Boundary integral methods

for general elliptic problems

John Strain
Mathematics Department
UC Berkeley
July 2014

OVERVIEW

1. First-order overdetermined systems

- Ellipticity

2. Boundary and volume integral equations

- Derivation
- Fundamental matrices and examples
- Fredholm operators

3. Fast algorithms

- Generalized Ewald summation
- Implicit local correction
- Geometric nonuniform fast Fourier transform

EXAMPLES OF ELLIPTIC PROBLEMS

Cauchy-Riemann

$$
\partial_{x} u=\partial_{y} v \quad \partial_{y} u=-\partial_{x} v
$$

Low-frequency Maxwell

$$
\begin{aligned}
\nabla \times E=-\mathrm{i} \omega H & \nabla \cdot E=4 \pi \rho \\
\nabla \times H=\mathrm{i} \omega E+4 \pi j & \nabla \cdot H=0
\end{aligned}
$$

Linear elasticity

$$
\partial_{i} \sigma_{i j}+F_{j}=0 \quad \sigma_{i j}-\frac{1}{2} C_{i j k l}\left(\partial_{k} u_{l}+\partial_{l} u_{k}\right)=0
$$

Laplace/Poisson/Helmholtz/Yukawa/ ...

$$
\Delta u-\lambda u=f
$$

Stokes

$$
-\Delta u+\nabla p=f \quad \nabla \cdot u=0
$$

PART 1. CONVERTING TO FIRST-ORDER SYSTEMS

Arbitrary-order system of partial differential equations

$$
\begin{gathered}
\cdots+\sum_{i j l} a_{i j k l} \partial_{i} \partial_{j} v_{l}+\sum_{j l} b_{j k l} \partial_{j} v_{l}+\sum_{l} c_{k l} v_{l}=f_{k} \quad \text { in } \Omega \subset R^{d} \\
\sum_{l} \alpha_{k l} v_{l}+\sum_{j l} \beta_{k j l} \partial_{j} v_{l}+\cdots=g_{k} \quad \text { on } \Gamma=\partial \Omega
\end{gathered}
$$

Seek new solution vector $u=\left(v, \partial_{1} v, \ldots, \partial_{d} v, \ldots\right)^{T}$
satisfying sparse $p \times q$ first-order system

$$
\mathcal{A} u=\sum_{j} A_{j} \partial_{j} u+A_{0} u=f \quad \text { in } \Omega
$$

and zero-order local linear algebraic boundary conditions

$$
B u=g \quad \text { on } \Gamma
$$

Elliptic iff principal part

$$
A_{n}=\sum_{j} n_{j} A_{j}
$$

has full rank for all unit vectors n

ELLIPTICITY AND SOLVABILITY

$$
\mathcal{A} u=\sum_{j} A_{j} \partial_{j} u+A_{0} u=f \quad \text { in } \Omega
$$

Left inverse A_{n}^{\dagger} of any principal part $A_{n}=\sum_{j} n_{j} A_{j}$ determines normal derivative

$$
\partial_{n} u=\sum_{i} n_{i} \partial_{i} u=A_{n}^{\dagger}\left(f-A_{T} \partial_{T} u-A_{0} u\right)
$$

in terms of values and tangential derivatives $A_{T} \partial_{T} u$
Could march $\partial_{n} u$ inward to solve boundary value problem but typical low-rank boundary conditions

$$
B u=\left[\begin{array}{lll}
\alpha & \beta n_{1} & \beta n_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=g \quad\left(B B^{*}\right)^{2}=B B^{*}
$$

determine only local projection $Q u=B^{*} B u$
Global continuity determines complementary projection $P u=\left(I-B^{*} B\right) u$ everywhere on boundary

SQUARE BUT NOT ELLIPTIC

Elliptic boundary value problem for 2D equation

$$
\begin{array}{cc}
\Delta v-\lambda v=f & \text { in } \Omega \\
\alpha v+\beta \partial_{n} v=g & \text { on } \Gamma
\end{array}
$$

