
Fast Adaptive 2D Vortex MethodsJohn Strain �Department of Mathemati
sUniversity of CaliforniaBerkeley, California 9472020 Mar
h 1996Abstra
tWe present a new approa
h to vortex methods for the 2D Eulerequations. We obtain long-time high-order a

ura
y at almost opti-mal 
ost by using three tools: fast adaptive quadrature rules, a free-Lagrangian formulation, and a nonstandard error analysis. Our erroranalysis halves the di�erentiability required of the 
ow, suggests an ef-�
ient new balan
e of smoothing parameters, and 
ombines naturallywith fast summation s
hemes. Numeri
al experiments with our meth-ods 
on�rm our theoreti
al predi
tions and display ex
ellent long-timea

ura
y.1 Introdu
tionVortex methods solve the 2D in
ompressible Euler equations in the vorti
ityformulation by dis
retizing the Biot-Savart law with the aid of the 
owmap. They have been extensively studied, widely generalized and appliedto 
omplex high-Reynolds-number 
ows: See [11℄ for a survey.Vortex methods involve several 
omponents: velo
ity evaluation, vortexmotion, di�usion, boundary 
onditions and regridding. In this paper, weimprove the speed, a

ura
y and robustness of the velo
ity evaluation. Weeliminate the 
ow map, improve the quadrature used for the Biot-Savart law,and analyze the error in a nonstandard way, requiring less di�erentiabilityof the 
ow and obtaining eÆ
ient new parameter balan
es. We employstandard te
hniques for the vortex motion and 
onsider invis
id free-spa
e
ow to eliminate di�usion and boundary 
onditions. Our approa
h 
ombinesnaturally with regridding and fast summation methods.In Se
tion 2, we review Lagrangian vortex methods. These move thenodes of a �xed quadrature rule with the 
omputed 
uid velo
ity, preserving�Resear
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tDE-AC03-76SF00098. 1



the weights of the rule by in
ompressibility. This pro
edure loses a

ura
ywhen the 
ow be
omes disorganized [5, 17℄, motivating many regriddingte
hniques [16℄. Even before the 
ow be
omes disorganized, however, ob-taining high-order a

ura
y with a �xed quadrature rule requires smoothingof the singular Biot-Savart kernel. Smoothing gives high-order a

ura
y forshort times but slows down fast velo
ity evaluation te
hniques and halvesthe order of a

ura
y relative to the di�erentiability of the 
ow.In Se
tion 3, we review two free-Lagrangian vortex methods, the tri-angulated vortex method of [19℄ and the quadrature-based method of [22℄.Triangulated vortex methods are robust, pra
ti
al and eÆ
ient but limitedto se
ond-order a

ura
y. Quadrature-based methods 
ompute adaptivequadratures tailored to the Biot-Savart kernel at ea
h time step, yieldinglong-time high-order a

ura
y at asymptoti
ally optimal 
ost.The present paper develops a free-Lagrangian method whi
h 
ouples ker-nel smoothing with adaptive quadrature rules not tailored to the Biot-Savartkernel, produ
ing long-time high-order a

ura
y. The asymptoti
 slowdownprodu
ed by kernel smoothing is almost eliminated by a 
areful 
hoi
e ofsmoothing fun
tions and parameters, based on a new error analysis of thevelo
ity evaluation. This analysis requires about half as many derivatives ofthe solution as the standard approa
h.The stru
ture of our method is standard: At ea
h time step, the smoothedvelo
ity is evaluated on
e and the vorti
es are moved with an expli
it multi-step method. The velo
ity evaluation is nonstandard: First, a data stru
turegroups the N vorti
es into 
ells 
onvenient for integration. Then a globalorder-q quadrature rule is built. Finally, the fast multipole method is usedwith this rule to evaluate the smoothed velo
ity �eld. The details are pre-sented in Se
tion 4.Se
tion 5 presents numeri
al experiments. The error is measured forstandard test problems and our theoreti
al predi
tions are fully veri�ed.Then more 
omplex 
ows are 
omputed.2 Lagrangian vortex methodsThis se
tion is an overview of 2D vortex methods. First, we des
ribe howthe 2D Euler equations redu
e to an in�nite system of ordinary di�erentialequations for the 
ow map. This formulation leads naturally to vortexmethods. We 
ontrast the Lagrangian and free-Lagrangian viewpoints, thenreview the 
onvergen
e theory of Lagrangian methods.Se
ond, we explore avenues for improvement. We explain the 
on
i
tbetween smoothing for a

ura
y and fast summation for speed, and demon-strate the Perlman e�e
t in whi
h the derivatives of the 
ow map interferewith the quadrature error bound.
2



2.1 Equations of motionThe 2D in
ompressible Euler equations_u+ uux + vuy + px=� = 0_v + uvx + vvy + py=� = 0ux + vy = 0;involve the 
uid velo
ity u(z; t) = (u; v), where z = (x; y), the pressurep(z; t) and the 
onstant density �. Taking the 2D 
url eliminates the pres-sure, giving the vorti
ity equation_! + u!x + v!y = 0for the vorti
ity ! = vx � uy. Let z 7! �(z; t) be the 
ow map, de�ned by_�(z; t) = u(�(z; t); t) �(z; 0) = z: (1)Then vorti
ity is 
onserved along parti
le paths:!(�(z; t); t) = !(z; 0); (2)We 
lose Eqns. (1) and (2) for � and ! by solving the ellipti
 systemvx � uy = !;ux + vy = 0for the velo
ity (u; v). When ! has 
ompa
t support, the solution is givenby the Biot-Savart lawu(z; t) = Z K(z � z0)!(z0)dx0dy0 (3)where K is the Biot-Savart kernelK(z) = z?2�r2 z? = (�y; x); r2 = x2 + y2: (4)Thus we have a 
losed system for � and !, the \free-Lagrangian" equationsof motion 
onsisting of the vorti
ity transport law (2) 
oupled with_�(z; t) = Z K(�(z; t)� z0)!(z0; t)dx0dy0: (5)The \Lagrangian" equation of motion is derived by 
hanging variablesz0  �(z0; t). The Ja
obian is unity be
ause the 
ow is in
ompressible, sothis gives a 
losed system for � alone:_�(z; t) = Z K(�(z; t)� �(z0; t))!(z0; 0)dx0dy0: (6)This requires values of ! only at time t = 0, and is the usual starting pointfor vortex methods. 3



