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1 IntrodutionThis paper explores new approahes to the onstrution and analysis of fra-tional step methods for solving di�erential-algebrai equations (DAEs). Themethod of frational steps, or operator splitting, is often used as an eÆientnumerial integration tehnique for solving initial value problems in ordi-nary di�erential equations (ODEs) [1℄. Operator splitting ombines integra-tion shemes for subproblems into an eÆient sheme for the overall problem.For di�erential-algebrai equations, whih ombine algebrai onstraints withODEs, splitting shemes separate the algebrai onstraints from the di�eren-tial equations. For example, when the ODEs and onstraints arise from distintbut oupled physial phenomena, splitting shemes an take full advantage ofexisting omputer odes tuned for eah subproblem.This paper examines frational step methods for index-1 DAEs in the mostnatural semi-expliit form. Common methods for general index-1 DAEs in-lude one-step impliit Runge-Kutta (RK) methods [2,3℄ and multistep bak-ward di�erentiation formulae (BDF) [2℄. BDF methods require an expensivesimultaneous integration of the ODEs and satisfation of the onstraints. Im-pliit RK methods are even more expensive, as they require solution of non-linear systems whose size is the number of stages multiplied by the originalsize of the DAE. In the speial ase of semi-expliit index-1 DAEs, expliitRunge-Kutta methods [3℄ eÆiently deouple the ODEs solver from the alge-brai onstraints. However, these methods are only onditionally stable andbeome ineÆient for sti� DAEs. Some speial-purpose splitting shemes pre-serve the dissipative struture of the DAE [4,5℄. These shemes suessfullyavoid both the expense of fully impliit shemes and the onditional stabilityof expliit Runge-Kutta shemes, but lak generality. All these issues have ledus to explore splitting shemes in greater detail than presently available in theliterature.The paper is organized as follows: In setion 2, we show that the standardone-pass and two-pass symmetri splitting shemes whih are respetively�rst- and seond-order aurate for ODEs, are only �rst-order aurate forDAEs. In setion 3, this \order redution" is illustrated by a two-dimensionalexample. Order redution is overome by a new splitting sheme, based ondeferred orretion of a �rst-order sheme, whih is introdued and analyzedin setion 4. The deferred orretion paradigm solves an error equation withthe same struture as the original DAE, using the original �rst-order sheme.The resulting sheme is simple, eÆient, and seond-order aurate. It an beiterated to obtain eÆient shemes with third and higher-order auray. Fi-nally, setion 5 presents numerial examples demonstrating the performaneof our seond and third-order aurate splitting shemes. In partiular, anappliation to a large system of index-1 DAEs, arising from eletrial iruit2



simulation, illustrates eÆieny of higher order splitting shemes over a highlyoptimized, state-of-the-art, �fth order Runge Kutta sheme{RADAU5.2 Order redution2.1 The ODE aseIn this setion, we analyze the auray of operator splitting algorithms forODEs [6℄. Consider a �rst-order ordinary di�erential system written in parti-tioned form 0B� _x_y1CA = 0B�f(x; y)g(x; y)1CA : (1)For many oupled problems, the partitioned variables x and y desribe di�er-ent physial variables; for example in [5,7℄ they denote mehanial deforma-tion and an