Obvious 3×3 square system

$$
\begin{gathered}
\mathcal{A} u=\left[\begin{array}{ccc}
\partial_{1} & -1 & 0 \\
\partial_{2} & 0 & -1 \\
-\lambda & \partial_{1} & \partial_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
f
\end{array}\right] \\
B u=\left[\begin{array}{lll}
\alpha & \beta n_{1} & \beta n_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=g
\end{gathered}
$$

anti-elliptic: principal part

$$
\sum_{j} n_{j} A_{j}=\left[\begin{array}{ccc}
n_{1} & 0 & 0 \\
n_{2} & 0 & 0 \\
0 & n_{1} & n_{2}
\end{array}\right] \quad \text { singular for all unit vectors } n!
$$

ALGEBRA TO THE RESCUE

$$
\Delta v-\lambda v=f \quad \text { in } \Omega
$$

Overdetermined 4×3 system

$$
\mathcal{A} u=\left[\begin{array}{ccc}
\partial_{1} & -1 & 0 \\
\partial_{2} & 0 & -1 \\
0 & -\partial_{2} & \partial_{1} \\
-\lambda & \partial_{1} & \partial_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
f
\end{array}\right]
$$

adds compatibility condition to enforce ellipticity:
$A_{n}=\sum_{j} n_{j} A_{j}=\left[\begin{array}{ccc}n_{1} & 0 & 0 \\ n_{2} & 0 & 0 \\ 0 & -n_{2} & n_{1} \\ 0 & n_{1} & n_{2}\end{array}\right]$
full-rank for all unit vectors n

Cancellations determine original v from $\mathcal{A}^{*} \mathcal{A} u=\mathcal{A}^{*} f$:

$$
\left(\Delta+\lambda^{2}\right) v-(\lambda+1) \partial_{1} v_{1}-(\lambda+1) \partial_{2} v_{2}=\lambda f
$$

PART 2. POTENTIAL THEORY

Given fundamental matrix $G_{x}(y)$ of adjoint system

$$
\mathcal{A}^{*} G_{x}=-\sum_{j=1}^{d} \partial_{j} G_{x}(y) A_{j}+G_{x}(y) A_{0}=\delta_{x}(y) I \quad \text { in } Q \supset \Omega
$$

Gauss theorem (and $\delta_{x} \rightarrow \frac{1}{2} \delta_{\gamma}$ as $x \rightarrow \gamma \in \Gamma$)

$$
\int_{\Omega} \partial_{j}\left(G_{x}(y) A_{j} u(y)\right) \mathrm{d} y=\int_{\Gamma} n_{j}(\gamma) G_{x}(\gamma) A_{j} u(\gamma) \mathrm{d} \gamma
$$

implies simple boundary integral equation

$$
\frac{1}{2} u(\gamma)+\int_{\Gamma} G_{\gamma}(\sigma) A_{n}(\sigma) u(\sigma) \mathrm{d} \sigma=\mathcal{G} f(\gamma) \quad \text { on } \Gamma
$$

with volume potential

$$
\mathcal{G} f(\gamma)=\int_{\Omega} G_{\gamma}(y) f(y) \mathrm{d} y
$$

Alternatively, homogeneous fundamental matrix $F_{x}(y)$ of principal part $\mathcal{A}-A_{0}$ gives volume integral equation

$$
\frac{1}{2} u(\gamma)+\int_{\Gamma} F_{\gamma}(\sigma) A_{n}(\sigma) u(\sigma) \mathrm{d} \sigma+\mathcal{F} A_{0} u(\gamma)=\mathcal{F} f(\gamma) \quad \text { on } \Gamma
$$

PROJECTED INTEGRAL EQUATION

Project out boundary condition $B u=g$ with $P=I-B^{*} B$

Solve square integral equation

$$
\frac{1}{2} \mu(\gamma)+\int_{\Gamma} P(\gamma) G_{\gamma}(\sigma) A_{n}(\sigma) \mu(\sigma) \mathrm{d} \sigma=\rho(\gamma)
$$

for locally projected unknown $\mu=P u$ with data

$$
\rho(\gamma)=P(\gamma) \mathcal{G} f(\gamma)-P(\gamma) \mathcal{L} B^{*} g(\gamma)
$$

and single layer potential

$$
\mathcal{L} h(\gamma)=\int_{\Gamma} G_{\gamma}(\sigma) A_{n}(\sigma) h(\sigma) \mathrm{d} \sigma
$$

Recover $u=\mu+B^{*} g$ locally on Γ and then globally

$$
u(x)=\mathcal{G} f(x)+\mathcal{L} u(x) \quad \text { in } \Omega
$$

Volume integral is compact correction

EXAMPLE 1: LAPLACE ...

