
FAST VORTEX METHODSJohn A. StrainMathematics Department andLawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeley, California 94720ABSTRACTWe present three fast adaptive vortex methods for the 2D Eu-ler equations. All obtain long-time accuracy at almost optimalcost by using four tools: adaptive quadrature, free-Lagrangianformulation, the fast multipole method and a nonstandard erroranalysis. Our error analysis halves the di�erentiability requiredof the ow, suggests an e�cient new balance of smoothing pa-rameters, and combines naturally with fast summation schemes.Numerical experiments with our methods con�rm our theoreticalpredictions and display excellent long-time accuracy.INTRODUCTIONVortex methods solve the 2D incompressible Euler equationsin the vorticity formulation by discretizing the Biot-Savart lawwith the aid of the ow map. They have been extensively stud-ied, widely generalized and applied to complex high-Reynolds-number ows: See (Gustafson and Sethian, 1991) for a survey.Vortex methods involve several components; velocity eval-uation, vortex motion, di�usion, boundary conditions and re-gridding. In this paper, we improve the speed, accuracy androbustness of the velocity evaluation. We eliminate the owmap, improve the quadrature used for the Biot-Savart law, andanalyze the error in velocity evaluation in a nonstandard way,requiring less di�erentiability of the ow and obtaining e�cientnew parameter balances. We employ standard techniques forthe vortex motion and consider inviscid free-space ow to elimi-nate di�usion and boundary conditions. Our approach combinesnaturally with regridding and fast multipole methods.Lagrangian vortex methods move the nodes of a �xed quadra-ture rule with the computed uid velocity, preserving the weightsof the rule by incompressibility. This procedure loses accuracywhen the ow becomes disorganized, motivating many regrid-ding techniques. Even before the ow becomes disorganized,however, obtaining high-order accuracy with �xed quadratureweights requires smoothing of the singular Biot-Savart kernel.Smoothing gives high-order accuracy for short times but slows

down the fast multipole method and halves the order of accuracyrelative to the di�erentiability of the ow.In this paper, we discuss three fast adaptive vortex meth-ods. We briey review the triangulated vortex method of (Russoand Strain, 1994) and the quadrature-based method of (Strain,1996a), then present the smoothed method of (Strain, 1996b).Triangulated vortex methods are robust, accurate and e�cientbut limited to second-order accuracy. Quadrature-based meth-ods compute adaptive quadratures tailored to the Biot-Savartkernel at each time step, yielding free-Lagrangian methods whichmaintain long-time high-order accuracy at asymptotically opti-mal cost. The smoothed method couples kernel smoothing withadaptive quadrature rules not tailored to the Biot-Savart kernel,producing long-time high-order accuracy. The asymptotic slow-down produced by kernel smoothing is almost eliminated by acareful choice of smoothing functions and parameters, based ona new error analysis of the velocity evaluation.The structure of these methods is standard: At each timestep, the smoothed velocity is evaluated once and the vorticesare moved with an explicit multistep method. The velocity eval-uation is nonstandard, and di�erent for each method. We haveimplemented and tested all of these new methods; the error issmall on standard test problems and the theoretical predictionsare fully veri�ed. More complex ows are also computed.EQUATIONS OF MOTIONThe 2D incompressible Euler equations_u+ uux + vuy + px=� = 0_v + uvx + vvy + py=� = 0ux + vy = 0;involve the uid velocity u(z; t) = (u; v), where z = (x;y), thepressure p(z; t) and the constant density �. Taking the 2D curleliminates the pressure, giving the vorticity equation_! + u!x + v!y = 01



