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FAST ADAPTIVE METHODS
FOR THE FREE-SPACE HEAT EQUATION*

JOHN STRAINt

Abstract. Standard numerical methods for the heat equation in two or more space dimensions are excellent if
it is necessary to follow the evolution in great detail through many small timesteps. This paper presents efficient
and accurate new adaptive methods that solve the free-space heat equation with large timesteps. These methods
combine the fast Gauss transform with an adaptive refinement scheme that represents the solution as a continuous

piecewise polynomial, to a user-specified degree of accuracy. The same approach is extended to solve inhomogeneous
problems and to solve the heat equation in moving domains with boundaries. In problems with boundaries, it allows
the use of accurate boundary representations without requiring difficult product integration formulas or precluding
fast evaluation schemes. Numerical experiments in two space dimensions show these methods to be accurate and
efficient, especially for highly nonuniform or discontinuous initial data or when substantial accuracy is required.
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1. Introduction. It is often necessary to solve the free-space heat equation

U AU in R2

(1)
u= f at =0

with a difficult initial temperature field f: We suppose that f vanishes at infinity, is globally
Lipschitz but not necessarily C1, and varies rapidly over only a small portion of its support.
One needs values of u at arbitrary points, not on a regular grid.

In this paper, we present efficient and accurate new numerical methods for solving this
problem. These methods are accurate in the sense that the user can specify a precision e, and
the solution is then produced within error e (relative to lull). The work required increases
as e decreases, as it must, but these methods are efficient in the sense that they attempt to
represent u with as few degrees of freedom as possible, adapting those degrees of freedom to
fit u. These methods are efficient in another sense as well; the work required to go from u (x, t)
to u (x, + At) is proportional to the number of degrees of freedom required and decreases as
At increases. (For explicit numerical methods, the work required increases as At increases,
and for implicit methods, it is superlinear in the number of degrees of freedom.)

Our methods are based on the exact evolution formula

1 fI e-lX-yl2/u(Y’ t) dy, 4At.(2) u(x,t + At) -We begin by projecting the initial temperature field f onto a finite-dimensional space of
piecewise polynomial interpolants, chosen adaptively to resolve f within error . Then we
use Hermite expansions to evaluate u (x, At) via (2) efficiently, again within error, and project
u (x, At) onto another adaptively chosen finite-dimensional space that resolves it within error. This process can be repeated at each timestep, or the Hermite expansion coefficients can be
updated to simply evaluate u at any desired time > At. The first approach is more applicable
to inhomogeneous problems, the second approach more efficient.

*Received by the editors August 19, 1991" accepted for publication (in revised form) March 17, 1993. This work
was supported by Air Force Office of Scientific Research grant AFOSR-91-0165.

Department of Mathematics, Princeton University, Princeton, New Jersey 08544. Current address: Department
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186 JOHN STRAIN

The techniques used here can also be used to solve the more general problem

U AU 21- F(x, t) in f2 C R2

U(3) tzu + fln g on 3f2

u=f att 0,

with f2 a possibly time-dependent subset of the plane having a bounded C2 boundary Of2, n
the outward unit normal to f2, and or,/5, g, f, and F C2 functions on their domains.

We first discuss the inhomogeneous free-space problem

(4)
Ut AU -- F(x, t) in R2

u= f att=0

as an example of the technique employed on (3). We solve (4) by Duhamel’s principle and
evaluate the resulting integral by the trapezoidal rule; this is second-order accurate in At.
Simpson’s rule gives a fourth-order method, and higher-order methods are similarly easy to
construct.

The organization of the paper is as follows. In 2, we derive the Hermite expansion of
the heat kernel and truncation error estimates. Next, in 3, we describe how we project a
given function f onto a finite-dimensional subspace, which resolves it within error 6 relative
to Iflc max Ifl. In 4, we describe how to combine these two techniques to solve the
homogeneous free-space heat equation (1), and in 5 we extend the method to the inhomo-
geneous equation (4). In 6 we sketch how to solve (3), using our method and heat potential
theory; details will be given in a later publication. Numerical experiments are presented in 7
and conclusions in 8.

2. Hermite expansions. The purpose of this section is to describe how certain moments
of u(x, t) suffice to evaluate u (x, + At) at any point x within an error tolerance 6. We use
the explicit evolution formula [5]

1 fR e-lx-yl2/u(Y’ t) dy, 8 4At(5) u (x, t + At) -for the bounded solution u of (1).
The heat kernel (with 1 for simplicity) is a real-analytic function of y R, so we

can expand it in a two-dimensional Taylor series:

1
(6) h(x y) e-Ix-el2 -.ha(x)ya.

a>O

Here c (tl, ct) is a multi-index with integer components, c! =Otl !a2 !; we say that tz > 0
if cti > 0 for each 1, 2, and ya yy. The Taylor coefficients are given by

(7) ha(x) Oyh(x- Y)ly=0 (-1)IID h(x),

where Icl Cl -+- 02 and

Dv Yl
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FAST METHODS FOR THE HEAT EQUATION 187

Since the variables Xl and x2 are separated in h(x), we have

h(x) h,,, (xi)h, (x2),

where each one-variable function hn (x) is given by

(xl=(- e-(al

Hn(x)e-x2

and Hn is the usual Hermite polynomial. We will need two facts from 11]. First, the two-term
recursion

Hn+l (X) 2xHn (x) 2nHn_ (x),

with H0(x) 1 and H1 (x) 2x. Second, Cramer’s inequality

Inn(x)l _< K2n/2q/-.eX2/2,

where K is less than 1.09. Hence

1 K2
211/2

(9) u Ih(x)l <

The "tail" left after truncating the series (6) after terms with every ai < p is bounded
uniformly in x by

1 K2 21l/2rll=O(2er2)(p+l)/2(10) E -. [h(x)lly[ < Z p + 2some ai p some ai p

if [Yi[ < r for 1, 2, by Stirling’s formula. This decreases very rapidly as p increases.
Thus the kernel h(x y) can be approximated by a (p + 1)2-term truncated Taylor, series
when lygl _< r, with an error that decreases rapidly as p, increases uniformly in x.

