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EXAMPLES OF ELLIPTIC PROBLEMS

Cauchy-Riemann
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Low-frequency Maxwell
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Linear elasticity
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Laplace/Poisson/Helmholtz/Yukawa/ ...
Au—Adu=f

Stokes
—Au—+Vp=f V-u=20



PART 1. CONVERTING TO FIRST-ORDER SYSTEMS

Arbitrary-order system of partial differential equations

R E Z az-jkl(‘)i(‘)jvl -+ Z bjkl(‘)jvl -+ Z CLIV] = fk: in Q2 C Rd
171 gl l
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Seek new solution vector v = (v,dqv,...,0,v,... )"
satisfying sparse p x g first-order system
Au=> A;0;u+ Aou = f in
J

and zero-order local linear algebraic boundary conditions

Bu =g on |l

Elliptic iff principal part
J

has full rank for all unit vectors n



ELLIPTICITY AND SOLVABILITY

J
Left inverse AL of any principal part A, = )y njAj
determines normal derivative

Onu = Z n;0;u = A;rL (f — ApOru — Agu)
0
in terms of values and tangential derivatives Ar-0ru

Could march 0,u inward to solve boundary value problem
but typical low-rank boundary conditions

v
Bu = [ a fBny Bno } v | =g (BB*)? = BB*
Oov

determine only local projection Qu = B*Bu

Global continuity determines complementary projection
Pu = (I — B*B)u everywhere on boundary



SQUARE BUT NOT ELLIPTIC

Elliptic boundary value problem for 2D equation

Av—v=Ff in Q2

av + BOpv = g on

Obvious 3 x 3 square system
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anti-elliptic: principal part
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Overdetermined 4 x 3 system

ALGEBRA TO THE RESCUE
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adds compatibility condition to enforce ellipticity:

J

Cancellations determine original v from A*Au = A*f:
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full-rank for all unit vectors n



PART 2. POTENTIAL THEORY

Given fundamental matrix Gz(y) of adjoint system

d
A*'Gr = — ) 0;Gx(y)A; + Go(y)Ag = d2(y)1 in QD L,
j=1

Gauss theorem (and 6, — 36y as = —y € I")

|05 (Ga)Aju(®)) dy = [ n;(1)G(1)Aju(x) dy

iImplies simple boundary integral equation

Su) + [ Gy () An(o)u(o) do = Gf(7) on T

with volume potential

Gf(y) = /Q Gy(y)f(y)dy

Alternatively, homogeneous fundamental matrix F,(y) of
principal part A — Ay gives volume integral equation

SuO) + [ Fy(0) An(o)u(e) do + FAgu(y) = Ff(x) on T
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PROJECTED INTEGRAL EQUATION
Project out boundary condition Bu =g with P=1 - B*B

Solve square integral equation

%u(v) + /rP(v)Gv(U)An(a)u(a)dJ = p(7)

for locally projected unknown = Pu with data

p(v) = P(v)Gf(v) — P(v)LB*g(7)

and single layer potential

Lh(v) = /r G (o) An(0)h(o) do

Recover u = i+ B*g locally on ' and then globally

u(x) =Gf(x) + Lu(x) inQ

Volume integral is compact correction



EXAMPLE 1: LAPLACE ...

Av—dv=f
Fundamental matrix
i 01 Ry >Ry, 0 R)
G=|(M+1)02R_1R\—R_ 1 (A+1)010oR_1Ry  —02R_1 01R,
(A4 1)010oR_1Ry,  (A+1)05R_1Ry—R_1 01R_1 0O2R)

with kernel R, of resolvent (A — z)~1
for two values z = X and z = —1 (due to scaling)

Nonclassical integral equations for Dirichlet problem

1
Ev,n + n - /l‘aRXU’n —t- /l‘aR_lU’t = pn

1
“vitne [ OR gt [ ORwa =
5t r 1Yt L Pt
determine usual normal derivative v, and
unusual tangential derivative v; of solution v
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EXAMPLE 2: MAXWELL

VXFE=—iwH V- -E=4mp
VX H=IwFE 4+ 4my V-H=0
Homogeneous fundamental matrix
[ 0 03 -0, 07 O 0 0O O |
—93 0 91 9 O O 0 O
| 8 -0 0 93 O 0O O O
F=1205 0o 0o 0 o 03 —0r 01 Ro
0O -0 O 0 —-93 0 91 o
0 0 -0 0 8, —-61 0 033

with kernel Rg of resolvent A~1

Volume integral equation

4 + [ F(0) An(0)u(o) do + FAou(y) = Ff(z) on T

employs layer potential independent of frequency and
sequesters frequency w into compact volume potential FAg

