters from Table 3in Setion 5.2. The top row plots errors when ! is C6, the seond when !is C2.replaes the Lagrangian equation of motion (6). Sine ! values are knownonly at the moving points zj(t), eah veloity evaluation requires adaptivequadratures with new weights adapted to the urrent vortex positions. Twosuh methods are disussed below.3.1 Triangulated methodsTriangulated vortex methods evolve points zj(t) by_zj(t) = uh(zj ; t) = Z K(zj(t)� z0)!h(z0; t)dx0dy0; (11)where !h is a pieewise linear interpolant to the vortiity values!h(zj(t); t) = !h(zj ; 0) = !(zj ; 0)7



and the nodes zj(t) form the verties of a triangulation of R2.Given any pieewise linear funtion !h on a triangulation of R2, one anevaluate uh exatly, with results depending strongly on the triangulation. In[7℄, this observation was ombined with a �xed triangulation arried by theow. While onvergent, the resulting sheme osts O(N2) work per time stepwith a large onstant and loses auray quikly beause the triangulationdegenerates.We developed pratial triangulated vortex methods in [19℄: a fast sum-mation sheme brought the ost down to O(N4=3) and a fast Delaunay tri-angulation sheme gave exellent long-time auray. An adaptive initialtriangulation tehnique made the method robust enough to ompute evendisontinuous pathes of vortiity, a diÆult task for a method of this gener-ality. Figure 2 shows results for the standard test ase used in Figure 1, withnumerial parameters given in Table 4 in Setion 4.2. The error displays noPerlman e�et; seond-order auray (one tik per line) is maintained uni-formly in time. The triangulated approah is now being applied to ows inthree dimensions with visosity and boundaries [10, 15℄. However, it seemsdiÆult to make a triangulated vortex method with higher than seond-orderauray. This motivated the next approah we disuss.3.2 Quadrature-based methodsWe developed higher-order free-Lagrangian methods in [22℄. The basi ideais to onstrut time-dependent quadrature weights wij(t) whih give high-order auray in the Biot-Savart law:u(zi; t) = Z K(zi � z0)!(z0; t)dx0dy0� NXj=1wij(t)K(zi � zj)!(zj ; t):For example, high-order produt integration weights [9℄ make smoothing un-neessary, but the i-dependene of wij(t) preludes fast summation methods.Thus we onstrut wij with the \loally-orreted property" thatwij = wj for almost all jfor eah point of evaluation zi and some \smooth" quadrature rule withpoints zj and weights wj . Suh rules an be built and the veloity evaluatedin O(N log2N) work. The prie for eÆieny, however, is a rede�nition ofonvergene. The error bound for these quadratures is O(� + hq), where �is an arbitrary user-spei�ed error tolerane and the onstant in the O(N)ost depends weakly on �. Thus one gets order-q onvergene only downto O(�). This is suÆient for three reasons: omputer arithmeti operateswith �nite preision, pratial omputations an a�ord rather low aurayfor the most part, and fast summation methods introdue an O(�) error as8
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Figure 2: Corret bits for the triangulated vortex method with parametersfrom Table 4 in Setion 5.2.well. High-order auray an be maintained for long times, though theserules are somewhat expensive to implement.4 A new approahWe now present a new high-order fast adaptive vortex method whih aimsto avoid obstales both to speed and to auray. The key ingredients areÆ A free-Lagrangian formulation to avoid the Perlman e�et.Æ Adaptive quadrature rules with high-order auray on smooth fun-tions, but not tailored to the Biot-Savart kernel.Æ New error bounds requiring fewer derivatives of the vortiity and lead-ing to an eÆient new smoothing strategy.9