This expansion was used in [6] and 10] to evaluate the two-dimensional discrete Gauss
transform

N

(11) G$f(ti) E fie-It’-s12/, 1, 2, 3, M,
j=l

with ti, sj E R2, t$ > 0, It[ 2 tl + t, in O(N + M) time. (In [6], was a constant; [10]
extended the algorithm to cover the situation when 3i or 3j.)

Now rescale and shift this formula with an arbitrary and a center of expansion c; we get

(12) h (x-Y)/ =h (X-c-(y-c)) >o 1-.ho (x-c) (y-c)/
and the error in truncating after terms with oti < p is given by (10) if lYi ci[ r//. Hence
e-Ix-ylz/8 is well represented by a truncated Taylor series in y when y lies in a square with
center c and side 2r/.

This suggests a natural way to evaluate the integral

1 fa e-lx-yl2/’Gf(x) - f(y)dy.
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188 JOHN STRAIN

Suppose f has compact support. Cover the support of f with nonoverlapping square cells C
of side 2rx/ and centers c. In each cell, expand the heat kernel about the cell center using
(12);

(13)

where

C a>O /0

l fc(Y-C)a(14) ca f(y)dy.

The variables x and y are now separated, so we have decomposed the calculation into two
simpler pieces; first, we evaluate the moments Ca for each cell C and for O/i 0, 1 p,
and then we sum the Hermite series (13) for each point where Gf(x) is to be evaluated. The
numerical error in the approximation ofGf by this procedure comes from two sources: first,
truncation of the Hermite series, and second, quadrature error in evaluating Ca numerically.
We have already discussed the truncation error; the quadrature error will be discussed in the
next section.

We can speed up the evaluation considerably, when 3 is small, by dropping negligible
contributions from cells distant from the point of evaluation x. The contribution from a distant
cell C’ is bounded by

1 C’ 12/8rc3l e-lX-yl2/alf(y)[ dy _< --lfll e-Ix-x

where x0 is the closest point in C’ to x and IC’I is the area of C’. Thus only a fixed number
of cells within a distance O(f) need to be kept, for any fixed precision. Our next step is to
evaluate

3. Adaptive refinement. The purpose ofadaptive refinement is to know a function within
as efficiently as possible. Numerically, we know a function f within if we can evaluate it

at any point x with an error that is less than
The Hermite expansion of 2 enables us to evaluate u(x, 4- At) at any point x, not

just on a fixed set of grid points. The cost per evaluation is fixed, because each evaluation is
independent of the others. Thus we are in the following situation: We have a function, f say,
and we can evaluate it at any point for fixed cost per evaluation. How can we best approximate
f by piecewise polynomials within error elfin? For our applications, f is not very smooth
initially, so refinement in space seems a reasonable approach. Thus we use a fixed low degree
d of polynomial interpolation and refine the interpolation grid wherever f is not accurately
represented. We use a triangular grid and approximate f by degree-d interpolation over each
triangle; the degree is selected by the user. When we evaluate the moments Ca, we have to
integrate f times powers over cells C. It is convenient if each triangle of our triangulation lies
completely within a single cell C. We begin with the simplest such triangulation, which is the
one formed by cutting each cell C into two isosceles right triangles and subdividing until f is
accurate within

Thus we use the following method to construct the adaptive approximation of f; we begin
by dividing each cell C into two fight triangles and constructing the degree-d interpolant to f
at the (d + 1)(d + 2)/2 nodes shown in Fig. 1.

Now we stack all the triangles and sweep through, testing whether each triangle requires
subdivision. To test a triangle, we evaluate f at each node that would be produced by bisecting
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FAST METHODS FOR THE HEAT EQUATION 189

3 3
13

Linear Quadratic

32

331 i13

Cubic

FIG. 1. Nodesfor degree-d interpolation on trianglesfor d 1, 2, and 3.

221

112

the longest side, as shown in Fig. 2. This requires one evaluation for d 1, three for d 2,
and six for d 3; all these values are used if the triangle is subdivided. We also evaluate the
degree-d interpolant at the same nodes and compute the maximum difference between the two
sets of values. If f is within e (relative to the maximum value of fl so far encountered) of
the interpolant at the new nodes, the triangle is accepted. Otherwise, the triangle is subdivided
by Mitchell’s newest-node bisection method [8], maintaining compatibility by subdividing
neighbors as necessary, and the new triangles are stacked. We then repeat the procedure until
the stack is finished.

Linear Quadratic Cubic

FIG. 2. New nodes produced when the base is bisected are circled.

Mitchell’s subdivision procedure assigns one vertex ofeach triangle in the initial triangula-
tion as a "peak" and the side opposite the peak as the base. (In our case, the initial triangulation
consists of isosceles right triangles and the peak is the vertex at the right angle, opposite the
hypotenuse.) Then it subdivides triangles by dividing the base and the neighboring triangle
opposite the peak, with the new vertex being assigned as the peak of each of the four new
triangles created by the subdivision. Compatibility is maintained by always subdividing com-
patible pairs of triangles; if the neighbor opposite the peak is not compatibly subdivisible, it
is itself divided recursively until compatibility is maintained. An example is shown in Fig. 3.
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190 JOHN STRAIN

(b)

(d)

FIG. 3. An example ofMitchell’ recursive newest-node bisection [8]. Triangle T1 isflaggedfor subdivision, but
the peak of its neighbor T2 (indicated by circle) does not lie opposite T1. Hence we must refine T2 and its neighbor
T3. Similarly, the peak of T3 does not lie opposite T2, so we must refine T4 and T3. The peak of T4 lies opposite T3,
so the recursion stops here. We then divide triangles backwards in pairs as shown in (b) through (d), until we have
divided the triangle T1 we originally wanted to divide. The subdivided triangulation is shown in (d).

Once a triangulation is constructed, we have enough information about f to solve the
heat equation to accuracy e after time At has elapsed. We need only to use the interpolant of

f on the adapted triangulation to evaluate (p + 1)2 of the moments C, within relative error e.
This requires integrating the interpolant times ((x c)//) over each triangle lying in cell
C with center c.