2.2 Lagrangian vortex methodsLagrangian vortex methods now dis
retize Eqn. (6), tra
king N points zj(t) ��(zj ; t) moving with the 
uid velo
ity, starting at t = 0 from the nodes zjof a quadrature formula with weights wj. Suppose we use a quadratureformula Z g(z)dxdy = NXj=1wjg(zj) +EN (g)with a qth-order error boundjEN (g)j � Chqkgkq (7)for g 2 Cq. Here h is the mesh size of the rule and the Cq norm is de�nedby kgk0 = maxz jg(z)j; kgkq = kgk0 + X�+�=q k��x ��y gk0:Applying this quadrature to the Lagrangian equation of motion (6) gives asystem of N ordinary di�erential equations:_zi(t) =Xj 6=iwjK(zi(t)� zj(t))!(zj ; 0):The quadrature error bound (7) is in�nite sin
e K is unbounded, so werepla
e K by the smoothed kernelKÆ(z) = 'Æ �K(z)where � denotes 
onvolution,'Æ(z) = Æ�2'(r=Æ)and ' is an appropriate radial \
ore fun
tion." Almost all modern vortexmethods use smoothing [8℄, often with ' and the \
ore radius" Æ 
hosen togive high-order 
onvergen
e as the mesh size h vanishes [13℄. This 
an beguaranteed by the following 
onditions on ' and !:Z ' = 1;Z x�y�' = 0; 1 � �+ � � m� 1; (8)Z jzjmj'j < 1' 2 CL and '(z) = 0 for jzj � 1; (9)! 2 CM has 
ompa
t support. (10)High-order a

ura
y requires smooth solutions, so 
ondition (10) on ! isnatural. Compa
t support in 
ondition (9) 
an be weakened, but it is im-portant for eÆ
ien
y. Given these 
onditions, a typi
al 
onvergen
e theoremfollows. 4



Theorem 1 ([1℄) Assume 
onditions (8) through (10) are satis�ed withL � 3, M � max(L + 1;m + 2) and m � 4. Let Æ = 
ha where 0 < a < 1.Suppose L is large enough to satisfyL > (m� 1)a1� a :Then the 
omputed 
ow map �h;Æ satis�esk�� �h;Ækh � O (hma)as h and Æ go to zero.Here the dis
rete 2-norm is given bykgkh =  h2Xi jg(zi)j2!1=2where zi are the initial vortex positions, and similar bounds hold for the
omputed velo
ity and vorti
ity.This theorem allows a 
lose to 1 and Æ 
lose to O(h) only for very smooth
ows, where L and M are large. For general 
ows, Hald [12℄ and Nordmark[16℄ show that Æ = O(ph) is a good 
hoi
e. Then 2m derivatives of !guarantee only O(hm) a

ura
y. Later, we redu
e this to m+ 1 derivativesat the 
ost of rede�ning 
onvergen
e.2.3 Cost and a

ura
yConvergen
e theory must be augmented by pra
ti
al 
onsiderations of 
ostand a

ura
y. Sin
e there are N vorti
es and ea
h velo
ity value is a sumuh;Æ(zi) = NXj=1KÆ(zi � zj)wj!(zj ; 0);a dire
t velo
ity evaluation 
osts O(N2) work. This is prohibitively expen-sive if the 
ow is 
omplex, sin
e many vorti
es are required. The expensehas been redu
ed by fast summation s
hemes su
h as the method of lo
al
orre
tions [2℄, the fast multipole method [6℄ and Ewald summation [20℄.These s
hemes evaluate unsmoothed sums likeu(zi) = NXj=1K(zi � zj)wjto a

ura
y � in O(N log �) work, by separating lo
al from global intera
tionsand applying separation of variables globally. They run mu
h faster thandire
t evaluation when N is large.However, this does not 
ompletely resolve the diÆ
ulty. Fast methods
annot evaluate the smoothed intera
tion KÆ(zi � zj) between vorti
es zi5



and zj 
loser than Æ, be
ause KÆ 6= K. Asymptoti
ally, there are O(NÆ2)vorti
es in a 
ir
le of radius Æ, so if Æ = O(ph) there are a total ofO(N2Æ2) = O(N2h) = O(N3=2)lo
al intera
tions to be evaluated dire
tly. Thus fast summation s
hemesslow down from O(N) to O(N3=2) when K is smoothed with Æ = O(ph).Hen
e there is a 
on
i
t between smoothing and fast summation. If wetake Æ 
lose to O(h) to speed up fast summation, we need many derivativesof the 
ow for a modest order of 
onvergen
e. Larger Æ is more a

uratefor rougher 
ows, but hampers fast summation s
hemes. In Se
tion 4 weresolve this 
on
i
t by allowing another O(�) in the error bound.2.4 The Perlman e�e
tA 
ompletely di�erent obsta
le to a

urate 
al
ulations with vortex methodsis the \Perlman e�e
t." Sin
e the error bound for numeri
al quadrature inEqn. (7) depends on order-q derivatives of the integrand, hereg(z0) = KÆ(�(z; t) � �(z0; t))!(z0; 0);the higher derivatives of the 
ow map will a�e
t the error bound. The 
owmap moves 
uid parti
les far apart and therefore develops large derivativeswhen the 
ow be
omes disorganized. Thus vortex methods lose high-ordera

ura
y in long-time 
al
ulations [5, 17℄. For example, Figure 1 plots thenumber of 
orre
t bits in the 
omputed velo
ity and vorti
ity of a stan-dard test 
ase for a fourth-order vortex method. Fourth-order a

ura
y|eviden
ed by the gain of one ti
k mark per line in the �gure|is attainedonly during a very short initial time period. Figure 1 also plots the errorswhen the C6 vorti
ity is repla
ed by a C2 vorti
ity. The order of a

ura
yof the velo
ity is halved, indi
ating that the di�erentiability requirement isgenuine. The vorti
ity errors, however, 
ontinue to 
onverge with fourth-order a