These ingredients ombine to give a method with almost optimal eÆienyand long-time high-order auray without exessive smoothness require-ments on the solution. The method is owharted in Figure 6.4.1 OverviewWe begin with quadrature. Given N arbitrary nodes zj 2 R2, we onstrutthe weights of a quadrature rule having order-q auray on Cq funtionsif the nodes are well distributed. Note that without some restrition onthe asymptoti distribution of nodes, a guarantee of order-q auray isunavailable. Thus we onstrut rules with an error bound omposed oftwo fators. The �rst depends only on the point loations and is easilyomputable a posteriori, as a monitor for bad point distributions. Theseond depends only on the mesh size and the Cq norm of the integrand.Our quadratures are omposite: After partitioning the nodes into ret-angular ells in Setion 4.2, we onstrut order-q rules on eah ell in Setion4.3. The union of these rules is globally aurate of order q: We quote anerror bound from [21℄ in Setion 4.4.After quadrature, we analyze smoothing. Setion 4.5 presents a standardsmoothing error bound. In Setion 4.6, we onstrut a family of arbitrary-order ore funtions and shape fators.Setion 4.7 presents our multistep time stepping proedure and the start-ing value problem. Finally, Setion 4.8 presents a nonstandard error analysisof veloity evaluation whih requires fewer derivatives of the vortiity andleads to an eÆient new balane between quadrature and smoothing.4.2 Data struturesLet B = [a; b℄ � [; d℄ be a retangle ontaining the nodes zj. Compositequadrature partitions B into a union of retangular ells Bi, eah ontainingenough nodes to onstrut an order-q quadrature. There are m := q(q+1)=2monomials x�y� of degree � + � � q � 1, so we will need at least p � mnodes per ell. Thus we partition B into ells, eah ontaining p or p + 1nodes. (Some ells must have p+ 1 if p does not divide N exatly.) This isonveniently done via the following tree struture.Let B = B1 be the level-0 root of the tree. Divide B1 in half along itslongest edge, with the dividing plane loated so that eah half of B1 ontainseither bN=2 or bN=2 + 1 nodes. This gives the level-1 ells B2 and B3.Reursively, split B2 and B3 along their longest edges to get B4 throughB7, eah ontaining bN=4 or bN=4+ 1 nodes zj. Repeat this proedure Ltimes to get M = 2L ells Bi on the �nest level L, numbered from i = Mto i = 2M � 1, eah ontaining p = bN=M or p+1 nodes zj . The union ofall the ells on any given level is B. The tree struture is stored by listingthe boundaries of eah ell Bi = [ai; bi℄ � [i; di℄ from i = 1 to i = 2M � 1,a total of 4 � 2M numbers, and indexing the nodes into a list so that thenodes zj 2 Bi are given by j = j(s) for s = b(i); : : : ; e(i) and three integer10



funtions j, b and e. This an be done in O(N logN), but the simplestmethod requires sorting eah ell before eah subdivision, giving a total ostO(N log2N) for the tree onstrution with an O(N logN) sorting methodsuh as Heapsort. Figure 3 shows an example of this tree struture.

Figure 3: Levels 1, 3, 5 and 7 in the ell data struture with N = 1000nonuniformly distributed points. Here eah level-7 ell ontains either 4 or5 points, suitable for a quadrature rule of order q = 2 sine q(q + 1)=2 = 3.4.3 Quadrature rulesWe now onstrut order-q quadrature rules on B with N given quadraturenodes zj . Assume N � m := q(q + 1)=2, and hoose an integer L � 0with p := bN=2L � m. The data struture just onstruted divides B intoM = 2L retangular ells Bi, eah ontaining either p or p + 1 nodes zj .11



We onstrut loal weights W ij for nodes zj 2 Bi by solving the followingsystem of m linear equations in at least p unknowns:Xzj2Bi P�(xj)P�(yj)W ij = ZBi P�(x)P�(y)dxdy= Æ�0Æ�0jBij; 0 � �+ � � q � 1:Here jBij = (bi � ai)(di � i) is the area of Bi andP�(x) = p�(t); x = xm + txh;where p�(t) are the usual Legendre polynomials on [�1; 1℄ and xm = (bi +ai)=2, xh = (bi � ai)=2, with similar expressions for the y variable. Sinep � m, this system of m equations in at least p unknowns generially hassolutions. We ompute the solution W ij of least 2-norm, using a ompleteorthogonal fatorization routine from LAPACK [3℄. The weights of the ruleW are then de�ned to be Wj = W ij where zj 2 Bi. The algorithm issummarized in Figure 4.Remark: In most vortex methods, the vortiity ! is known only at thevorties, so interpolation is needed to evaluate the vortiity elsewhere. Thetree struture provides a natural interpolation tehnique. Suppose vortieszj lie in a ell C and we want !(z) for z 2 C. We approximate !(z) by!(z) � Xzj2C 
j(z)!(zj);where the interpolation weights 
j(z) form the least 2-norm solution of theunderdetermined linear systemXzj2C 
j(z)P�(xj)P�(yj) = P�(x)P�(y); 0 � �+ � � q � 1:This gives an qth order interpolation formula on eah ell. The weightsare bounded if there are enough nodes zj in C. To ontour the omputedvortiity in Setion 5.3, we interpolated ! to a �ne equidistant grid, thenontoured on the grid.4.4 Quadrature error boundsThe weights Wj now integrate all polynomials of degree less than q exatlyover all level-L ells Bi. This property implies order-q auray:Theorem 2 ([21℄) Let B = [Mi=1Bi where Bi = [ai; bi℄ � [i; di℄. Supposethat W integrates x�y� exatly over eah Bi for 0 � � + � � q � 1. Thenfor any Cq funtion g on B, the quadrature errorE = ZB g(z)dxdy � NXj=1Wjg(zj)12