11



GENERAL FUNDAMENTAL MATRIX

Fourier analysis in box @ D €2 gives fundamental matrix

Go(y) = Y e Zs(k)~La* (k)elF v
kezd
with s = a*a positive definite Hermitian and symbol

d
j=1

Homogeneity of principal part makes box potential
Alf@) = [ Galw) ) ay
a bounded Fredholm operator from any H51(Q) to H3(Q)

Trace ~ : H5(Q) — H5~1/2(I") restricts volume potential
Gf =~ATf to H3~1/2(I") where g = Bu lives

Dual trace ~* : H1/2=5(I") — H~35(Q) yields layer potential
Lg = vAlv*¢g mapping HY/2=5(I) to itself

Repaired at endpoint s = 1/2 by homogeneity

12



PART 3. GENERALIZED EWALD SUMMATION

Matrix filter e~ 7% gives exponential convergence
Go(y) = Z e—ikae—Ts(k)S(k)—la*(k)eikTy
k|<N
+ tiny O(e—"N%) truncation error
+ big O(7) but local filtering error

Fundamental matrix G is smooth rapidly-converging series
Gr(z) = Ze—Ts(k)S(k)—la*(k)e—ika N e—TSS—lA*

corrected by local asymptotic series

2 3
G—Gr=U—e s ta* = (T—%5+%$2—---> A*

with local differential operators A4* and S = A*A

Includes many classical local corrections and Ewald formulas
(with special function kernels) for Laplace, Stokes, ...
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LOCAL CORRECTION IN A BOX
AT f(z) = (G- + Cr) f(z) solves Au = f in periodic box Q
Rapidly converging Fourier series G, f approximated by FFT

EXxplicit local correction

2 3

Crf(z) = <T—%S—|—T

580 %5”14) A*f(z) + O(r™ 1)

approximated by (2p + 1)%point stencil with matrix weights
Crf(z) = > Wi(@)f(z+kh) + O™ 1) + O(rh?P).

E|<p

High-order accuracy with minimal smoothness requirements
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LOCALLY-CORRECTED VOLUME POTENTIALS

Gauss theorem differentiates indicator function w(xz) of set Q2

a-d=/ wdy & O = n.d

Second-order derivatives involve curvature

VVolume potential of discontinuous source fw splits

Gf(x) = [ Ca)f () dy = AT(fw) = G(f) + Cr(fw)

EXxplicit local correction C, satisfies product rule

Cr(fw)(x) = 7 [(A*f(2))w(z) — A}, f(2)dr (2)] + O(7)

and localizes Galerkin computations
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IMPLICIT LOCAL CORRECTION

Volume potential

w=Gf(x) =G-f+ (I —e " u
since A*f = A*Au = Su

Sharpen G;f into u with local backward heat flow

U = e+TSng

Analogous to Gaussian nonuniform fast Fourier transform:
smooth rough sources, uniform transform, unsmooth

Overcomes Gibbs phenomenon?
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SPECTRAL INTEGRAL EQUATION

Fourier series for fundamental solution separates variables
Gr(z —vy) = Ze—ikae—Ts(k)aT(k)eikTy

Converts integral equation to semi-separated form

@ + MRT ) u(y) = p(»)

— T computes Fourier coefficients of (A,u)dr
— R applies e~ 7547 to Fourier modes
— M evaluates Fourier series on [

Solve in Fourier space by identity
1 —1 1 —1
(§+MRT) =2 -—-2MR (§—|—TMR> T
Compresses integral operator to low-rank matrix

(TMR), = [ An(0)P(0)e” 5077 doe=7*(Waf (g)

Randomize Fourier transform
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NONUNIFORM FAST FOURIER TRANSFORM
Standard FFT works on uniform equidistant mesh

Nonuniform FFT works on arbitrary point sources:

— form coefficients from small source to large target spans

— butterfly: merge source and shorten target span recursively
— evaluate large source fields in small target spans

Integral equation requires Fourier coefficients
of soup of piecewise polynomials Pj on simplices Tj
(points, segments, triangles, tetrahedra, ...)

Fy =% | " Pi(a)da
J J

Similar to semiconductor mask computations
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GEOMETRIC NONUNIFORM FFT

Geometric NUFFT evaluates Fourier coefficients of
soup Iin arbitrary dimension and codimension

Still a butterfly but

— integrate polynomials over d-dimensional source simplices
— and d-dimensional target simplices

— to apply exact transform in D dimensions

Dimensional recursion evaluates matrix element
A
F(k,d,S,P,a,o) = /S (x — o)*e* ZP(z) dx

in terms of

— lower-dimensional simplex faces F'(k,d —1,0;S, P, a,0)

— lower-degree differentiated polynomials F'(k,d, S,0;P,a,0)
— lower-order moments F'(k,d, S, P,a —e;,0)

Numerically stable for large |k|, quadrature for small |k
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CONCLUSION

Solve general elliptic problems

in first-order overdetermined form with

— projected boundary integral equation

— generalized Ewald summation

— geometric nonuniform fast Fourier transforms
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