auxiliary �eld, respetively.A splitting sheme approximates the solution of Eqn. (1) by solving the fol-lowing split equations in eah time step:0B� _x_y1CA = 0B�f(x; y)0 1CA| {z }� ; 0B� _x_y1CA = 0B� 0g(x; y)1CA| {z }� : (2)For example, we denote by �h Æ �h the one-pass splitting algorithm whihevolves the solution from tn to tn+1 = tn+h by (a) solving the �rst split ODEover one time step h with right-hand side �, and (b) solving the seond splitODE over one time step h with right-hand side �, starting from the solutionprodued by (a). The other one-pass splitting algorithm �h Æ �h is similarlyde�ned. The two-pass symmetri algorithms of [6℄ are �h=2 Æ �h Æ �h=2 and�h=2 Æ�h Æ�h=2. They are symmetri beause they take alternate half-steps ofthe two one-pass algorithms: for example,�h=2 Æ �h Æ �h=2 = (�h=2 Æ �h=2) Æ (�h=2 Æ �h=2):The lassial error analysis of one-pass algorithms leads to a splitting error ofO(h2) per time step and �rst-order auray. The symmetri two-pass algo-rithms attain seond-order auray beause the splitting error per time stepis O(h3) [8℄.Note 1 For �nite-dimensional ODEs, Lipshitz ontinuity of the split evolu-tion operators � and � implies onvergene for the split solution. However,3



for in�nite-dimensional ODEs or PDEs, stability requires that � and � gen-erate bounded semi-groups. Unonditionally stable splitting shemes arisingfrom dissipative dynamial systems [9℄ our in many appliations, notably intransient thermomehanial problems [5℄.2.2 The DAE aseIn this setion, splitting and global errors are analyzed for the one-pass andtwo-pass algorithms applied to DAEs of the partitioned form0B�0_y1CA = 0B�f(x; y)g(x; y)1CA := �: (3)The DAEs are assumed to be of index 1 2 [2℄, meaning that the Jaobianmatrix fx of f(x; y) with respet to x is invertible in a neighborhood of thesolution to Eqn. (3). We split the partitioned equations into0B�0_y1CA = 0B�f(x; y)0 1CA| {z }��Algebrai and 0B� _x_y1CA = 0B� 0g(x; y)1CA| {z }��ODEs :so � = � + �.2.2.1 One-pass algorithmsThe one-pass algorithm �hÆ�h �rst �nds the algebrai variables x = xn+1 thatsatisfy the algebrai onstraint f(x; y) = 0 with y = yn �xed, and then evolvesthe ODE variables y through time h with x = xn+1 �xed. The algorithm�hÆ�his similarly de�ned, with evolution of y through h followed by hoosing x tosatisfy the algebrai onstraints.Sine the DAE has index 1 by assumption, the impliit funtion theoremimplies that a C1 funtion ' exists suh thatf(x; y) = 0 implies x = '(y) (5)(near a solution (x; y)). Thus y satis�es a pure ODE_y = g('(y); y): (6)2 For oupled mehanial-auxiliary �eld problems, the index-1 assumption is equiv-alent to the natural assumption that the sti�ness matrix assoiated with the me-hanial degrees of freedom is invertible.4



By Taylor expansion and the hain rule, the exat solution y(t) satis�esy(tn+1)= y(tn) + h _y(tn) + h22! �y(tn) +O(h3)= y(tn) + hg('(y(tn)); y(tn))+ h22! (gx('(y(tn)); y(tn)) _'(y(tn)) + gy('(y(tn)); y(tn)) _y(tn)) +O(h3)where gx denotes the Jaobian matrix of partial derivatives of g with respetto the omponents of x. The exat solution x(t) satis�es x(tn+1) = '(y(tn+1)).We now analyze the loal error ommitted in one time step, starting from theexat value y(tn). The one-pass algorithm �h Æ�h generates an approximationv(t) suh that _v = g(x(tn); v) = g('(y(tn)); v) tn � t < tn+1; (7)and v(tn) = y(tn). Thus by Taylor expansion and the hain rule,v(tn+1) = v(tn) + h _v(tn) + h22! �v(tn) +O(h3)= y(tn) + hg('(y(tn)); y(tn))+ h22! gy('(y(tn)); y(tn)) _y(tn) +O(h3): (8)Hene the loal error isv(tn+1)� y(tn+1) = e(tn+1)h2 +O(h3) (9)where e is a smooth funtion.Applying �h yields a numerial approximation u to x whih satis�esu(tn+1) = '(v(tn+1))= '(y(tn+1) + h2en+1 +O(h3))= '(y(tn+1)) + h2'y(y(tn+1))en+1 +O(h3)= x(tn+1) + h2'y(y(tn+1))en+1 +O(h3): (10)From equations (9) and (10) it follows that kx(tn+1)� u(tn+1)k = O(h2) andky(tn+1)�v(tn+1)k = O(h2). where k�k denotes any onvenient error norm. Inother words, the one-pass algorithm �h Æ�h ommits seond-order loal errorswithin a time step, starting from the exat solution.First-order onvergene an then be easily proved. Consider the one-pass split-ting algorithm as a one-step method for the ODE equivalent of the DAE, whih5



takes in solution values x(tn) = '(y(tn)) and y(tn) and returns the approxi-mation v(tn+1) whih solves (6) to order O(h2) within a time step. Assuminga standard Lipshitz ondition kgy('(y); y))k � L, Theorem 3.4 of [10℄, forexample, shows that the global error E = y(t)� v(t) satis�es:kEk � hCL exp[L(t� t0)℄; (11)where t0 is the initial time and C is a onstant independent of h. Eqn. (11)proves �rst-order aurate global onvergene.For the alternate splitting sheme �h Æ �h, one obtainsu(tn+1) = x(tn) (updating u(tn+1) by �h): (12)The approximation v then satis�es_v = g(u(tn+1); v)= g(x(tn); v): (13)As above, ku(tn+1)� x(tn+1)k = O(h) and kv(tn+1)� y(tn+1)k = O(h2). Eventhough the loal error in x is O(h) in eah step, the order of auray of the�h Æ �h splitting sheme is also 1. This follows beause evolution under �hsimply updates u = '(v) given v, and is therefore ontrolled by the errors in valone. Indeed, the sequene of frational steps is : : : (�h Æ�h)Æ (�h Æ�h)Æ (�h Æ�h). Sine the initial onditions satisfy f(u(t0); v(t0)) = 0, the �rst update�h is redundant. Later in the sequene, �h simply updates u given v, so thesequene is equivalent to: : : (�h Æ �h) Æ (�h Æ �h) Æ (�h Æ �h|{z}1ststep): (14)We have already shown �rst-order global onvergene for the latter sequene,as a onsequene of whih the former sequene is also globally onvergent with�rst-order. The same onlusions hold even when variable stepsizes h1; h2; : : :are used in eah time step. This ompletes the proof of �rst-order aurayfor the global error for the �h Æ �h split as well.Before analyzing the order of the two-pass algorithm, we make a few observa-tions.Note 2 The derivation provided here aounts only for errors due to operatorsplitting; exat time integration of the split ow operators is assumed. Theadditional disretization error due to approximate time stepping (in the linearase) is analyzed in [11℄. 6



Note 3 If the right hand sides g and f depend expliitly on time, so the DAEis non-autonomous, one an onvert the system to an equivalent autonomousone by the standard tehnique: augment the ODEs by the equation _t = 1, withinitial onditions t = t0. However, in the later disussion of deferred orretionthis will not be possible, as the orretion equations are always non-autonomousDAEs.Note 4 The Lipshitz assumption is used only to ensure stability of the split-ting sheme. If the sub-operators � and � are dissipative, stability of the split-ting sheme is automati and the proof extends even to the in�nite dimensionalase. (Then dissipativity guarantees that � and � generate ontrative semi-groups [12℄.)2.2.2 Two-Pass AlgorithmsThe main result of