for the vorticity ! = vx � uy. Let z 7! �(z; t) be the ow map,de�ned by _�(z; t) = u(�(z; t); t): (1)Then vorticity is conserved along particle paths:!(�(z; t); t) = !(z; 0); (2)When ! has compact support, the velocity is given by the Biot-Savart law u(z; t) = Z K(z � z0)!(z0)dx0dy0 (3)where K is the Biot-Savart kernelK(z) = z?2�r2 ; z? = (�y; x); r2 = x2 + y2: (4)Thus we have a closed system for � and !, the \free-Lagrangian"equations of motion consisting of Eq. (2) coupled with_�(z; t) = Z K(�(z; t)� z0)!(z0; t)dx0dy0: (5)The Lagrangian equation of motion is derived by changingvariables z0  �(z0; t). The Jacobian is unity because the owis incompressible, so this gives a closed system for � alone:_�(z; t) = Z K(�(z; t) ��(z0; t))!(z0; 0)dx0dy0: (6)This requires values of ! only at time t = 0, and is the usualstarting point for vortex methods.VORTEX METHODSLagrangian vortex methods now discretize Eq. (6), trackingN points zj(t) � �(zj; t) moving with the uid velocity, startingat t = 0 from the nodes zj of a quadrature formula with weightswj. Suppose we use a quadrature formulaZ g(z)dxdy = NXj=1 wjg(zj) +EN (g)with a qth-order error boundjEN (g)j � Chqkgkq (7)for g 2 Cq. Here h is the mesh size of the rule and the Cq normis de�ned bykgk0 = maxz jg(z)j; kgkq = kgk0 + X�+�=q k@�x @�y gk0 :Applying this quadrature to the Lagrangian equation of mo-tion (6) gives a system of N ordinary di�erential equations:_zi(t) =Xj 6=iwjK(zi(t)� zj(t))!(zj; 0):The quadrature error bound Eq. (7) is in�nite since K is un-bounded, so we replace K by the smoothed kernelK�(z) = '� �K(z) = f(r=�)K(z)

where � denotes convolution,'�(z) = ��2'(r=�)' is an appropriate radial \core function," and the \shape fac-tor" f is given by f(r) = 2� Z r0 s'(s)ds:CONVERGENCE THEORYAlmost all modern vortex methods use smoothing, often with' and the \core radius" � chosen to give high-order convergenceas the mesh size h vanishes (Chorin, 1989; Hald, 1991). Thiscan be guaranteed by the following conditions on ' and !:Z ' = 1;Z x�y�' = 0; 1 � �+ � �m� 1; (8)Z jzjmj'j < 1' 2 CL and '(z) = 0 for jzj � 1; (9)! 2 CM has compact support. (10)High-order accuracy requires smooth solutions, so condition (10)on ! is natural. Compact support in condition (9) can be weak-ened, but it is important for e�ciency. Given these conditions,a typical convergence theorem follows.Theorem 1 (Anderson and Greengard, 1985) Assume con-ditions (8) through (10) are satis�ed with L � 3, M � max(L+1; m+ 2) and m � 4. Let � = cha where 0 < a < 1. Suppose Lis large enough to satisfyL > (m� 1)a1� a :Then the computed ow map �h;� satis�esk�� �h;�kh � O (hma)as h and � go to zero.Here the discrete 2-norm is given bykgkh =  h2Xi jg(zi)j2!1=2where zi are the initial vortex positions, and similar bounds holdfor the computed velocity and vorticity.This theorem allows a close to 1 and � close to O(h) only forvery smooth ows, where L and M are large. For general ows,Hald (1987) shows that � = O(ph) is a good choice. Then2m derivatives of ! guarantee only O(hm) accuracy. Later, wereduce this to m+1 derivatives at the cost of rede�ning conver-gence.2



COST AND ACCURACYConvergence theory must be augmented by practical consid-erations of cost and accuracy. Since each velocity value is a sumuh;�(zi) = NXj=1 K�(zi � zj)wj!