ura
y during the usual short initial time period. The numeri
alparameters used are summarized in Table 3 in Se
tion 5.2.The Perlman e�e
t has motivated mu
h resear
h on regridding, the ideabeing to avoid large derivatives of the 
ow map by restarting before the
ow be
omes disorganized [16℄. Similarly, Beale has developed an iterativereweighting s
heme to over
ome the Perlman e�e
t [4℄. The Perlman e�e
talso motivated the free-Lagrangian vortex methods we dis
uss next.3 Free-Lagrangian methodsFree-Lagrangian methods over
ome the Perlman e�e
t by removing the 
owmap from the Biot-Savart integral. Thus_� = Z K(�� z0)!(z0; t)dx0dy0;6
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Figure 1: Corre
t bits for the vortex method with parameters from Table 3in Se
tion 5.2. The top row plots errors when ! is C6, the se
ond when !is C2.repla
es the Lagrangian equation of motion (6). Sin
e ! values are knownonly at the moving points zj(t), ea
h velo
ity evaluation requires adaptivequadratures with new weights adapted to the 
urrent vortex positions. Twosu
h methods are dis
ussed below.3.1 Triangulated methodsTriangulated vortex methods evolve points zj(t) by_zj(t) = uh(zj ; t) = Z K(zj(t)� z0)!h(z0; t)dx0dy0; (11)where !h is a pie
ewise linear interpolant to the vorti
ity values!h(zj(t); t) = !h(zj ; 0) = !(zj ; 0)7



and the nodes zj(t) form the verti
es of a triangulation of R2.Given any pie
ewise linear fun
tion !h on a triangulation of R2, one 
anevaluate uh exa
tly, with results depending strongly on the triangulation. In[7℄, this observation was 
ombined with a �xed triangulation 
arried by the
ow. While 
onvergent, the resulting s
heme 
osts O(N2) work per time stepwith a large 
onstant and loses a

ura
y qui
kly be
ause the triangulationdegenerates.We developed pra
ti
al triangulated vortex methods in [19℄: a fast sum-mation s
heme brought the 
ost down to O(N4=3) and a fast Delaunay tri-angulation s
heme gave ex
ellent long-time a

ura
y. An adaptive initialtriangulation te
hnique made the method robust enough to 
ompute evendis
ontinuous pat
hes of vorti
ity, a diÆ
ult task for a method of this gener-ality. Figure 2 shows results for the standard test 
ase used in Figure 1, withnumeri
al parameters given in Table 4 in Se
tion 4.2. The error displays noPerlman e�e
t; se
ond-order a

ura
y (one ti
k per line) is maintained uni-formly in time. The triangulated approa
h is now being applied to 
ows inthree dimensions with vis
osity and boundaries [10, 15℄. However, it seemsdiÆ
ult to make a triangulated vortex method with higher than se
ond-ordera

ura
y. This motivated the next approa
h we dis
uss.3.2 Quadrature-based methodsWe developed higher-order free-Lagrangian methods in [22℄. The basi
 ideais to 
onstru
t time-dependent quadrature weights wij(t) whi
h give high-order a

ura
y in the Biot-Savart law:u(zi; t) = Z K(zi � z0)!(z0; t)dx0dy0� NXj=1wij(t)K(zi � zj)!(zj ; t):For example, high-order produ
t integration weights [9℄ make smoothing un-ne
essary, but the i-dependen
e of wij(t) pre
ludes fast summation methods.Thus we 
onstru
t wij with the \lo
ally-
orre
ted property" thatwij = wj for almost all jfor ea
h point of evaluation zi and some \smooth" quadrature rule withpoints zj and weights wj . Su
h rules 
an be built and the velo
ity evaluatedin O(N log2N) work. The pri
e for eÆ
ien
y, however, is a rede�nition of
onvergen
e. The error bound for these quadratures is O(� + hq), where �is an arbitrary user-spe
i�ed error toleran
e and the 
onstant in the O(N)
ost depends weakly on �. Thus one gets order-q 
onvergen
e only downto O(�). This is suÆ
ient for three reasons: 
omputer arithmeti
 operateswith �nite pre
ision, pra
ti
al 
omputations 
an a�ord rather low a

ura
yfor the most part, and fast summation methods introdu
e an O(�) error as8
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Figure 2: Corre
t bits for the triangulated vortex method with parametersfrom Table 4 in Se
tion 5.2.well. High-order a

ura
y 
an be maintained for long times, though theserules are somewhat expensive to implement.4 A new approa
hWe now present a new high-order fast adaptive vortex method whi
h aimsto avoid obsta
les both to speed and to a

ura
y. The key ingredients areÆ A free-Lagrangian formulation to avoid the Perlman e�e
t.Æ Adaptive quadrature rules with high-order a

ura
y on smooth fun
-tions, but not tailored to the Biot-Savart kernel.Æ New error bounds requiring fewer derivatives of the vorti
ity and lead-ing to an eÆ
ient new smoothing strategy.9



These ingredients 
ombine to give a method with almost optimal eÆ
ien
yand long-time high-order a

ura
y without ex
essive smoothness require-ments on the solution. The method is 
ow
harted in Figure 6.4.1 OverviewWe begin with quadrature. Given N arbitrary nodes zj 2 R2, we 
onstru
tthe weights of a quadrature rule having order-q a

ura
y on Cq fun
tionsif the nodes are well distributed. Note that without some restri
tion onthe asymptoti
 distribution of nodes, a guarantee of order-q a

ura
y isunavailable. Thus we 
onstru
t rules with an error bound 
omposed oftwo fa
tors. The �rst depends only on the point lo
ations and is easily
omputable a posteriori, as a monitor for bad point distributions. These
ond depends only on the mesh size and the Cq norm of the integrand.Our quadratures are 
omposite: After partitioning the nodes into re
t-angular 
ells in Se
tion 4.2, we 
onstru
t order-q rules on ea
h 
ell in Se
tion4.3. The union of these rules is globally a

