
FAST STABLE DEFERRED CORRECTION METHODS FORTWO-POINT BOUNDARY VALUE PROBLEMS�JOHN STRAINyAbstrat. Simple, high-order aurate, adaptive methods for linear two-point boundary valueproblems are generated by iterated deferred orretion of the seond-order midpoint rule with high-order unentered di�erene formulas on an adaptive mesh. A fast strutured QR fatorizationprodues robust solutions of the ensuing linear systems. The methods solve problems with gen-eral nonseparated boundary onditions as eÆiently as separated ones. Numerial experiments onwell-resolved problems show that the methods ahieve high-order auray despite some previouslyonjetured order barriers. EÆieny and auray ompare favorably with several standard odeson a gallery of diÆult test problems.Key words. deferred orretion, two-point boundary value problems, adaptive mesh, midpointmethod, QR-fatorization, Airy funtions, Bessel funtionsAMS subjet lassi�ations. 65L10, 65L12, 65L50, 65F05, 65F501. Introdution. Numerial methods for solving two-point boundary value prob-lems in ordinary di�erential equations have been extensively developed: lassialmethods suh as shooting [26℄, olloation [2, 3, 28℄, �nite di�erenes and deferredorretion [7, 25℄ are analyzed in [4, 32℄. More reent developments inlude spetralintegral [22, 24, 31℄, rational pseudospetral [6℄, Lobatto deferred orretion [5, 12℄and mono-impliit Runge-Kutta deferred orretion [9, 14, 13, 15, 34, 36, 35℄ methods.Several widely available odes based on these approahes an solve routine problemsaurately and eÆiently. However, the solution of extremely diÆult problems withwidely separated sales, high-frequeny osillations, and boundary and internal layers,is still an area of ative researh.In this paper, we develop a simple, fast, and e�etive numerial method for high-auray solution of diÆult linear boundary value problems. The method ombinesiterated deferred orretion (x2.4) of the simple midpoint rule (x2.1), high-order un-entered di�erene formulas (x2.3), a robust adaptive mesh re�nement strategy (x2.5),and a fast stable strutured QR fatorization (x2.2) for the solution of linear systems.We fous on linear problems beause appropriate ontinuation strategies for New-ton's method e�etively redue nonlinear problems to linear ones. While most odesfor two-point boundary value problems require speial separated boundary onditions,our method solves general separated and nonseparated problems with equal eÆieny.It omputes omplex high-auray solutions to diÆult sti� and osillatory problems(x3.1) on both equidistant (x3.2) and adaptive (x3.3) meshes, in CPU time omparableto several popular publi domain odes (x3.5). Experiments on a well-resolved prob-lem demonstrate optimal orders of auray (x3.4), higher than predited by lassialonvergene theory [16, 29℄.2. The numerial method. Our high-order adaptive deferred orretion methodis onstruted in the following way. First, we de�ne boundary value problems (BVPs)and the midpoint rule, and formulate them as linear operator equations. Seond,we develop a fast stable solution method for the operator version of the midpoint� Researh supported by Air Fore OÆe of Sienti� Researh Grant number FDF49620-02-1-0160-STRAIN-3/03.y Department of Mathematis, University of California, 970 Evans Hall #3840, Berkeley, Califor-nia 94720-3840 (strain�math.berkeley.edu) 1