(zj; 0);direct evaluation costs O(N2) work. This is prohibitively expen-sive if the ow is complex, since many vortices are required. Theexpense has been reduced by fast summation schemes (Ander-son, 1986; Carrier, Greengard and Rokhlin, 1988; Strain, 1992)which evaluate unsmoothed sums likeu(zi) = NXj=1 K(zi � zj)wjto accuracy � in about O(N log �) work, by separating local fromglobal interactions and separating the variables. These schemesare much faster than direct evaluation for large N .However, this does not completely resolve the di�culty. Fastmethods cannot evaluate the smoothed interaction K�(zi � zj)between vortices zi and zj closer than �, because K� 6= K.Asymptotically, there are O(N�2) vortices in a circle of radius�, so if � = O(ph) there are a total of O(N2�2) = O(N2h) =O(N3=2) local interactions to be evaluated directly. Thus fastsummation schemes slow down from O(N) to O(N3=2) when Kis smoothed inside a radius � = O(ph).Hence there is a conict between smoothing and fast sum-mation. If we try to make � close to O(h) to speed up fastsummation, we need many derivatives of the ow for a mod-est order of convergence. Larger � is more accurate for rougherows, but hampers fast summation schemes. Our error analysisresolves this conict by allowing another O(�) in the error.THE PERLMAN EFFECTA completely di�erent obstacle to accurate calculations withvortex methods is the \Perlman e�ect." The error bound fornumerical quadrature in Eq. (7) depends on order-q derivativesof the integrandg(z0) = K�(�(z; t)��(z0; t))!(z0; 0);so the derivatives of the ow map will a�ect the error bound.The ow map moves uid particles far apart, developing largederivatives when the ow becomes disorganized. Thus vortexmethods lose high-order accuracy in long-time calculations (Perl-man 1985; Beale and Majda 1985). For example, Figure 1 plotsthe number of correct bits in the computed velocity of a stan-dard test case for a fourth-order vortex method. Fourth-orderaccuracy|evidenced by the gain of one tick mark per line in the�gure|is attained only during a very short initial time period.The Perlman e�ect has motivated much research on regrid-ding, the idea being to avoid large derivatives of the ow mapby restarting before the ow becomes disorganized (Nordmark,1991). Similarly, Beale (1988) has developed an iterative reweight-ing scheme. The Perlamn e�ect also motivated the free-Lagrangian
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Figure 1: Correct bits in u for the Lagrangian vortex method.vortex methods reviewed here, which eliminate the ow mapfrom the Biot-Savart integral. Thus_� = Z K(�� z0)!(z0; t)dx0dy0;replaces the Lagrangian equation of motion Eq. (6). Since !values are known only at the moving points zj(t), each veloc-ity evaluation requires adaptive quadratures with new weightsadapted to the current vortex positions. We now present threesuch methods.TRIANGULATED METHODSTriangulated vortex methods evolve points zj(t) by_zj(t) = Z K(zj(t)� z0)!h(z0; t)dx0dy0; (11)where !h is a piecewise linear interpolant to the vorticity values!h(zj(t); t) = !h(zj; 0) = !(zj; 0)and the nodes zj(t) form the vertices of a triangulation of R2.Given any piecewise linear function !h on a triangulation ofR2, one can evaluate the corresponding velocity uh exactly, withresults depending very strongly on the triangulation. In (ChaconRebollo and Hou, 1990), this observation was combined with a�xed triangulation carried by the ow. While convergent, theresulting scheme costs O(N2) work per time step with a largeconstant, and loses accuracy very quickly because the triangula-tion degenerates.We developed practical triangulated vortex methods in (Russoand Strain, 1994); a fast summation scheme brought the costdown to O(N4=3) and a fast Delaunay triangulation scheme gaveexcellent long-time accuracy. An adaptive initial triangulationtechnique made the method robust enough to compute even dis-continuous patches of vorticity. Figure 2 plots errors for thetest case used in Fig. 1. The error displays no Perlman e�ect;second-order accuracy (one tick per line) is maintained uniformly3



in time. The triangulated approach is now being applied to owsin three dimensions with viscosity and boundaries (Huyer andGrant, 1994). Di�culties obtaining higher-order accuracy moti-vated the next approach.
