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1. First-order overdetermined systems

– Ellipticity

2. Boundary and volume integral equations

– Derivation

– Fundamental matrices and examples

– Fredholm operators

3. Fast algorithms

– Generalized Ewald summation

– Implicit local correction

– Geometric nonuniform fast Fourier transform
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EXAMPLES OF ELLIPTIC PROBLEMS

Cauchy-Riemann

∂xu = ∂yv ∂yu = −∂xv

Low-frequency Maxwell

∇× E = −iωH ∇ · E = 4πρ

∇×H = iωE + 4πj ∇ ·H = 0

Linear elasticity

∂iσij + Fj = 0 σij −
1

2
Cijkl (∂kul + ∂luk) = 0

Laplace/Poisson/Helmholtz/Yukawa/ . . .

∆u− λu = f

Stokes

−∆u+∇p = f ∇ · u = 0
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PART 1. CONVERTING TO FIRST-ORDER SYSTEMS

Arbitrary-order system of partial differential equations

· · ·+
∑
ijl

aijkl∂i∂jvl +
∑
jl

bjkl∂jvl +
∑
l

cklvl = fk in Ω ⊂ Rd

∑
l

αklvl +
∑
jl

βkjl∂jvl + · · · = gk on Γ = ∂Ω

Seek new solution vector u = (v, ∂1v, . . . , ∂dv, . . .)
T

satisfying sparse p× q first-order system

Au =
∑
j

Aj∂ju+A0u = f in Ω

and zero-order local linear algebraic boundary conditions

Bu = g on Γ

Elliptic iff principal part

An =
∑
j

njAj

has full rank for all unit vectors n
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ELLIPTICITY AND SOLVABILITY

Au =
∑
j

Aj∂ju+A0u = f in Ω

Left inverse A
†
n of any principal part An =

∑
j njAj

determines normal derivative

∂nu =
∑
i

ni∂iu = A†n (f −AT∂Tu−A0u)

in terms of values and tangential derivatives AT∂Tu

Could march ∂nu inward to solve boundary value problem

but typical low-rank boundary conditions

Bu =
[
α βn1 βn2

]  v
∂1v
∂2v

 = g (BB∗)2 = BB∗

determine only local projection Qu = B∗Bu

Global continuity determines complementary projection

Pu = (I −B∗B)u everywhere on boundary
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SQUARE BUT NOT ELLIPTIC

Elliptic boundary value problem for 2D equation

∆v − λv = f in Ω

αv + β∂nv = g on Γ

Obvious 3× 3 square system

Au =

 ∂1 −1 0
∂2 0 −1
−λ ∂1 ∂2


 v
∂1v
∂2v

 =

 0
0
f



Bu =
[
α βn1 βn2

]  v
∂1v
∂2v

 = g

anti-elliptic: principal part

∑
j

njAj =

 n1 0 0
n2 0 0
0 n1 n2

 singular for all unit vectors n!
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ALGEBRA TO THE RESCUE

∆v − λv = f in Ω

Overdetermined 4× 3 system

Au =


∂1 −1 0
∂2 0 −1
0 −∂2 ∂1
−λ ∂1 ∂2


 v
∂1v
∂2v

 =


0
0
0
f


adds compatibility condition to enforce ellipticity:

An =
∑
j

njAj =


n1 0 0
n2 0 0
0 −n2 n1
0 n1 n2

 full-rank for all unit vectors n

Cancellations determine original v from A∗Au = A∗f:(
∆ + λ2

)
v − (λ+ 1)∂1v1 − (λ+ 1)∂2v2 = λf
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PART 2. POTENTIAL THEORY

Given fundamental matrix Gx(y) of adjoint system

A∗Gx = −
d∑

j=1

∂jGx(y)Aj +Gx(y)A0 = δx(y)I in Q ⊃ Ω,

Gauss theorem (and δx → 1
2δγ as x→ γ ∈ Γ)∫

Ω
∂j
(
Gx(y)Aju(y)

)
dy =

∫
Γ
nj(γ)Gx(γ)Aju(γ) dγ

implies simple boundary integral equation

1

2
u(γ) +

∫
Γ
Gγ(σ)An(σ)u(σ) dσ = Gf(γ) on Γ

with volume potential

Gf(γ) =
∫

Ω
Gγ(y)f(y) dy

Alternatively, homogeneous fundamental matrix Fx(y) of
principal part A−A0 gives volume integral equation