rule. Third, we derive high-order disretizations whih are aurate but ostly tosolve. Fourth, we employ iterated deferred orretion as a fast approximate methodfor solving high-order disretizations. Fifth, we use error estimates produed in theourse of iterated deferred orretion to devise a robust strategy for adaptively re-�ning the mesh to solve diÆult problems eÆiently. Finally, we ombine these �veingredients into a omplete algorithm.2.1. The midpoint rule. Consider a linear two-point boundary value problem(BVP) y0 � C(t)y = f(t); a < t < b(1) Ay(a) +By(b) = gfor a vetor-valued funtion y : [a; b℄!Rq . Here C(t) is a ontinuous q � q matrix-valued funtion on the interval I = [a; b℄ and A, B are �xed q � q matries. We willoften �nd it onvenient to treat the BVP as a single operator equationLy = � y0 � C(t)yAy(a) +By(b) � = � fg � = F;(2)where L maps C1(I ;Rq) ontinuously to the Cartesian produt spae C0(I ;Rq)�Rq.Given an n-point mesh a = t1 < t2 < � � � < tn = b, a stable seond-order auratedisretization of Eq. (1) is provided by the midpoint ruleuj+1 � ujhj � Cj uj+1 + uj2 = fj 1 � j < n;(3) Au1 +Bun = g:Here uj approximates y(tj), eah mesh size hj = tj+1� tj is bounded by h = maxj hj ,the midpoint tj+1=2 = tj + hj=2, and the midpoint data is fj = f(tj+1=2) and Cj =C(tj+1=2). We often treat the numerial method as a N �N matrix-vetor equationMhu = Fh where N = nq,u = (u1(t1); u2(t1); : : : ; uq(t1); u1(t2); : : : ; uq(tn))T ;Fh = (f1(t3=2); : : : ; fq(t3=2); : : : ; fq(tn�1=2); g1; : : : ; gq)T ;Mh = 12 2666664 �2h1 � C1 2h1 � C1 0 0 � � � 00 �2h2 � C2 2h2 � C2 0 � � � 0... ... ... ... ... ...0 0 � � � 0 �2hn�1 � Cn�1 2hn�1 � Cn�1A 0 � � � 0 0 B
3777775 :Under reasonable assumptions on the operator L and mesh sizes hj [4, 32℄,the midpoint rule is stable (the matrix norm kM�1h k is bounded independently ofthe maximum mesh size h!0) and seond-order aurate (the error is bounded bymaxj kuj � y(tj)k = O(h2)). These basi properties ensure that the solution an beomputed to arbitrary auray � with n = O(1=h) = O(��1=2) mesh points tj on[a; b℄ as �!0. The standard Gaussian elimination approah used in most BVP solvers[8℄ requires O(N3) = O(��3=2) work and storage to ompute the solution u, and laksstability when the ill-onditioning of the BVP is inherited by the midpoint rule ma-trix Mh. Thus ahieving high auray in reasonable CPU times will require stablesolution methods whih respet the sparsity struture of Mh, whih has at most 2qnonzero elements among the nq elements in eah row.2



2.2. Stable eÆient solution methods. The midpoint disretization matrixMh has the blok \half-arrowhead" sparsity strutureMh = 266666664 D1 S1 0 0 � � � 0 00 D2 S2 0 � � � 0 00 0 D3 S3 � � � 0 0... ... ... ... ... ... ...0 0 � � � 0 0 Dn�1 Sn�1B1 0 0 � � � 0 0 Bn
377777775where Di, Si and Bi are q � q bloks.An implementation of Gaussian elimination for the solution of Mhu = Fh shouldideally be both eÆient and stable. EÆieny requires that the sparsity struture ofMh be respeted as in [8℄, but stability usually requires pivoting, whih destroys thesparsity struture.The requirements of eÆieny and stability are ompatible if Mh is blok bidi-agonal (B1 = 0), or when the rows and olumns of Mh an be rearranged into blokbidiagonal form. Suh a rearrangement is possible i� the boundary onditions areseparated: for eah index p = 1 to q either row p of A = B1 or row p of B = Bn iszero. Intuitively, eah boundary ondition restrits the omponents of y(a) or y(b)but does not intertwine them. Numbering the boundary onditions on y(a) �rst andy(b) last among the N equations makesMh blok tridiagonal, so Gaussian eliminationan be both eÆient and stable [25℄.However, many pratial problems present nonseparated boundary onditions forwhih Gaussian elimination beomes extremely ineÆient. Thus we use a fast solutiontehnique whih handles general separated and nonseparated boundary onditionswith equal eÆieny. We use Householder transformations [18℄ to ompute the QRfatorization QR = Mh, with Q orthogonal and R upper triangular, whereupon uis easily omputed as R�1QTFh. Orthogonal fatorization is more attrative thanGaussian elimination for solving the possibly ill-onditioned sparse linear systemsprodued by disretization of diÆult BVPs, beause it provides superior stabilityproperties while eliminating pivoting and exessive �ll-in. The resulting fators Qand R an be stored in the speial arrowhead matrix

