A butterfly algorithm

for the geometric nonuniform FFT

John Strain
Mathematics Department
UC Berkeley
February 2013

FAST FOURIER TRANSFORMS

Standard pointwise FFT evaluates

$$
\widehat{f}(k)=\sum_{j=1}^{n} \mathrm{e}^{2 \pi \mathrm{i} k j / n} f_{j} \quad|k| \leq n / 2 \quad O\left(n^{d+1}\right) \rightarrow O\left(n^{d} \log n\right)
$$

with rigid algebraic recursion for equidistant points

Multidimensional pointwise nonuniform NUFFT evaluates

$$
\widehat{f}\left(t_{k}\right)=\sum_{j=1}^{N} \mathrm{e}^{\mathrm{i} t_{k}^{T} s_{j}} f_{j} \quad 1 \leq k \leq N \quad O\left(N^{2}\right) \rightarrow O(N \log N)
$$

via low-rank expansion and butterfly recursion

Geometric GNUFFT adds dimensional recursion for

$$
<g_{k} \chi_{T_{k}}, \hat{f}>=\int_{T_{k}} g_{k}(t) \sum_{j=1}^{N} \int_{S_{j}} \mathrm{e}^{\mathrm{i} t^{T} s} f_{j}(s) \mathrm{d} s \mathrm{~d} t
$$

with N polynomials g_{k}, f_{j} on simplices T_{k}, S_{j} in R^{D}

OUTLINE

Low-rank expansions separate variables

- enable fast local interactions

Butterfly algorithm propagates information between scales

- simultaneously merge sources and focus targets

New dimensional recursion simplifies matrix elements $\widehat{f}_{k j}$

- exactly evaluated by fast low-rank expansion
- gives direct algorithms as well as fast algorithms

LOW-RANK EXPANSION

Complex exponential Taylor series

$$
\mathrm{e}^{z}=\sum_{\alpha=0}^{m} \frac{z^{\alpha}}{\alpha!}+E_{m}, \quad\left|E_{m}\right| \leq\left(\frac{|z| \mathrm{e}}{m}\right)^{m}
$$

Approximates D-dimensional clustered nonuniform FFT

$$
\begin{gathered}
\widehat{f}\left(t_{k}\right)=\sum_{j=1}^{N} \mathrm{e}^{\mathrm{i} t_{k}^{T} s_{j}} f_{j}=\sum_{|\alpha| \leq m} t_{k}^{\alpha}\left(\frac{\mathrm{i}^{\alpha}}{\alpha!} \sum_{j=1}^{N} f_{j} s_{j}^{\alpha}\right)+E_{m}=\sum_{|\alpha| \leq m} C_{\alpha} t_{k}^{\alpha}+E_{m} \\
\left|E_{m}\right| \leq F D\left(\frac{R \mathrm{e}}{m}\right)^{m} \quad F=\sum_{j}\left|f_{j}\right| \quad\left|t_{k}^{T} s_{j}\right| \leq R
\end{gathered}
$$

Fast algorithm for clustered interactions:

- form $O\left(m^{D}\right)$ moments C_{α} of N sources s_{j}
- evaluate $O\left(m^{D}\right)$-term series $\hat{f}\left(t_{k}\right)$ at N targets t_{k}
- total cost $O\left(N m^{D}\right)=O(N \log \epsilon)$ for accuracy ϵ
- assuming all sources and targets have $\left|t_{k}^{T} s_{j}\right| \leq R=O(1)$

LOCALIZE

Usually $\left|t_{k}^{T} s_{j}\right|=O(N)$ is not bounded by a constant R
Instead $\left|s_{j}\right|=O(1)$ and $\left|t_{k}\right|=O(N)$ or vice versa so $R=O(N)$
Shift to centers τ and σ of intervals T and S

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} t_{k}^{T} s_{j}} & =\mathrm{e}^{\mathrm{i} \tau^{T} \sigma} \mathrm{e}^{\mathrm{i}\left(t_{k}-\tau\right)^{T} \sigma} \mathrm{e}^{\mathrm{i}\left(t_{k}-\tau\right)^{T}\left(s_{j}-\sigma\right)} \mathrm{e}^{\mathrm{i} \tau^{T}\left(s_{j}-\sigma\right)} \\
& =\mathrm{e}^{\mathrm{i} \tau^{T} \sigma} \mathrm{e}^{\mathrm{i}\left(t_{k}-\tau\right)^{T} \sigma} \sum_{|\alpha| \leq m} \frac{i^{\alpha}}{\alpha!}\left(t_{k}-\tau\right)^{\alpha}\left(s_{j}-\sigma\right)^{\alpha} \mathrm{e}^{\mathrm{i} \tau^{T}\left(s_{j}-\sigma\right)}+E_{m}
\end{aligned}
$$

Accurate in Heisenberg pairs (T, S) where

$$
\left(t_{k} \in T, s_{j} \in S\right) \quad \rightarrow \quad\left|\left(t_{k}-\tau\right)^{T}\left(s_{j}-\sigma\right)\right| \leq R \quad \rightarrow \quad\left|E_{m}\right| \leq \epsilon
$$

BUTTERFLY ALGORITHM

Sort N sources into $O(N)$ cells

Build N partial expansions, each converging at all N targets
Repeatedly split and merge shifted expansions

- split each target expansion into 2^{D} adjacent children
- merge 2^{D} adjacent source children into parent expansion
- until...