This task is simpler if we put the interpolant, on each triangle, in the shifted and scaled
Cartesian form

Ifll-<d r
This requires considerable hand calculation, because fis most naturally expressed in barycen-
tric coordinates as in [3], and the expressions for the Cartesian coefficients Ffi can become
quite complicated for quadratic or cubic interpolation. The expressions for F are given in
the Appendix.

Next we need to calculate the approximate moments

(15)
ot !--- f y dy

Z f(y)dy
TcC

D
ow

nl
oa

de
d 

11
/1

7/
15

 to
 1

69
.2

29
.5

8.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FAST METHODS FOR THE HEAT EQUATION 191

using the piecewise polynomial interpolant. Here we have split up the integral over C into a
sum of integrals T, say, over the triangles T contained in C.

Now consider the evaluation of

fr(Y-C)’(16) Ta f(y) dy

(Y-C)+’
(17) F-. dy.

I/l_<d

We need only evaluate triangle moments

T ,!8
dx

for , 0, 1, 2 p + d. Note that while c may not lie in T and 3 may be small, we
neveheless have T C C and thus ]x cl r for x T, where r is a fixed constant.
Hence evaluating Tr and adding up values with coefficients is not a numerically unstable
process.

To evaluate Tr, we first translate and scale T to simplify the notation, then use the
Divergence Theorem and recursion. Write y (i, j) and x (x, y). Then

T .j x yJ dxdy,
ij

where r’ (r c)/ is a shifted and scNed version of T.
Let Vl, v, and v3 be the vegices of T’, aanged in counterclockwise order, and let v4 v.

Then by the DNeNence Theorem,

3

k=l

where explicit pametfization of the line segment vvt+ gives

xi+l yj
(A+ Y)

(i + ) j
dO.

Here (x, y) v Ovt+ +(1-0)v and vt (xt, y). Integrating bypass gives arecuence
relation

AxA
(i + 1) (j + 1) --Ay ’-1’+1’"

Here A is the forward difference operator Ax X+l x. We can use this recuence
to compute .] for i, j 0, 1, 2 q p + d if we st with vNues for T0] for j
0, 1, 2 2q. Integrating by ps again produces initial values for the recuence:

AxAr0= x(j+) -Ay (J+)

Note that (a) it is eNcient to precomputed store the values x/i and y/j, whiche used
repeatedly, d (b) -] 0 when Ay 0 (so there is no diNculty with dMding by zero).
is concludes the evaluation of E. and hence of C.
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192 JOHN STRAIN

4. The homogeneous problem. We now combine the tools described in 2 and 3 to
construct methods for solving the homogeneous free-space heat equation

(18) Ut Au in R2,

(19) u(x, O) f(x),

with f a bounded function that vanishes at infinity. The unique bounded solution u satisfies
the semigroup property [5]

f [x_y]2/(20) u(x, + At) e- u(y, t) dy,

with 6 4At.
Method 1. Taking 0 and At gives

fR e-lx-yl2/(21) u(x, t) f(y) dy, 4t,

which represents u at any time in terms of the convolution of a Gaussian with scale 3 4t
with the initial temperature field f. Let us suppose that we want to know u (x, t) within relative
error e at a sequence of times 0, At, 2At NAt T, and At is not too small. (If At
is very small and we wish to know u at every step, explicit adaptive finite difference or finite
element methods are excellent.)

Let 3 4At and let us first evaluate u(x, At). We replace f by a piecewise polynomial
f constructed, as in 3, to approximate f within elfl/2. Then we use f to evaluate the
moments a defined in (15) for 0 < O p for each cell. We can now evaluate u (x, At) by
(21) within error e relative to [fl, by a truncated Hermite series

"-->o

p

(xc)
C

where the error E comes from several sources; first, the error due to replacing f by f, which
is bounded by lfl/2 by the maximum principle [5]; second, the error due to truncating
each Hermite series at O p, and third, the error due to ignoring distant cells. These add up
to

(22,
,Ifl [_o(2er2)

(p+l)/2

()\p + 2 Ifl + O e-4rzI ]fl,

which can be easily made less than by choice of p and the cutoff distance once r and N are
fixed.

Thus we can evaluate u(x, At) at any point x. Method 1 is distinguished by the way in
which we evaluate u at later times. In principle, a separate computation should be required
for each time at which we wish to evaluate u, because the moments Ca depend on through
3. However, Ca is homogeneous of degree -1 Iotl/2 in 3;

1 fc(Y-C) or!3 f(y) dy.

Thus Ca(23) 2-(2+lal)/Zca(3) if we make the dependence on 3 explicit. Once we have
Ca(3), therefore, we can evaluate u(x, t) with relative error less than e at any time >_ At,
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FAST METHODS FOR THE HEAT EQUATION 193

simply by scaling the coefficients and evaluating. More precisely,

2"t" C O

where E < elfl. The need to include more cells C in the sum as increases, due to
spreading of the Gaussians, is more than counterbalanced by the fewer coefficients required:
Ca is effectively reduced exponentially as 4t increases.

The scaling of coefficients used in Method 1 was developed in [10] for evaluating the
discrete Gauss transform with target-dependent scales.

Method is highly efficient and accurate. It requires a substantial investment of effort at
the beginning of the calculation to construct the triangulation and approximate f (especially
if f is not very smooth), but evaluation of u gets less and less expensive as time goes by.
Moreover, the space required for the triangulation can be reused for other purposes as soon
as the coefficients are evaluated and stored. Method is useful whenever the homogeneous
free-space heat equation is to be solved for rough data and not too small times.

Two fundamental properties of the heat equation influence this method. First, the increas-
ing smoothness and decreasing variation of u (x, t) as increases means that it takes fewer and
fewer degrees of freedom to represent u within a fixed relative precision e. A typical example
is shown in Figs. 4 and 5. In Fig. 4, we display the triangulation needed to resolve

10 10

f(x) y cos(kl(Xl -1))Cos(k2(x2 2))e-(’(xl-g’)):-(’(x-))

kl=l k2=l

(where)1 and 22 are randomly chosen, for each kl and k2, on [-1, 1]) within error e 10-2

relative to Ifl, using linear interpolation. Figure 5 displays the triangulation needed to
resolve the solution u(x, t) with initial data f(x), at 0.1, to the same relative precision.
The triangulation began with a 6 x 6 grid of square cells on [-3, 3] in both cases; f required
2910 triangles while u required only 608, a reduction in the number of degrees of freedom by
almost 5. The smallest triangle for f is 2.6 on a side, while at 0.1, the smallest triangle
is 2.3 Thus smoothing by heat flow speeds up later stages of the calculation.