Mh = 26666666664
D1 S1 0 0 � � � 0 R10 D2 S2 0 � � � 0 R20 0 D3 S3 � � � 0 R3... ... ... ... ... ... ...0 0 � � � 0 Dn�2 Sn�2 Rn�20 0 � � � 0 0 Dn�1 Sn�1B1 B2 B3 B4 � � � Bn�1 Bn

37777777775 ;where the nonzero omponents of the Householder vetors are stored in the Bj bloks,the subdiagonal parts of the Dj bloks and an extra vetor b ontaining the diagonalomponents. The QR fatorization requires O(Nq2) time and 4Nq storage, makingit essentially optimal with respet to the problem size N . One the matrix Mh isfatorized, subsequent linear systems with di�erent right-hand sides an be solved atonly O(Nq) ost per solve. Fast updating of the fatorization is also possible [19℄,failitating ontinuation methods as in [12℄.3



Auray � an now be obtained in O(Nq) = O(��1=2) work and storage, or-responding to roughly three times the work for eah additional digit of auray.This ost/bene�t ratio is aeptable for low auray, but high auray requires dis-retization methods with higher orders of auray than the seond-order midpointrule.2.3. Higher-order disretizations. The midpoint rule an be improved by us-ing better approximations of the midpoint derivatives y0(tj+1=2) and values y(tj+1=2).Suh approximations an be generated by unentered higher-order polynomial inter-polation y0(tj+1=2) � P 0j(tj+1=2); y(tj+1=2) � Pj(tj+1=2):Here Pj is a (q-vetor valued) polynomial of degree at least 2p� 1 whih interpolatesthe values uk at 2p points tk, entered at tj+1=2 to the extent possible without rossingthe endpoints of the interval:Pj(tk) = uk lj � k � rj = lj + 2p� 1where lj = 8<: 1 1 � j < p;j � p+ 1 p � j � n� p;n� 2p+ 1 n� p < j < n:While Pj(t) and P 0j(t) an be evaluated by standard tehniques suh as Lagrangeor Newton interpolation [33℄, their values at tj+1=2 an be evaluated by onvenientdi�erene formulas suh asy0(tj+1=2) � rjXk=lj �jkuk; y(tj+1=2) � rjXk=lj �jkuk:Stable eÆient routines for the omputation of the oeÆients �jk and �jk have beenprovided by Fornberg [21℄. The resulting higher-order disretizations of the BVP (1)have the formLhu = � (Prjk=lj �jkuk � CjPrjk=lj �jkuk)Au1 +Bun � = � (fj)g � = Fh:Lh is formally order-2p aurate, and therefore asymptotially more eÆient thanlow-order disretizations for omputing highly aurate solutions to well-onditionedsmooth problems. Obtaining auray � with a method of order 2p requires on theorder of n = O(��1=2p) mesh points, whih is extremely eÆient whenever the errortolerane � is suÆiently stringent and the onstants implied by the O() symbol arenot too large. However, the matrix Lh has a bandwidth proportional to p and there-fore requires O(np3) = O(Np2) CPU time and storage. For a 20th order method, afator of order 100 is often aeptable in CPU time but not in storage. Deferred or-retion, like Krylov subspae methods [27℄, greatly redues the storage requirementsfor solution of high-order disretizations.2.4. Iterated deferred orretion. Deferred orretion iterates with a low-order preonditioner to solve a high-order disretization at low ost. The approah4