1

2
u(γ) +

∫
Γ
Fγ(σ)An(σ)u(σ) dσ + FA0u(γ) = Ff(γ) on Γ
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PROJECTED INTEGRAL EQUATION

Project out boundary condition Bu = g with P = I −B∗B

Solve square integral equation

1

2
µ(γ) +

∫
Γ
P (γ)Gγ(σ)An(σ)µ(σ)dσ = ρ(γ)

for locally projected unknown µ = Pu with data

ρ(γ) = P (γ)Gf(γ)− P (γ)LB∗g(γ)

and single layer potential

Lh(γ) =
∫

Γ
Gγ(σ)An(σ)h(σ) dσ

Recover u = µ+B∗g locally on Γ and then globally

u(x) = Gf(x) + Lu(x) in Ω

Volume integral is compact correction
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EXAMPLE 1: LAPLACE . . .

∆v − λv = f

Fundamental matrix

G =

 ∂1Rλ ∂2Rλ 0 Rλ
(λ+ 1)∂2

1R−1Rλ −R−1 (λ+ 1)∂1∂2R−1Rλ −∂2R−1 ∂1Rλ
(λ+ 1)∂1∂2R−1Rλ (λ+ 1)∂2

2R−1Rλ −R−1 ∂1R−1 ∂2Rλ


with kernel Rz of resolvent (∆− z)−1

for two values z = λ and z = −1 (due to scaling)

Nonclassical integral equations for Dirichlet problem

1

2
v,n + n ·

∫
Γ
∂Rλv,n − t ·

∫
Γ
∂R−1v,t = ρn

1

2
v,t + n ·

∫
Γ
∂R−1v,t − t ·

∫
Γ
∂Rλv,n = ρt

determine usual normal derivative v,n and

unusual tangential derivative v,t of solution v
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EXAMPLE 2: MAXWELL

∇× E = −iωH ∇ · E = 4πρ

∇×H = iωE + 4πj ∇ ·H = 0

Homogeneous fundamental matrix

F =



0 ∂3 −∂2 ∂1 0 0 0 0
−∂3 0 ∂1 ∂2 0 0 0 0
∂2 −∂1 0 ∂3 0 0 0 0
−0 0 0 0 0 ∂3 −∂2 ∂1
0 −0 0 0 −∂3 0 ∂1 ∂2
0 0 −0 0 ∂2 −∂1 0 ∂3


R0

with kernel R0 of resolvent ∆−1

Volume integral equation

1

2
u(γ) +

∫
Γ
Fγ(σ)An(σ)u(σ) dσ + FA0u(γ) = Ff(γ) on Γ

employs layer potential independent of frequency and
sequesters frequency ω into compact volume potential FA0
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GENERAL FUNDAMENTAL MATRIX

Fourier analysis in box Q ⊃ Ω gives fundamental matrix

Gx(y) =
∑
k∈Zd

e−ikTxs(k)−1a∗(k)eikTy

with s = a∗a positive definite Hermitian and symbol

a(k) = i
d∑

j=1

kjAj +A0

Homogeneity of principal part makes box potential

A†f(x) =
∫
Q
Gx(y)f(y) dy

a bounded Fredholm operator from any Hs−1(Q) to Hs(Q)

Trace γ : Hs(Q) ↪→ Hs−1/2(Γ) restricts volume potential
Gf = γA†f to Hs−1/2(Γ) where g = Bu lives

Dual trace γ∗ : H1/2−s(Γ) ↪→ H−s(Q) yields layer potential
Lg = γA†γ∗g mapping H1/2−s(Γ) to itself

Repaired at endpoint s = 1/2 by homogeneity
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PART 3. GENERALIZED EWALD SUMMATION

Matrix filter e−τs gives exponential convergence

Gx(y) =
∑
|k|≤N

e−ikTxe−τs(k)s(k)−1a∗(k)eikTy

+ tiny O(e−τN
2
) truncation error

+ big O(τ) but local filtering error

Fundamental matrix G is smooth rapidly-converging series

Gτ(x) =
∑

e−τs(k)s(k)−1a∗(k)e−ikTx ∼ e−τSS−1A∗

corrected by local asymptotic series

G − Gτ = (I − e−τS)S−1A∗ =

(
τ −

τ2

2!
S +

τ3

3!
S2 − · · ·

)
A∗

with local differential operators A∗ and S = A∗A

Includes many classical local corrections and Ewald formulas

(with special function kernels) for Laplace, Stokes, . . .
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LOCAL CORRECTION IN A BOX