satis�es the bound jEj � 
 jBj hqq! kgkqwhere h = maximax(bi � ai; di � i) is the longest ell edge,
 = 1 + 1jBj NXj=1 jWj jand jBj = (b� a)(d� ) is the area of B.In general, the ondition number 
 annot be bounded a priori for arbi-trary points, but we an easily ompute it a posteriori, yielding an exellentdiagnosti for the quality of the rule.Remark: By reduing eah ell ondition number 
i = 1+ 1jBijPzj2Bi jWjj,we an redue the global ondition number 
 =Pi 
i. Inreasing p redues
, sine the additional degrees of freedom an be applied to reduing the2-norm of W ij , but it is too expensive to inrease p globally. Thus we redue
 adaptively: when 
i exeeds a tolerane 
m, we merge Bi with its siblingin the tree struture, obtaining a ell BI ontaining twie as many pointszj . We then reompute all weights Wj for whih zj 2 BI , reduing 
I atthe ost of a larger linear system and a larger ell size h.This adaptive tehnique also treats the degenerate ases when no solutionexists on a ell Bi, beause the points zj are not in suÆiently generalposition. A solution is more likely to exist after suh a ell is merged withits sibling,Remark: In pratie, the hoie of L may be diÆult. L too smallinreases h, while L too large preludes order-q auray. Thus our odeaepts a user-spei�ed safety parameter S � 1 and hooses L so that eahlevel-L ell ontains at least bSq(q + 1)=2 points. Values of S typiallyrange from 1 to 2.4.5 Smoothing error boundsSine onvolution is assoiative, replaing K by KÆ is equivalent to smooth-ing u with the ore funtion '. The following is a standard error bound forsuh smoothing.Theorem 3 ([18℄) Assume the ompatly supported ore funtion ' satis-�es the moment onditions Z ' = 1;Z x�y�' = 0; 1 � �+ � � m� 1; (12)M = 1m! Z jzjmj'j < 1:13



Quadrature AlgorithmSet parameters:Degrees of freedom required per ell: m = q(q + 1)=2 .Top level in ell struture: L = blog2(N=Sm).Points per ell: p = N=2L.Maximum ell ondition number: 
m.Construt ell data struture:B1 = B, a retangle enlosing all the points zi.do l = 1; L� 1Divide level-l ells along longest edge with approximatelyhalf the points in eah subell, yielding level-l+ 1 ells.end doResult: 2L ells Bi on level L with p or p+ 1 points eah.Compute weights Wi one ell at a time.do i = 1; 2LCompute least-2-norm solution W ofPzj2Bi WjP�(xj)P�(yj) = Æ�0Æ�0jBij for 0 � �+ � � q � 1Compute ell ondition number
i = 1 + 1jBijPzj2Bi jWj j:if 
i � 
m thenMerge ell Bi with its sibling, flag ell and siblingdone, and reompute weights on double ell BI.end ifend doFigure 4: Order-q quadrature with N points zj in a retangle B.
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Suppose u belongs to the Sobolev spae Wm;p of funtions with m distribu-tional derivatives in Lp, where 1 � p � 1. Thenk'Æ � u� ukLp �MÆm X�+�=m k��x ��y ukLp :Proof: Suppose by density that u is smooth and Taylor expand:u(z0 � z) = u(z0) + m�1Xl=1 (�1)ll! X�+�=l ��x ��y u(z0)x�y�� Z 10 (t� 1)m�1(m� 1)! X�+�=m ��x��y u(z0 � tz)x�y�dt:Multiply by 'Æ(z), integrate and use the moment onditions (12):'Æ�u(z0)�u(z0) = � Z 10 (t� 1)m�1(m� 1)! X�+�=m Z ��x ��y u(z0�tz)x�y�'Æ(z)dxdydt:Take Lp norms and use the fat that the norm of an integral is less than orequal to the integral of the norm:k'Æ�u�ukLp � Z 10 jt� 1jm�1(m� 1)! X�+�=m Z k��x ��y u(��tz)kLp jx�y�j j'Æ(z)jdxdydt:Sine the Lp norm is translation invariant and jx�y�j � jzjm for �+� = m,we havek'Æ � u� ukLp � 1m! X�+�=m k��x ��y ukLp Z jzjmjÆ�2'(z=Æ)jdxdy� MÆm X�+�=m k��x ��y ukLp :4.6 Expliit ore funtionsSuppose ' is a ontinuous radial funtion and write '(z) = '(r) wherer2 = jzj2 = x2 + y2. Then R x�y�'(z)dxdy = 0 if � or � is odd, so themoment onditions (12) beomeZ 10 '(r)rdr = 1=2�; Z 10 '(r)r2j+1dr = 0; j = 1; : : : ; nwhere m = 2n+ 2 is even.Using saling, the expliit formula (4) for K, polar oordinates and thestandard integralZ 2�0 1� a os �1� 2a os � + a2 d� = ( 2� if a2 < 10 if a2 > 115