urate of order q: We quote anerror bound from [21℄ in Se
tion 4.4.After quadrature, we analyze smoothing. Se
tion 4.5 presents a standardsmoothing error bound. In Se
tion 4.6, we 
onstru
t a family of arbitrary-order 
ore fun
tions and shape fa
tors.Se
tion 4.7 presents our multistep time stepping pro
edure and the start-ing value problem. Finally, Se
tion 4.8 presents a nonstandard error analysisof velo
ity evaluation whi
h requires fewer derivatives of the vorti
ity andleads to an eÆ
ient new balan
e between quadrature and smoothing.4.2 Data stru
turesLet B = [a; b℄ � [
; d℄ be a re
tangle 
ontaining the nodes zj. Compositequadrature partitions B into a union of re
tangular 
ells Bi, ea
h 
ontainingenough nodes to 
onstru
t an order-q quadrature. There are m := q(q+1)=2monomials x�y� of degree � + � � q � 1, so we will need at least p � mnodes per 
ell. Thus we partition B into 
ells, ea
h 
ontaining p or p + 1nodes. (Some 
ells must have p+ 1 if p does not divide N exa
tly.) This is
onveniently done via the following tree stru
ture.Let B = B1 be the level-0 root of the tree. Divide B1 in half along itslongest edge, with the dividing plane lo
ated so that ea
h half of B1 
ontainseither bN=2
 or bN=2
 + 1 nodes. This gives the level-1 
ells B2 and B3.Re
ursively, split B2 and B3 along their longest edges to get B4 throughB7, ea
h 
ontaining bN=4
 or bN=4
+ 1 nodes zj. Repeat this pro
edure Ltimes to get M = 2L 
ells Bi on the �nest level L, numbered from i = Mto i = 2M � 1, ea
h 
ontaining p = bN=M
 or p+1 nodes zj . The union ofall the 
ells on any given level is B. The tree stru
ture is stored by listingthe boundaries of ea
h 
ell Bi = [ai; bi℄ � [
i; di℄ from i = 1 to i = 2M � 1,a total of 4 � 2M numbers, and indexing the nodes into a list so that thenodes zj 2 Bi are given by j = j(s) for s = b(i); : : : ; e(i) and three integer10



fun
tions j, b and e. This 
an be done in O(N logN), but the simplestmethod requires sorting ea
h 
ell before ea
h subdivision, giving a total 
ostO(N log2N) for the tree 
onstru
tion with an O(N logN) sorting methodsu
h as Heapsort. Figure 3 shows an example of this tree stru
ture.

Figure 3: Levels 1, 3, 5 and 7 in the 
ell data stru
ture with N = 1000nonuniformly distributed points. Here ea
h level-7 
ell 
ontains either 4 or5 points, suitable for a quadrature rule of order q = 2 sin
e q(q + 1)=2 = 3.4.3 Quadrature rulesWe now 
onstru
t order-q quadrature rules on B with N given quadraturenodes zj . Assume N � m := q(q + 1)=2, and 
hoose an integer L � 0with p := bN=2L
 � m. The data stru
ture just 
onstru
ted divides B intoM = 2L re
tangular 
ells Bi, ea
h 
ontaining either p or p + 1 nodes zj .11



We 
onstru
t lo
al weights W ij for nodes zj 2 Bi by solving the followingsystem of m linear equations in at least p unknowns:Xzj2Bi P�(xj)P�(yj)W ij = ZBi P�(x)P�(y)dxdy= Æ�0Æ�0jBij; 0 � �+ � � q � 1:Here jBij = (bi � ai)(di � 
i) is the area of Bi andP�(x) = p�(t); x = xm + txh;where p�(t) are the usual Legendre polynomials on [�1; 1℄ and xm = (bi +ai)=2, xh = (bi � ai)=2, with similar expressions for the y variable. Sin
ep � m, this system of m equations in at least p unknowns generi
ally hassolutions. We 
ompute the solution W ij of least 2-norm, using a 
ompleteorthogonal fa
torization routine from LAPACK [3℄. The weights of the ruleW are then de�ned to be Wj = W ij where zj 2 Bi. The algorithm issummarized in Figure 4.Remark: In most vortex methods, the vorti
ity ! is known only at thevorti
es, so interpolation is needed to evaluate the vorti
ity elsewhere. Thetree stru
ture provides a natural interpolation te
hnique. Suppose vorti
eszj lie in a 
ell C and we want !(z) for z 2 C. We approximate !(z) by!(z) � Xzj2C 
j(z)!(zj);where the interpolation weights 
j(z) form the least 2-norm solution of theunderdetermined linear systemXzj2C 
j(z)P�(xj)P�(yj) = P�(x)P�(y); 0 � �+ � � q � 1:This gives an qth order interpolation formula on ea
h 
ell. The weightsare bounded if there are enough nodes zj in C. To 
ontour the 
omputedvorti
ity in Se
tion 5.3, we interpolated ! to a �ne equidistant grid, then
ontoured on the grid.4.4 Quadrature error boundsThe weights Wj now integrate all polynomials of degree less than q exa
tlyover all level-L 
ells Bi. This property implies order-q a

ura
y:Theorem 2 ([21℄) Let B = [Mi=1Bi where Bi = [ai; bi℄ � [
i; di℄. Supposethat W integrates x�y� exa
tly over ea
h Bi for 0 � � + � � q � 1. Thenfor any Cq fun
tion g on B, the quadrature errorE = ZB g(z)dxdy � NXj=1Wjg(zj)12



satis�es the bound jEj � 
 jBj hqq! kgkqwhere h = maximax(bi � ai; di � 
i) is the longest 
ell edge,
 = 1 + 1jBj NXj=1 jWj jand jBj = (b� a)(d� 
) is the area of B.In general, the 
ondition number 
 
annot be bounded a priori for arbi-trary points, but we 
an easily 
ompute it a posteriori, yielding an ex
ellentdiagnosti
 for the quality of the rule.Remark: By redu
ing ea
h 
ell 
ondition number 
i = 1+ 1jBijPzj2Bi jWjj,we 
an redu
e the global 
ondition number 
 =Pi 
i. In
reasing p redu
es
, sin
e the additional degrees of freedom 
an be applied to redu
ing the2-norm of W ij , but it is too expensive to in
rease p globally. Thus we redu
e
 adaptively: when 
i ex
eeds a toleran
e 
m, we merge Bi with its siblingin the tree stru
ture, obtaining a 
ell BI 
ontaining twi
e as many pointszj . We then re
ompute all weights Wj for whi
h zj 2 BI , redu
ing 
I atthe 
ost of a larger linear system and a larger 
ell size h.This adaptive te
hnique also treats the degenerate 
ases when no solutionexists on a 
ell Bi, be
ause the points zj are not in suÆ
iently generalposition. A solution is more likely to exist after su
h a 
ell is merged withits sibling,Remark: In pra
ti
e, the 
hoi
e of L may be diÆ
ult. L too smallin
reases h, while L too large pre
ludes order-q a

ura
y. Thus our 
odea

epts a user-spe
i�ed safety parameter S � 1 and 
hooses L so that ea
hlevel-L 
ell 
ontains at least bSq(q + 1)=2
 points. Values of S typi
allyrange from 1 to 2.4.5 Smoothing error boundsSin
e 
onvolution is asso
iative, repla
ing K by KÆ is equivalent to smooth-ing u with the 
ore fun
tion '. The following is a standard error bound forsu
h smoothing.Theorem 3 ([18℄) Assume the 
ompa
tly supported 
ore fun
tion ' satis-�es the moment 
onditions Z ' = 1;Z x�y�' = 0; 1 � �+ � � m� 1; (12)M = 1m! Z jzjmj'j < 1:13



