ADI iterations for

general elliptic problems

John Strain
Mathematics Department
UC Berkeley
July 2013

OVERVIEW

Classical alternating direction implicit (ADI) iteration

- Essentially optimal in simple domains
- Applies to narrow class of special elliptic equations
- Useful for variable-coefficient and nonlinear problems

Generalize ADI to arbitrary elliptic systems

- Eliminate symmetry, commutativity, separability, . . .
- Solve Laplace, Helmholtz, Stokes, ..., with single code

Convert elliptic problems to first-order overdetermined form

- Control computational error via residuals
- Illuminate solvability of boundary value problem

CLASSICAL ALTERNATING DIRECTION IMPLICIT

Separable second-order equations in rectangles

$$
-\Delta u=A u+B u=-\partial_{1}^{2} u-\partial_{2}^{2} u=f
$$

efficiently solved by essentially optimal ADI iteration

$$
(s+A)(s+B) u^{m+1}=(s-A)(s-B) u^{m}+2 s f
$$

when A and B are commuting positive Hermitian operators

Fast damping over geometric range

$$
\begin{gathered}
a \geq 0 \quad \rightarrow \quad\left|\frac{s-a}{s+a}\right| \leq 1 \\
\frac{1}{2} \leq \frac{b}{s} \leq 2 \quad \rightarrow \quad\left|\frac{s-b}{s+b}\right| \leq \frac{1}{3}
\end{gathered}
$$

implies $O(\epsilon)$ error reduction in $O(\log N \log \epsilon)$ sweeps

FIRST AND SECOND ORDER ELLIPTIC PROBLEMS

Cauchy-Riemann

$$
\partial_{x} u=\partial_{y} v \quad \partial_{y} u=-\partial_{x} v
$$

Low-frequency time-harmonic Maxwell

$$
\begin{array}{rll}
\nabla \times E=-\frac{i \omega}{c} H & \nabla \cdot E=4 \pi \rho \\
\nabla \times H=\frac{i \omega}{c} E+\frac{4 \pi}{c} j & \nabla \cdot H=0
\end{array}
$$

Linear elasticity

$$
\partial_{i} \sigma_{i j}+F_{j}=0 \quad \sigma_{i j}-\frac{1}{2} C_{i j k l}\left(\partial_{k} u_{l}+\partial_{l} u_{k}\right)=0
$$

Laplace/Poisson/Helmholtz/Yukawa/ ...

$$
\Delta u+\lambda u=f
$$

Stokes

$$
-\Delta u+\nabla p=f \quad \nabla \cdot u=0
$$

CONVERTING TO FIRST-ORDER SYSTEMS

Higher-order system of partial differential equations

$$
\begin{gathered}
\cdots+\sum_{i j l} a_{i j k l} \partial_{i} \partial_{j} v_{l}+\sum_{j l} b_{j k l} \partial_{j} v_{l}+\sum_{l} c_{k l} v_{l}=f_{k} \quad \text { in } \Omega \\
\sum_{l} \alpha_{k l} v_{l}+\sum_{j l} \beta_{k j l} \partial_{j} v_{l}+\cdots=g_{k} \quad \text { on } \Gamma=\partial \Omega
\end{gathered}
$$

Seek new solution vector $u=\left(v, \partial_{1} v, \ldots, \partial_{d} v, \ldots\right)^{T}$

Vector u satisfies first-order system

$$
\begin{gathered}
A u=\sum_{j} A_{j} \partial_{j} u+A_{0} u=f \quad \text { in } \Omega \\
B u=g \quad \text { on }\ulcorner
\end{gathered}
$$

Sparse matrices A_{j}, A_{0}, B localize algebraic structure

PITFALL OF CONVERSION

Robin boundary value problem for 2D Poisson equation

$$
\begin{array}{cc}
\Delta v+\lambda v=f & \text { in } \Omega \\
\alpha v+\beta \partial_{n} v=g & \text { on }\ulcorner
\end{array}
$$

3×3 square system

$$
\begin{gathered}
A u=\left[\begin{array}{ccc}
\partial_{1} & -1 & 0 \\
\partial_{2} & 0 & -1 \\
\lambda & \partial_{1} & \partial_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
f
\end{array}\right] \\
B u=\left[\begin{array}{lll}
\alpha & \beta n_{1} & \beta n_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=g
\end{gathered}
$$

System not elliptic (in sense of Protter): principal part

$$
\sum_{j} k_{j} A_{j}=\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
k_{2} & 0 & 0 \\
0 & k_{1} & k_{2}
\end{array}\right] \quad \text { singular for all } k!
$$

SOLVED BY OVERDETERMINATION

$$
\Delta v+\lambda v=f \quad \text { in } \Omega
$$

Overdetermined 4×3 elliptic system

$$
A u=\left[\begin{array}{ccc}
\partial_{1} & -1 & 0 \\
\partial_{2} & 0 & -1 \\
0 & -\partial_{2} & \partial_{1} \\
\lambda & \partial_{1} & \partial_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
f
\end{array}\right]
$$

