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OVERVIEW

Classical alternating direction implicit (ADI) iteration
— Essentially optimal in simple domains

— Applies to narrow class of special elliptic equations
— Useful for variable-coefficient and nonlinear problems

Generalize ADI to arbitrary elliptic systems
— Eliminate symmetry, commutativity, separability, ...
— Solve Laplace, Helmholtz, Stokes, ..., with single code

Convert elliptic problems to first-order overdetermined form
— Control computational error via residuals
— Iluminate solvability of boundary value problem



CLASSICAL ALTERNATING DIRECTION IMPLICIT

Separable second-order equations in rectangles
—Au = Au+ Bu = —8%u—8§u=f
efficiently solved by essentially optimal ADI iteration
(s+ A)(s+ B)u™Tl = (s — A)(s — B)u™ + 2sf

when A and B are commuting positive Hermitian operators

Fast damping over geometric range
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implies O(e¢) error reduction in O(log N loge) sweeps



FIRST AND SECOND ORDER ELLIPTIC PROBLEMS

Cauchy-Riemann

agju — ay'U ayu — _8x'U

Low-frequency time-harmonic Maxwell

VxE=——H V. E = 4np
C
' 4
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Linear elasticity

1
Oioij + F; =0 735 — 5Cijht (g + Opug) = O

Laplace/Poisson/Helmholtz/Yukawa/ ...
Au—+u=f

Stokes
—Au—+Vp=f V-u=20



CONVERTING TO FIRST-ORDER SYSTEMS

Higher-order system of partial differential equations
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Seek new solution vector v = (v,dqv,...,0,v,... )"
Vector u satisfies first-order system
AUZZAjaju—I—AOUZf in 2

J

Bu =g on [

Sparse matrices A;, Ag, B localize algebraic structure



PITFALL OF CONVERSION

Robin boundary value problem for 2D Poisson equation

Av+v=f in Q2
av + B0pv = g on
3 x 3 square system
(01 —1 0 | [ v | [ 0 |
Au= |0, 0 -1 oiv | =10
_>\ 01 82__82v_ _f_

Bu:[a Bn1 5712] o1v | =g
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System not elliptic (in sense of Protter): principal part

(k1 O O |
> kjAj=|ky O O singular for all k!
j 0 Ky kp




SOLVED BY OVERDETERMINATION

Av+v=f in Q2
Overdetermined 4 x 3 elliptic system
01 —1 0 | . 0 |
|0 0O -1 10
Av=173" _5, & glz — o
A 8y 9y | LT f

Compatibility conditions = overdetermined but elliptic
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Y kiA; = ko 00 full-rank = injective for k # 0
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Analytical benefit: controls derivatives 8ju in terms of v and f

Computational advantage: controls error via residuals




CONVERSION OF 2D STOKES

Stokes for 2-vector u and scalar p

—Au+Vp=Ff V-u=0

Converts to 13 x 9 sparse system with

ko

U1 ko —ki

U1 ki1 ko k1
U1 k1

un ko

u=| us1 S kA = ko —kq
up 2 J

pP1 k1
P2 ko

ko —ki
k1 ko

Elliptic (in sense of Protter) with Laplace equation Ap =V . f
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BOUNDARY CONDITIONS FOR DERIVATIVES?

Example: Dirichlet v = g —+ Bu = g with rank-1 matrix B

Intuitively, the system Au = f includes compatibility conditions

Analytically, Fourier transform in half space — well-posed

Computational methods enforce compatibility conditions up to
boundary — stable

Overdetermined interior <~ underdetermined boundary



LOCAL SOLVABILITY FOR NORMAL DERIVATIVE

Ellipticity of first-order system
AuZZAjﬁju—l—AOuzf in 2
J
implies any normal part A, = >j n;A; iIs left-invertible

Al = (A% Ap) "t Ax — Al Ap =1

Determines any directional derivative

Onu = Z n;O0ju = A}; (f — ApOpu — Agu)
)

in terms of tangential derivatives

J ]
and zero-order data
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SOLVE BOUNDARY VALUE PROBLEM