this setion is that two-pass shemes are only �rst-orderaurate for DAEs, even though they are seond-order for ODEs.Consider the two-pass algorithm �h=2 Æ �h=2 Æ �h=2. The starting values foralulating the loal trunation error are y(tn) and x(tn) = '(y(tn)). Thefrational step �h=2 gives u(tn+ 12 ) = '(y(tn)) = x(tn). The frational step �hthen gives _v = g(u(tn+ 12 ); v)= g(x(tn); v) for t 2 [tn; tn+1℄: (15)Finally, the frational step �h=2 for the seond pass updates u(tn+1) asu(tn+1) = '(v(tn+1)): (16)Sine the �rst frational step �h=2 is redundant, the updates given by (15)and (16) exatly orrespond to the �h Æ�h ase and as before lead to seond-order splitting error. Consequently, as for the one-pass algorithm, the two-passsplitting sheme �h=2 Æ�h Æ�h=2 is only globally �rst-order aurate. This is insharp ontrast to the seond-order auray of two-pass algorithms for ODEs.The more interesting splitting error analysis ours for the �h=2 Æ �h Æ �h=2sequene. The steps an be summarized as:(1) �h=2: Update v(tn+ 12 ) with v(tn) = y(tn) by exatly solving_v = g('(y(tn)); v) t 2 [tn; tn+ 12 ℄: (17)Repeating the earlier analysis, we obtainv(tn+ 12 )� y(tn+ 12 ) = h2en+ 12 +O(h3): (18)7



(2) �h: Update u(tn+1) exatly, using the impliit funtion theorem.u(tn+1) = '(v(tn+ 12 )): (19)The splitting error is alulated as follows:u(tn+1) = '(y(tn+ 12 ) + h2en+ 12 +O(h3))= '(y(tn+1)� h2 _y(tn+1) +O(h2))= '(y(tn+1)) +O(h)= x(tn+1) +O(h); (20)implying ku(tn+1)� x(tn+1)k = O(h).(3) �h=2: Update v(tn+1) with v(tn+ 12 ) as the initial value by exatly solving,_v = g('(v(tn+ 12 )); v) t 2 [tn+ 12 ; tn+1℄: (21)The splitting error in v(tn+1) is found by expanding the exat solutionaround tn+ 12 .y(tn+1) = y(tn+ 12 ) + h2 _y(tn+ 12 ) + h28 �y(tn+ 12 ) +O(h3)= y(tn+ 12 ) + h2g('(y(tn+ 12 )); y(tn+ 12 )) +O(h2): (22)Similarly, expanding the approximate solution,v(tn+1) = v(tn+ 12 ) + h2 _v(tn+ 12 ) + h28 �v(tn+ 12 ) +O(h3)= v(tn+ 12 ) + h2g('(y(tn+ 12 )); y(tn+ 12 )) +O(h2): (23)Using y(tn+ 12 ) = v(tn+ 12 )+h2en+ 12 +O(h3) in Eq. (23), one an show thatthe h2 terms do not anel with the orresponding terms in the expansionof the exat solution. As a result, Eqs. (22) and (23) ommit a splittingerror of size kv(tn+1)� y(tn+1)k = O(h2).In order to �nd the global order of onvergene, we observe that: : : (�h=2 Æ �h Æ �h=2) Æ (�h=2 Æ �h Æ �h=2) Æ (�h=2 Æ �h Æ �h=2) (24)= : : : (�h Æ �h Æ �h Æ �h Æ �h Æ�h Æ �h=2): (25)Consequently, the operation �h=2 in the �rst step an be viewed as providinginitial onditions aurate to O(h2) for the sequene : : :�hÆ�hÆ�hÆ�hÆ�hÆ�h.From the analysis of the one-pass algorithms, the latter sequene is globally�rst-order onvergent, so initial onditions aurate to O(h2) will preserve theglobal order. The analysis extends to the variable stepsize ase (the details8



are omitted). Thus we have proved that the two-pass algorithms are only�rst-order aurate, in ontrast to their seond-order auray for ODEs.Note 5 An alternate approah overomes order redution in the two-pass byreasting the DAEs into the equivalent ODEs:f(x; y) = 0 =) fx _x + fy _y = 0 =) 0B� _x_y1CA = 0B�(�fx)�1(fy)gg 1CA : (26)The one-pass and two-pass algorithms for this system of ODEs attain �rstand seond order global orders, respetively. In pratie, this tehnique is ratherexpensive, as higher derivatives of the right-hand side are involved. In addition,the onstraints are not satis�ed exatly, and thus may drift over many timesteps.