Evaluate 1 total expansion at targets in each target cell

SHIFT SOURCE MOMENTS

For targets in cell T near τ and sources in cell S near σ

$$
\begin{aligned}
& \sum_{s_{j} \in S} \mathrm{e}^{\mathrm{i} t_{k}^{T} s_{j}} f_{j}=\mathrm{e}^{\mathrm{i}\left(t_{k}-\tau\right)^{T} \sigma} \sum_{\alpha}\left(t_{k}-\tau\right)^{\alpha} C_{\alpha}(\sigma, \tau) \\
& C_{\alpha}(\sigma, \tau)=\mathrm{e}^{\mathrm{i} \tau^{T} \sigma} \frac{\mathrm{i}^{\alpha}}{\alpha!} \sum_{s_{j} \in S}\left(s_{j}-\sigma\right)^{\alpha} \mathrm{e}^{\mathrm{i} \tau^{T}\left(s_{j}-\sigma\right)} f_{j}
\end{aligned}
$$

Exponential expansion shifts τ to target child cell centers $\{\xi\}$

$$
C_{\alpha}(\sigma, \xi)=\mathrm{e}^{\mathrm{i}(\xi-\tau)^{T} \sigma} \sum_{\beta}\binom{\beta+\alpha}{\beta}(\xi-\tau)^{\beta} C_{\beta+\alpha}(\sigma, \tau)
$$

Binomial theorem shifts $\{\sigma\}$ to source parent cell center ρ

$$
C_{\alpha}(\rho, \xi)=\sum_{\sigma} \sum_{\beta \leq \alpha} \frac{\mathrm{i}^{\alpha-\beta}}{(\alpha-\beta)!}(\sigma-\rho)^{\alpha-\beta} C_{\beta}(\sigma, \xi)
$$

Step $(S, T) \rightarrow($ parent of S, children of T) preserves R

D-DIMENSIONAL POINTWISE NUFFT

0. Organize source and target points

- into D-dimensional L-level quadtrees
- with $2^{-L} R_{S} R_{T} \leq R$ so $D(R e / m)^{m} \leq \epsilon$

1. Build coefficients $C_{\alpha}\left(\sigma_{L}, \tau_{0}\right)$

- for leaf source cells σ_{L} and root target cells τ_{0}

2. For $l=1 \ldots L$

Recursively shift and merge coefficients to

- each child τ_{l} of target cell τ_{l-1}, yielding $C_{\alpha}\left(\sigma_{L-l+1}, \tau_{l}\right)$
- parent σ_{L-l} of each source cell σ_{L-l+1}, summing to $C_{\alpha}\left(\sigma_{L-l}, \tau_{l}\right)$

3. Evaluate expansion with coefficients $C_{\alpha}\left(\sigma_{0}, \tau_{L}\right)$

- for root source cells σ_{0} and leaf target cells τ_{L}

POINTWISE COMPUTATIONAL KERNEL

One computational kernel

$$
T_{\alpha} \leftarrow T_{\alpha}+\frac{\mathfrak{i}^{\alpha}}{\alpha!}(s-\sigma)^{\alpha} \mathrm{e}^{\mathrm{i}(t-\tau)^{T}(s-\sigma)} \sum_{|\beta| \leq n_{T}}(t-\tau)^{\beta} S_{\beta} \quad|\alpha| \leq n_{S}
$$

does all

- direct evaluation with $n_{S}=n_{T}=0$
- coefficient building with $n_{S}>n_{T}=0$
- expansion evaluation with $n_{T}>n_{S}=0$

Key observation: either n_{S} or n_{T} is zero

Generalize sums over points s or t to integrals over s or t

GEOMETRIC SOURCES AND TARGETS

Points \longrightarrow sources, targets and densities with geometry
Points $s_{j}, t_{k} \longrightarrow d$-dimensional simplices S_{j}, T_{k} in R^{D}

- points, line segments, triangles, tetrahedra, ...