$$
\Delta v-\lambda v=f
$$

Fundamental matrix
$G=\left[\begin{array}{cccc}\partial_{1} R_{\lambda} & \partial_{2} R_{\lambda} & 0 & R_{\lambda} \\ (\lambda+1) \partial_{1}^{2} R_{-1} R_{\lambda}-R_{-1} & (\lambda+1) \partial_{1} \partial_{2} R_{-1} R_{\lambda} & -\partial_{2} R_{-1} & \partial_{1} R_{\lambda} \\ (\lambda+1) \partial_{1} \partial_{2} R_{-1} R_{\lambda} & (\lambda+1) \partial_{2}^{2} R_{-1} R_{\lambda}-R_{-1} & \partial_{1} R_{-1} & \partial_{2} R_{\lambda}\end{array}\right]$
with kernel R_{z} of resolvent $(\Delta-z)^{-1}$
for two values $z=\lambda$ and $z=-1$ (due to scaling)

Nonclassical integral equations for Dirichlet problem

$$
\begin{aligned}
& \frac{1}{2} v_{, n}+n \cdot \int_{\Gamma} \partial R_{\lambda} v_{, n}-t \cdot \int_{\Gamma} \partial R_{-1} v_{, t}=\rho_{n} \\
& \frac{1}{2} v, t+n \cdot \int_{\Gamma} \partial R_{-1} v_{, t}-t \cdot \int_{\Gamma} \partial R_{\lambda} v_{, n}=\rho_{t}
\end{aligned}
$$

determine usual normal derivative v, n and unusual tangential derivative v, t of solution v

EXAMPLE 2: MAXWELL

$$
\begin{aligned}
\nabla \times E=-\mathrm{i} \omega H & \nabla \cdot E=4 \pi \rho \\
\nabla \times H=\mathrm{i} \omega E+4 \pi j & \nabla \cdot H=0
\end{aligned}
$$

Homogeneous fundamental matrix

$$
F=\left[\begin{array}{cccccccc}
0 & \partial_{3} & -\partial_{2} & \partial_{1} & 0 & 0 & 0 & 0 \\
-\partial_{3} & 0 & \partial_{1} & \partial_{2} & 0 & 0 & 0 & 0 \\
\partial_{2} & -\partial_{1} & 0 & \partial_{3} & 0 & 0 & 0 & 0 \\
-0 & 0 & 0 & 0 & 0 & \partial_{3} & -\partial_{2} & \partial_{1} \\
0 & -0 & 0 & 0 & -\partial_{3} & 0 & \partial_{1} & \partial_{2} \\
0 & 0 & -0 & 0 & \partial_{2} & -\partial_{1} & 0 & \partial_{3}
\end{array}\right] R_{0}
$$

with kernel R_{0} of resolvent Δ^{-1}
Volume integral equation

$$
\frac{1}{2} u(\gamma)+\int_{\Gamma} F_{\gamma}(\sigma) A_{n}(\sigma) u(\sigma) \mathrm{d} \sigma+\mathcal{F} A_{0} u(\gamma)=\mathcal{F} f(\gamma) \quad \text { on } \Gamma
$$

employs layer potential independent of frequency and sequesters frequency ω into compact volume potential $\mathcal{F} A_{0}$

GENERAL FUNDAMENTAL MATRIX

Fourier analysis in box $Q \supset \Omega$ gives fundamental matrix

$$
G_{x}(y)=\sum_{k \in Z^{d}} \mathrm{e}^{-\mathrm{i} k^{T} x} s(k)^{-1} a^{*}(k) \mathrm{e}^{\mathrm{i} k^{T} y}
$$

with $s=a^{*} a$ positive definite Hermitian and symbol

$$
a(k)=\mathrm{i} \sum_{j=1}^{d} k_{j} A_{j}+A_{0}
$$

Homogeneity of principal part makes box potential

$$
\mathcal{A}^{\dagger} f(x)=\int_{Q} G_{x}(y) f(y) \mathrm{d} y
$$

a bounded Fredholm operator from any $H^{s-1}(Q)$ to $H^{s}(Q)$
Trace $\gamma: H^{s}(Q) \hookrightarrow H^{s-1 / 2}(\Gamma)$ restricts volume potential $\mathcal{G} f=\gamma \mathcal{A}^{\dagger} f$ to $H^{s-1 / 2}$ (Г) where $g=B u$ lives