Quadrature AlgorithmSet parameters:Degrees of freedom required per 
ell: m = q(q + 1)=2 .Top level in 
ell stru
ture: L = blog2(N=Sm)
.Points per 
ell: p = N=2L.Maximum 
ell 
ondition number: 
m.Constru
t 
ell data stru
ture:B1 = B, a re
tangle en
losing all the points zi.do l = 1; L� 1Divide level-l 
ells along longest edge with approximatelyhalf the points in ea
h sub
ell, yielding level-l+ 1 
ells.end doResult: 2L 
ells Bi on level L with p or p+ 1 points ea
h.Compute weights Wi one 
ell at a time.do i = 1; 2LCompute least-2-norm solution W ofPzj2Bi WjP�(xj)P�(yj) = Æ�0Æ�0jBij for 0 � �+ � � q � 1Compute 
ell 
ondition number
i = 1 + 1jBijPzj2Bi jWj j:if 
i � 
m thenMerge 
ell Bi with its sibling, flag 
ell and siblingdone, and re
ompute weights on double 
ell BI.end ifend doFigure 4: Order-q quadrature with N points zj in a re
tangle B.
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Suppose u belongs to the Sobolev spa
e Wm;p of fun
tions with m distribu-tional derivatives in Lp, where 1 � p � 1. Thenk'Æ � u� ukLp �MÆm X�+�=m k��x ��y ukLp :Proof: Suppose by density that u is smooth and Taylor expand:u(z0 � z) = u(z0) + m�1Xl=1 (�1)ll! X�+�=l ��x ��y u(z0)x�y�� Z 10 (t� 1)m�1(m� 1)! X�+�=m ��x��y u(z0 � tz)x�y�dt:Multiply by 'Æ(z), integrate and use the moment 
onditions (12):'Æ�u(z0)�u(z0) = � Z 10 (t� 1)m�1(m� 1)! X�+�=m Z ��x ��y u(z0�tz)x�y�'Æ(z)dxdydt:Take Lp norms and use the fa
t that the norm of an integral is less than orequal to the integral of the norm:k'Æ�u�ukLp � Z 10 jt� 1jm�1(m� 1)! X�+�=m Z k��x ��y u(��tz)kLp jx�y�j j'Æ(z)jdxdydt:Sin
e the Lp norm is translation invariant and jx�y�j � jzjm for �+� = m,we havek'Æ � u� ukLp � 1m! X�+�=m k��x ��y ukLp Z jzjmjÆ�2'(z=Æ)jdxdy� MÆm X�+�=m k��x ��y ukLp :4.6 Expli
it 
ore fun
tionsSuppose ' is a 
ontinuous radial fun
tion and write '(z) = '(r) wherer2 = jzj2 = x2 + y2. Then R x�y�'(z)dxdy = 0 if � or � is odd, so themoment 
onditions (12) be
omeZ 10 '(r)rdr = 1=2�; Z 10 '(r)r2j+1dr = 0; j = 1; : : : ; nwhere m = 2n+ 2 is even.Using s
aling, the expli
it formula (4) for K, polar 
oordinates and thestandard integralZ 2�0 1� a 
os �1� 2a 
os � + a2 d� = ( 2� if a2 < 10 if a2 > 115



gives the useful resultKÆ(z) = 'Æ �K(z) = f �rÆ�K(z)where the \shape fa
tor" f is given byf(r) = 2� Z r0 '(s)sds:Sin
e '(r) = 0 for r > 1, we have f(r) = 1 for r > 1. This fa
ilitates fastsummation methods.We now 
onstru
t a family of shape fa
tors f . A 
onvenient ansatzsuggested by [16℄ is f(r) = %p had%d + � � � + a0i+ 1 (13)where % = (1� r2)+ = max(0; 1 � r2) and'(r) = 12�rf 0(r)= �1� h(p+ d)ad%p+d�1 + � � �+ pa0%p�1i (14)for r2 < 1. For r2 > 1, '(r) vanishes. Su
h a 
ore fun
tion ' has p � 2
ontinuous and p� 1 bounded derivatives.The d+1 
oeÆ
ients ai must be 
hosen so that ' satis�es n+1 moment
onditions, so we 
annot expe
t a solution unless d � n. If d > n, the linearsystem of moment 
onditions is underdetermined, and we use a 
ompleteorthogonal fa
torization routine to �nd the solution with smallest 2-norm.A brief 
al
ulation shows that the moment 
onditions are equivalent toa linear system Aa = bwhere b0 = �1, bi = 0 for i > 0, a = (a0; a1; : : : ; ad) and the n+ 1 by d+ 1matrix A is determined by the re
urren
eAij = 1p+ i+ j Ai�1;j 0 < i � n; 0 � j � d;with initial values A0j = 1 for 0 � j � d. When p is large, ea
h row isalmost proportional to the previous one, so A is highly ill-
onditioned.Given the 
oeÆ
ients ai, we haveKÆ(z) = z?2�r2 h(1� r2=Æ2)p+(ad(1� r2=Æ2)d+ + � � �+ a0) + 1i ;where z? = (�y; x). Thus we expe
t roundo� problems when r � Æ. They
an be redu
ed by observing that sin
e f(0) = 0, there exists a polynomialg su
h that f(r) = r2g(%) = r2 hbp+d�1%p+d�1 + � � �+ b0i :16