omes in many variants [7, 5, 9, 12, 14, 13, 15, 25, 34, 36, 35℄, some based on om-pliated asymptoti error expansions [4℄. The simplest one an be summarized asapproximately solving for the error in a omputed solution from a residual equation,and then subtrating the error to get an improved solution.Consider a numerial solution u whih is interpolated by a pieewise polynomialPj(t) on the interval [tj ; tj+1℄ to give a residual�(t) = F � LP = � C(t)Pj(t) + f(t)� P 0j(t)g �AP (a)�BP (b) � :At mesh midpoints tj+1=2, the residual omponents are�j = CjPj(tj+1=2) + fj � P 0j(tj+1=2)= Cj rjXk=lj �jkuk + fj � rjXk=lj �jkuk; 1 � j < n;�n = g �Au1 �Bun:Sine the residual satis�es LP = F � � by de�nition and the exat solution satis�esLy = F , subtration gives L(y � P ) = �. Therefore the orretion  = y � P whihmakes P into the exat solution y = P +  satis�es the orretion equationL = �:The orretion equation an be solved eÆiently by the midpoint rule Mh1 = � withthe fatorized matrix Mh, yielding a relatively seond-order aurate approximation1 to the orretion . The orreted solution u + 1 is formally two orders moreaurate than u, if the residual has been omputed with suÆient auray.The orretion proedure an be repeated, formally gaining two additional ordersof auray per repetition, as long as the error is suÆiently smooth and the residualhas been omputed with suÆient auray. However, several theoretial analyses[4, 16, 29℄ have shown that when unentered di�erenes are used near the ends of theinterval, m orretions may not yield the expeted order of auray 2(m + 1) form > 2. Instead, the order of auray inreases like the sequene 2, 4, 6, 7, 8, 9, 10,11, 12, . . . . This result assumes the mesh is smooth in the strong sense thatmaxj ���� hjhj�1 � 1���� � O(h);and polynomial interpolation of variable degree 2k + 1 is used for eah orretionnumber k = 1 to m. Our numerial experiments (x3.4), by ontrast, demonstratethat the use of a �xed degree 2m + 1 of polynomial interpolation at eah orretionk = 1 to m yields the full order 2(m + 1) on an equidistant mesh. This does notontradit the analyses of [4, 16, 29℄ sine we are using a �xed high interpolationdegree 2m + 1 at every orretion step, while the analyses of [4, 16, 29℄ address theuse of the minimum possible degree 2k + 1 at orretion step k.Deferred orretion also provides a sequene of approximate orretions whihallow us iteratively to generate a suitable adaptive mesh for resolving the solutionwith maximal eÆieny. 5



2.5. Adaptive mesh re�nement. Many BVPs have oeÆients or solutionswhih hange rapidly over small frations of the omputational domain. Suh rapidonentrated variations annot be eÆiently resolved by global equidistant meshes;instead, a nonequidistant mesh tailored to these variations must be built adaptivelyduring the solution proess. We employ a natural strategy to build this adaptivemesh: given an error estimate e(t) = O(hp) for a solution u omputed with meshsizes h(t) � h, and a desired error tolerane �, we hoose new mesh sizes~h(t) = � �maxfe(t); �g�1=p h(t)at eah point t 2 [a; b℄. Here  = 10�1 is a fudge fator designed to avoid yling. Thenew mesh size is hosen to make the new error at eah point less than �, assumingthat the error estimate dereases like O(hp) as h!0. In deferred orretion, the �nalomputed orretion norm kmk is a natural error estimate e(t). Sine it dereaseslike O(h2m), we put p = 2m and e(t) = km(t)k. Setting e(t) = km(t)k vastlyoverestimates the atual O(h4) error if we use only the �rst orretion norm k1k ofsize O(h2); but the deferred orretion approah is most useful when high auray isrequired, and then our omputational experiene indiates that the O(h2m) orretionnorm kmk is an reliably onservative estimate of the atual O(h2m+2) error.Numerial experiments have suggested several improvements of this basi strat-egy. First, we require that ~h(t) � 0:8h(t) at every t, to ensure that the mesh generationproess terminates rapidly rather than yling near its end. Seond, we disourageextreme gradients in the mesh by requiring ~h(t) � h(t)=10, so mesh sizes annot de-rease too suddenly. Finally, we have observed that deferred orretion rarely animprove a seond-order solution whih is ompletely inaurate. Therefore we on-strut an initial mesh (for higher-order deferred orretion method) on whih the �rstO(h2) orretion 1 is no larger than 10% of the solution maximum. This amountsto determining a preliminary mesh by the fourth-order method with � = 10�1, whihosts less than using a high-order method on a preliminary mesh. Given one-digit a-uray on the initial orretion with a preliminary mesh, deferred orretion usuallydoes a good job of the subsequent orretion and mesh re�nement steps.2.6. Adaptive deferred orretion algorithm. Our algorithm an be sum-marized as follows:Initialize mesh of intervalsDo until error estimate is below tolerane or workspae is exhaustedInitialize u = 0Build and fatorize Mh = QR for the urrent meshDo j = 0, 1, . . . , m orretions to order p = 2m+ 2Compute residual � = F � LP from interpolant P to uSolve orretion equation Mhj = � with saved QR fatorization of MhUpdate u u+ jEnd doRe�ne mesh by shrinking intervals where kmk is too largeEnd doThe initial omputation of the basi seond-order solution by the midpoint rule hasbeen eliminated from the algorithm by viewing it as a orretion u = 0 to the zerosolution. 6