3 Numerial ExampleThe orders of auray derived above are veri�ed through a simple numerialexample. Consider the exatly-solvable DAE0B�0_y1CA = 0B�x3 � y2x 1CA ; (27)with initial onditions x0 = 1 and y0 = 1 at t0 = 0 satisfying x30� y20 = 0. Theequivalent ODE form is 0B� _x_y1CA = 0B� 2y3xx1CA : (28)The exat solution satisfying the initial onditions is (xex(t); yex(t)) = ((1 +t=3)2; (1 + t=3)3).A single step of the one-pass splitting, �h Æ �h, with exat integration, yieldssolutions DAE Split Equivalent ODE Splityn+1 = yn + xnh yn+1 = yn + xnhxn+1 = y 23n+1 xn+1 = (x2n + 4h3 yn+1) 129
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(a) (b)Fig. 1. (a) Order redution in DAE-based splitting vs. (b) no order redution inODE-based splitting.Similarly, the two-pass splitting �h=2 Æ �h Æ �h=2 yields solutionsDAE Split Equivalent ODE Splityn+ 12 = yn + xnh=2 yn+ 12 = yn + xnh=2xn+1 = y 23n+ 12 xn+1 = (x2n + 4h3 yn+ 12 ) 12yn+1 = yn+ 12 + xn+1h=2 yn+1 = yn+ 12 + xn+1h=2Fig. 1 (a) plots the logarithm of the DAE splitting errors versus the logarithmof the uniform stepsize, and exhibits �rst-order onvergene for both one andtwo-pass algorithms. Fig. 1 (b) shows the errors for the ODE form. First andseond-order onvergene, agreeing with theory, is obtained for both one- andtwo-pass shemes.4 Order Improvement by Deferred CorretionIn this setion, we employ the deferred orretion paradigm to derive a newsplitting sheme, and prove its seond-order auray. The general paradigmof deferred orretion is straightforward: Given an approximate solution v toa problem with exat solution y, derive an equation for the error e = v�y andsolve it numerially for an approximate error �. The orreted solution V =v�� is then more aurate than v, and the proess an be repeated to generateshemes of arbitrarily high order if the solution is suÆiently smooth. Theadvantage of this paradigm is that the error equation has the same strutureas the original equation, so any onvenient low-order method an be used toompute both the original solution v and all subsequent approximate errors �.10



4.1 Deferred orretionConsider the general non-autonomous DAE0B�0_y1CA = 0B�f(t; x; y)g(t; x; y)1CA :We generate a basi solution by the analogue of the simple �rst-order splitting�h Æ�h, whih applies the onstraint and then the ODE solver. The resultingnumerial solution v(t) exatly satis�es the ODE_v = g(t; '(t; vn); v) tn � t < tn+1 (29)where f(t; '(t; y); y) = 0 and vn = v(tn).Thus the error e = v � y satis�es the exat error equation_e = g(t; '(t; vn); v(t))� g(t; '(t; v(t)� e(t)); v(t)� e(t)):The �rst-order splitting sheme replaes e(t) by en in the argument of theonstraint solver ' only, yielding a seond-order splitting sheme omposed ofa �rst-order step _v = g(t; '(t; Vn); v(t)); v(tn) = Vnon tn � t < tn+1, followed by a orretion step_� = g(t; '(t; Vn); v(t))� g(t; '(t; v(t)); v(t)� �(t)); �(tn) = 0 (30)on tn � t < tn+1. Here the orreted solution is V (t) = v(t) � �(t) andwe are orreting eah time step before proeeding to the next. The initialvalue �n = 0 has therefore been omitted in the argument of the seond gin the orretion step (30). The orretion step retains the simpliity of thebasi splitting sheme, beause the orretion equation is a pure ODE forthe orretion: The onstraints are imposed only via the known approximatesolution v.Sine the solution � of Eq. (30) is a �rst-order aurate approximation of eand e is itself O(h), we expet � = e+O(h2). In the next subsetion, we provethat the orreted solution V (t) = v(t)� �(t) is indeed seond-order aurate.4.2 Convergene AnalysisThe onvergene proof for the �rst-order splitting sheme ontains the basiidea of the onvergene proof for the seond-order sheme we have just derived11



