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The Interpretability Hierarchy

For T a theory, let ArithmeticT be the set of consequences of T in
the language of first order arithmetic.

Phenomenon: If T is a natural extension of ZFC, then there is an
extension S axiomatized by large cardinal hypotheses such that

ArithmeticT = ArithmeticS .

Moreover, if T and U are natural extensions of ZFC, then

ArithmeticT ⊆ ArithmeticU ,

or
ArithmeticU ⊆ ArithmeticT .

In practice, ArithmeticT ⊆ ArithmeticU iff PA proves
Con(U)⇒ Con(T ).
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Definition
For any theory T in LST, 1-ArithmeticT is the set of consequences
of T of the form “Vω+1 |= ϕ”.

Let S be the theory ZFC plus “there are infinitely many Woodin
cardinals.”

Phenomenon: Let T ,U be natural theories such that
ArithmeticS ⊆ ArithmeticT and ArithmeticS ⊆ ArithmeticU . Then
either

1-ArithmeticT ⊆ 1-ArithmeticU ,

or
1-ArithmeticU ⊆ 1-ArithmeticT .

So at the level of sentences about Vω+1, we know of only one
road upward. We are led to it many different ways. Strong
axioms of infinity are its central markers.
CH is a sentence about Vω+2.
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Remarks.

1. Directedness, not linearity, is what is important for a
“well-determined” theory of (Vω+1,∈).

2. The phenomenon extends to sentences of the form
“∃A ∈ Hom∞(Vω+1,∈,A) |= ψ).” These are called (Σ2

1)Hom∞

statements.

3. By Levy-Solovay, it does not extend to arbitrary Σ2
1

statements like CH, if our consistency-strength lower bound is
one of the conventional large cardinals. These are preserved
by small forcing, so cannot decide CH.

4. We shall stick to the initial segment of the interpretability
hierarchy where the natural markers are conventional large
cardinals, preserved by small forcing.
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Some equiconsistencies



Further up



The vision of ultimate K .

What does this picture say about what we should believe, or give
preferred development, as a framework theory?

1. Developing one theory develops them all, via the relative
interpretations. At the level of concrete statements, they all
agree.

2. But there might be a best framework theory, or equivalence
class of them under inter-translations.

3. It might contain a locator axiom (saying which staircase you
are on), and height axioms (saying how far up you are). Its
incompleteness might reside solely in the height axioms. So it
would decide CH, and much more.

4. The best location is the center! It is easier to leave a
canonical inner model by forcing than to get back into one by
core model theory.
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(5) Nothing rivals fine structure theory as a global theory. There
is no candidate locator axiom which produces a detailed,
global theory of the universe of sets, except those asserting
that V is some kind of canonical inner model.

(6) If you can make precise sense of “V = ultimate K ”, and it is
compatible with all consistency strengths up to rank-to-rank
embeddings, then it has many virtues as a locator:

(a) everything there is is arranged in a finely-grained, harmoniously
ordered hierarchy,

(b) nothing appears until you are fully ready to understand it,
(c) when you are ready, it does appear! ( Unlike L.)
(d) In particular, you see natural models for all other natural

theories. For example, you will find plenty of ways to enter
PFA- worlds with the same theory of the concrete as your own.

(7) Parallel: if we were to show 0] does not exist, then V = L
would become a natural locator axiom.
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The triple helix

The initial segment of the consistency-strength hierarchy we
understand well enough to prove nontrivial equiconsistencies is ≤ a
Woodin limit of Woodin cardinals. (Yes, that’s all!) In this region:

1. At the center are 3 intertwined hierarchies of sets. Staircase 1
is the Wadge hierarchy in a canonical model of AD containing
all reals. Staircases 2 and 3 are the fine-structural hierarchies
of two inter-related types of canonical inner model for ZFC.

2. Models in each hierarchy see the others at levels ≤ their own.

3. You can’t develop the theory of one hierarchy without
developing the theory of all three. You can’t prove consistency
strength lower bounds without constructing all three types of
model simultaneously.

4. One of the 3 types of models may be “preferred”.
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Staircase 1

Definition
A set A ⊆ ωω is Hom∞ iff for any κ, there is a continuous function
π on ωω such that for all x , π(x) is a tower of κ-complete
measures, and

x ∈ A⇔ π(x) is wellfounded.

The concept comes from Martin 1968. Hom∞ sets are determined.
The definition seems to capture what it is about sets of reals that
makes them “well-behaved”.