3. Implementation and numerial results. We implemented our deferredorretion approah in a double preision Fortran 77 ode bvpd. The ode is designedfor easy adaptability to a wide variety of boundary value problems: the user providessubroutines for evaluating the right-hand side and boundary onditions, and spei�esa few numerial parameters suh as the error tolerane �, the number of orretionsm, and the type of mesh. The ode was ompiled with the GNU Fortran 77 ompilerg77, using the -O optimization ag, and run on one 450MHz CPU of a Sun Ultra 60under Solaris 8. Speial QR fatorization routines were oded to take advantage ofthe blok arrowhead struture of the matrix Mh.We tested bvpd on a gallery of highly hallenging test problems (x3.1) takenfrom artiles [11, 22, 24, 31℄ on other methods for solving two-point boundary valueproblems. Results are reported in x3.2 and x3.3.We verify high-order auray of the method on a straightforward but nontrivialbeam problem in x3.4. As disussed in x2.4, our results do not ontradit order barriersproved in [16, 29℄, beause we use high-order unentered di�erenes throughout theorretion proess.For omparison, the results of solving the same test problems with four standardBVP odes from Netlib (www.netlib.org) are presented in x3.5.3.1. Test problems. We study the performane of bvpd and the four Netlibodes on the following olletion of hallenging test problems for two-point BVPs.Some of these test problems have been studied by sophistiated spetral integralmethods with exellent results [22, 24, 30, 31℄. Comparisons of earlier numerialmethods for two-point BVPs are reported in [11℄.3.1.1. Beam equation. A standard elastiity problem [31℄ an be transformedinto the �rst-order systemy0 � 2664 0 1 0 00 0 1 00 0 0 1�KEI 0 0 0 3775 y = 2664 000qEI 3775 ; a = 0 < t < b = L;2664 1 0 0 00 1 0 00 0 0 00 0 0 0 3775 y(a) + 2664 0 0 0 00 0 0 00 0 1 01 0 0 0 3775 y(b) = 0;where L = 1:2� 102, k = 2:604� 103, E = 3� 107, q = 4:34� 104 and I = 3 � 103are material onstants. The exat solution is a ombination of exponential funtionsvarying on sales of order (K=EI)1=4 � 10�2.3.1.2. Sti� equation. The model sti� boundary value problem of [31℄ is givenby y0 � � 998 1998�999 �1999 � y = f(t); a = 0 < t < b = 1;� 1 00 0 � y(a) + � 0 00 1 � y(b) = g:Here f(t) and g are determined so that the exat solution is given byy(t) = � 2v1 � v2�v1 + v2 �7