by deferred orretion, so we review it briey �rst. The exat solution satis�esthe ODE form _y = g(t; '(t; y); y)while the numerial solution v satis�es_v = g(t; '(t; vn); v(t)):By subtration, the error e = v � y satis�es_e= g(t; '(tn; v(tn)); v)� g(t; '(t; y); y)= gx'y(vn � y) + gx't(tn � t) + gy(v � y)=�gxf�1x fy(vn � y) + gx't(tn � t) + gye:Here we have denoted di�erentiation by subsripts and evaluation of the ele-ments of a matrix or vetor at possibly di�erent unknown points by an overbar,in aordane with the multivariable mean value theorem [13℄. For onvenienewrite vn � y = vn � yn + yn � y, A = �gxf�1x fy, b = gx't and C = gy to get_e = Aen + A(yn � y) + b(tn � t) + Ce:Assume derivative bounds kAk � �, kbk � � and kCk �  and integrate toget ke(t)k= ken + Z ttn Aends+ Z ttn A(yn � y)ds+ Z ttn b(tn � s)ds+ Z ttn Ce(s)dsk�kenk+ �(t� tn)(kenk+ kyn � yk) + �2 (t� tn)2 +  Z ttn ke(s)kds:(31)By Gronwall's inequality0 � u(t) � a + b Z t0 u(s)ds =) u(t) � a exp[bt℄and a Taylor expansion of y, this givesken+1k � exp[(� + )h℄kenk+ Æh2where Æ bounds (�k _yk+ �=2) exp[h℄. Iterating this inequality giveskenk � exp[(� + )tn℄� 1(� + ) Æhwhih proves onvergene.This proof resembles a standard onvergene proof for e.g. Euler's methodfor ODEs [13℄, with the exeption that the usual reurrene inequality, whih12



bounds the aumulated error at one step in terms of previous errors andloal trunation errors, beomes the delay-di�erential inequality (31). ThusGronwall's inequality is required, to derive a bound for en+1 in terms of en.The seond-order proof is similar. By Taylor expansion, the error Æ(t) = V (t)�y(t) satis�es the exat equation_Æ(t)= g(t; '(t; v(t)); v(t)� �(t))� g(t; '(t; V (t)� Æ(t)); V (t)� Æ(t))=A�(t) + (A+B)Æ(t)where A = gx'y and B = gy. At the same time, the orretion satis�es_�(t) = A(Vn � v(t)) +B�(t)where kv(t)� Vnk � Z ttn kg(s; '(s; Vn); v(s))dsk � hGwith G a bound for the maximum of kgk. Consequentlyk�(t)k � G�h2 + � Z ttn k�(s)kds � G�h2 exp[�t℄by Gronwall, sokÆ(t)k � kÆnk+ Z ttn �k�(s)kds+ (� + �) Z ttn kÆ(s)kdsand applying Gronwall again giveskÆ(t)k � (kÆnk+G�h3 exp[�h℄) exp[(� + �)h℄:By iteration, global seond-order onvergenekÆnk � O(h2)follows immediately as usual. Thus the seond-order splitting based on de-ferred orretion produes a seond-order aurate solution V .A third-order sheme an be onstruted by repeating the deferred orretionstep to �nd a seond-order error and subtrating it. Third-order auray anthen be proved by a very similar analysis. However, the Piard-like viewpointof the next subsetion permits a simpler proof.4.3 A Piard-like viewpointThe deferred orretion sheme above omputes a �rst-order solution v andthen a orretion �, yielding a seond-order solution V = v � �. Summing the13



original and orretion Eqs. (29) and (30) yields a simple seond-order shemefor V itself: _V = g(t; '(t; v(t)); V (t)) tn � t < tn+1:The onstrained variables are simply lagged one iteration behind. Similarly,the jth-order solution vj (where v = v1 and V = v2) produed by j � 1 stepsof deferred orretion satis�es_vj = g(t; '(t; vj�1(t)); vj(t)) tn � t < tn+1:Using the integral form and Gronwall's inequality as above yields immediatelythat vj(t)� y(t) = O(hj+1)for all j.While the Piard-like version of our approah thus yields a simple high-orderonvergene proof, the deferred orretion version above may be more onve-nient for pratial implementation. It produes a natural error estimate forstep size adaptation. We also note that all our analysis assumes that bothonstraints and ODEs are solved exatly in eah timestep; the deferred or-retion formulation implies that we an use a simple �rst-order sheme suhas expliit Euler or linearly impliit Euler without order redution.5 Numerial ExamplesIn this setion, we present three more examples. First we repeat the orderredution example, using our deferred orretion shemes. Seond, we demon-strate that our shemes are more eÆient than a standard sheme, for a high-dimensional transistor example with pratial appliations. Finally, we illus-trate the appliation of our shemes to a sti� system.5.1 Order on�rmationOur seond and third-order deferred orretion splitting shemes are appliedto the example onsidered in setion 3. The global splitting errors of the 2-norm of the two omponents at t = 0:2, are plotted as a funtion of stepsizein Fig. 2. It is lear from the plot that the orret orders of onvergene areahieved{thus providing a simple veri�ation of the analysis. Note that thedeferred orretion ows are integrated exatly in Fig. 2.14