gives the useful resultKÆ(z) = 'Æ �K(z) = f �rÆ�K(z)where the \shape fator" f is given byf(r) = 2� Z r0 '(s)sds:Sine '(r) = 0 for r > 1, we have f(r) = 1 for r > 1. This failitates fastsummation methods.We now onstrut a family of shape fators f . A onvenient ansatzsuggested by [16℄ is f(r) = %p had%d + � � � + a0i+ 1 (13)where % = (1� r2)+ = max(0; 1 � r2) and'(r) = 12�rf 0(r)= �1� h(p+ d)ad%p+d�1 + � � �+ pa0%p�1i (14)for r2 < 1. For r2 > 1, '(r) vanishes. Suh a ore funtion ' has p � 2ontinuous and p� 1 bounded derivatives.The d+1 oeÆients ai must be hosen so that ' satis�es n+1 momentonditions, so we annot expet a solution unless d � n. If d > n, the linearsystem of moment onditions is underdetermined, and we use a ompleteorthogonal fatorization routine to �nd the solution with smallest 2-norm.A brief alulation shows that the moment onditions are equivalent toa linear system Aa = bwhere b0 = �1, bi = 0 for i > 0, a = (a0; a1; : : : ; ad) and the n+ 1 by d+ 1matrix A is determined by the reurreneAij = 1p+ i+ j Ai�1;j 0 < i � n; 0 � j � d;with initial values A0j = 1 for 0 � j � d. When p is large, eah row isalmost proportional to the previous one, so A is highly ill-onditioned.Given the oeÆients ai, we haveKÆ(z) = z?2�r2 h(1� r2=Æ2)p+(ad(1� r2=Æ2)d+ + � � �+ a0) + 1i ;where z? = (�y; x). Thus we expet roundo� problems when r � Æ. Theyan be redued by observing that sine f(0) = 0, there exists a polynomialg suh that f(r) = r2g(%) = r2 hbp+d�1%p+d�1 + � � �+ b0i :16



In terms of g, we have a onvenient formulaKÆ(z) = z?2�max(r2; Æ2)g((1 � r2=Æ2)+):The oeÆients bj are given bybp�1 = bp�2 = � � � = b1 = b0 = 1and bp = bp�1 + a0; : : : ; bp+d�1 = bp+d�2 + ad�1:Several well-known ore funtions are inluded in this sheme. For exam-ple, Nordmark's eighth-order ore funtion from [16℄ has p = 10, d = n = 3and m = 8: the orresponding shape fator isf(r) = %10 h�560%3 + 1365%2 � 1092% + 286i + 1= r2 h560%10 � 805%11 + 287%10 + %9 + %8 + � � � + 1i :Figure 5 shows several shape fators of this type, for various hoies ofparameters. The inreasing osillation as n inreases follows naturally fromthe vanishing of more moments.The polynomial degree d makes little di�erene to the values of high-order kernels, but Table 1 shows that inreasing d an notieably redue thesizes of the oeÆients and thus the smoothing error bound. Indeed,M = 1m! Z jzjmj'(z)jdxdy� 1�m! Z 10 rm+1 h(p+ d)jadj%p+d�1 + � � �+ pja0j%p�1i dr� 14 �m! [jadj+ � � �+ ja0j℄ :n m p d M d M0 2 4 1 2:1� 2 5 1:6� 21 4 6 2 3:6� 3 6 1:5� 32 6 8 3 3:8� 4 7 8:9� 53 8 10 4 2:0� 5 8 3:2� 64 10 12 5 6:9� 7 9 8:5� 88 18 20 8 1:8� 13 12 5:0� 15Table 1: Error onstants M as a funtion of moment order m, smoothnessp and polynomial degree d for the pieewise polynomial shape fators (13)shown in Figure 5.
17
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Figure 5: Pieewise polynomial shape fators f with various parameters.
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4.7 Time stepping tehniquesSine the Euler equations are not sti� and we are onstruting high-ordervortex methods, we disretize time with expliit s-step Adams methods.These methods require an aurate proedure for omputing the s startingvalues. Suppose we use an expliit s-step Adams method with a �xed timestep �f . We begin with a tiny time step �i << �f and 1-step Adams,giving error O(�2i ). Sine our �nal method is order-s aurate, we shouldhoose �i = O(�s=2f ). We now inrease the order of the Adams method by1 at eah step until order s is reahed, simultaneously inreasing �i by afator R � 2 until �f is reahed. The �nal non-equidistant step is adjustedto land preisely at t = �f .4.8 Balane of errorWe now balane the errors due to smoothing and quadrature. The error inveloity evaluation splits naturally into two partsE = ju(z) � NXj=1wjKÆ(z � zj)!(zj)j� jK � !(z)�KÆ � !(z)j+ jKÆ � !(z)� NXj=1wjKÆ(z � zj)!(zj)j= EÆ +EN;Æ:Here EÆ is the smoothing error, whih satis�esEÆ �MÆmkukmif ' satis�es moment onditions (12) of order m and u 2 Cm. The seondterm EN;Æ is the quadrature error, whih satis�esEN;Æ � 
 jBj hqq! kgkq; g(z0) = KÆ(z � z0)!(z0)for eah �xed z. By a standard inequality for the Cq norm of a produt oftwo funtions [14℄, we havekgkq � C(kKÆkqk!k0 + kKÆk0k!kq):We know that KÆ(z) = Z Æ�2'�z � z0Æ � z0?2�jz0j2 dx0dy0= Æ�1 Z '�zÆ � z0� z0?2�jz0j2dx0dy0;19