wherev(t) = �3e�t + 3(e�t � 1 + t); 5e�1000t + 4� 10�6(e�1000t � 1 + 1000t)�T :3.1.3. Boundary layer. A boundary layer of width � = 10�4 is present in theboundary value problem [22℄y0 � � 0 11�2 0 � y = f(t); a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = g:Here f(t) and g are determined so that the exat solution is given by y(t) = (u(t); u0(t))Twhere u(t) = os(�t) + e�(1+t)=�1 + e�2=� + e�(1�t)=�:The �rst omponent of the solution is shown in Fig. 1(a).3.1.4. Bessel system. A vetor of six Bessel funtions and derivatives J�(t)with orders � near � = 10 satis�es the boundary value problem [31℄ on [0; 600℄y0 � 266666664 0 1 0 0 0 0(��t)(�+t)+�t2 0 �1t 0 0 00 0 0 1 0 00 0 (��t)(�+t)��t2 0 �1t 00 0 0 0 0 10 0 1t 0 (��t)(�+t)�5�+6t2 0
377777775 y = f(t);26666664 1 0 0 0 0 00 0 1 0 0 01 0 0 0 1 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

37777775 y(a) + 26666664 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 1 0 00 0 0 0 0 1
37777775 y(b) = g:Here f(t) and g have been determined so that the exat solution is given byy(t) = �J�(t); J 0�(t); J��1(t); J 0��1(t); J��2(t); J 0��2(t)�T :The �rst omponent of the solution is shown in Fig. 1(b).3.1.5. Airy turning point. An appropriate ombination of Airy funtions [1℄satis�es the quantum-mehanial \turning point problem" [23, 11, 24℄y0 � � 0 1t� 0 � y = 0; a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = � 11 �with � = 10�6. Here the exat solution is given by y(t) = (u(t); u0(t)) whereu(t) = C1Ai(Æt) + C2Bi(Æt)8



Æ = ��1=3 = 100, C1 = 5:6576000136230 and C2 = 1:6552936963622� 10�289 areonstants. This problem ontains almost every possible diÆulty: dense osillations,sti�ness, a turning point where the solution hanges harater, and a sharp boundarylayer at the right edge. The �rst omponent of the solution is shown in Fig. 1().3.1.6. Paraboli ylinder funtions. An appropriate paraboli ylinder fun-tion satis�es the highly ill-onditioned boundary value problem [17, 24℄y0 � � 0 1�1� t� � y = 0; a = �1 < t < b = 1� 1 00 0 � y(a) + � 0 01 0 � y(b) = � 12 �with � = 1=70. Here the exat solution is given by y(t) = (u(t); u0(t))T whereu(t) = t2 + 32M � 12��M � t22��with M the paraboli ylinder funtion [1℄M(x) = 1Xn=0 �12n� 1 xnn! :Sine the ondition number of this test problem is about � = 1015 and the bestauray expeted from any bakward stable numerial method in double preision isof order O(�� 10�14) = O(1), our ode does very well to obtain six-digit auray inless than 1 se of CPU time.3.2. Equidistant mesh results. We verify the high-order auray of bvpdby solving the six test problems of x3.1 on equidistant n-point meshes. We used ordersp = 2 through 20 and n = 16 through 65536 to solve eah test problem and plottedthe error vs. CPU time in Fig. 2. The plots exhibit the expeted order of onvergeneto 12-digit auray, exept for the ill-onditioned paraboli ylinder problem (3.1.6).Our high-order methods obtain muh better auray per unit CPU time thanlow-order methods, up to about order 12 or so. For example, 4 orretions (10thorder) gives 12-digit auray on the Airy problem (3.1.5), in the 10 CPU se thatthe unorreted seond-order midpoint rule requires to get three-digit auray. Twofators ontribute to this highly stable behavior: the stability of QR fatorization, andthe similarity between deferred orretion and iterative improvement for the solutionof ill-onditioned linear systems [18℄.The inevitable roundo� error begins to redue auray for very large N , beausethe linear system Mh = � has ondition number � = O(N) � 105. Sine thebakward error is on the order of � times the residual, we annot expet better than12-digit auray with N = 65536 even if the residual � approahes mahine preision.3.3. Adaptive mesh results. We verify the reliability of the adaptive meshstrategy in bvpd by solving eah test problem in x3.1 on a sequene of adaptivelygenerated meshes with toleranes � = 10�3 through 10�10, using orders p = 4 through20. The resulting errors vs. CPU times are plotted in Fig. 3. Table 1 presents adaptivemesh statistis at orders p = 4, 8, 12 and 16, whih learly demonstrate the superioreÆieny of high-order methods with p � 8 even for rather oarse toleranes suh as� = 10�6. 9