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5.2 Transistor Ampli�er ExampleOne of the primary appliations for the tehniques developed in this paper is inthe simulation of eletrial iruits. The hallenge in simulating iruits withtransistors, apaitors and resistors as iruit elements, omes from sti� osil-latory behavior of iruit potentials when subjeted to an alternating voltage.The resulting index-1 DAEs are highly nonlinear. Transistor response intro-dues nonlinearities to alter the response amplitude while apaitors introduethe transient behavior.As an example we onsider the ampli�er iruit shown in Fig. 3, whih isrepresentative of iruits with osillatory response. This example is a modi�-ation of an ampli�er example onsidered in referene [3℄. It is a onvenientnumerial test ase beause the total ampli�ation an be ontrolled throughparameters for resistanes, apaitanes and transistors, while the number oftransistors N an be varied systematially. This allows us to demonstrate theeÆieny of our splitting shemes for problems with inreasing sizes and sim-ilar response harateristis. Response frequeny inreases with problem size,making the iruit more hallenging to simulate.The governing equations are in terms of nodal potentials U (i)j . A linear trans-formation reasts the iruit equations into a semi-expliit index-1 form, in15
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Fig. 3. Shemati of the Transistor Ampli�er.terms of transformed potentials V (i)j [3℄. They are:0 = UeR0 + UbR � V (1)3R0 � 2R(V (1)3 + V (2)1 ) + (�� 1)f(V (1)3 + V (2)1 � V (2)2 )C _V (n)1 = UbR � 2R(V (n�1)3 + V (n)1 ) + (�� 1)f(V (n�1)3 + V (n)1 � V (n)2 )n = 2; : : : N + 1C _V (n)2 = f(V (n�1)3 + V (n)1 � V (n)2 )� V (n)2R n = 2; : : : N + 10 = 2Ub � V (n)3R � �f(V (n�1)3 + V (n)1 � V (n)2 )+� 2R(V (n)3 + V (n+1)1 ) + (�� 1)f(V (n)3 + V (n+1)1 � V (n+1)2 )n = 2; : : : N0 = Ub � V (N+1)3R � �f(V (N)3 + V (N+1)1 � V (N+1)2 )� V (N+2)1 + V (N+1)3RC _V (N+2)1 = �V (N+2)1 + V (N+1)3R (32)These 3N + 2 equations have 3N + 2 unknown voltages V (i)j . Consistent ini-tial onditions for this system of DAEs in terms of the 3N + 2 voltages are:V (1)3 (0) = 0, V (n)3 (0) = Ub n = 2; : : : ; N + 1, V (n)1 (0) = Ub=2 � V (n�1)3 ,V (n)2 (0) = Ub=2 n = 2; : : : ; N + 1, and V (N+2)1 (0) = �Ub. The variablesV (n)3 , n = 2; : : : ; N + 1, and V (1)1 are the algebrai variables, while the restare ODE variables. The nonlinear transistor funtion f is given by f(v) =�[exp((v=Uf)�1℄. Parameter values are Ub = 6, � = 0:99, � = 10�6, R0 = 103,R = 9 � 103 and, C = 10�6. We onsider N = 100; 400; 700; 1000 for ourtest suite of inreasing problem sizes, with Uf = 2:7 � 10�1 for N = 1000and Uf = 2:6 � 10�1 for the rest. A periodi input voltage signal Ue(t) =16
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10�3. Thus for relaxed error toleranes, splitting shemes learly outperformRADAU5. When N = 1000, Sp3imex outperforms RADAU5 for all toler-anes greater then 10�8, while RADAU5 terminated early due to repeatedstepsize failures for most toleranes smaller than 10�8. Hene over the en-tire range of toleranes where RADAU5 an provide a solution to the 1000transistor problem, our third-order shemes outperformed RADAU5. For engi-neering auray of 4 digits, our third-order shemes are about twie as fast asthe state-of-the-art, highly optimized, adaptive stepsize, �fth-order RADAU5sheme. These results learly demonstrate the eÆieny