A†f(x) = (Gτ + Cτ) f(x) solves Au = f in periodic box Q

Rapidly converging Fourier series Gτf approximated by FFT

Explicit local correction

Cτf(x) =

(
τ −

τ2

2!
S +

τ3

3!
S2 − · · · ±

τm

m!
Sm−1

)
A∗f(x) +O(τm+1)

approximated by (2p+ 1)d-point stencil with matrix weights

Cτf(x) =
∑
|k|≤p

Wk(x)f(x+ kh) +O(τm+1) +O(τh2p).

High-order accuracy with minimal smoothness requirements
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LOCALLY-CORRECTED VOLUME POTENTIALS

Gauss theorem differentiates indicator function ω(x) of set Ω∫
Ω
∂judx =

∫
Γ
njudγ ⇔ ∂jω = njδΓ

Second-order derivatives involve curvature

∂j∂kω(x) = (∂jnk)δΓ + njnk∂nδΓ

Volume potential of discontinuous source fω splits

Gf(x) =
∫

Ω
Gx(y)f(y) dy = A†(fω) = Gτ(f) + Cτ(fω)

Explicit local correction Cτ satisfies product rule

Cτ(fω)(x) = τ
[
(A∗f(x))ω(x)−A∗nf(x)δΓ(x)

]
+O(τ2)

and localizes Galerkin computations
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IMPLICIT LOCAL CORRECTION

Volume potential

u = Gf(x) = Gτf + (I − e−τS)u

since A∗f = A∗Au = Su

Sharpen Gτf into u with local backward heat flow

u = e+τSGτf

Analogous to Gaussian nonuniform fast Fourier transform:

smooth rough sources, uniform transform, unsmooth

Overcomes Gibbs phenomenon?
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SPECTRAL INTEGRAL EQUATION

Fourier series for fundamental solution separates variables

Gτ(x− y) =
∑

e−ikTxe−τs(k)a†(k)eikTy

Converts integral equation to semi-separated form(
1

2
+MRT

)
µ(γ) = ρ(γ)

– T computes Fourier coefficients of (Anµ)δΓ
– R applies e−τsa† to Fourier modes
– M evaluates Fourier series on Γ

Solve in Fourier space by identity(
1

2
+MRT

)−1
= 2− 2MR

(
1

2
+ TMR

)−1
T

Compresses integral operator to low-rank matrix

(TMR)kq =
∫

Γ
An(σ)P (σ)e−i(k−q)Tσ dσ e−τs(q)a†(q)

Randomize Fourier transform
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NONUNIFORM FAST FOURIER TRANSFORM

Standard FFT works on uniform equidistant mesh

Nonuniform FFT works on arbitrary point sources:

– form coefficients from small source to large target spans

– butterfly: merge source and shorten target span recursively

– evaluate large source fields in small target spans

Integral equation requires Fourier coefficients

of soup of piecewise polynomials Pj on simplices Tj
(points, segments, triangles, tetrahedra, . . . )

f̂(k) =
∑
j

∫
Tj

eikTxPj(x) dx

Similar to semiconductor mask computations
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GEOMETRIC NONUNIFORM FFT

Geometric NUFFT evaluates Fourier coefficients of

soup in arbitrary dimension and codimension

Still a butterfly but

– integrate polynomials over d-dimensional source simplices

– and d-dimensional target simplices

– to apply exact transform in D dimensions

Dimensional recursion evaluates matrix element

F (k, d, S, P, α, σ) =
∫
S

(x− σ)α eikTxP (x) dx

in terms of

– lower-dimensional simplex faces F (k, d− 1, ∂jS, P, α, σ)

– lower-degree differentiated polynomials F (k, d, S, ∂jP, α, σ)

– lower-order moments F (k, d, S, P, α− ej, σ)

Numerically stable for large |k|, quadrature for small |k|
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CONCLUSION

Solve general elliptic problems

in first-order overdetermined form with

– projected boundary integral equation

– generalized Ewald summation

– geometric nonuniform fast Fourier transforms
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