Table 1Statistis for the adaptive method with tolerane � = 10�6 and orders p = 4, 8, 12 and 16:number of mesh points N , mesh ratio R = maxj hj=minhj , aumulated CPU time T = T1+� � �+TS ,maximum error E = maxjku(tj )�y(tj )k and error estimate C = maxtk(t)k at eah step 0, 1, . . . ,of the adaptive re�nement proedure. (High-order results agree with low-order results for the �rstfew steps, and are not repeated in the tables. Asterisks denote ases where the fourth-order methodterminated early due to lak of spae.)Example p Step N R T E C3.1.1 0 491 1 .06 .16-11 .38-54 1 4709 1.41 .57 .16-13 .43-78 1 1163 1.34 .23 .16-13 .62-1312 1 823 1.19 .22 .51-14 .32-1416 1 710 1.13 .28 .16-13 .19-143.1.2 0 491 1 .01 .45-1 .14-04 1 1493 1.14 .05 .44-3 .81-22 13822 1.23 .36 .24-7 .77-43 127979 1.33 3.23 .57-11 .77-68 2 3209 5.23 .19 .79-10 .36-912 2 2355 2.84 .27 .77-9 .26-816 2 2066 2.18 .41 .39-8 .13-73.1.3 0 491 1 .02 .38+1 .11+14 1 1617 1.86 .08 .89-0 .14+12 5133 3.49 .28 .97-2 .58-13 51319 3.49 2.2 .54-6 .42-34 500000 3.49 22 .12-8 .20-4*8 3 11159 16.2 .94 .40-10 .69-912 3 8171 10.5 1.14 .34-8 .21-716 3 7152 7.65 1.63 .87-9 .55-83.1.4 0 491 1 .15 .15+1 .58-04 1 2196 1.74 .83 .44-0 .63-02 7769 3.14 3.20 .45-1 .78-13 77655 4.44 27.1 .34-5 .11-34 500000 6.28 29.5 .35-5 .11-3*8 3 77501 16.4 32.1 .89-10 .22-812 3 31780 9.82 18.1 .16-5 .17-54 46995 9.82 40.1 .31-6 .34-616 3 21246 7.09 15.9 .14+1 .98-04 29245 6.89 33.6 .86-4 .92-45 38913 6.88 56.8 .65-6 .71-63.1.5 0 491 1 .01 .73+1 .10+14 1 1745 1.71 .07 .66+1 .98+02 6926 2.99 .30 .11+1 .11+13 29091 5.26 1.23 .16-2 .64-14 290866 5.26 10.6 .15-6 .62-35 500000 2.29 26.7 .13-6 .55-4*8 4 221324 24.4 13.4 .27-9 .26-812 4 100594 15.7 11.4 .56-9 .22-816 4 69594 11.5 14.0 .39-9 .16-810