Dual trace $\gamma^{*}: H^{1 / 2-s}(\Gamma) \hookrightarrow H^{-s}(Q)$ yields layer potential $\mathcal{L} g=\gamma \mathcal{A}^{\dagger} \gamma^{*} g$ mapping $H^{1 / 2-s}(\Gamma)$ to itself

Repaired at endpoint $s=1 / 2$ by homogeneity

PART 3. GENERALIZED EWALD SUMMATION

Matrix filter $\mathrm{e}^{-\tau s}$ gives exponential convergence

$$
\begin{aligned}
G_{x}(y) & =\sum_{|k| \leq N} \mathrm{e}^{-\mathrm{i} k^{T} x} \mathrm{e}^{-\tau s(k)} s(k)^{-1} a^{*}(k) \mathrm{e}^{\mathrm{i} k^{T} y} \\
& + \text { tiny } O\left(\mathrm{e}^{-\tau N^{2}}\right) \text { truncation error } \\
& + \text { big } O(\tau) \text { but local filtering error }
\end{aligned}
$$

Fundamental matrix G is smooth rapidly-converging series

$$
G_{\tau}(x)=\sum \mathrm{e}^{-\tau s(k)} s(k)^{-1} a^{*}(k) \mathrm{e}^{-\mathrm{i} k^{T} x} \sim \mathrm{e}^{-\tau \mathcal{S}} \mathcal{S}^{-1} \mathcal{A}^{*}
$$

corrected by local asymptotic series

$$
\mathcal{G}-\mathcal{G}_{\tau}=\left(I-\mathrm{e}^{-\tau \mathcal{S}}\right) \mathcal{S}^{-1} \mathcal{A}^{*}=\left(\tau-\frac{\tau^{2}}{2!} \mathcal{S}+\frac{\tau^{3}}{3!} \mathcal{S}^{2}-\cdots\right) \mathcal{A}^{*}
$$

with local differential operators \mathcal{A}^{*} and $\mathcal{S}=\mathcal{A}^{*} \mathcal{A}$

Includes many classical local corrections and Ewald formulas (with special function kernels) for Laplace, Stokes, ...

LOCAL CORRECTION IN A BOX

$\mathcal{A}^{\dagger} f(x)=\left(\mathcal{G}_{\tau}+\mathcal{C}_{\tau}\right) f(x)$ solves $\mathcal{A} u=f$ in periodic box Q
Rapidly converging Fourier series $\mathcal{G}_{\tau} f$ approximated by FFT

Explicit local correction

$$
\mathcal{C}_{\tau} f(x)=\left(\tau-\frac{\tau^{2}}{2!} \mathcal{S}+\frac{\tau^{3}}{3!} \mathcal{S}^{2}-\cdots \pm \frac{\tau^{m}}{m!} \mathcal{S}^{m-1}\right) \mathcal{A}^{*} f(x)+O\left(\tau^{m+1}\right)
$$

approximated by $(2 p+1)^{d}$-point stencil with matrix weights

$$
C_{\tau} f(x)=\sum_{|k| \leq p} W_{k}(x) f(x+k h)+O\left(\tau^{m+1}\right)+O\left(\tau h^{2 p}\right)
$$

High-order accuracy with minimal smoothness requirements

LOCALLY-CORRECTED VOLUME POTENTIALS

Gauss theorem differentiates indicator function $\omega(x)$ of set Ω

$$
\int_{\Omega} \partial_{j} u \mathrm{~d} x=\int_{\Gamma} n_{j} u \mathrm{~d} \gamma \quad \Leftrightarrow \quad \partial_{j} \omega=n_{j} \delta_{\Gamma}
$$

Second-order derivatives involve curvature

$$
\partial_{j} \partial_{k} \omega(x)=\left(\partial_{j} n_{k}\right) \delta_{\Gamma}+n_{j} n_{k} \partial_{n} \delta_{\Gamma}
$$

Volume potential of discontinuous source $f \omega$ splits

$$
\mathcal{G} f(x)=\int_{\Omega} G_{x}(y) f(y) \mathrm{d} y=\mathcal{A}^{\dagger}(f \omega)=\mathcal{G}_{\tau}(f)+\mathcal{C}_{\tau}(f \omega)
$$