so there is some onstant C, depending only on ', suh thatk��x ��yKÆk0 � CÆ�+��1if ' 2 C�+�. Thus if ' 2 Cq, we havekgkq � 1ÆC(Æ�qk!k0 + k!kq)so the quadrature error satis�esEN;Æ � C(Æ�1 �hÆ�q k!k0 + Æ�1hqk!kq):Hene the total error in one veloity evaluation satis�esEÆ +EN;Æ � C(Æmkukm + Æ�1 �hÆ �q k!k0 + Æ�1hqk!kq):where q is the order of quadrature and ' 2 Cq satis�es moment onditions(12) of order m.We now take advantage of the separation between k!k0 and k!kq toderive a nonstandard error bound. We hoose Æ as a funtion of h to makeÆ�1 �hÆ �q � �;where � is a user{spei�ed error tolerane, �xed as h vanishes. This impliesÆ = O(��1=(q+1)hq=(q+1)) = O(ha); a = 1� 1q + 1 ;and our error bound beomesE � C(�k!k0 + h mqq+1 kukm + h q2q+1 k!kq):The hoie m = q balanes the two remaining terms, sine an elementaryalulation with the Biot-Savart integral shows that kukm � Ck!km if !has ompat support, and we �ndE � C h�k!k0 + hk(k!kq + kukq)i = O(�+ hk)where k = q2=(q + 1) = q � 1 + 1q+1 > q � 1. For quadrature of ordersq = 2; 4; 6; 8; 10, the exponent a in Æ = O(ha) is 0.66, 0.80, 0.86, 0.89, 0.91respetively, with order of auray k equal to 1.33, 3.20, 5.14, 7.11, 9.09rapidly approahing q � 1 from above as q inreases. Thus Æ is very loseto O(h) for methods of high order k, with only q derivatives of ! required.This allows us to use fast summation methods with exellent eÆieny:the fast multipole method with this Æ osts O(N b) with b = 1 + 1q+1 =1:33; 1:20; 1:14; 1:11; 1:09, very lose to 1.20



This error bound is nonstandard but extremely useful. It gives almostoptimal auray and eÆieny at the prie of a nonstandard de�nition ofonvergene. Suh a de�nition osts us very little in this ontext, beausethe fast multipole method already involves error �.We ombine this order-k veloity evaluation with an Adams methodof order s = q > k, beause the �rst-order Euler equations imply thatthe veloity should have roughly the same order of smoothness in time asin spae, with the partile positions one order smoother by the ow mapequation (1). An order O(� + hk) error in the veloity u at eah time stepfortunately does not aumulate in the multistep solution of_�(z; t) = u(�(z; t); t)so we expet to obtain a maximum norm error in � of orderO(�+�sf + hk)k!kqas h and �f vanish. This would imply similar estimates for the veloity andvortiity by standard arguments [13℄.5 Implementation and numerial resultsWe implemented a version of the fast adaptive vortex method in Fortran andstudied several numerial examples. First, we measured the auray andeÆieny of the veloity evaluation sheme in isolation. Then we measuredthe error in long-time alulations with the full method. Finally, we studiedthe interation of several smooth pathes of vortiity.5.1 Veloity evaluationWe studied the auray of the veloity evaluation of orders k = 1:33, 3.20,5.14 and 7.11 orresponding to m = q = 2, 4, 6, and 8, using the well-knownPerlman test ase [17℄ !P (z) = �max(0; 1 � r2)�Pwhere P = 10. The vortiity !P is a CP�1 funtion on R2, while theorresponding veloity �elds are CP :u(z) = (1� !P+1(z)) z?(2P + 2)r2 :This is a stationary radial solution of the Euler equations with shear and apopular test ase for vortex methods.We tested our method with the following random initial grid. Given Nand n with n2 � N , �rst distribute n2 vorties uniformly over a retangle Renlosing the support of the vortiity: Divide R into a n�n grid and hoose21