Compatibility conditions \Rightarrow overdetermined but elliptic

$$
\sum_{j} k_{j} A_{j}=\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
k_{2} & 0 & 0 \\
0 & -k_{2} & k_{1} \\
0 & k_{1} & k_{2}
\end{array}\right] \quad \text { full-rank } \Rightarrow \text { injective for } k \neq 0
$$

Analytical benefit: controls derivatives $\partial_{j} u$ in terms of u and f
Computational advantage: controls error via residuals

CONVERSION OF 2D STOKES

Stokes for 2-vector u and scalar p

$$
-\Delta u+\nabla p=f \quad \nabla \cdot u=0
$$

Converts to 13×9 sparse system with
$u=\left[\begin{array}{c}u_{1} \\ u_{1,1} \\ u_{1,2} \\ u_{2} \\ u_{2,1} \\ u_{2,2} \\ p \\ p, 1 \\ p, 2\end{array}\right] \quad \sum_{j} k_{j} A_{j}=\left[\begin{array}{lllllllll}k_{1} & & & & & & & & \\ k_{2} & & & & & & & & \\ & k_{2} & -k_{1} & & & & & & \\ & k_{1} & k_{2} & & & & k_{1} & & \\ & & & k_{1} & & & & & \\ & & & k_{2} & & & & \\ & & & & k_{2} & -k_{1} & & & \\ k_{1} & & & & k_{2} & & k_{2} & k_{2} & \\ & & & & & & & & \\ & & & & & & k_{1} & & \\ & & & & & & & & \\ & & & & & \\ & & & & & & & k_{1} & k_{2}\end{array}\right]$
Elliptic (in sense of Protter) with Laplace equation $\Delta p=\nabla \cdot f$

BOUNDARY CONDITIONS FOR DERIVATIVES?

Example: Dirichlet $v=g \rightarrow B u=g$ with rank-1 matrix B

Intuitively, the system $A u=f$ includes compatibility conditions

Analytically, Fourier transform in half space \rightarrow well-posed

Computational methods enforce compatibility conditions up to boundary \rightarrow stable

Overdetermined interior \leftrightarrow underdetermined boundary

LOCAL SOLVABILITY FOR NORMAL DERIVATIVE

Ellipticity of first-order system

$$
A u=\sum_{j} A_{j} \partial_{j} u+A_{0} u=f \quad \text { in } \Omega
$$

implies any normal part $A_{n}=\sum_{j} n_{j} A_{j}$ is left-invertible

$$
A_{n}^{\dagger}=\left(A_{n}^{*} A_{n}\right)^{-1} A_{n}^{*} \quad \longrightarrow \quad A_{n}^{\dagger} A_{n}=I
$$

Determines any directional derivative

$$
\partial_{n} u=\sum_{i} n_{i} \partial_{i} u=A_{n}^{\dagger}\left(f-A_{T} \partial_{T} u-A_{0} u\right)
$$

in terms of tangential derivatives

$$
A_{T} \partial_{T} u=\sum_{j} A_{j} \partial_{j} u-A_{n} \partial_{n} u=\sum_{i j} A_{i}\left(\delta_{i j}-n_{i} n_{j}\right) \partial_{j} u
$$

and zero-order data

SOLVE BOUNDARY VALUE PROBLEM

With full tangential data plus elliptic system can integrate

$$
\partial_{n} u=A_{n}^{\dagger}\left(f-A_{T} \partial_{T} u-A_{0} u\right)
$$

inward to solve boundary value problem

Boundary conditions

$$
B u=\left[\begin{array}{lll}
\alpha & \beta n_{1} & \beta n_{2}
\end{array}\right]\left[\begin{array}{c}
v \\
\partial_{1} v \\
\partial_{2} v
\end{array}\right]=g \quad B B^{*}=I
$$

determine local projection $B^{*} B u=B^{*} g$ on the boundary

Boundary value problem constrains $\left(I-B^{*} B\right) u$ on boundary

Contrast: hyperbolic systems blind \perp characteristics

GENERALIZED ADI FOR POISSON SYSTEM

Choose arbitrary sweep direction n and normalize

$$
\sum_{j} A_{j} \partial_{j} u=\sum_{i j} A_{i}\left(n_{i} n_{j}+\delta i j-n_{i} n_{j}\right) \partial_{j} u=A_{n} \partial_{n} u+A_{T} \partial_{T} u
$$

Left-invert A_{n} by ellipticity and damp on scale $1 / s$

$$
s u^{m+1}+\partial_{n} u^{m+1}+B_{0} u^{m+1}=s u^{m}-B_{T} \partial_{T} u^{m}+A_{n}^{\dagger} f
$$

Error mode $\mathrm{e}^{\mathrm{i} k^{T} x}$ damped by matrix symbol

$$
\rho(k)=\prod_{s} \prod_{n}\left(s+\mathrm{i} k_{n}+B_{0}\right)^{-1}\left(s-\mathrm{i} k_{T} B_{T}\right)
$$