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Figure 2: Correct bits in u in 1-norm, computed by the trian-gulated vortex method.QUADRATURE-BASED METHODSHigher-order free-Lagrangian methods were developed in (Strain,1996a). They use time-dependent quadrature weights wij(t) giv-ing high-order accuracy in the Biot-Savart law:u(zi; t) = Z K(zi � z0)!(z0; t)dx0dy0� NXj=1 wij(t)K(zi� zj)!(zj ; t):For example, high-order product integration weights make smooth-ing unnecessary, but the i-dependence of wij(t) precludes fastsummation methods. Thus we construct weights with the \locally-corrected property" that wij = wj for almost all j, where wj arethe weights of some \smooth" quadrature rule with points zj.Such rules can be built and the velocity evaluated in O(N log2N)work. The price for e�ciency is a rede�nition of convergence.The error bound for these quadratures is O(�+ hq), where � isan arbitrary user-speci�ed error tolerance and the constant inthe O(N) cost depends weakly on �. Thus one gets order-q con-vergence only down to O(�). This is su�cient for three reasons:computer arithmetic has �nite precision, practical computationscan a�ord only rather low accuracy, and fast summation meth-ods introduce an O(�) error as well. High-order accuracy canbe maintained for long times, though these rules are somewhatexpensive to implement.A FAST ADAPTIVE METHODWe now describe a high-order fast adaptive vortex methodwhich aims to avoid obstacles both to speed and to accuracy.The key ingredients are

� A free-Lagrangian formulation to avoid the Perlman e�ect.� Adaptive quadrature rules not tailored to the Biot-Savartkernel.� New error bounds requiring fewer derivatives of the vor-ticity and leading to an e�cient new smoothing strategy.These ingredients combine to give a method with almost optimale�ciency and long-time high-order accuracy, without excessivedi�erentiability requirements on the ow.OVERVIEWWe begin with quadrature. Given N nodes zj 2 R2, wecompute the weights of a quadrature rule with order-q accuracyon Cq functions if the nodes are well distributed. We partitionthe nodes into rectangular cells and build order-q rules on eachcell. The union of these rules is globally accurate of order q(Strain, 1995). After quadrature, we discuss smoothing. Westate a standard smoothing error bound and construct a family ofarbitrary-order accurate core functions. Next we present a newerror analysis which leads to an e�cient new balance betweenquadrature and smoothing. We conclude with some numericalresults.A TREE STRUCTURELet B = [a; b]� [c;d] be a rectangle containing the nodes zj.Our quadratures partition B into rectangular cells Bi, each con-taining enough nodes to construct an order-q quadrature. Thereare q(q + 1)=2 monomials x�y� of degree � + � � q � 1, so wewill need at least p � q(q + 1)=2 nodes per cell. Thus we builda tree structure to partition B into cells containing p or p + 1nodes each.Let B = B1 be the level-0 root of the tree. Divide B1 in halfalong its longest edge, with the dividing plane located so thateach half of B1 contains either bN=2c or bN=2c+ 1 nodes. Thisgives the level-1 cells B2 and B3. Recursively, split B2 and B3along their longest edges to get B4 through B7, each containingbN=4c or bN=4c + 1 nodes zj. Repeat this procedure L timesto get M = 2L cells Bi on the �nest level L, numbered fromi = M to i = 2M � 1, each containing p = bN=Mc or p + 1nodes zj. The union of all the cells on any given level is B.The tree structure is stored by listing the boundaries of eachcell Bi = [ai; bi] � [ci; di] from i = 1 to i = 2M � 1, a totalof 4 � 2M numbers, and indexing the nodes into a list so thatthe nodes zj 2 Bi are given by j = j(s) for s = b(i); : : : ; e(i)and three integer functions j, b and e. This can be done inO(N logN), but the simplest method requires sorting each cellbefore each subdivision, giving a total cost O(N log2N) for thetree construction with an O(N logN) sorting method such asHeapsort.QUADRATURE RULESWe now construct qth-order quadrature rules on B with Nquadrature nodes zj given. Assume N � m := q(q + 1)=2, andchoose L � 0 with p := bN=2Lc � m. The tree structure dividesB into M = 2L rectangular cells Bi, each containing either p orp + 1 nodes zj. On each Bi, we construct local weights W ij for4