Free-Lagrangian AlgorithmRead parameters from input file:Plotting, output, housekeeping.Time stepping: ti, tf, �i, �f, R, k.Quadrature order and safety fator: q, S.Smoothing: p, d, n, Æ = Cha.Fast summation tolerane: �.Initial vortiity !0, grid points zi and domain.Construt initial grid, vortiity values, shape fatoroeffiients.Set t = ti and time step � = �i=R.Do while t < tf:Compute new time step � = min(R�;�f ; tf � t).Compute new order k = min(k; j).Evaluate quadrature weights wj by method of Figure 4.Apply fast multipole method with smoothing to getui =PNj=1KÆ(zi � zj)wj!j for 1 � i � NEstimate error, write output, store data and plot results.Calulate VSVO Adams oeffiients.Update veloity differenes.Advane vorties by one order-k Adams step of size �zi = zi +�(a1ui + differenes) for 1 � i � NEnd whileFigure 6: Outline of a free-Lagrangian vortex method with quadrature, fastsummation and Adams time-stepping.
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a point zi randomly in the ith grid ell. Of the remaining M = N � n2vorties, put mi = � M j!(zi; 0)jPi j!(zi; 0)j�or mi+1 random vorties loated in the ith ell of the n�n grid. Thus theremaining N � n2 vorties are distributed in regions where the vortiity islarge, providing some degree of adaptivity despite their randomness. Notethat the vortiity is onserved along partile paths, so the partiles tend tostay where ! is large.We generated N = 500; 1000; 2000; : : : ; 64000 vorties in suh an adap-tive random grid with n2 � N=10 and evaluated the veloity at eah of thevorties, using ore funtions and quadratures of orders m = q = 2; 4; 6; 8.The number of orret bitsBl = max�0;� log2 �ku� uh;Æklkukl ��in the omputed veloity uh;Æ in L1 and L1 norms, the CPU times T (inseonds on a Spar-2 workstation) and other statistis are reported in Table2. The veloity evaluation produes error O(� + N�k=2) with k=2 = 0:67,1.60, 2.57 and 3.55 in O(N b log �) CPU time with b = 1:33, 1.20, 1.14 and1.11 and a onstant of proportionality depending very weakly on the orderq. Note that when N doubles, the average ell size h dereases by a fatorp2, so we expet to gain k=2 bits per line in eah table until O(�) is reahed.For �rst-order methods, the O(h1:33) errors dominate so the O(�) limiton auray never appears. For higher-order methods, we get higher-orderonvergene in the region where the smoothed kernel is resolved but the O(�)limit has not appeared. After the limit is reahed, onvergene ontinuesslowly.5.2 Long-time aurayWe also tested the long-time auray of the method on several Perlmantest ases, running for 0 � t � 20, a �nal time at whih the fastest-movingpartiles of uid (near the origin) have ompleted 1.6 revolutions while theslowest have ompleted only 0.2. This strong shear is usually onsidereda severe test for a vortex method. We started with an almost uniformlydistributed adaptive random grid with n2 � 0:8N , and used ore funtions,quadratures and Adams methods of orders m = q = s = 2, 4 and 6, yieldingadaptive vortex methods of orders k = 1:33, 3.20 and 5.14. We tested eahmethod on a Perlman path of minimal smoothness, with P = q + 1 = 3,5 and 7. In partiular, the errors at di�erent orders are unrelated. Table 5shows the other numerial parameters. For omparison, Tables 3 and 4 givethe parameters used in the standard and triangulated vortex methods, forthe test ases plotted in Figures 1 and 2.23