Spectral radius 0.9^{S} with $S=O(\log N)$ sweeps

SPECTRAL RADIUS FOR POISSON SYSTEM

$$
s=16
$$

GENERALIZED ADI FOR YUKAWA SYSTEM

Yukawa as first-order system

$$
\Delta u-\lambda u=f \quad \longrightarrow \quad A_{j} u_{j}+A_{0} u=f
$$

introduces nonzero eigenvalues $\pm \sqrt{\lambda}$ of $B_{0}=A_{n}^{\dagger} A_{0}$
Divide by zero when $s=\sqrt{\lambda}$
Use matrix sign function $K=s \boldsymbol{\operatorname { s g n }}\left(B_{0}\right)$
computed by Schur decomposition $B_{0}=U T U^{*}$

$$
K u^{m+1}+\partial_{n} u^{m+1}+B_{0} u^{m+1}=K u^{m}-B_{T} \partial_{T} u^{m}+A_{n}^{\dagger} f
$$

Spectral radius 0.9^{S} with $\lambda=10$

SPECTRAL RADIUS FOR YUKAWA WITH $\lambda=10$

GENERAL STRUCTURE

Given operators A and B with
cheap resolvents $(s I-A)^{-1}$ and $(s I-B)^{-1}$
find an efficient scheme for the solution of

$$
(A+B) u=f
$$

Underlies many computational problems where

- A is sparse and B is low-rank
$-A$ and B are both sparse but in different bases
- fast schemes deliver A^{-1} and B^{-1}

Challenging when A and B don't commute

Solution very unlikely in this generality

ADI ${ }^{2}$ APPROACH

1. A and B may not be invertible (or even square): square

$$
(A+B)^{*}(A+B) u=(A+B)^{*} f=g
$$

2. Solve corresponding heat equation

$$
\partial_{t} u=-(A+B)^{*}(A+B) u+g
$$

to get u as $t \rightarrow \infty$
3. Discretize time and split

$$
\left(I+s A^{*} A\right)\left(I+s B^{*} B\right) u^{m+1}=\left(I-s\left(A^{*} B+B^{*} A\right)\right) u^{m}+s g
$$

to get u as $t \rightarrow \infty$
4. Alternate directions for symmetric symbol

$$
\rho=\left(I+s B^{*} B\right)^{-1}\left(I+s A^{*} A\right)^{-1}\left(I-2 s\left(A^{*} B+B^{*} A\right)\right)\left(I+s A^{*} A\right)^{-1}\left(I+s B^{*} B\right)^{-1}
$$

Similar with more operators A, B, C, D, \ldots

ADI ${ }^{2}$ FOR POISSON/YUKAWA/HELMHOLTZ

Second-order equation \rightarrow overdetermined first-order system

$$
\Delta u+\lambda u=f \quad \rightarrow \quad(A+B+C) u=A_{1} \partial_{1} u+A_{2} \partial_{2} u+A_{0} u=f
$$

with high-frequency zero-order operator $C=O(\lambda)$
Fourier mode (k_{1}, k_{2}) of error damped with symbol
$\begin{aligned} \rho= & \left(I+s C^{*} C\right)^{-1}\left(I+s B^{*} B\right)^{-1}\left(I+s A^{*} A\right)^{-1} . \\ & \left(I-2 s\left(A^{*} B+A^{*} C+B^{*} A+B^{*} C+C^{*} A+C^{*} B\right)\right) . \\ & \left(I+s A^{*} A\right)^{-1}\left(I+s B^{*} B\right)^{-1}\left(I+s C^{*} C\right)^{-1}\end{aligned}$
$\widehat{\rho}=\frac{1}{\left(1+s k_{1}^{2}\right)^{2}\left(1+s k_{2}^{2}\right)^{2}\left(1+s \lambda^{2}\right)^{2}}\left[\begin{array}{ccc}1 & i s(\lambda+1) b k_{1} & i s(\lambda+1) b k_{2} \\ -i s(\lambda+1) b k_{1} & b^{2} & 0 \\ -i s(\lambda+1) b k_{2} & 0 & b^{2}\end{array}\right]$
where $b=\left(1+s \lambda^{2}\right) /(1+s)$
Eigenvalues of $\hat{\rho}$ bounded by $\mathbf{1}$, controlled by s for all λ

SPECTRAL RADIUS FOR HELMHOLTZ WITH $\lambda=1$

$$
s=1 / 64
$$

$s=1 / 4$

$s=1 / 16$

$s=1$

CONCLUSIONS

Conversion to first-order overdetermined systems yields

- analytical understanding of elliptic structure
- well-posed computational formulations
- fast iterations for numerical solution

Coming attractions:

- fast spectral boundary integral methods
- efficient implicit methods for elliptic moving interfaces
- nonuniform fast Fourier transforms for geometric data
- optimized post-Gaussian quadrature methods