In terms of g, we have a 
onvenient formulaKÆ(z) = z?2�max(r2; Æ2)g((1 � r2=Æ2)+):The 
oeÆ
ients bj are given bybp�1 = bp�2 = � � � = b1 = b0 = 1and bp = bp�1 + a0; : : : ; bp+d�1 = bp+d�2 + ad�1:Several well-known 
ore fun
tions are in
luded in this s
heme. For exam-ple, Nordmark's eighth-order 
ore fun
tion from [16℄ has p = 10, d = n = 3and m = 8: the 
orresponding shape fa
tor isf(r) = %10 h�560%3 + 1365%2 � 1092% + 286i + 1= r2 h560%10 � 805%11 + 287%10 + %9 + %8 + � � � + 1i :Figure 5 shows several shape fa
tors of this type, for various 
hoi
es ofparameters. The in
reasing os
illation as n in
reases follows naturally fromthe vanishing of more moments.The polynomial degree d makes little di�eren
e to the values of high-order kernels, but Table 1 shows that in
reasing d 
an noti
eably redu
e thesizes of the 
oeÆ
ients and thus the smoothing error bound. Indeed,M = 1m! Z jzjmj'(z)jdxdy� 1�m! Z 10 rm+1 h(p+ d)jadj%p+d�1 + � � �+ pja0j%p�1i dr� 14 �m! [jadj+ � � �+ ja0j℄ :n m p d M d M0 2 4 1 2:1� 2 5 1:6� 21 4 6 2 3:6� 3 6 1:5� 32 6 8 3 3:8� 4 7 8:9� 53 8 10 4 2:0� 5 8 3:2� 64 10 12 5 6:9� 7 9 8:5� 88 18 20 8 1:8� 13 12 5:0� 15Table 1: Error 
onstants M as a fun
tion of moment order m, smoothnessp and polynomial degree d for the pie
ewise polynomial shape fa
tors (13)shown in Figure 5.
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Figure 5: Pie
ewise polynomial shape fa
tors f with various parameters.
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4.7 Time stepping te
hniquesSin
e the Euler equations are not sti� and we are 
onstru
ting high-ordervortex methods, we dis
retize time with expli
it s-step Adams methods.These methods require an a

urate pro
edure for 
omputing the s startingvalues. Suppose we use an expli
it s-step Adams method with a �xed timestep �f . We begin with a tiny time step �i << �f and 1-step Adams,giving error O(�2i ). Sin
e our �nal method is order-s a

urate, we should
hoose �i = O(�s=2f ). We now in
rease the order of the Adams method by1 at ea
h step until order s is rea
hed, simultaneously in
reasing �i by afa
tor R � 2 until �f is rea
hed. The �nal non-equidistant step is adjustedto land pre
isely at t = �f .4.8 Balan
e of errorWe now balan
e the errors due to smoothing and quadrature. The error invelo
ity evaluation splits naturally into two partsE = ju(z) � NXj=1wjKÆ(z � zj)!(zj)j� jK � !(z)�KÆ � !(z)j+ jKÆ � !(z)� NXj=1wjKÆ(z � zj)!(zj)j= EÆ +EN;Æ:Here EÆ is the smoothing error, whi
h satis�esEÆ �MÆmkukmif ' satis�es moment 
onditions (12) of order m and u 2 Cm. The se
ondterm EN;Æ is the quadrature error, whi
h satis�esEN;Æ � 
 jBj hqq! kgkq; g(z0) = KÆ(z � z0)!(z0)for ea
h �xed z. By a standard inequality for the Cq norm of a produ
t oftwo fun
tions [14℄, we havekgkq � C(kKÆkqk!k0 + kKÆk0k!kq):We know that KÆ(z) = Z Æ�2'�z � z0Æ � z0?2�jz0j2 dx0dy0= Æ�1 Z '�zÆ � z0� z0?2�jz0j2dx0dy0;19



so there is some 
onstant C, depending only on ', su
h thatk��x ��yKÆk0 � CÆ�+��1if ' 2 C�+�. Thus if ' 2 Cq, we havekgkq � 1ÆC(Æ�qk!k0 + k!kq)so the quadrature error satis�esEN;Æ � C(Æ�1 �hÆ�q k!k0 + Æ�1hqk!kq):Hen
e the total error in one velo
ity evaluation satis�esEÆ +EN;Æ � C(Æmkukm + Æ�1 �hÆ �q k!k0 + Æ�1hqk!kq):where q is the order of quadrature and ' 2 Cq satis�es moment 
onditions(12) of order m.We now take advantage of the separation between k!k0 and k!kq toderive a nonstandard error bound. We 
hoose Æ as a fun
tion of h to makeÆ�1 �hÆ �q � �;where � is a user{spe
i�ed error toleran
e, �xed as h vanishes. This impliesÆ = O(��1=(q+1)hq=(q+1)) = O(ha); a = 1� 1q + 1 ;and our error bound be
omesE � C(�k!k0 + h mqq+1 kukm + h q2q+1 k!kq):The 
hoi
e m = q balan
es the two remaining terms, sin
e an elementary
al
ulation with the Biot-Savart integral shows that kukm � Ck!km if !has 
ompa
t support, and we �ndE � C h�k!k0 + hk(k!kq + kukq)i = O(�+ hk)where k = q2=(q + 1) = q � 1 + 1q+1 > q � 1. For quadrature of ordersq = 2; 4; 6; 8; 10, the exponent a in Æ = O(ha) is 0.66, 0.80, 0.86, 0.89, 0.91respe
tively, with order of a

ura
y k equal to 1.33, 3.20, 5.14, 7.11, 9.09rapidly approa
hing q � 1 from above as q in
reases. Thus Æ is very 
loseto O(h) for methods of high order k, with only q derivatives of ! required.This allows us to use fast summation methods with ex
ellent eÆ
ien
y:the fast multipole method with this Æ 
osts O(N b) with b = 1 + 1q+1 =1:33; 1:20; 1:14; 1:11; 1:09, very 
lose to 1.20



This error bound is nonstandard but extremely useful. It gives almostoptimal a

ura
y and eÆ
ien
y at the pri
e of a nonstandard de�nition of
onvergen
e. Su
h a de�nition 
osts us very little in this 
ontext, be
ausethe fast multipole method already involves error �.We 
ombine this order-k velo
ity evaluation with an Adams methodof order s = q > k, be
ause the �rst-order Euler equations imply thatthe velo
ity should have roughly the same order of smoothness in time asin spa
e, with the parti
le positions one order smoother by the 
ow mapequation (1). An order O(� + hk) error in the velo
ity u at ea
h time stepfortunately does not a

umulate in the multistep solution of_�(z; t) = u(�(z; t); t)so we expe
t to obtain a maximum norm error in � of orderO(�+�sf + hk)k!kqas h and �f vanish. This would imply similar estimates for the velo
ity andvorti
ity by standard arguments [13℄.5 Implementation and numeri
al resultsWe implemented a version of the fast adaptive vortex method in Fortran andstudied several numeri
al examples. First, we measured the a

ura
y andeÆ
ien
y of the velo
ity evaluation s
heme in isolation. Then we measuredthe error in long-time 
al
ulations with the full method. Finally, we studiedthe intera
tion of several smooth pat
hes of vorti
ity.5.1 Velo
ity evaluationWe studied the a

ura
y of the velo
ity evaluation of orders k = 1:33, 3.20,5.14 and 7.11 
orresponding to m = q = 2, 4, 6, and 8, using the well-knownPerlman test 
ase [17℄ !P (z) = �max(0; 1 � r2)�Pwhere P = 10. The vorti
ity !P is a CP�1 fun
tion on R2, while the
orresponding velo
ity �elds are CP :u(z) = (1� !P+1(z)) z?(2P + 2)r2 :This is a stationary radial solution of the Euler equations with shear and apopular test 
ase for vortex methods.We tested our method with the following random initial grid. Given Nand n with n2 � N , �rst distribute n2 vorti
es uniformly over a re
tangle Ren
losing the support of the vorti
ity: Divide R into a n�n grid and 
hoose21