Theorem (Martin, S., Woodin)

If there are arbitrarily large Woodin cardinals, then for any
pointclass Γ properly contained in Hom∞, every set of reals in
L(Γ,R) is in Hom∞, and thus L(Γ,R) |= AD.
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Theorem (Woodin)

If there are arbitrarily large Woodin cardinals, then (Σ2
1)Hom∞

statements are absolute for set forcing.

In practice, generic absoluteness of a class of statements can be
proved by reducing them to (Σ2

1)Hom∞ statements. (You may need
more than arbitrarily large Woodin cardinals to do that!)
There is an approximation to being Hom∞ which can be used in
constructing the sets in staircase 1 in universes where we have no
measurable cardinals.
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Staircase 2

Definition
A pure extender model is the constructible closure of a coherent
sequence of extenders.

I An extender is a system of ultrafilters coding an elementary
embedding.The extenders in a coherent sequence appear in
order of their strength, without leaving gaps.

I What makes a countable pure extender model M canonical is
the existence of a Hom∞ iteration strategy for M. This is a
(Σ2

1)Hom∞ statement about M.It is reasonable to hope that all
(Σ2

1)Hom∞ statements ψ can be reduced to statements of the
form “ there is a Hom∞ iteration strategy for some
M |= f (ψ).”

I Every real in an iterable extender model is ordinal definable.

I At the moment, we can only construct iteration strategies for
M a bit past Woodin limits of Woodins. The fine structure
theory for iterable M works up through superstrong cardinals.
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order of their strength, without leaving gaps.

I What makes a countable pure extender model M canonical is
the existence of a Hom∞ iteration strategy for M. This is a
(Σ2

1)Hom∞ statement about M.It is reasonable to hope that all
(Σ2
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form “ there is a Hom∞ iteration strategy for some
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Staircase 3

Leaning heaviliy on work of Woodin:

Theorem
No iterable pure extender model with a Woodin cardinal satisfies “I
am iterable”.

Psuedo-definition: A hod mouse is a model constructed from a
coherent sequence of extenders, together with an iteration strategy
for the model.

The concept was made precise by Woodin for hod mice having
countably many Woodin cardinals. Grigor Sargsyan developed it
further, up to measurable cardinals which are limits of Woodins.
Steel and Sargsyan have gone somewhat beyond that.
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Some connections

Theorem (Sargsyan 2008)

Assume AD+ and there is no model of ADR + “θ is measurable”
containing all the reals; then HOD is a hod mouse.

For determinacy models M, HODM knows the theory of M. E.g.:

Theorem (Woodin late 80’s)

Assume ADR + “θ is regular”; then V is elementarily embeddable
into a symmetric extension of HOD.

Mouse Set Conjecture: Assume AD+ and there is no iterable
pure extender model with a superstrong; then HOD is a pure
extender model below its least Woodin cardinal.
Sargsyan proved this for determinacy models in the region to which
his work applied.
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The core model induction

One proves consistency strength lower bounds for theories like PFA
by climbing all three staircases together. A sample theorem:

Theorem (Woodin 90’s, Sargsyan 2008)

The following are equiconsistent

(1) ZFC + “there is an ω1-dense ideal on ω1 + CH + (∗),

(2) ZF + ADR + “Θ is regular”.
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Some locator axioms

(A1) There is a strong cardinal, and arbitrarily large Woodin
cardinals, and for κ the least strong cardinal, and M the
derived model of V at κ, there is an elementary

j : Vκ → HODM |θ.

(A2)n There are arbitrarily large Woodins, and Vκ ≺Σn V , such that
for M the derived model of V at κ, there is an elementary

j : Vκ → HODM |θ.

(A2) implies there are no strong cardinals, but may be compatible
with all the local forms of large cardinal axioms. (Having a strong
cardinal is like having a largest rank.)
Both (A1) and (A2) say that V looks like the HOD of an AD
model.
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(A3)n For arbitrarily large α, V is Σn equivalent to the α-complete
backgrounded pure extender model.

(A4) ADR + “θ is regular” + “there is lots of stuff above θ”.
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Some basic open problems

By now, philosophy has far outrun the math. Some problems:

(1) How iterable is V ? Are there iterable pure extender models
having superstrongs? Measurable Woodin cardinals?
Supercompacts?

(2) Are there hod mice with Woodin limits of Woodin cardinals?

(3) Is the Mouse Set Conjecture true?

(4) Does Con(PFA) imply Con(Woodin limit of
Woodins)?Con(supercompacts)?

(5) And ...
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What’s up there?