The other property of the heat equation, the spreading support of its solutions, is less
benign though hardly malignant. Even though f has compact support, u(x, t) will not have
compact support for any > 0, because heat flows instantaneously (though in small amounts)
to infinity. Thus if we begin by representing f by a piecewise polynomial on B [-R, R]2,
say, where Ifl _< outside B, the support of u will spread and lul will eventually be greater
than e outside B. No fixed region can be used for computing u for arbitrarily long times,
because eventually significant heat flows to infinity.

Method 2. We now describe another method for solving (18), with slightly different aims.
Method 2 is better suited to solving inhomogeneous problems and extends more easily to
solving problems on domains with boundaries and variable-coefficient and nonlinearproblems.

The basic idea of Method 2 is simply to restart Method at each step. (More generally,
we could restart every few steps.) The advantage in this is that data like inhomogeneous terms
and boundaries can more easily enter the evolution.

More precisely, we carry out Method to construct the coefficients Ca of u (x, At). Then
we apply the adaptive refinement strategy again, with u(x, At) in place of f(x). Thus we
construct a new triangulation on which u(x, At) is equal to a piecewise polynomial of degree
d, within error elu(., At)l. We then repeat the construction of the C’s with u(x, At) in
place of f, and we then can evaluate u (x, 2At). We repeat this process, going from real-space
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194 JOHN STRAIN

FIG. 4. Initial triangulationfor sum of O0 scaled and randomly shifted terms of

el/4T-l’4
Ul (x, t) cos e-x/r,

where T + 4t, resolved to error 10-2 relative to luloo with linear interpolation. The triangulation began
with a 6 x 6 grid ofsquare cells on [-3, 3]. This required 2910 triangles and 1468 nodes, with minimum side length
2-6.5 times the maximum side length.

FIG. 5. Triangulationfor 100 terms ofu at 0.1, with 10-2 and linear interpolation. The increasing
smoothness ofthe solution is reflected in the larger triangles used to represent it; only 608 triangles are needed here,
with 317 nodes and minimum side length 2-3.5 times the maximum side length.
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FAST METHODS FOR THE HEAT EQUATION 195

values sufficient to resolve u (x, n At) to the coefficients for u(x, (n + 1)At) and back again,
at each timestep.

A disadvantage of Method 2 is that in the worst case we commit error e at each step;
thus if we want to go N steps to time T, and guarantee a final error _< , we have to commit
error N at each step. Fortunately, this estimate is quite pessimistic, because the error
committed at one time is high frequency and therefore decays rapidly under the heat flow.
Hence errors do not accumulate to this extent in practice.

There are several ways to deal with the problem of spreading support and they lead to a
subdivision of Method 2.

Method 2.1 is the simplest. Here we plan to compute up to some final time 7’, determine
R so that lu(x, t)l < outside [-R, R]2 for 0 < < T, then compute on the fixed domain
[-R, R]2. Either R can be determined experimentally or the exact representation (18) for u
can be used to bound R a priori. Suppose Ifl _< lfl when Ixl >_ t). Then within error

1 fly e-Ix-yl2/*f(y) dy, 4At.u (x, t)

If Ix _> R where R > p, then

p2
lu(x, t)l _< --e-(n-o/alfl.

We can make this < e for 0 < < T with R p + O(v/T log( T)), so R grows rather slowly
with T. This a priori bound is rather crude, however, and it is usually far cheaper to run the
code once with At T and large e (which costs very little), measure the maximum of lul
near the boundary, and increase R until a suitable value is found. Note that increasing R adds
to the outer regions of the computational domain, where u is small and smooth and therefore
needs little refinement, hence adds Very little to the cost of the calculation.

Method 2.2 is almost as simple as Method 2.1; here, we compute on a changing com-
putational box B(t) [al(t), bl (t)] x [a2(t), b2(t)], outside of which Ifl < initially. At
each step, we expand B(t) adaptively to include all regions in which lul > . This is done by
computing the max of ]u] over each side and adding one cell at a time until satisfied.

This method is adaptive in a way that fits well with our general approach. It is not foolproof
(as Method 2.1 with an a priori estimate would be), but in practice works very well. It achieves
a small savings over Method 2.1 at a small additional cost in algorithmic complexity.

Method 2.3, like 2.2, expands the domain as necessary. But Method 2.2 adds cells, so
the cost goes up; in Method 2.3, we simply scale up the size of each cell by increasing 3 until
cells of size 2r/ cover the region on which lul > . Thus we look at the solution on a
larger spatial scale to take advantage of its increased smoothness and take larger timesteps
accordingly. The spatial and temporal scalings are related by the natural scaling law of the
heat equation; time space squared.

This method achieves roughly constant cost, but at the price of varying the timestep.
Thus we have to use interpolation in time if we want to know u at a specific time. Another
disadvantage is that Method 2.3 does not easily extend to inhomogeneous problems, where
the solution does not necessarily become smoother as time goes by.

Method 3 speeds up the evaluation of u by transforming the sum of (21 + 1)2 Hermite
series into a single Taylor series for each cell, using a technique developed in [6].We have

C ot>_O
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196 JOHN STRAIN

We can transform this to a single Taylor series in the cell B in which x lies, say,

f>O

where b is the center of B. To do this, we simply calculate the Taylor coefficients

B ()l__l Db u(b t)

But h (-D)e-Ix12, by definition, so

(23) B-
(-1)lt. (b-c)

C ct>0

This sum can be truncated with an error bound similar to that for the original series. Thus u can
be expressed as a local Taylor series in each cell, with coefficients depending on the Hermite
coefficients C for nearby cells and the Hermite functions of the center-to-center vectors.