Free-Lagrangian AlgorithmRead parameters from input file:Plotting, output, housekeeping.Time stepping: ti, tf, �i, �f, R, k.Quadrature order and safety fa
tor: q, S.Smoothing: p, d, n, Æ = Cha.Fast summation toleran
e: �.Initial vorti
ity !0, grid points zi and domain.Constru
t initial grid, vorti
ity values, shape fa
tor
oeffi
ients.Set t = ti and time step � = �i=R.Do while t < tf:Compute new time step � = min(R�;�f ; tf � t).Compute new order k = min(k; j).Evaluate quadrature weights wj by method of Figure 4.Apply fast multipole method with smoothing to getui =PNj=1KÆ(zi � zj)wj!j for 1 � i � NEstimate error, write output, store data and plot results.Cal
ulate VSVO Adams 
oeffi
ients.Update velo
ity differen
es.Advan
e vorti
es by one order-k Adams step of size �zi = zi +�(a1ui + differen
es) for 1 � i � NEnd whileFigure 6: Outline of a free-Lagrangian vortex method with quadrature, fastsummation and Adams time-stepping.
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a point zi randomly in the ith grid 
ell. Of the remaining M = N � n2vorti
es, put mi = � M j!(zi; 0)jPi j!(zi; 0)j�or mi+1 random vorti
es lo
ated in the ith 
ell of the n�n grid. Thus theremaining N � n2 vorti
es are distributed in regions where the vorti
ity islarge, providing some degree of adaptivity despite their randomness. Notethat the vorti
ity is 
onserved along parti
le paths, so the parti
les tend tostay where ! is large.We generated N = 500; 1000; 2000; : : : ; 64000 vorti
es in su
h an adap-tive random grid with n2 � N=10 and evaluated the velo
ity at ea
h of thevorti
es, using 
ore fun
tions and quadratures of orders m = q = 2; 4; 6; 8.The number of 
orre
t bitsBl = max�0;� log2 �ku� uh;Æklkukl ��in the 
omputed velo
ity uh;Æ in L1 and L1 norms, the CPU times T (inse
onds on a Spar
-2 workstation) and other statisti
s are reported in Table2. The velo
ity evaluation produ
es error O(� + N�k=2) with k=2 = 0:67,1.60, 2.57 and 3.55 in O(N b log �) CPU time with b = 1:33, 1.20, 1.14 and1.11 and a 
onstant of proportionality depending very weakly on the orderq. Note that when N doubles, the average 
ell size h de
reases by a fa
torp2, so we expe
t to gain k=2 bits per line in ea
h table until O(�) is rea
hed.For �rst-order methods, the O(h1:33) errors dominate so the O(�) limiton a

ura
y never appears. For higher-order methods, we get higher-order
onvergen
e in the region where the smoothed kernel is resolved but the O(�)limit has not appeared. After the limit is rea
hed, 
onvergen
e 
ontinuesslowly.5.2 Long-time a

ura
yWe also tested the long-time a

ura
y of the method on several Perlmantest 
ases, running for 0 � t � 20, a �nal time at whi
h the fastest-movingparti
les of 
uid (near the origin) have 
ompleted 1.6 revolutions while theslowest have 
ompleted only 0.2. This strong shear is usually 
onsidereda severe test for a vortex method. We started with an almost uniformlydistributed adaptive random grid with n2 � 0:8N , and used 
ore fun
tions,quadratures and Adams methods of orders m = q = s = 2, 4 and 6, yieldingadaptive vortex methods of orders k = 1:33, 3.20 and 5.14. We tested ea
hmethod on a Perlman pat
h of minimal smoothness, with P = q + 1 = 3,5 and 7. In parti
ular, the errors at di�erent orders are unrelated. Table 5shows the other numeri
al parameters. For 
omparison, Tables 3 and 4 givethe parameters used in the standard and triangulated vortex methods, forthe test 
ases plotted in Figures 1 and 2.23



m = q = 2, p = 4, d = 1, k = 1:33N h Æ B1 B1 T500 0.497 0.631 1.95 1.42 4.831000 0.328 0.479 2.48 2.03 13.82000 0.205 0.351 3.28 2.79 43.64000 0.142 0.275 3.91 3.41 142.78000 0.089 0.203 4.74 4.26 336.216000 0.064 0.163 5.38 4.88 115532000 0.039 0.118 6.29 5.79 205164000 0.028 0.095 6.93 6.41 6493
m = q = 4, p = 6, d = 2, k = 3:20N h Æ B1 B1 T500 1.300 1.481 1.02 0.52 6.871000 0.807 1.011 2.26 1.79 22.22000 0.443 0.625 4.49 3.71 754000 0.300 0.457 6.00 5.21 2098000 0.180 0.305 8.16 7.22 63216000 0.128 0.232 9.71 9.00 148532000 0.078 0.156 11.9 10.3 449864000 0.057 0.121 13.3 12.0 8111m = q = 6, p = 8, d = 3, k = 5:14N h Æ B1 B1 T500 1.760 1.948 0.0 0.0 8.661000 1.170 1.374 0.31 0.0 26.92000 0.721 0.905 4.49 2.67 90.64000 0.386 0.529 8.21 5.51 2818000 0.263 0.381 10.2 7.18 77416000 0.158 0.245 12.0 6.74 157432000 0.114 0.185 14.0 9.30 498864000 0.068 0.118 15.0 10.1 7634
m = q = 8, p = 10, d = 4, k = 7:11N h Æ B1 B1 T500 1.810 2.033 1.34 0.48 9.221000 1.690 1.912 0.0 0.0 34.92000 1.100 1.304 3.34 2.23 1114000 0.677 0.848 7.79 6.29 3588000 0.362 0.486 10.4 6.89 96016000 0.247 0.346 11.9 8.00 292332000 0.146 0.217 12.9 8.15 582864000 0.106 0.162 15.1 9.99 14650Table 2: Velo
ity evaluation errors in !8 with N adaptive random points.Corre
t bits B1 and B1 in L1 and L1, CPU times T , 
ell size h and 
oreradius Æ. Here q is the quadrature order and m is the moment order.
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The 
orre
t bits in L1 in the velo
ity and vorti
ity are plotted in Figure 7.The plots are individually s
aled and ti
ked in su
h a way that the numberof 
orre
t bits should in
rease by half a ti
k mark at ea
h line. These results
learly 
on�rm the long-time high-order a