Our strategy obtains high auray in CPU times omparable to the nonadaptiveode for all test problems. It also ompares favorably with the best Netlib odestested (x3.5). For example, both with and without an adaptive mesh, bvpd obtains12-digit auray on a boundary layer of width 10�4 (3.1.3) in CPU time omparableto mirkd (order 2, 4 or 6) or twpbvp.3.4. High-order onvergene on the beam problem. We demonstrate high-order onvergene on the beam problem (3.1.1) with 0 through 9 deferred orretionsteps on an equidistant n-point mesh, in quadruple-preision arithmeti with mahinepreision about 10�28. For this high-preision onvergene study, we ompiled bvpdwith the Sun Fortran ompiler f77 and ompiler ags -xtypemap=real:64,double:128.The quadruple preision exeutable runs orders of magnitude slower than double pre-ision, but allows us to verify higher orders of onvergene.Table 2 learly indiates that orders p = 2 through 20 are ahieved after m =p=2�1 orretion steps, and suggests that the lassial onvergene analysis of deferredorretion with unentered di�erene formulas [16, 29℄ may be inomplete.Table 2Order-p errors in the beam problem (3.1.1) on a uniform n-point mesh.p n = 512 1024 2048 4096 8192 16384 32768 655362 6.6-1 1.2-0 4.3-0 5.8-1 3.1-1 1.0-1 2.9-2 7.3-34 3.9-2 3.6-3 1.9-4 8.3-6 4.7-7 2.8-8 1.7-9 1.1-106 2.4-2 1.1-4 6.1-6 6.9-8 3.7-10 8.1-12 1.5-13 2.4-158 2.1-2 1.2-4 1.3-6 4.4-9 8.4-12 1.2-14 2.0-17 5.4-2010 1.4-2 4.3-5 1.7-7 1.8-10 9.5-14 3.4-17 1.0-20 2.7-2412 1.1-2 1.2-5 2.3-8 7.8-12 1.2-15 1.1-19 8.5-24 5.8-2814 1.6-2 5.6-6 3.2-9 3.4-13 1.4-17 3.6-22 7.1-27 3.0-2916 4.4-2 1.8-6 4.4-10 1.5-14 1.8-19 1.2-24 5.8-30 5.0-3018 6.3-2 7.1-7 6.3-11 6.6-16 2.2-21 3.9-27 9.4-30 1.8-2920 3.2-2 2.6-7 8.9-12 3.0-17 2.7-23 1.5-29 1.4-29 2.2-293.5. Comparison odes. We ompared bvpd to four freely-available Fortran77 odes from Netlib|olnew, mirkd, musl, and twpbvp. Suh omparisons areintended to evaluate the potential usefulness of our simple tehnique for solving dif-�ult problems. Fig. 4 exhibits base-10 log-log plots of the maximum error vs. CPUmilliseonds required by eah Netlib ode to solve eah test problem with toleranes� = 10�2, 10�4, . . . , 10�10.olnew [3℄, an updated version of olsys [2℄, uses olloation at Gaussian points[28℄ with an improved basis replaing the B-splines of olsys. It solves extremelygeneral linear and nonlinear multipoint BVPs of mixed orders up to four, requiresseparated boundary onditions, and automatially generates a mesh on whih theerror is approximately equidistributed. The results of olnew are indiated by a \C"in Fig. 4.mirkd [20℄ solves nonlinear �rst-order BVPs with separated boundary onditionsby deferred orretion of mono-impliit Runge-Kutta methods of orders 2, 4 or 6.The mesh is adapted to equidistribute an approximate residual or \defet" omputedfrom a C1 interpolant, so the \d" in the name stands for \defet ontrol" ratherthan deferred orretion. The results of mirkd with order 2, 4 or 6 are indiated bya \2", \4" or \6" respetively in Fig. 4. The oasional very short lines are due to11
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(a) Boundary layer problem (3.1.3)

(b) Bessel system (3.1.4)

() Airy turning point (3.1.5)

Fig. 1. The �rst omponent of the solutions of the boundary layer problem (3.1.3), the Besselsystem (3.1.4), and Airy turning point problem (3.1.5), with the relative density of the adaptivemesh produed by bvpd for error tolerane � = 10�3.14



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder funtions (3.1.6)
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Fig. 2. Base-10 logarithm of error vs. logarithm of CPU milliseonds with 0 to 9 steps ofdeferred orretion yielding shemes of orders 2 through 20 on uniform meshes.15



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder funtions (3.1.6)
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Fig. 3. Base-10 log-log plot of error vs. CPU milliseonds with 1 to 9 steps of deferred orretionyielding shemes of orders 4 through 20 on adaptive meshes.16



Beam equation (3.1.1) Sti� system (3.1.2)
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Boundary layer (3.1.3) Bessel system (3.1.4)
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Airy turning point (3.1.5) Cylinder funtions (3.1.6)
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Fig. 4. Base-10 logarithm of error vs. logarithm of CPU milliseonds with three standardadaptive odes from Netlib: \C" indiates results for olnew, \M" for musl, \T" for twpbvp, andnumerals 2 through 6 indiate mirkd results of the orresponding order.17