The advantage of this is that each evaluation of u costs only O(p + 1)2 arithmetic oper-
ations, rather than O((2I 4- 1)(p + 1)), which can be one or two orders of magnitude larger.
Since most of the computational effort is spent on evaluating u, this is a considerable savings.

As in [6], there is a break-even point, a number of evaluations per cell below which it is
not efficient to transform u to a Taylor series. This point depends on the degree of refinement
necessary in the given cell, hence is not known a priori. However, it can be estimated from
the behavior of u in the cell in the previous timestep or directly from the rate of decay of the
Hermite coefficients.

However, another advantage is that when u is given by a truncated Taylor series, the
coefficents C, for the next time level are trivial to compute. For cell C, we have

dx
<_p

(24)
rl+/l+2(1 (_1)+#+)(1 (_1)2+#+)--B/ (Ctl 4- 11 4- 1)(o/2 4-/J2 4- 1)<p

since the sides of C are 2r/ long. Thus it is unnecessary, as far as u is concerned, to

retriangulate. Of course, inhomogeneous terms and layer potentials will still need to be
approximated on a triangulation.

By substituting (23) into (24), we also get an expression for the new C’s in terms of the
old C’s, which allows us to evolve u completely in transform space and makes it unnecessary
to return to real space at every step.

5. The inhomogeneous case. We now generalize one of the methods, Method 2.1, to
solve the inhomogeneous free-space heat equation

(25)
ut=Au+F(x,t) inR2,

u (x O) f(x),
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FAST METHODS FOR THE HEAT EQUATION 197

where F has compact support in x for each t. The evolution formula corresponding to (20) is
Duhamel’s principle [5, p. 196]

(26)

1 f ix_ylu(x, + At) 7- e- /au(y, t) dy

t+At

f+ e-Ix-yl2/r F(y, s) dy ds
at 7tl

with 3 4At as usual and r 4(t + At s).
Let us begin by discretizing the time integral. The integrand is a smooth function of s, so

the trapezoidal rule

t+At At
g(s) ds --;-(g(t + At) + g(t)) + O(At3)

z

is globally second-order accurate. Moreover, when s - + At, the integrand approaches
F(x, + At). Thus we have

fR e-lx-yl2/a [u(x, + At) u(y, t)
At ]+ -F(y, t) dy

At
+--F(x, + At) + O(At3).

Thus u(x, + At) can be found by Method 2.1, if we simply replace u(y, t) by u(y, t) +
+/- At F(y, t) in the construction of the triangulation and the evaluation of the moments, and2

afterward add gl AtF(x, + At). Since we commit O(At3) error at each of N STr steps,
the final error in u up to time T is O(At2).

Higher-order methods are easy to construct, but slightly more expensive per timestep.
Several sets of coefficients must be stored, and updated (by the technique of Method 1) after
each step. These higher-order methods are important, however, because our approach is
efficient when At is large; thus we need a higher order of accuracy to capture variations in F.
Hence this approach is suited to F varying rapidly in x but not in t.

A fourth-order method, for example, can be based on Simpson’s rule:

t+At At

At 3
[g(t At) + 4g(t) + g(t + At)] + O(At5).

This leads to two possible methods, depending on whether or not it is convenient to evaluate
F at half timesteps. If not, for example, we get

u(x, + At) e-lx-yl2/2a u(y, At) + F(y, At) dy

4At fR e-lx-ylZ/a+- F(y, t) dy

At
+ F(x, + At) + O(AtS).

The final error after N steps of this method is O(At4).
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198 JOHN STRAIN

6. Domains with boundaries. The methods we are developing in this paper find perhaps
their best application in the solution of the heat equation on domains with (possibly time-
dependent) boundaries. To do this, we use the classical theory of layer potentials for the heat
equation described in [9] and more recently in [2]. The key operators in this theory are the
layer potentials

Sg(x, t) G(x x’, t’)g(x, t’) dx’ dt’,
(t’)

Dg(x, t) t’)g(x t’) dx’ dt’
(t’)

(x x’,

D*g(x, t) t’)g(x t’) dx’
(t’

(x x’ t-

taken over atime-dependentboundary 1-’ (t). Here G is the heat kernel G (x, t) (4rt)- le- Ix12/4t

and g is a function defined on F (t) for each t. Various boundary conditions for the heat equa-
tion can be transformed into Volterra integral equations on F(t), with operators like S, D, or
D*, by representing the solution of the heat equation as a sum of layer potentials.

In this section, we describe briefly how our methods can be used to evaluate Sg. The
basic idea is that layer potentials are solutions of inhomogeneous problems like the one treated
in the previous section, but with distributions rather than smooth functions on the fight-hand
side as forcing terms. Sg, for example, solves

U AU--}-,
(27)

u(x, O) O,

where/z is the measure that assigns density g concentrated on F (t). The double layer potential
Dg has the normal derivative of a measure on the right-hand side.

Clearly this observation does not allow one to evaluate layer potentials with standard
numerical methods that mostly require point values. Our methods, however, require only the
ability to integrate the inhomogeneous term against a piecewise polynomial. The singularity in
time ofthe kernel G turns out to complicate the integration slightly, requiring a straightforward
asymptotic calculation.

Let us consider the single layer potential u Sg. Since u satisfies (27), the evolution
formula (26) gives

1 f e-Ix-yl2/au At) dyu(x, t) (y,

(28)

flfp e-lx-yl2/4(t-t’)
+

At {t’) 47r(t t’)
g(y’ t’) dydt’.

The integrand in the time integral is singular; it becomes infinite as t’ approaches t. Thus
a standard integration formula like the trapezoidal role will not achieve its usual order of
accuracy. A standard technique for eliminating this difficulty is product integration; to apply
product integration, one extracts an analytic form for the singularity of

e-lx-yl2/4(t-t’)
(x, t’)

t’) 4yr(t t’)
g(y’ t’) dy

as t’ approaches from below. Say, (x, t’) 4(x, t’) as t’ " t. Then we construct an
integration rule by interpolating (x, t’)/cb(x, t’) and integrating the resulting polynomial
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FAST METHODS FOR THE HEAT EQUATION 199

times q (x, t’) exactly. Such a rule will achieve the order of accuracy of the interpolation used.
Of course, b must be simple enough that p times a polynomial can be integrated exactly or
very accurately, by some trick.