gained by using oursplitting shemes for large index-1 DAEs from iruit simulation.5.3 Pendulum ExampleAs a �nal example, a sti� damped pendulum is onsidered. This example isinteresting beause the �rst-order splitting �h Æ�h is also dissipative. Thus weinvestigate stability and auray of the splitting shemes for large stepsizes.The governing equations presented in Ref. [3℄ are modi�ed to inlude dampingand an input exitation. The index-1 system is given by:_p = u_q = vm _u = �p�� u� f(t)m _v = �q�� g � v0 = m(u2 + v2)� gq � l2�� pu� qv (33)Here, values of mass m = 5 � 10�5, damping  = 5 � 10�3, length l = 1,aeleration due to gravity g = 1 are hosen. The tension � in the pendulumrod is an algebrai variable, while the position oordinates p and q and theirtime derivatives u and v are ODE variables. A periodi input exitation f(t) =0:2 sin(0:75�t) is hosen. The pendulum system is dissipative due to damping.Sine the tension � is always positive or zero, replaing the urrent �(t) with�(tn) � 0 for t 2 [tn; tn+1℄ still renders the system dissipative. This replaementexatly orresponds to the �rst-order split �h Æ �h. The exat solution hasan initial transient phase followed by a periodi steady state solution. Thesti�ness ratio for the pendulum system is O(102) leading to an initial transientphase for t 2 [0; 0:4℄.Using bakward Euler, whih is dissipative for the ODE system, one obtains adissipative splitting sheme with no stepsize restritions for stability. On theother hand, numerial experiments indiate that the seond and third orderdeferred orretion shemes are only onditionally stable. For the present ase,the maximum �xed stepsize for the seond-order sheme is 9 � 10�3, andrequires a CPU time of 0.13 to ahieve an error of 1:45 � 10�5 at t = 10 in19



omponent p. The third-order sheme has similar stepsize restritions. If oarseauray is required, the �rst-order splitting sheme performs very well. Forexample, with h = 10�1, one an obtain a solution with an error of 5�10�3 inomponent p in 10�2 CPU seonds at t = 10 even though the solution is grosslyinaurate in the transient phase. Thus for high sti�ness ratios and situationswhere only oarse auray is required, a �rst-order dissipative splitting isreommended. If a dissipative split is not possible, fully impliit methodsremain the most eÆient approah to highly sti� DAE systems.Finally, we remark that the following stepsize sequenes were hosen for the�rst-order and the seond-order splitting sheme, to maintain a onstant errorof O(10�5) for t 2 [0; 10℄. In the seond-order splitting ase, the maximumstepsize is lose to the stability limit.First order impliit split: h = 8>><>>:10�6 0 � t � 0:1210�6 + 10�2�10�60:88 (t� 0:12) 0:12 � t � 110�2 1 � t � 10(34)Seond Order Split: h = 8>><>>:1:25� 10�4 0 � t � 0:081:25� 10�4 + 0:0078750:92 (t� 0:0:08) 0:08 � t � 18� 10�3 1 � t � 10(35)Using these values for the stepsize, the CPU time for seond-order splittingis 2 � 10�2 seonds whih is about 50 times smaller than the CPU time of�rst-order splitting. Higher order splitting shemes are more eÆient whenauray deides the stepsizes.6 ConlusionsWe have analyzed and demonstrated �rst-order onvergene of standard ODEsplitting shemes for semi-expliit index-1 DAEs, and employed a deferredorretion paradigm to obtain eÆient higher-order aurate operator splittingshemes for suh DAEs.Numerial examples exhibit the expeted order redution for the standardtwo-pass ODE splitting shemes and the theoretial orders of auray of ournew deferred orretion shemes, and show our shemes to be eÆient in workand storage. While fully impliit RK methods like RADAU5 are useful forsmall problems, they beome prohibitively expensive for large problems. Ouranalysis yields eÆient methods for large problems where high-order splittingof onstraints from di�erential equations an be highly e�etive.20
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