ura
y of the method; they donot show the loss of a

ura
y observed in Lagrangian vortex methods (forexample in Figure 1). The errors are highly os
illatory on a small s
ale,be
ause a new quadrature rule is built from s
rat
h at ea
h step.N h Æ �f �i T B1(u7) B1(!7) B1(u3) B1(!3)64 0.27 1.05 0.512 0.0512 0.5 3.77 1.00 3.85 1.37256 0.14 0.74 0.256 0.0128 1.4 4.42 1.40 4.86 2.891024 0.07 0.52 0.128 0.0032 12.0 7.52 4.10 6.35 5.194096 0.03 0.37 0.064 0.0008 85.6 8.29 6.49 9.02 8.17Table 3: Number of vorti
es N , mesh size h at t = 0, 
ore radius Æ, timesteps �f and �i and CPU time T per step in se
onds for the standardvortex method. Here B1(uP ) and B1(!P ) are measured at t = 20.N �f T B1(u) B1(!)70 0.625 0.86 4.76 4.61225 0.41666 5.1 5.97 6.27745 0.3125 23.9 8.48 9.482729 0.20833 120.2 10.15 11.70Table 4: Number of verti
es N , time step �f and CPU time T per stepfor the triangulated vortex method. Here B1(u) and B1(!) are measured att = 20.5.3 Intera
ting vortex pat
hesAs a more 
omplex example, we used the order-1.33 method with parametersgiven in Table 6 to 
ompute two intera
ting smooth pat
hes of vorti
ity.Thus the initial vorti
ity is given by!(z; 0) = QXj=1
j(1� jz � zj j2)Pwhere Q = 2, P = 3 and zj and 
j are given by z1 = (0; 1:05), z2 =(0;�1:05), 
1 = 2 and 
2 = 1. Figure 8 shows the �nal result at t = 30with N = 1000, 2000 and 4000; the large-s
ale features of the results are
learly 
onverged.We also 
arried out a similar 
omputation with 20 randomly lo
atedand s
aled pat
hes (Q = 20, P = 5) with random strengths 
j, using the25



m = q = 2, p = 4, d = 1, k = 1:33N n �f �i h Æ T B1(u) B1(!)250 14 1.12 0.056 0.840 0.807 0.58 2.94 2.85500 20 0.80 0.040 0.516 0.599 3.29 3.75 4.211000 28 0.56 0.028 0.345 0.441 6.63 4.78 6.022000 40 0.40 0.020 0.198 0.321 20.9 5.73 7.144000 56 0.28 0.014 0.136 0.231 35.4 6.64 8.418000 80 0.20 0.007 0.076 0.173 112 7.26 9.84m = q = 4, p = 6, d = 2, k = 3:20N n �f �i h Æ T B1(u) B1(!)250 14 0.28 0.01024 1.97 1.33 0.66 0.75 0.68500 20 0.20 0.00512 1.02 0.93 4.18 2.93 4.201000 28 0.14 0.00256 0.67 0.64 12.9 6.16 6.002000 40 0.10 0.00128 0.40 0.44 27.1 7.97 7.664000 56 0.07 0.00064 0.27 0.29 84.1 8.56 9.018000 80 0.05 0.00032 0.15 0.21 139 10.1 10.2m = q = 6, p = 8, d = 3, k = 5:14N n �f �i h Æ T B1(u) B1(!)250 14 0.14 0.01024 2.00 3.07 1.08 0.0 0.0500 20 0.10 0.00512 1.97 1.82 6.96 0.46 0.211000 28 0.07 0.00128 1.06 1.24 19.9 2.94 3.872000 40 0.05 0.00032 0.68 0.83 59.9 6.64 8.394000 56 0.035 0.00008 0.41 0.55 197 9.06 9.278000 80 0.025 0.00002 0.26 0.38 365 10.6 12.0Table 5: Number of vorti
es N (with n2 in regular grid), time steps �fand �i, mesh size h and 
ore radius Æ at t = 0 and CPU time T per stepfor adaptive methods of orders 1.33 (top), 3.20 (
enter) and 5.14 (bottom).Here B1(u) and B1(!) are measured at t = 20.
26
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Figure 7: Corre
t bits B1(u) and B1(!) in velo
ity u (left 
olumn) andvorti
ity ! (right 
olumn), for adaptive vortex methods of orders 1.33 (toprow), 3.20 (se
ond row) and 5.14 (last row). The numeri
al parameters aregiven in Table 5. 27



order-3.20 method with �1 = 0:10 and Æ = 1:2h4=5. Some sample vorti
ity
ontours are shown in Figure 9. The L1 norm of ! is 
onserved exa
tly byour method, even for this fairly 
ompli
ated 
ow. The L1 norm is trivially
onserved sin
e the vorti
ity values are 
arried by the 
ow.N h Æ �f �i T kuk1 k!k1250 1.30 1.19 0.20 0.020 0.59 0.1527 0.2181500 0.86 0.90 0.14 0.014 2.92 0.1835 0.20481000 0.64 0.74 0.10 0.010 9.89 0.1724 0.23022000 0.43 0.57 0.07 0.007 36.25 0.1834 0.21084000 0.32 0.47 0.05 0.005 68.72 0.1808 0.2315Table 6: Number of vorti
es N , mesh size h at t = 0, 
ore radius Æ, timesteps �f and �i and CPU time T per step for the adaptive method of order1.33. Here kuk1 and k!k1 are the L1 norms of the velo
ity and vorti
ity,measured at time t = 30.Referen
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