zj 2 Bi by solving the following system of m linear equations inat least p unknowns:Xzj2Bi P�(xj)P�(yj)W ij = ZBi P�(x)P�(y)dxdyfor 0 � � + � � q � 1. Here P�(x)P�(y) are the two-variableLegendre polynomials on Bi. Since p � m, this system of mequations in at least p unknowns generically has solutions. Wecompute the solution W ij of least 2-norm, using a complete or-thogonal factorization from LAPACK (Anderson et al.,1992).The weights of the rule W are then de�ned to be Wj = W ijwhere zj 2 Bi. This rule integrates all polynomials of degreeless than q exactly over all level-L cells Bi. This property im-plies order-q accuracy:Theorem 2 (Strain, 1995) Suppose B = [Mi=1Bi and W in-tegrates x�y� exactly over each cell Bi for 0 � � + � � q � 1.Then for any Cq function g on B, the quadrature errorE = ZB g(z)dxdy� NXj=1 Wjg(zj)satis�es the bound jEj � 
 jBj hqq! kgkqwhere h is the longest cell edge, 
 = 1 + 1jBjPNj=1 jWjj andjBj = (b � a)(d� c) is the area of B.The condition number 
 cannot be bounded a priori for arbitrarypoints, but we can easily compute it a posteriori, yielding anexcellent diagnostic for the quality of the rule.SMOOTHINGThe following theorem is a standard error bound for smooth-ing with a core function satisfying moment conditions of orderm:Theorem 3 (Raviart, 1985) Assume the compactly supportedcore function ' satis�es the moment conditionsZ ' = 1; Z x�y�' = 0; 1 � �+ � �m� 1;M = 1m! Z jzjmj'j <1:Suppose u belongs to the Sobolev space Wm;p of functions withm derivatives in Lp, where 1 � p �1. Thenk'� � u� ukLp �M�m X�+�=m k@�x @�y ukLp :Suppose ' is a continuous radial function and write '(z) ='(r) where r2 = jzj2 = x2 + y2. Then R x�y�'(z)dxdy = 0 if �or � is odd, so the moment conditions simplify toZ 10 '(r)rdr = 1=2�; Z 10 '(r)r2j+1dr = 0; j = 1; : : : ; n

where m = 2n + 2 is even. A standard calculation givesK�(z) = '� �K(z) = f �r��K(z)where the \shape factor" f is given byf(r) = 2� Z r0 '(s)sds:Since '(r) = 0 for r > 1, we have f(r) = 1 for r > 1 so K�(z)is identical to K(z) for r > �. This facilitates the application offast summation methods.A convenient ansatz for the shape factor isf(r) = %p �ad%d + � � �+ a0�+ 1 (12)where % = (1� r2)+ = max(0; 1� r2) and '(r) = 12�r f 0(r). Thed+1 coe�cients ai must be chosen so that ' satis�es n+1 mo-ment conditions, so we cannot expect a solution unless d � n.If d > n, the linear system of moment conditions is underdeter-mined, and we use a complete orthogonal factorization routineto �nd the solution with smallest 2-norm. Given the coe�cientsai, we haveK�(z) = z?2�r2 �(1� r2=�2)p+(ad(1� r2=�2)d+ + � � � + a0) + 1� ;where z? = (�y; x). Since f(0) = 0, we can reduce roundo�problems for small r by �nding a polynomial g such thatf(r) = r2g(%) = r2 �bp+d�1%p+d�1 + � � �+ b0� :In terms of g, we have a convenient formulaK�(z) = z?2�max(r2; �2)g((1� r2=�2)+):Figure 3 shows several of the shape factors f ; the increasingoscillation as n increases follows naturally from the vanishing ofmore moments.
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TIME STEPPINGSince the Euler equations are not sti� and we are construct-ing high-order vortex methods, we discretize time with explicits-step Adams methods. These methods require an accurate pro-cedure for computing the s starting values. Suppose we use anexplicit s-step Adams method with a �xed time step �f . Webegin with a tiny time step �i << �f and 1-step Adams, giv-ing error O(�2i ). Since our �nal method is order-s accurate, weshould choose �i = O(�s=2f ). We now increase the order of theAdams method by 1 at each step until order s is reached, simul-taneously increasing �i by a factor R � 2 until �f is reached.The �nal non-equidistant step is adjusted to land precisely att = �f .BALANCE OF ERRORWe now balance the errors due to smoothing and quadrature.The error in velocity evaluation splits naturally into two partsE = ju(z)� NXj=1 wjK�(z � zj)!(zj)j� jK � !(z)�K� � !(z)j+jK� � !(z) � NXj=1 wjK�(z � zj)!(zj)j= E� +EN;� :The �rst term is the smoothing error, which satis�esE� �M�mkukmif ' satis�es moment conditions of order m and u 2 Cm. Thesecond term is the quadrature error, which satis�esEN;� � 
 jBj hqq! kgkqfor each �xed z. Here g(z0) = K�(z � z0)!(z0), so by a standardinequality for the Cq norm of a productkgkq � C(kK�kqk!k0 + kK�k0k!kq):Scaling givesK�(z) = ��1 Z '�z� � z0� z0?2�jz0j2 dx0dy0;so there is some constant C depending only on ', such thatk@�x @�yK�k0 � C��+��1if ' 2 C�+� . Thus if ' 2 Cq, we havekgkq � 1� C(��qk!k0 + k!kq)so the error in velocity evaluation satis�esE � C(�mkukm + ��1 �h� �q k!k0 + ��1hqk!kq):where q is the order of quadrature and ' 2 Cq satis�es momentconditions of order m.