m = q = 2, p = 4, d = 1, k = 1:33N h Æ B1 B1 T500 0.497 0.631 1.95 1.42 4.831000 0.328 0.479 2.48 2.03 13.82000 0.205 0.351 3.28 2.79 43.64000 0.142 0.275 3.91 3.41 142.78000 0.089 0.203 4.74 4.26 336.216000 0.064 0.163 5.38 4.88 115532000 0.039 0.118 6.29 5.79 205164000 0.028 0.095 6.93 6.41 6493
m = q = 4, p = 6, d = 2, k = 3:20N h Æ B1 B1 T500 1.300 1.481 1.02 0.52 6.871000 0.807 1.011 2.26 1.79 22.22000 0.443 0.625 4.49 3.71 754000 0.300 0.457 6.00 5.21 2098000 0.180 0.305 8.16 7.22 63216000 0.128 0.232 9.71 9.00 148532000 0.078 0.156 11.9 10.3 449864000 0.057 0.121 13.3 12.0 8111m = q = 6, p = 8, d = 3, k = 5:14N h Æ B1 B1 T500 1.760 1.948 0.0 0.0 8.661000 1.170 1.374 0.31 0.0 26.92000 0.721 0.905 4.49 2.67 90.64000 0.386 0.529 8.21 5.51 2818000 0.263 0.381 10.2 7.18 77416000 0.158 0.245 12.0 6.74 157432000 0.114 0.185 14.0 9.30 498864000 0.068 0.118 15.0 10.1 7634
m = q = 8, p = 10, d = 4, k = 7:11N h Æ B1 B1 T500 1.810 2.033 1.34 0.48 9.221000 1.690 1.912 0.0 0.0 34.92000 1.100 1.304 3.34 2.23 1114000 0.677 0.848 7.79 6.29 3588000 0.362 0.486 10.4 6.89 96016000 0.247 0.346 11.9 8.00 292332000 0.146 0.217 12.9 8.15 582864000 0.106 0.162 15.1 9.99 14650Table 2: Veloity evaluation errors in !8 with N adaptive random points.Corret bits B1 and B1 in L1 and L1, CPU times T , ell size h and oreradius Æ. Here q is the quadrature order and m is the moment order.
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The orret bits in L1 in the veloity and vortiity are plotted in Figure 7.The plots are individually saled and tiked in suh a way that the numberof orret bits should inrease by half a tik mark at eah line. These resultslearly on�rm the long-time high-order auray of the method; they donot show the loss of auray observed in Lagrangian vortex methods (forexample in Figure 1). The errors are highly osillatory on a small sale,beause a new quadrature rule is built from srath at eah step.N h Æ �f �i T B1(u7) B1(!7) B1(u3) B1(!3)64 0.27 1.05 0.512 0.0512 0.5 3.77 1.00 3.85 1.37256 0.14 0.74 0.256 0.0128 1.4 4.42 1.40 4.86 2.891024 0.07 0.52 0.128 0.0032 12.0 7.52 4.10 6.35 5.194096 0.03 0.37 0.064 0.0008 85.6 8.29 6.49 9.02 8.17Table 3: Number of vorties N , mesh size h at t = 0, ore radius Æ, timesteps �f and �i and CPU time T per step in seonds for the standardvortex method. Here B1(uP ) and B1(!P ) are measured at t = 20.N �f T B1(u) B1(!)70 0.625 0.86 4.76 4.61225 0.41666 5.1 5.97 6.27745 0.3125 23.9 8.48 9.482729 0.20833 120.2 10.15 11.70Table 4: Number of verties N , time step �f and CPU time T per stepfor the triangulated vortex method. Here B1(u) and B1(!) are measured att = 20.5.3 Interating vortex pathesAs a more omplex example, we used the order-1.33 method with parametersgiven in Table 6 to ompute two interating smooth pathes of vortiity.Thus the initial vortiity is given by!(z; 0) = QXj=1
j(1� jz � zj j2)Pwhere Q = 2, P = 3 and zj and 
j are given by z1 = (0; 1:05), z2 =(0;�1:05), 
1 = 2 and 
2 = 1. Figure 8 shows the �nal result at t = 30with N = 1000, 2000 and 4000; the large-sale features of the results arelearly onverged.We also arried out a similar omputation with 20 randomly loatedand saled pathes (Q = 20, P = 5) with random strengths 
j, using the25



m = q = 2, p = 4, d = 1, k = 1:33N n �f �i h Æ T B1(u) B1(!)250 14 1.12 0.056 0.840 0.807 0.58 2.94 2.85500 20 0.80 0.040 0.516 0.599 3.29 3.75 4.211000 28 0.56 0.028 0.345 0.441 6.63 4.78 6.022000 40 0.40 0.020 0.198 0.321 20.9 5.73 7.144000 56 0.28 0.014 0.136 0.231 35.4 6.64 8.418000 80 0.20 0.007 0.076 0.173 112 7.26 9.84m = q = 4, p = 6, d = 2, k = 3:20N n �f �i h Æ T B1(u) B1(!)250 14 0.28 0.01024 1.97 1.33 0.66 0.75 0.68500 20 0.20 0.00512 1.02 0.93 4.18 2.93 4.201000 28 0.14 0.00256 0.67 0.64 12.9 6.16 6.002000 40 0.10 0.00128 0.40 0.44 27.1 7.97 7.664000 56 0.07 0.00064 0.27 0.29 84.1 8.56 9.018000 80 0.05 0.00032 0.15 0.21 139 10.1 10.2m = q = 6, p = 8, d = 3, k = 5:14N n �f �i h Æ T B1(u) B1(!)250 14 0.14 0.01024 2.00 3.07 1.08 0.0 0.0500 20 0.10 0.00512 1.97 1.82 6.96 0.46 0.211000 28 0.07 0.00128 1.06 1.24 19.9 2.94 3.872000 40 0.05 0.00032 0.68 0.83 59.9 6.64 8.394000 56 0.035 0.00008 0.41 0.55 197 9.06 9.278000 80 0.025 0.00002 0.26 0.38 365 10.6 12.0Table 5: Number of vorties N (with n2 in regular grid), time steps �fand �i, mesh size h and ore radius Æ at t = 0 and CPU time T per stepfor adaptive methods of orders 1.33 (top), 3.20 (enter) and 5.14 (bottom).Here B1(u) and B1(!) are measured at t = 20.
26



   0.0    5.0   10.0   15.0   20.0
                   Time                           

   1.3 
   2.6 
   3.9 
   5.2 
   6.5 
   7.8 
   9.1 
  10.4 
  11.7 
  13.0 

   
   