Densities $f_{j} \longrightarrow$ polynomials $f_{j}(s), g_{k}(t)$ on simplices
Matrix elements $\mathrm{e}^{\mathrm{i} t_{k}^{T} s_{j}} \longrightarrow$ integrals

$$
\widehat{f}_{k j}=\int_{T_{k}} g_{k}(t) \int_{S_{j}} \mathrm{e}^{\mathrm{i} t^{T} s} f_{j}(s) \mathrm{d} s \mathrm{~d} t
$$

Fourier transform \longrightarrow sum of integrals

$$
\widehat{f}(k)=\sum_{j=1}^{N} \widehat{f}_{k j}=\int_{T_{k}} g_{k}(t) \sum_{j=1}^{N} \int_{S_{j}} \mathrm{e}^{\mathrm{i} t^{T} s} f_{j}(s) \mathrm{d} s \mathrm{~d} t
$$

GNUFFT INITIALIZATION

0. Organize source and target simplices

- into D-dimensional L-level quadtrees
- where $2^{-L} R_{S} R_{T} \leq R$ and $D(R e / m)^{m} \leq \epsilon$

Approximate inclusion is enough

But some simplices are left behind in non-leaf cells

GNUFFT COEFFICIENTS

1. Build geometric integrated coefficients in expansion

$$
\begin{gathered}
\sum_{S_{j} \subset \sigma} \int_{S_{j}} \mathrm{e}^{\mathrm{i} t^{T} s} f_{j}(s) \mathrm{d} s=\mathrm{e}^{\mathrm{i}(t-\tau)^{T} \sigma} \sum_{\alpha}(t-\tau)^{\alpha} C_{\alpha}(\sigma, \tau) \\
C_{\alpha}(\sigma, \tau)=\mathrm{e}^{\mathrm{i} \tau^{T} \sigma} \frac{\mathrm{i}^{\alpha}}{\alpha!} \sum_{S_{j} \subset S} \int_{S_{j}}(s-\sigma)^{\alpha} \mathrm{e}^{\mathrm{i} \tau^{T}(s-\sigma)} f_{j}(s) \mathrm{d} s
\end{gathered}
$$

Oscillatory integrands challenge quadrature schemes

Use dimensional recursion (later) to obtain exact coefficients

GNUFFT BUTTERFLY RECURSION

Almost identical to pointwise NUFFT!
2. For $l=1 \ldots L$
a. Recursively shift and merge coefficients to

- each child τ_{l} of target cell τ_{l-1}, yielding $C_{\alpha}\left(\sigma_{L-l+1}, \tau_{l}\right)$
- parent σ_{L-l} of each source cell σ_{L-l+1}, yielding $C_{\alpha}\left(\sigma_{L-l}, \tau_{l}\right)$
b. Add source simplices left behind on level $L-l$

GNUFFT EXPANSION INTEGRATION

3. Integrate expansion (σ_{0}, τ_{L}) over target simplices

- in each level- L target cell τ_{L}

Dual to coefficient initialization

Use same dimensional recursion to obtain exact integrals

DIMENSIONAL RECURSION

On d-dimensional simplex S carrying polynomial p

$$
F(t, d, S, p, \alpha, \sigma)=\int_{S} \mathrm{e}^{\mathrm{i} t^{T} s}(s-\sigma)^{\alpha} p(s) \mathrm{d} s
$$

Gauss theorem integrates by parts parallel to S

$$
\int_{S} q^{T} \nabla f(s) \mathrm{d} s=\int_{\partial S} q^{T} n f(\sigma) \mathrm{d} \sigma
$$

Average over parallel target components $t_{S} \| S$ to get

$$
\begin{aligned}
F(t, d, S, p, \alpha, \sigma) & =\frac{-\mathrm{i}}{\left\|t_{S}\right\|^{2}}\left(F\left(t_{S}, d, S, t_{S}^{T} \nabla p, \alpha, \sigma\right)\right. \\
& -\sum_{j=1}^{D} \alpha_{j} F\left(t_{S}, d, S, p, \alpha-e_{j}, \sigma\right) \\
& \left.-\sum_{f=0}^{d} t_{S}^{T} n_{f} F\left(t_{S}, d-1, \partial_{f} S, p, \alpha, \sigma\right)\right)
\end{aligned}
$$

CONCLUSIONS

Geometric extension of butterfly algorithm

- exact Fourier transform of simplicial polynomials
- arbitrary dimension and codimension
- $O(N \log N \log \epsilon)$ work with accuracy ϵ

Simple speedups:

- Tabulate or approximate shift/merge operators
- Optimized compressed dimensional recursion
- Taylor expansion \rightarrow Chebyshev approximation

Taylor expansion accurate on disk in complex plane

- GNUFFT evaluates geometric Laplace and Gauss transforms with single parametrized code