We choose � as a function of h to make��1 �h� �q � �;where � is a user-speci�ed error tolerance, �xed as h vanishes.This implies� = O(��1=(q+1)hq=(q+1)) = O(ha); a = 1� 1q + 1 ;and our error bound becomesE � C(�k!k0 + h mqq+1 kukm + h q2q+1 k!kq):The choice m = q balances the two remaining terms, soE � C ��k!k0 + hk(k!kq + kukq)� = O(�+ hk)where k = q2=(q + 1) = q � 1 + 1q+1 > q � 1. For quadrature oforders q = 2; 4; 6; 8; 10, the exponent a in � = O(ha) is 0.66, 0.80,0.86, 0.89, 0.91 respectively, with order of accuracy k equal to1.33, 3.20, 5.14, 7.11, 9.09 rapidly approaching q� 1 from aboveas q increases. Thus � is very close to O(h) for methods of highorder k, with only q derivatives of ! required. This allows us touse fast summation methods with excellent e�ciency: the fastmultipole method with this � costs O(Nb) with b = 1 + 1q+1 =1:33; 1:20; 1:14; 1:11; 1:09, very close to 1.We combine this order-k velocity evaluation with an Adamsmethod of order s = q > k, because the �rst-order Euler equa-tions imply that the velocity should have the same order of di�er-entiability in time as in space, with particle positions one ordersmoother by the ow map equation Eq. (1). An O(�+ hk) errorin the velocity u at each time step does not accumulate in themultistep solution of _�(z; t) = u(�(z; t); t)so we expect to obtain an errorO(�+�sf + hk)k!kqin � as h and �f vanish. This would imply similar estimates forthe velocity and vorticity by standard arguments.RESULTS AND DISCUSSIONWe implemented the algorithms described above and studiedthe performance of the fast adaptive method. First, we measuredthe accuracy and e�ciency of the velocity evaluation scheme inisolation. Then we measured the error in long-time calculationswith the full method. Finally, we studied the interaction of sev-eral smooth patches of vorticity.We studied the accuracy of the velocity evaluation of ordersk = 1:33, 3.20, 5.14 and 7.11 corresponding to m = q = 2, 4, 6,and 8, using the Perlman vorticity (Perlman, 1985)!P (z) = �max(0; 1� r2)�Pwhere P = 10. The vorticity !P is a CP�1 function on R2, whilethe corresponding velocity �elds are CP :u(z) = (1� !P+1(z)) z?(2P + 2)r2 :6



This is a stationary radial solution of the Euler equations withshear and a popular test case for vortex methods.We tested our method with a random initial grid. GivenN and n with n2 � N , the grid has n2 vortices uniformly dis-tributed over a rectangle. and the remaining N�n2 vortices dis-tributed in regions where the vorticity is large, providing somedegree of random adaptivity.We generated N = 500; 1000; 2000; : : : ; 64000 vortices in sucha grid with n2 � N=10 and evaluated the velocity at each of thevortices, using core functions and quadratures of orders m = q =2; 4; 6; 8. The number of correct bitsBl = max�0;� log2 �ku� uh;�klkukl ��in the computed velocity uh;� in L1 and L1 norms, the CPUtimes T (in seconds on a Sparc-2 workstation) and other statis-tics are reported in Table 1. The velocity evaluation produceserror O(� + N�k=2) with k=2 = 0:67, 1.60, 2.57 and 3.55 inO(Nb log �) CPU time with b = 1:33, 1.20, 1.14 and 1.11 and aconstant of proportionality depending very weakly on the orderq. Note that when N doubles, the average cell size h decreasesby a factor p2, so we expect to gain k=2 bits per line in eachtable until O(�) is reached.For �rst-order methods, the O(N�2=3) errors