--
Lo

g2
 (

 R
el

at
iv

e 
L1

 e
rr

or
 in

 u
 )

   
   

   
  

   0.0    5.0   10.0   15.0   20.0
                   Time                           

   1.3 
   2.6 
   3.9 
   5.2 
   6.5 
   7.8 
   9.1 

  10.4 
  11.7 
  13.0 

   
 -

-L
og

2 
( 

R
el

at
iv

e 
L1

 e
rr

or
 in

 o
m

eg
a 

) 
   

   
  

   0.0    5.0   10.0   15.0   20.0
                   Time                           

   0.0 

   3.2 

   6.4 

   9.6 

  12.8 

   
   

--
Lo

g2
 (

 R
el

at
iv

e 
L1

 e
rr

or
 in

 u
 )

   
   

   
  

   0.0    5.0   10.0   15.0   20.0
                   Time                           

   0.0 

   3.2 

   6.4 

   9.6 

  12.8 
   

 -
-L

og
2 

( 
R

el
at

iv
e 

L1
 e

rr
or

 in
 o

m
eg

a 
) 

   
   

  

   0.0    5.0   10.0   15.0   20.0
                   Time                           

   5.1 

  10.2 

  15.3 

   
   

--
Lo

g2
 (

 R
el

at
iv

e 
L1

 e
rr

or
 in

 u
 )

   
   

   
  

   0.0    5.0   10.0   15.0   20.0
                   Time                           

   5.1 

  10.2 

  15.3 

   
 -

-L
og

2 
( 

R
el

at
iv

e 
L1

 e
rr

or
 in

 o
m

eg
a 

) 
   

   
  

Figure 7: Corret bits B1(u) and B1(!) in veloity u (left olumn) andvortiity ! (right olumn), for adaptive vortex methods of orders 1.33 (toprow), 3.20 (seond row) and 5.14 (last row). The numerial parameters aregiven in Table 5. 27



order-3.20 method with �1 = 0:10 and Æ = 1:2h4=5. Some sample vortiityontours are shown in Figure 9. The L1 norm of ! is onserved exatly byour method, even for this fairly ompliated ow. The L1 norm is triviallyonserved sine the vortiity values are arried by the ow.N h Æ �f �i T kuk1 k!k1250 1.30 1.19 0.20 0.020 0.59 0.1527 0.2181500 0.86 0.90 0.14 0.014 2.92 0.1835 0.20481000 0.64 0.74 0.10 0.010 9.89 0.1724 0.23022000 0.43 0.57 0.07 0.007 36.25 0.1834 0.21084000 0.32 0.47 0.05 0.005 68.72 0.1808 0.2315Table 6: Number of vorties N , mesh size h at t = 0, ore radius Æ, timesteps �f and �i and CPU time T per step for the adaptive method of order1.33. Here kuk1 and k!k1 are the L1 norms of the veloity and vortiity,measured at time t = 30.Referenes[1℄ C. Anderson and C. Greengard. On vortex methods. SIAM J. Math.Anal., 22:413{440, 1985.[2℄ C. R. Anderson. A method of loal orretions for omputing the velo-ity �eld due to a olletion of vortex blobs. J. Comput. Phys., 62:111{127, 1986.[3℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. du Croz,A. Greenbaum, S. Hammarling, A. MKenney, S. Ostrouhov, andD. Sorensen. LAPACK Users' Guide. Soiety for Industrial and AppliedMathematis, Philadelphia, 1992.[4℄ J. T. Beale. On the auray of vortex methods at large times. InB. Engquist, M. Luskin, and A. Majda, editors, Computational uiddynamis and reating gas ow, volume 12 of IMA volumes in mathe-matis and appliations. Springer-Verlag, 1988.[5℄ J. T. Beale and A. Majda. High order aurate vortex methods withexpliit veloity kernels. J. Comput. Phys., 58:188{208, 1985.[6℄ J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipolemethod for partile simulations. SIAM J. Si. Stat. Comput., 9:669{686, 1988.[7℄ T. Chaon Rebollo and T. Y. Hou. A Lagrangian �nite element methodfor the 2-D Euler equations. Comm. Pure Appl. Math., XLIII:735{767,1990. 28



Figure 8: Vortiity ontours for two interating Perlman pathes with P = 3,omputed with the adaptive method of order 1.33 and numerial parametersgiven in Table 6. The �rst four plots show the evolution at t = 0, 10, 20and 30 with N = 4000 vorties, the last row shows the �nal frame t = 30,omputed with N = 1000 (left) and N = 2000(right).29



Figure 9: Vortiity ontours for 20 interating Perlman pathes with P = 5,omputed with the adaptive method of order 3.20. Results are shown att = 0, 4, 8, 12, 16 and 20 with N = 10000 vorties.30
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