Thus we need the asymptotic behavior of as t’ " t. When x lies on 17 (t), a simple
calculation shows that

1
(x, t’) g(x, t) as t’ ’l" t.

/4n’(t t’)

This square-root singularity is consistent with the usual parabolic scaling of the heat equation.
It is derived by approximating F(t’) by its tangent line, estimating the error, and Taylor
expanding. The technique is fairly standard 1 ].

When x does not lie on 17 (t), however, approximation by the tangent line gives the wrong
answer, because it neglects the curvature of 17(t). A better approach is to approximate 17(t)
by the osculating circle or parabola; the result depends only on the curvature of F (t), so either
will do. We omit the details and state the result.

Assume x0 is the closest point on 17 (t) to x and let D Ix x01. Let R be the radius of
curvature of F (t) at x0 and p be the distance from x to the center of curvature. Then, if p > 0,

(x, t’)
/4:r(t t’)

e-z2/4(t-t’)g(x’ t)

ast’ " t.
We now have the asymptotic behavior of the integrand. The next step is to write the time

integral as

f e-D2/4(t-t’)
h (x, t’) dt’

xt /4zr(t t’)

e(D2-1x-yl2)/4(t-t’)
h (x, t’)

(t’) /4zr (t t’)
g(y’ t’) dy

so that h(x, t’) /R/pg(xo, t) as t’ " t. Now h is a nice smooth function, so we replace it
by its linear interpolant

/i(x t’)
t’ zxt t’

h(x, At) h(x, t)
At At

and carry out the time integral exactly. This gives

ft e-D2/4(t-t’)

(29) e-2/ 170 170 g(x0, t)
4zr 2 3 2 3

A (3 D2)fr e-Ix-ylz/
+ 1-’o 2’ 3 (t--At)

g(y, At) dy + O(AtS/2).

Here 170 is the normalized incomplete gamma function defined by

17o(a, ) e-a e-Zza-1 dz a<0.
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200 JOHN STRAIN

We now have an approximate evolution formula

1 fR e-lx-yl2/’u(Y’ t) dyu(x,t + /xt)

e- lx-yl2-- W1 (x, t)g(xo, + At) + W2(x, t) frIt)
g(y’ t) dy,

accurate to O(Ats/2). Here W0 and W are given in (29) as functions of x, At, and F(t). To
evaluate u by this formula, we need to find the nearest point x0 on F (t + At) to x and estimate
the curvature and normal of [’ (t + At) at x0. Finding the nearest point can be done efficiently
by binning pieces of F’ (t + At) and searching bins.

To evaluate u, we also need to evaluate the "Gauss transform on a curve" defined by

e-lX-yl/
Fag(x) ------ g(y) dy.

This can be approximated adaptively by the Hermite expansion technique used for the homo-
geneous case. We begin by representing 1-" and g as piecewise polynomials of degree d, within
accuracy e. To do this, we first lay down a coarse grid on F (parametrized by s [0, 1 ], say),
and construct piecewise polynomial interpolants to the coordinate functions of 1-" and to g at
meshpoints sj equispaced in [0, 1 ]. In the style of 3, we now refine our representation of F
adaptively whenever the polynomial interpolation fails to represent either 1-" or g accurately.
The result is a representation

r ujrj + 0(),

g= + o(),

where Fj is an element; if we use linear interpolation, for example, Fj is a line segment.
Now we apply the expansion technique of 2. Lay down cells C of size 2rVC8 to cover

1-’, and expand the contribution of 1-" A C as a series about the cell center c. We find

with E O (e) and

C
C--8 c ,r8 y dy

1

Vc8 ,]
y dy,

where F Fj. (In order to have F divided into elements each of which lies in a single cell
C, we peffo a fuher subdNision of F by cutting any element crossing more than one cell.)
This Heite series can be truncated with the usual bounds.

We now have to evaluate integrals of the fo

) (y)dy,

where is a polynomial. If we use line inteolation, the recuence relation for doing this
was developed in 3. Otheise, simil but more complicated recuence relations can be
developed, or Gauss-Legendre integration of sufficiently high order can be used.
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FAST METHODS FOR THE HEAT EQUATION 201

A major advantage of the present approach is that we are able to use high-order approxi-
mations of F without having to integrate Gaussians over such approximations. The difficulty
of carrying out these calculations has been a major stumbling block in the construction of
high-order product integration schemes, both for the heat equation and the Laplace equation.
With the current approach, one needs only to integrate powers over polynomial curve elements,
a technique that can always be carded out. This advantage was observed but not developed in
[6]. The fast multipole method [7] can be used in a similar way to eliminate the necessity of
product integration in potential theory for the Laplace equation. This approach seems likely
to be particularly useful in three-dimensional problems, where product integration is more
difficult.

The remainder of the calculation is straightforward; we present some preliminary nu-
merical results in 7. We have described only the single layer potential, but the analysis of
the double layer potential is quite similar. The jump in the double layer potential across the
boundary complicates matters surprisingly little.

7. Numerical experiments. In this section, we describe the results of codes written for
the homogeneous problem and the single layer potential. The codes were written in standard
FORTRAN 77 and run on a SUN SPARCstation 1+ with the optimizer flag -(3, using double-
precision arithmetic. The timings reported are usually reproducible within 1 or 2%, which is
sufficient for our purposes.

First, we implemented Method 2.1 for the homogeneous problem, checking the numerical
results against exact solutions for three sets of exact temperature fields; each is produced by
shifting, scaling, and summing a basic solution. We put

K K

u(x, y, t) Z uj(k(x xk), k2t)uj(k2(y yk), kt),
kl=l k2=l

where xkl and Yk2 are random uniformly distributed on [-1, ]. The three basic solutions are
given by

el/4Te-1/4 ()e_X/ru (x, t)
/

cos

where T 1 + 4t,

max(1 Ix I, 0) if 0,
u2(x,t)

A2[ (x 1)eft((x 1)/) + 47-e-(x- )2/4t] if > 0,

where Af(x) f(x + 1) f(x), and

u3(x, t) [ X-l,l(x) if 0,

! [erf((x + 1)//) erf((x 1)/qt)] if > 0,

where X-I, 1] (X) is zero for [x[ > 1 and 1 otherwise. The first solution is smooth with
K2 sharp peaks of scales from 1 to , and decays exponentially at infinity. The second is
piecewise linear, continuous, Lipschitz, and piecewise smooth but not C at 0. The third
is discontinuous in x at 0 but smooth and sharply varying for > 0. We used our method
to compute u for ten timesteps equispaced from 0 to 1, beginning each triangulation with a
14 x 14 grid of square cells on the domain [-7, 7]2 and using linear, quadratic, and cubic
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202 JOHN STRAIN

interpolation with various error tolerances e. We took K 10, so each solution Uj varies over
scales from 1 to 0.1. We used p 6 and I 2 to achieve error e 10-2 relative to lul at
each step.