dominate so theO(�) limit on accuracy never appears. For higher-order meth-ods, we get higher-order convergence in the region where thesmoothed kernel is resolved. After the O(�) limit is reached,convergence continues slowly.We also tested the long-time accuracy of the method on sev-eral Perlman-type test cases for 0 � t � 20, a �nal time at whichthe fastest uid particles have completed 1.6 revolutions whilethe slowest have completed only 0.2. This strong shear is usuallyconsidered a severe test for a vortex method. We started withan adaptive random grid with n2 � 0:8N , and used core func-tions, quadratures and Adams methods of orders m = q = s = 2,4 and 6, yielding adaptive vortex methods of orders k = 1:33,3.20 and 5.14. We tested each method on a Perlman patch ofminimal smoothness, with P = q + 1 = 3, 5 and 7. In partic-ular, the errors at di�erent orders are unrelated. The correctbits in L1 in the velocity are plotted in Fig. 4. The plots areindividually scaled and ticked in such a way that the numberof correct bits should increase by half a tick mark at each line.These results clearly con�rm the long-time high-order accuracyof the method; they do not show the loss of accuracy observed inLagrangian vortex methods (for example in Fig. 1). The errorsare highly oscillatory on a small scale, because a new quadraturerule is built from scratch at each step.As a more complex example, we used the order-3.20 methodto compute 20 interacting smooth patches of vorticity. Thus theinitial vorticity is given by!(z; 0) = QXj=1 
j(1� jz � zjj2)Pwhere Q = 20, P = 5 and zj and 
j are random. Some samplevorticity contours are shown in Fig. 5.

m = q = 2, p = 4, d = 1, k = 1:33N h � B1 B1 T500 0.497 0.631 1.95 1.42 4.831000 0.328 0.479 2.48 2.03 13.82000 0.205 0.351 3.28 2.79 43.64000 0.142 0.275 3.91 3.41 142.78000 0.089 0.203 4.74 4.26 336.216000 0.064 0.163 5.38 4.88 115532000 0.039 0.118 6.29 5.79 205164000 0.028 0.095 6.93 6.41 6493m = q = 4, p = 6, d = 2, k = 3:20N h � B1 B1 T500 1.300 1.481 1.02 0.52 6.871000 0.807 1.011 2.26 1.79 22.22000 0.443 0.625 4.49 3.71 754000 0.300 0.457 6.00 5.21 2098000 0.180 0.305 8.16 7.22 63216000 0.128 0.232 9.71 9.00 148532000 0.078 0.156 11.9 10.3 449864000 0.057 0.121 13.3 12.0 8111m = q = 6, p = 8, d = 3, k = 5:14N h � B1 B1 T500 1.760 1.948 0.0 0.0 8.661000 1.170 1.374 0.31 0.0 26.92000 0.721 0.905 4.49 2.67 90.64000 0.386 0.529 8.21 5.51 2818000 0.263 0.381 10.2 7.18 77416000 0.158 0.245 12.0 6.74 157432000 0.114 0.185 14.0 9.30 498864000 0.068 0.118 15.0 10.1 7634m = q = 8, p = 10, d = 4, k = 7:11N h � B1 B1 T500 1.810 2.033 1.34 0.48 9.221000 1.690 1.912 0.0 0.0 34.92000 1.100 1.304 3.34 2.23 1114000 0.677 0.848 7.79 6.29 3588000 0.362 0.486 10.4 6.89 96016000 0.247 0.346 11.9 8.00 292332000 0.146 0.217 12.9 8.15 582864000 0.106 0.162 15.1 9.99 14650Table 1: Velocity evaluation results for a Perlman-type vorticity�eld !10 with N adaptive random points: Correct bits B1 andB1 in u, CPU times T , cell size h and core radius �. Here q isthe quadrature order, m is the moment order, p � 2 the orderof smoothness and d the degree of the core function. The �nalresults have order k.7
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Figure 4: Correct bits in u for adaptive vortex methods of orders1.33, 3.20 and 5.14. Figure 5: Vorticity contours for 20 Perlman patches !5 at t = 0,8, and 16.9