Explicit local correction \mathcal{C}_{τ} satisfies product rule

$$
\mathcal{C}_{\tau}(f \omega)(x)=\tau\left[\left(\mathcal{A}^{*} f(x)\right) \omega(x)-A_{n}^{*} f(x) \delta_{\Gamma}(x)\right]+O\left(\tau^{2}\right)
$$

and localizes Galerkin computations

IMPLICIT LOCAL CORRECTION

Volume potential

$$
u=\mathcal{G} f(x)=\mathcal{G}_{\tau} f+\left(I-\mathrm{e}^{-\tau \mathcal{S}}\right) u
$$

since $\mathcal{A}^{*} f=\mathcal{A}^{*} \mathcal{A} u=\mathcal{S} u$

Sharpen $\mathcal{G}_{\tau} f$ into u with local backward heat flow

$$
u=\mathrm{e}^{+\tau \mathcal{S}_{\mathcal{G}_{\tau}} f}
$$

Analogous to Gaussian nonuniform fast Fourier transform: smooth rough sources, uniform transform, unsmooth

Overcomes Gibbs phenomenon?

SPECTRAL INTEGRAL EQUATION

Fourier series for fundamental solution separates variables

$$
G_{\tau}(x-y)=\sum \mathrm{e}^{-\mathrm{i} k^{T} x} \mathrm{e}^{-\tau s(k)} a^{\dagger}(k) \mathrm{e}^{\mathrm{i} k^{T} y}
$$

Converts integral equation to semi-separated form

$$
\left(\frac{1}{2}+M R T\right) \mu(\gamma)=\rho(\gamma)
$$

- T computes Fourier coefficients of $\left(A_{n} \mu\right) \delta_{\Gamma}$
$-R$ applies $\mathrm{e}^{-\tau s} a^{\dagger}$ to Fourier modes
$-M$ evaluates Fourier series on Γ
Solve in Fourier space by identity

$$
\left(\frac{1}{2}+M R T\right)^{-1}=2-2 M R\left(\frac{1}{2}+T M R\right)^{-1} T
$$

Compresses integral operator to low-rank matrix

$$
(T M R)_{k q}=\int_{\Gamma} A_{n}(\sigma) P(\sigma) \mathrm{e}^{-\mathrm{i}(k-q)^{T} \sigma} \mathrm{~d} \sigma \mathrm{e}^{-\tau s(q)} a^{\dagger}(q)
$$

Randomize Fourier transform

NONUNIFORM FAST FOURIER TRANSFORM

Standard FFT works on uniform equidistant mesh

Nonuniform FFT works on arbitrary point sources:

- form coefficients from small source to large target spans
- butterfly: merge source and shorten target span recursively
- evaluate large source fields in small target spans

Integral equation requires Fourier coefficients
of soup of piecewise polynomials P_{j} on simplices T_{j}
(points, segments, triangles, tetrahedra, ...)

$$
\widehat{f}(k)=\sum_{j} \int_{T_{j}} \mathrm{e}^{\mathrm{i} k^{T} x} P_{j}(x) \mathrm{d} x
$$

Similar to semiconductor mask computations

GEOMETRIC NONUNIFORM FFT

Geometric NUFFT evaluates Fourier coefficients of soup in arbitrary dimension and codimension

Still a butterfly but

- integrate polynomials over d-dimensional source simplices
- and d-dimensional target simplices
- to apply exact transform in D dimensions

Dimensional recursion evaluates matrix element

$$
F(k, d, S, P, \alpha, \sigma)=\int_{S}(x-\sigma)^{\alpha} \mathrm{e}^{\mathrm{i} k^{T} x} P(x) \mathrm{d} x
$$

in terms of

- Iower-dimensional simplex faces $F\left(k, d-1, \partial_{j} S, P, \alpha, \sigma\right)$
- lower-degree differentiated polynomials $F\left(k, d, S, \partial_{j} P, \alpha, \sigma\right)$
- lower-order moments $F\left(k, d, S, P, \alpha-e_{j}, \sigma\right)$

Numerically stable for large $|k|$, quadrature for small $|k|$

CONCLUSION

Solve general elliptic problems
in first-order overdetermined form with

- projected boundary integral equation
- generalized Ewald summation
- geometric nonuniform fast Fourier transforms