Table 1 reports the errors and times produced by Method 2.1 on these three temperature
fields. Several conclusions can be drawn from Table 1. The method achieves the requested
accuracy in every case. The time required for accuracy scales roughly like -1 for linear,
-2/3 for quadratic, and -1/2 for cubic interpolation, as it should.

For purposes of comparison, the standard explicit nonadaptive finite difference method

nq-1 n 9 2 nAt(A7 -’b lj)Ui_l,j_Uij Uij "[-

on a square N x N grid requires time O(e-2) to attain accuracy e. Indeed, this method has
error O(At + h2) and is stable if At < h2/4, so decreasing the error by a factor of 4 requires
halving h and reducing At by 4. Since this method requires O(h-2) work per step, we see
that decreasing the error by a factor of 4 requires 16 times as much work, corresponding to
O(e-2). A fourth-order explicit method would need O(e-1) work to achieve error less than e.

Our method is relatively unfazed by nonsmooth or discontinuous initial temperature fields
as long as they are bounded. It resolves the discontinuity as well as it can, and ends up with a
very good approximation except on a very small area. The small area where the interpolant is
inaccurate does not affect the total error, essentially because the heat equation is stable in L
as well as L.

TABLE
Times and errors for the homogeneous free-space heat equation. Column No/N1 displays the number of

triangles in the triangulation at 0 and at 1, T is the total computing timefor ten stepsfrom 0 to 1,
and E is the maximum error, divided by the maximum of the solution. Results for lower-degree interpolation with
small , shown with dashes, were too time consuming and were omitted.

u Linear Quadratic Cubic

No/N1 T E No/N1 T E No/NI T E

10-1 3198/784 52 .96-1 1076/394 66 .81-1 728/392 115 .76-1
10-2 27634/5260 752 .43-2 3382/590 276 .18-2 1550/396 317 .17-2
10-3 264454/49028 8812 .44-3 14460/1888 1079 .20-3 3948/532 628 .21 3
10-4 64056/8126 5619 .20-4 11096/1236 1898 .14-4
10-5 33496/3604 11178 .22-5
u Linear Quadratic Cubic

No/N T E No/N T E No/N T E

10-! 4548/784 26 .98--1 2188/394 32 .82--1 1410/392 55
10-2 54664/5242 568 .46--2 27340/588 318 .19--2 21746/396 446
10-3 399988/48982 7834 .48--3 316904/1884 2973 .22--3 249236/534 3833
10-4 399988/8152 7350 .21--4 399988/1242 7764
10-5 399988/3654 16443

.77--1

.18--2

.22--3

.14--4

.23--5
U Linear Quadratic Cubic

No T E No/N1 T E No/NI T E

10-1 5106/782 25 .10-0 5290/394 41 .84-1
10-2 14632/5266 457 .86-2 15032/590 213 .52-2
10-3 115852/49016 6476 .95-3 115852/1878 1430 .18-2

5344/392 80 .75-1
15060/394 309 .42-2
115852/530 1779 .60-3

One feature that is not apparent from the tables is that evaluation of u is more costly than
evaluation of the coefficients. Typically the code spends 80% of its time evaluating u and
only 20% evaluating coefficients. This is partly due to inefficiency; the refinement test we
use wastes many evaluations of u when the grid is almost completed. We plan to address this
admittedly minor point in future improvements.
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FAST METHODS FOR THE HEAT EQUATION 203

Finally, we present some preliminary numerical results for the evaluation of the single
layer potential

Sg(x, t) fot fr e-lx-yl2/4(t-s)

(t’) 4n’(t s)
g(y, s) dy ds.

In order to compute the error, we took a very simple case with g and F(t) a stationary
circle with center (0, 0) and radius 1.1. (Of course, we coded the method for a general curve
and density.) We computed Sg on an adaptive grid using N steps until 1, setting 10-1

initially and reducing by a factor of4 for each successive calculation. The triangulation with
10-1 is shown in Fig. 6 at 1; the triangulation for this problem changes little over

time.

\/

\)

Fo. 6. Triangulationfor the single layerpotential ofunit density on a circle with center (0, 0) and radius 1.1.
Here 10-2 and 0.1. The smallest triangle has sides oflength 2-s times the maximum side length and there
are 1232 triangles with 5581 nodes in the box [-3, 3]. The maximum level ofsubdivision was 10. The dotted circle
is the curve F(t); it is resolved to accuracy ’ 10-3 with 120 line segments, subdividedfurther to have each line
segment lie in a single cell.

Table 2 presents numerical results for this calculation with N 10, 20, 40 steps and
cubic interpolation. T is the total computing time, E is the maximum error, divided by the
maximum of the solution, and Nr is the number of triangles at 1.

TABLE 2
Times and errorsfor the single-layer heat potential; T is the total computing time for N stepsfrom 0 to

1, and E is the maximum error, divided by the maximum ofthe solution.

At h p I Nr T E
0.1 1.33 8 218 79 .58-1
0.05 0.923 10 2 520 1104 .15-1
0.025 0.632 11 2 1220 6694 .37-2

We conclude that the method is expensive but accurate; perhaps its best feature is the
elimination of product integration.
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204 JOHN STRAIN

8. Conclusions. We have described an efficient adaptive approach to several heat flow
problems that arise in physics. The simplest is the homogeneous free-space heat equation, for
which we constructed several methods. All are based on the Hermite expansion of the heat
kernel, combined with an adaptive triangulation scheme that represents a given function f as
a piecewise polynomial within an error lflo. Another key ingredient is the idea of writing
the solution as afunction that can be evaluated at any point, rather than a set of values to be
interpolated.