With full tangential data plus elliptic system can integrate

Onu = Al (f — Apdpu — Agu)

inward to solve boundary value problem

Boundary conditions

v
Bu=[oz Bn1 Bng} Nv | =g BB* =1
Oov

determine local projection B*Bu = B*g on the boundary
Boundary value problem constrains (I — B*B)u on boundary

Contrast: hyperbolic systems blind L characteristics
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GENERALIZED ADI FOR POISSON SYSTEM

Choose arbitrary sweep direction n and normalize

J tJ

Left-invert A, by ellipticity and damp on scale 1/s

su™ T + 9T 4+ Bou™ T = su™ — Bpopu™ + Al f

Error mode e*'* damped by matrix symbol

p(k) = [[1] (s + ikn + Bo)~* (s — ikpBr)

Spectral radius 0.9° with S = O(log N) sweeps
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SPECTRAL RADIUS FOR POISSON SYSTEM

VY

13



GENERALIZED ADI FOR YUKAWA SYSTEM

Yukawa as first-order system
Au—du=f s Ajuj + Agu = f

introduces nonzero eigenvalues +v\ of By = A;QAO
Divide by zero when s = /)

Use matrix sign function K = ssgn(Bgp)
computed by Schur decomposition Bo = UTU*

Ko™t 4 g™t 4+ Boum+1 = Ku"" — Bpopu™ + A};f

Spectral radius 0.9° with \ = 10
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SPECTRAL RADIUS

FOR YUKAWA WITH )\ =10
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GENERAL STRUCTURE

Given operators A and B with
cheap resolvents (sI — A)~! and (sI — B)~!
find an efficient scheme for the solution of

(A+Bu=f

Underlies many computational problems where
— A is sparse and B is low-rank

— A and B are both sparse but in different bases
— fast schemes deliver A—! and B!

Challenging when A and B don’t commute

Solution very unlikely in this generality
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ADI? APPROACH

1. A and B may not be invertible (or even square): square

(A+B)*(A+Blu=(A+B)'f=g

2. Solve corresponding heat equation

oou=—(A+B)*(A+B)u+yg
toget uast— x

3. Discretize time and split
(I 4+ sA*A) (I + sB*B)u™ T = (I — s(A*B 4+ B*A)) u™ + sg
toget wast—

4. Alternate directions for symmetric symbol

p= I+ sB*B) ' (I+sA*A) 1 (I —2s(A*B+ B*A)) (I 4+ sA*A) ' (I + sB*B)*

Similar with more operators A, B, C, D, ...
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ADI? FOR POISSON/YUKAWA /HELMHOLTZ

Second-order equation — overdetermined first-order system

Auvt+ru=f — (A+B+C)u= A101u+ A20u+ Agu = f

with high-frequency zero-order operator C = O(\)

Fourier mode (k1,k>) of error damped with symbol
p = (I+sC*C) U +sB*B) P +sA"A) .

(I —2s(A*B+ A*C + B*A+ B*C + C*A+ C*B)) -

(I +sA*A) U +sB*B) (I +sc*C)™!

. 1 is(A+ 1)bk1 is(A+ 1)bks
p = —is(A+ 1)bk b2 0
7T A+ sk2)2(1 + sk2)2(1 + sA2)? _Zg/\ H 1%%; 5 b2

where b = (1 4+ sA2)/(1 4+ s)

Eigenvalues of p bounded by 1, controlled by s for all A
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SPECTRAL RADIUS FOR HELMHOLTZ WITH A =1
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CONCLUSIONS

Conversion to first-order overdetermined systems yields
— analytical understanding of elliptic structure

— well-posed computational formulations

— fast iterations for numerical solution

Coming attractions:

— fast spectral boundary integral methods

— efficient implicit methods for elliptic moving interfaces
— nonuniform fast Fourier transforms for geometric data
— optimized post-Gaussian quadrature methods
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