We then demonstrated how to construct methods for the inhomogeneous case, using
Duhamel’s principle, and how to evaluate layer potentials. We treated layer potentials as in-
homogeneous problems with distributional fight-hand sides and treated the time singularities
by product integration. The Hermite expansion is highly useful here, because it makes it
unnecessary to carry out product integration in space. Thus even for high-order curve repre-
sentations such as cubic splines, we still need only to evaluate integrals of monomials over
the curve; we do not have to integrate Gaussians over a cubic spline curve, which is very
difficult or impossible to do exactly. The Hermite series approach also combines the accuracy
of product integration with the speed of the fast algorithm; usually product integration and
fast algorithms do not marry well, because fast algorithms depend on processing the source
independently of the location of the target then evaluating. In this case, the product integration
simply postmultiplies the output of the fast summation technique.

Numerical results show these methods to be efficient and accurate. They perform partic-
ularly well in spatially rough problems where considerable accuracy is required.

The present techniques are formulated for the heat equation. It is shown in [4] how to
extend fast techniques for the heat equation to nonlinear parabolic problems, and a similar
technique works for variable-coefficient linear problems. Thus the techniques presented in
this paper seem likely to be broadly applicable.

Appendix A. Cartesian coefficients. The polynomial of degree d that interpolates given
values of a function f at the nodes shown in Fig. 1 (for d 1, 2, 3) is usually expressed in
terms of the barycemric coordinates )1 (x, y), L2 (x, y), )3 (x, y) defined by

)L1 "- 2 q" )L3 1,

(30) Xl)l + X2)2 + X33 X,

yl)L1 -- y2)2 @ y3,3 y,

with (Xi, Yi) Vi the vertices of the triangle. The barycentric coordinates of a point v can be
computed in terms of the components x and y of v, by

(31) Li aix + bi y + ci,

by solving (30).
The (d + 1)(d + 2)/2 nodes required for interpolation of degree d are shown in Fig. 1.

The interpolants of degrees d 1, 2, 3 at these nodes are given by [3]
3

f(x) )L f(vi) (d 1),
i=1

3

f(x) Zi(2Zi 1)f(vi) + Z4)i)jf(1)ij) (d 2),
i=1 i<j

1 3 9
f(x) - i )i(3)vi 1)(3)re- 2)f(vi) + - )viLj(3)vi 1)f(viij)

"= ij

+ 27 zxxf(v) (d 3).
i<j<k

The numbering of the nodes is shown in Fig. and follows [3].

D
ow

nl
oa

de
d 

11
/1

7/
15

 to
 1

69
.2

29
.5

8.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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In the linear case, it is straightforward to transform from barycentric to Cartesian coordi-
nates:

f(x, y) (a f )x + (b f y + (c f ),

where a. f E=I ai f(vi), and so forth.
For the quadratic case, we find after some tedious calculations that

f(x, y) Z fx’ f2x2 + fllxy + fozy2 -+- flox -+- FOlY + Foo,
1o1_<2

where the Cartesian coefficients f/j are given by
3

F20 E 2aZi f + E4aiaj fij,
i=1 i<j

3

Fll E 4aibi fi + E 4(aibj + ajbi) fij,
i=1 i<j

3

F02 Z 262if + E 4bibj fij,
i=1 i<j

3

F10 E 2ai(4ci 1)f + E 4(aicj + ajci)fij,
i=1 i<j

3

F01 E 2bi(4ci 1)f + E 4(bicj + bjci)fij,
i=1 i<j

3

Foo E 2Ci(2Ci 1)f + E 4CiCj fij.
i=1 i<j

Here we have abbreviated f f(vi), fij f(vij), and so forth.
The calculations for the cubic case are even more tedious and lead to

f(x, y) E Fxa
Io1_<3

f30x3 -+- f21x2y "k- fl2xy2 + fo3Y3

+ f20x2 + fllxy-]- fo2Y2 -t- flox + FOlY + Foo,

with

9 27
F30 Ei=I a3i f + a2iajfij + 27ala2a3f123,

27 3 27
F21 -- E a2i bi fi + - E ai(aibj -+- 2biaj) fiij

i--1 ij

+ 27(ala2b3 + alba3 + bla2a3)f13,

27 3 27
El2 - E b2iaifi + - Ebi(biaj + 2aibj)fiij

i=1 ij

+ 27(blb2a3 + bla2b3 + alb2b3)f123,
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206 JOHN STRAIN

9 3 27

b2ibjfiij -F 27blb263f123Fo - Zb3i f + -i--1

9 3 9
F2o ila2i(3ci.= 1)f + ijai(3aicj. + (6ci- 1)aj)fiij

q- 27(ala2c3 -I- alc2a3 -F cla2a3) f123,

3 9 (6aibicj -+-ai(6ci 1)bj -+-bi(6i 1)aj)fiijEll 9 i=1 aibi(3ci 1)f -+-
ij

-F 27(cl (a2b3 -+- a3b2) -+- c2(alb3 q- a3bl) q- c3(alb2 -F a2bl)) f123,

9 3 9
F02 /1"= b2i(3ci- 1)f + . bi(3bicj + (6ci- 1)bj)fiij

+ 27(blb2C3 -F blc2b3 -}- clb2b3) f123,

1 3 9
Flo /1 ai(27c2i 18ci + 2)f + _(ai(6ci 1)cj -+- ci(3ci 1)aj)fiij

ij

"+" 27(alc2c3 + cla2c3 -1-ClC2a3)f123,

1 3 9
F01 /1 bi(27c2i 18ci -+- 2)f + y(bi(6ci 1)cj d-ci(3ci- 1)bj) fiij

ij

-ff-27(blc2c3 -+- clb2c3 q-- ClC2b3) f123,

1 3 9
Foo - i Ci(3Ci 1)(3ci 2)f + Z Ci(3Ci 1)cj fiij -+- 27ClC2C3f123.

ij
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